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CHAPTER 1

Introduction

In this thesis we examine the transport properties of passive scalars governed by the advection-
diffusion equation

∂tT + ~u · ∇T = ∆T, (1.1)

driven by incompressible flow fields ~u. The spatial domain of interest is periodic in the
horizontal directions and bounded in the vertical. For example in three dimensions the
domain is of the form [0,Γ1]× [0,Γ2]× [0, 1], with periodicity in the horizontal directions
x ∈ [0,Γ1] and y ∈ [0,Γ1]. The boundary conditions on the z = 0 and z = 1 boundary are
T = 1 and T = 0 respectively. Furthermore, the flow field ~u does not penetrate through the
boundary. This domain and boundary conditions relate to the physical scenario in which a
plate is heated from below and cooled from above when interpreting T as temperature.

Our interest is to calculate how much heat is being transported from the bottom of the
plate at z = 0 to the top of the plate z = 1. Writing the advection-diffusion equation (1.1)
in conservation law form,

∂tT +∇ · (~uT −∇T ) = 0, (1.2)

lets us easily pick out the heat flux

~J = ~uT −∇T. (1.3)

The notion of heat transport that we will use is the long time and spatial average of the
total heat flux in the vertical direction known as the Nusselt number. The formula for this
quantity is

Nu = 1 + lim
τ→∞

1

τΓ1Γ2

∫ τ

0

∫ Γ1

0

∫ Γ2

0

∫ 1

0

wT dz dy dx dt, (1.4)
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where w is the vertical component of velocity.

1.1 Methods for Obtaining Bounds

We will calculate time averages of quantities that depend on the state s ∈ S of a dynamical
system. Let φ(s) denote the long time average average of an observable φ : S → R given
by the formula

φ ≡ lim sup
τ→∞

1

τ

∫ τ

0

φ(s(t))dt. (1.5)

Ideally we would like to know the long time average of an observable on a particular at-
tractor of a dynamical system but there is currently no known general method to do so.
However there are methods for bounding all solutions [4].

To obtain upper and lower bounds to φ the general approach is as follows: We introduce
arbitrary functions of the state, denoted by g : S → R and h : S → R, such that

g = h = 0. (1.6)

If it is possible to show

φ(s) + g(s)− c ≤ 0 (1.7)

φ(s) + h(s)− d ≥ 0 (1.8)

for constants c or d and all values of the state s, then we would have bounds of the form

φ = φ+ g − c+ c ≤ c, (1.9)

φ = φ+ h− d+ d ≥ d. (1.10)

All of the rigorous bounds that will be shown in this thesis follow this general approach.
One philosophy behind choosing a bounding function (g or h) for state variables that

are bounded (‖s‖ < ∞ for some norm ‖ · ‖) is to pick a differentiable function V and
choose g or h to be ṡ · ∇V = V̇ where the dot denotes a derivative with respect to time.
The bounding potential V is bounded either due to the boundedness of V itself or due to
the state being bounded for all times. For a fixed initial condition |V (s)| ≤M for all time.
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This choice satisfies (1.6) since

∣∣ṡ · ∇V ∣∣ =
∣∣∣V̇ ∣∣∣ =

∣∣∣∣lim sup
τ→∞

V (s(τ))− V (s(0))

τ

∣∣∣∣ ≤ lim sup
τ→∞

2M

τ
= 0. (1.11)

We mention that for potentials V that only depend on a finite number of states, such as
ODE’s or a finite selection of modes for a PDE, it is possible to formulate the problem of
choosing an upper bound and a potential V as a semi-definite program [5, 6] if one limits
the choice V to be a sum of squares polynomial; however, our interest is in developing
approaches that work for PDE’s and a great simplification is obtained if one chooses V to
be a quadratic function (or functional) of the state variables.

For example, consider the dynamical system governed by the evolution equation

ṡ = s(1− s2) (1.12)

and the observable φ(s) = s2. A lower bound for this observable is zero and it is sharp
since it saturated by the (unstable) steady state solution s = 0. The trajectories of this
dynamical system are bounded thus a choice of potential V (s) = 0.5s2 and c = 1 yields

φ(s) = φ(s) + V̇ (s)− 1 + 1 = s2 + s2(1− s2)− 1 + 1 (1.13)

= −(s2 − 1)2 + 1 ≤ 1. (1.14)

Thus we have an upper bound of 1 for the long time average of the observable φ(s) = s2.
This bound is sharp since it is saturated by the steady state solutions s = ±1.

A more complicated example of this approach may be applied to the Boussinesq ap-
proximation of the Navier-Stokes equations. In modern dimensionless form the equations
are

1

Pr
(∂t~u+ ~u · ∇~u) = ∆~u−∇p+ RaT ê3 (1.15)

∇ · ~u = 0 (1.16)

∂tT + ~u · ∇T = ∆T, (1.17)

where ~u = (u1, u2, u3), ~u(x, y, z, t) and T (x, y, z, t) are periodic in x ∈ [0,Γ1] and y ∈
[0,Γ2]. The velocity field ~u satisfies homogeneous (no-slip) boundary conditions on z = 0

and z = 1 and the temperature field is T = 1 at z = 0 and T = 0 at z = 1. The parameter
Ra ∈ (0,∞) is the Rayleigh number and the parameter Pr ∈ (0,∞) is the Prandtl number.
The convective heat flux in the vertical direction is given by wT and the conductive heat

3



flux is −∂zT , hence the Nusselt number is 〈wT − ∂zT 〉 = 1 + 〈wT 〉 where the angle
brackets denote the spatial and long time averages

〈f〉 = lim
τ→∞

1

τΓ1Γ2

∫ τ

0

∫ Γ1

0

∫ Γ2

0

∫ 1

0

f dz dy dx dt. (1.18)

It is straightforward to deduce Nu = 〈∇T · ∇T 〉 from the equations of motion and
prescribed boundary conditions. A choice of functional

V [~u, T ] =
1

2Γ1Γ2

∫ Γ1

0

∫ Γ2

0

∫ 1

0

(
1

σRa
~u · ~u+ θ2

)
dz dy dx dt (1.19)

where θ = T − τ(z),

τ(z) =


1−

(
1
δ
− 1
)
z for 0 ≤ z < δ

z for δ ≤ z ≤ 1− δ(
1
δ
− 1
)

(1− z) for 1− δ < z ≤ 1

(1.20)

and δ = 4Ra1/2 yields

Nu =

〈
1

2
(1 + u3T ) +

1

2
∇T · ∇T + ∂tV

〉
=

1

2
+

1

2

∫ 1

0

(τ ′)2dz −Q[~u, T ] (1.21)

where

Q[~u, T ] =

〈
1

2Ra
∇~u : ∇~u+ [τ ′ − 1]u3θ +

1

2
∇θ · ∇θ

〉
, (1.22)

and ∇~u : ∇~u is ∂juk∂juk with repeated indices summed. Constantin and Doering [4]
showed that the quadratic functional Q is positive semi–definite, hence we have an upper
bound

Nu ≤ 1

4
Ra1/2 − 1, (1.23)

for Ra ≥ 64.
It is possible to lower the prefactor using a different functional, and the Nu ∼ Ra1/2

scaling seems to be higher than most observed scalings in numerical experiments which are
closer to Nu ∼ Ra1/3. It is perhaps possible to incorporate a more complicated functional
in order to lower the scaling, but thus far this has only been possible for two dimensional
flows with stress-free boundary conditions [3].
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At this point it may seem rather mysterious how to choose a proper bounding potential
V . The background method of Constantin and Doering [4] provides a framework in which
one can learn how to build the pieces for V . In Chapter 2 we show how to construct V
for the Lorenz and Double Lorenz system and their optimal control counterparts using the
background method. In Chapter 3 we repeat the Doering and Constantin calculation for the
optimal control analog to the Rayleigh-Bénard problem. This method for obtaining bounds
does not give any hint as to what flow fields could maximize transport nor do we know if
the bounds are sharp.

1.2 Optimal Control

The optimal control approach to bounding an observable of interest is a refinement of the
previous method. The general idea is to replace one of the equations of the dynamical
system with a bulk constraint while fully enforcing the others. Suppose that a dynamical
system state variable can be split into two parts s = (u, θ) where, for a given initial condi-
tion, θ is uniquely determined by u. We will think of u as the “control” and θ as the “state
variable” governed by the evolution equations

u̇ = f(u, θ) (1.24)

θ̇ = g(u, θ). (1.25)

For a given observable φ(u, θ) we would like to find an upper bounds to long time averages
of φ, subject to the equations of state. Furthermore we suppose that the long time average
of the square norm of the control is finite, that is

lim sup
T→∞

1

T

∫ T

0

‖u‖2dt = ‖u‖2 <∞ (1.26)

where ‖ · ‖ is a norm on u. The norms that we will work with will come from a Hilbert
space of some kind hence the squaring of the norm. The “natural” problem is to maximize
the observable in the long time limit

sup
u0,θ0

φ(u, θ) (1.27)

subject to

u̇ = f(u, θ) (1.28)

θ̇ = g(u, θ) (1.29)

5



where u0 and θ0 are initial conditions for the u and θ equations. In contrast the optimal
control problem is

sup
u

φ(u, θ) (1.30)

subject to

‖u‖2 = Pe2 (1.31)

θ̇ = g(u, θ) (1.32)

where Pe ∈ (0,∞) is a constant. In order to not waste time on particular initial conditions
we further make the supposition that the value of the observable becomes independent of
initial conditions in the long time limit. Hence we may fix an initial condition as opposed
to optimizing over all possible initial conditions.

We would like to know the functional relation between φ(u, θ) and Pe. Suppose that
we solve the natural problem (1.27) and denote the solution by v. By our assumption
‖v‖2 = Pe2 < ∞ for a number Pe. Now consider the solution to the optimal problem
(1.30) with the same value of Pe and denote the solution by u. The optimal control problem
contains the “natural” problem as a subset of possible choices for u, hence

φ(v, θv) ≤ φ(u, θu). (1.33)

where θv is the state solution associated with the natural problem and θu is the state solution
associated with the optimal problem. In the work considered here we expect a power law
relation between the observable φ and the budget ‖u‖2 in the limit of small Pe as well as in
the limit of large Pe.

Under suitable assumptions we may formulate this problem as one of finding the critical
points of the augmented action

A[u] = φ(u, θ) + ϕ(θ̇ − g(u, θ)) +
1

2
µ(Pe2 − ‖u‖2) (1.34)

leading to the Euler-Lagrange equations

θ̇ = g(u, θ) (1.35)

ϕ̇ = −∇θg(u, θ) +∇θφ(u, θ) (1.36)
µ

2
∇u‖u‖2 = ∇uφ(u, θ)− ϕ∇ug(u, θ) (1.37)

‖u‖2 = Pe2. (1.38)

6



The first equation is known as the state equation, the second equation as the adjoint equa-
tion, and the third equation as the optimality condition. The hope is that the optimality
condition (1.37) is easier to analyze than the evolution equation for u (1.24). In the section
that follows we will discuss some specific cases of this approach as applied to Rayleigh-
Bénard convection and related truncated models.

1.3 Natural versus Optimal Flows

With regards to Rayleigh-Bénard convection we maximize the long time and spatial average
of the vertical heat flux in the domain [0,Γ1]×[0,Γ2]×[0, 1]. Thus the the “natural” problem
is to consider

sup
~u0,T0

〈wT 〉 (1.39)

subject to
1

Pr
(∂t~u+ ~u · ∇~u) = ∆~u−∇p+ RaT ê3, (1.40)

∇ · ~u = 0 (1.41)

∂tT + ~u · ∇T = ∆T. (1.42)

where ~u = (u, v, w) = (u1, u2, u3), ~u(x, y, z, t) and T (x, y, z, t) are periodic in x ∈ [0,Γ1]

and y ∈ [0,Γ2]. Again the angle brackets 〈·〉 denote the long-time and spatial average, see
(1.18). The vertical velocity field w satisfies homogeneous boundary conditions on z = 0

and z = 1 and the temperature field is T = 1 at z = 0 and T = 0 at z = 1. The horizontal
velocities will either satisfy no slip boundary conditions (meaning that they are zero on the
z = 0 and z = 1 boundaries) or stress-free (meaning ∂xu = ∂yv = 0 on the boundaries).
The optimal problem is

sup
~u

〈wT 〉 (1.43)

subject to

∂tT + ~u · ∇T = ∆T (1.44)

〈∇~u : ∇~u〉 = Pe2 (1.45)

∇ · ~u = 0, (1.46)

where the velocity field and temperature fields satisfy the same boundary conditions as the
natural problem. As mentioned in the previous section the upper bound to (1.39) is lower

7



than the upper bound to (1.43) for flows that satisfy 〈∇~u : ∇~u〉 = Pe2.
Upper bounds to heat transport in Rayleigh-Bénard convection are not reported in terms

of 〈∇~u : ∇~u〉 = Pe2, but rather the parameter Ra that appears in the momentum equation
(1.40). We may use the integral balance relation Pe2 = Ra(Nu − 1) derived from (1.40)
to convert upper bounds from (1.43) to upper bounds in terms of Ra. For example, if
(Nu− 1)optimal ≤ cPeβ where 0 < β < 2 and 0 < c then

(Nu− 1)natural ≤ (Nu− 1)optimal ≤ cPeβ (1.47)

⇒
Pe2

Ra
≤ cPeβ (1.48)

⇒

Pe ≤ c
1

2−β Ra
1

2−β (1.49)

⇒

(Nu− 1)natural ≤ c
2

2−β Ra
β

2−β . (1.50)

Recall that the optimal transport and the natural transport are being compared at the same
Pe value.

In Chapter 3 we formulate the optimal control problem (1.43) rigorously for steady
flows, discuss time-dependent implications, and deduce rigorous upper bounds to the prob-
lem. In Chapter 4 we present algorithms for solving the Euler-Lagrange equations associ-
ated with (1.43) as well as present numerical solutions for two dimensional flows steady-
flows.

The full optimization problem (1.43) is difficult and thus we look at reduced models
in Chapter 2 to develop intuition. The first reduced model that we analyze are the famous
Lorenz equations

Ẋ = −σX + σY (1.51)

Ẏ = rX − Y −XZ (1.52)

Ż = XY − bZ, (1.53)

where b, σ, r are parameters. The analogous quantity to the Nusselt number in this context
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is XY . The natural problem is

sup
X0,Y0,Z0

XY (1.54)

subject to

Ẋ = −σX + σY (1.55)

Ẏ = rX − Y −XZ (1.56)

Ż = XY − bZ, (1.57)

and the optimal problem is

sup
X

XY (1.58)

subject to

Ẏ = rX − Y −XZ (1.59)

Ż = XY − bZ (1.60)

X2 = Pe2. (1.61)

In §2.1 we find the sharp upper bounds to both problems.
The next reduced model that we look at in Chapter 2 is the Double Lorenz equations

ẋ1 = −σx1 + σr1y1 + (c1w1 − d1w2)x2 (1.62)

ẏ1 = −y1 + x1 − x1z1 +
1

2
(w1 − w2)y2 (1.63)

ż1 = −b1z1 + x1y1 (1.64)

ẋ2 = −σax2 + σar2y2 − a(c2w1 − d2w2)x1 (1.65)

ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (1.66)

ż2 = −b2az2 + ax2y2 (1.67)

ẇ1 = −σ1

4
b1w1 −

3

8
ax1x2 (1.68)

ẇ2 = −σ9

4
b1w2 +

3

8
ax1x2, (1.69)
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where (σ, r1, r2, a, b1, b2, c1, d1) are parameters. Here we have

Nu = 1 +
1 + k2

2

(
x1y1 +

a

4
x2y2

)
, (1.70)

Pe2 =
1

2

(1 + k2)4

k2
x2

1 +
1

8

(4 + k2)4

k2
x2

2 + 2
(1 + k2)2

k2
w2

1 + 18
(1 + k2)2

k2
w2

2, (1.71)

where k is another parameter. We form analogous “natural” and “optimal” problems for
this system in §2.2. There we find sharp upper bounds to the optimal control problem and
compare it to the known solutions of the “natural” problem.
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CHAPTER 2

Reduced Models

Modal truncations of partial differential equations have a long history of modeling the
essential physics and producing interesting mathematics. Low dimensional dynamical sys-
tems approximations can provide insights into the full partial differential equations of mo-
tion, and they can serve as a simplified setting in which to test analytical and numerical
techniques. In the context of fluid mechanics, certain distinguished truncations, e.g., those
respecting energy and/or enstrophy conservation in the inviscid limit, are of particular in-
terest [7]. Finite dimensional dynamical systems are naturally derived as Galerkin trunca-
tions of the Boussinesq equations, but only a subset of such truncations preserve certain
physical features of the full system. The modal truncations of Rayleigh-Bénard convec-
tion with stress-free boundaries that we will look at in this chapter include the celebrated
Lorenz equations [8] as well as the Double Lorenz equations [9], an eight-mode extension
of Lorenz.

We examine these modal truncations as models for both understanding the background
method of §1.1 and the optimal control method of §1.2 in the context of Rayleigh-Bénard
convection. In §2.1 we perform these two distinct analyses for the Lorenz equations. The
background method and the optimal control method produce the same bound and corre-
spond to an exact solution of the original equations of motion as well as the optimal trans-
port equations. We mirror this procedure for the Double Lorenz equations in §2.2. In
contrast to what was found for the Lorenz equations, it appears that the optimal transport
bounds are not saturated by solutions of the original equations of motion; however bounds
from the background method and the optimal control method coincide.

Although reduced models continue to be the focus of much modern theoretical [10,
11, 12], computational [13], and experimental [14] research it is widely appreciated that
they do not inform us quantitatively about high Rayleigh number turbulent convection, the
primary motivation for this investigation. But evaluation of the accuracy of rigorous bounds
on heat transport in Rayleigh-Bénard convection remains an important open problem for
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both physics and mathematics, and studies of simplified systems like this help us to assess
the strength of available analytical tools.

The results presented in this chapter appeared in [15] and [16] for the Lorenz and Dou-
ble Lorenz equations, respectively.

2.1 Lorenz

Few mathematical models have had as profound an influence on the development of non-
linear science over the last half century as the Lorenz equations [8]

Ẋ = −σX + σY (2.1)

Ẏ = rX − Y −XZ (2.2)

Ż = XY − bZ. (2.3)

This system arises as a severe modal truncation of Rayleigh’s 1916 model of two-dimensional
buoyancy-driven flow between parallel isothermal plates with stress-free boundaries [17].
In stream function vorticity representation Rayleigh’s model takes the form,

ω̇ + J(ψ, ω) = σ∆ω + σRaθx (2.4)

θ̇ + J(ψ, θ) = ∆θ + ψx (2.5)

where the J(α, β) = αxβy − αyβx, ω(x, y, t) = ∆ψ(x, y, t) is the vorticity associated
with stream function ψ, and θ(x, y, t) is the deviation of temperature from the steady linear
conduction profile. The boundary conditions are ψ = ψyy = θ = 0 at y = 0 and y = 1

with everything L-periodic in x.
Lorenz’s variables are modal amplitudes in the Galerkin truncation approximation

ψ(x, y, t) =

√
2

π

(
k2 + π2

k

)
X(t) sin kx sin πy

θ(x, y, t) =

√
2

πr
Y (t) cos kx sin πy − Z(t)

1

πr
sin 2πy (2.6)

where the ‘reduced’ Rayleigh number r = Ra/Rac, the domain-shape parameter b =
4π2

k2+π2 , and time is rescaled. Solutions of Rayleigh’s continuum model are reasonably well
approximated by Lorenz’s truncation only near the primary bifurcation, i.e., for r = O(1),
but the differential equations are nevertheless of theoretical (and historical) interest even
for r � 1 due to the appearance of chaos in the solutions.
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The bulk heat transport is measured by the Nusselt number Nu, the ratio of the sum
of the total (conductive plus convective) heat flux to the flow-independent conductive flux.
The convective heat flux is proportional to the correlation between the vertical velocity ψx
and the temperature θ, which reduces to Nu−1 = k2+π2

2π2r
〈XY 〉 for Lorenz’s variables where

〈·〉 indicates the infinite time average (when the infinite time limit of long-but-finite time
averages exist). The Nusselt number is a key indicator of the nonlinear response of the
system to the driving whose strength is measured by the Rayleigh number (Ra or r). The
classical linear and nonlinear stability results for both Rayleigh’s and Lorenz’s models are
that the pure conduction state with Nu = 1, respectively ψ = 0 = θ and X = Y = Z = 0,
is absolutely stable for Ra < Rac ≡ r < 1 and linearly unstable for Ra > Rac ≡ r > 1.

The study of rigorous bounds on Nu for solutions of the Lorenz equations has re-
ceived less attention with the notable exceptions of Malkus [18], Knobloch [19], and
Foias et al [20] who found that the steady state maximizes transport among statistically
steady solutions and for invariant measures, and Pétrélis & Pétrélis [1] who proved that
〈XY 〉 ≤ b (r+σ−

√
σ)2

r+σ
for any solution. We examine two alternative approaches to establish

the improved estimate 〈XY 〉 ≤ b(r−1), uniformly in σ for r > 1, when the long-time limit
exists. In case long-time averages do not converge, our result is that the limit supremum of
finite-time averages satisfies the bound. Most significantly this upper bound is sharp: it is
saturated by the exact steady solutions (Xs, Ys, Zs) = (±

√
b(r − 1), ±

√
b(r − 1), r− 1).

In the next section we employ the background method, originally contrived for estimat-
ing bulk averaged transport in solutions of the Navier-Stokes and related equations [4], to
prove this upper bound. The subsequent section uses an optimal control strategy for upper
bound analysis: we relax the momentum equation (2.1) and treat X(t) as a control variable
constrained only by 〈X2〉 = Pe2 to drive the temperature variables via (2.2) and (2.3). We
prove in this setting that 〈XY 〉 ≤ rbPe2/(b + Pe2). Then auxiliary relation Pe2 = 〈XY 〉,
from the neglected equation (2.1), can then be used to connect the optimal transport with
solutions of the Lorenz equations, yielding the same bound as obtained from the back-
ground analysis. This shows that no time-dependent stirring protocol, whether it solves the
first Lorenz equation (2.1) or not, transports more than the steady flow. We also show, in a
certain precise sense, that the steady stirring strategy is the unique maximizer.
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2.1.1 Background Analysis

We are interested in the r > 1 parameter regime. It is convenient to rewrite the Lorenz
equations as

ẋ = −σx+ σry (2.7)

ẏ = x− y − xz (2.8)

ż = xy − bz, (2.9)

where X = x, Y = ry and Z = rz and the Nusselt number in terms of the correlation
of x(t) and y(t) is Nu = 1 + k2+π2

2π2 〈xy〉. (Note: do not confuse these lower case x and y
variables with the spatial coordinates in Rayleigh’s model discussed in the introduction.)

It is well known that, after possible initial transients, solutions of the Lorenz equations
are uniformly bounded in time [21, 22, 23, 24, 25, 26]. For example

1

2

d

dt

[
1

r2
x2 + y2 +

(
z − 1− σ

r

)2
]

= − σ
r2
x2 − y2 − bz2 + b

(
1 +

σ

r

)
z (2.10)

so that

lim
t→∞

[
1

r2
x2 + y2 +

(
z − 1− σ

r

)2
]
≤


(
1 + σ

r

)2 if min{1, σ, b
2
} = b

2

b2(1+σ
r )

2

4(b−1)
if min{1, σ, b

2
} = 1

b2(1+σ
r )

2

4σ(b−σ)
if min{1, σ, b

2
} = σ.

(2.11)

Thus for differentiable functions F : R3 → R, long time averages of time derivatives
satisfy

〈Ḟ (x, y, z)〉T ≡ T−1

∫ T

0

[
d

dt
F (x(t), y(t), z(t))

]
dt = O(T−1) as T →∞. (2.12)

Hence, averaging time derivatives of 1
2
x2, 1

2
(y2 + z2), and −z we deduce the balances

0 = −〈x2〉T + r〈xy〉T +O(T−1) (2.13)

0 = −〈y2〉T − b〈z2〉T + 〈xy〉T +O(T−1) (2.14)

0 = −〈xy〉T + b〈z〉T +O(T−1). (2.15)

Now write z(t) = z0+ς(t) where, anticipating the result, we choose the time-independent
“background” component z0 = r−1

r
. One may choose to decompose the x and y variables

as well, but insight from the full Rayleigh–Bénard problem suggests that this is unneces-
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sary. Indeed we expect that the long time averages of the x and y variables for chaotic
solutions average out to zero, thus there is nothing to be gained by separating it into such
components. On the other hand we expect z to have a non-zero average value for r > 1.
Looking at the modal amplitude that the z variable comes from provides additional insight.
It is purely a function of the vertical direction (unlike the other Lorenz modes) and thus it
is the only one affected by the background decomposition of full PDE, see §3.4.

Substituting z(t) = z0 + ς(t) into (2.14) and (2.15) yields

0 = −〈y2〉T − b〈ς2〉T − 2bz0〈ς〉T − bz2
0 + 〈xy〉T +O(T−1) (2.16)

0 = bz0 + b〈ς〉T − 〈xy〉T +O(T−1). (2.17)

Then the combination (2.16) + 2z0 × (2.17) is

0 = −〈y2〉T − b〈ς2〉T + bz2
0 + (1− 2z0)〈xy〉T +O(T−1) (2.18)

so that, adding zero cleverly disguised as 1
r
×(2.13)+ r×(2.18) to (r − 1)〈xy〉T , we have

(r − 1)〈xy〉T = rbz2
0 − 〈(

x√
r
−
√
r y)2 + rbς2 〉T +O(T−1)

≤ rbz2
0 +O(T−1) = b

(r − 1)2

r
+O(T−1). (2.19)

This, in turn, implies

lim
T→∞

〈XY 〉T = lim
T→∞

r〈xy〉T ≤ b (r − 1) = XsYs. (2.20)

Therefore, when the long time limit exists, 〈XY 〉 = lim
T→∞
〈XY 〉T ≤ b (r−1) as advertised.

As a corollary it is interesting to note that the proof also shows that any sustained
time dependence in the solutions, whether periodic or chaotic, strictly lowers the transport.
Indeed, (2.1) and the penultimate expression in (2.19) imply

〈XY 〉T ≤ b (r − 1) − 1

σ2(r − 1)
〈Ẋ2〉T + O(T−1) (2.21)

so that 〈XY 〉 is strictly less than XsYs when 〈Ẋ2〉 6= 0.
This is illustrated in Figure 2.1 where we plot the upper limit realized by the non-trivial

steady state solutions along with measurements of 〈XY 〉 from direct numerical solutions
of the Lorenz equations. For these particular parameter values (σ = 10 and b = 8

3
) the

non-zero fixed points are stable for 1 < r ≤ 470
19

= 24.73 . . . [8] while chaotic and periodic
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Figure 2.1: Long time averaged heat transport for solutions of the Lorenz equations.
Dashed line: upper bound on 〈XY 〉 derived by Pétrélis & Pétrélis [1]. Solid line: im-
proved upper bound (2.20) corresponding to the nontrivial fixed points that exist when
r > 1. Discrete data: direct numerical simulation results for parameter values σ = 10 and
b = 8

3
.

solutions—that necessarily transporting less heat—are robustly realized for higher r.

2.1.2 Optimal Control Analysis

The same upper bound results from an alternative analysis and yields insight into the dy-
namics of optimal transport in the Lorenz equations. The idea is to consider the flow as
a control variable driving the temperature field via the advection-diffusion equation and
ask: What is the maximal transport that can be realized among all flows subject to a suit-
able intensity constraint? The relevant constraint for Rayleigh’s model is the value of the
space-time averaged enstrophy (the mean squared vorticity 〈ω2〉, where 〈·〉 includes the
spatial average in this context) the magnitude of which becomes a parameter in the control
problem. By revisiting the neglected momentum equation we connect the flow intensity
parameter with the transport and the original parameter(s): for Rayleigh’s model the con-
nection is established by multiplying (2.4) by ψ and averaging over space and time to see
that 〈ω2〉 = Ra〈ψxθ〉 = Ra(Nu− 1).

For the Lorenz equations we neglect dynamical equation (2.1) and treat X(t) as a con-
trol variable in (2.2) and (2.3) for Y (t) and Z(t). The amplitude of X is subject to the
constraint 〈X2〉 = Pe2 < ∞ where the Péclet number Pe parameterizes the strength of
the stirring. We seek to determine the optimal X(t) that maximize the convective trans-
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port proportional to the correlation 〈XY 〉. Afterwards, to connect the Péclet number to the
Rayleigh-Bénard problem, we impose the relation Pe2 = 2π2r

k2+π2 (Nu−1) satisfied by natural
buoyancy driven flow. The bound on Nu is also a bound for solutions of the full Lorenz
system since we maximize over a larger class of functions X(t) than just those generated
by (2.1).

To carry this out it is again convenient to rewrite (2.2) and (2.3) as the inhomogeneous
and (generally) non-autonomous linear dynamical system

d

dt

(
y

z

)
=

(
−1 −x
x −b

)(
y

z

)
+

(
x

0

)
(2.22)

where y(t) = Y (t)/r, z(t) = Z(t)/r, and x(t) = X(t) is now a locally square integrable
function of time subject only to the mean constraint 〈x2〉 = Pe2 (strictly speaking we
require 〈x2〉T = Pe2 + o(1) as T →∞). The optimal control problem is a constrained op-
timization problem: we seek to determine the maximum possible value, over all admissible
functions x(t), of the long-time average 〈xy〉 where y(t) and z(t) solve (2.22).

According to the calculus of variations the mother functional that we differentiate to
derive the Euler-Lagrange equations satisfied by the optimizers is

F =

〈
xy − η (ẏ − x+ y + xz) + ζ (ż − xy + bz)− µ

2

(
x2 − Pe2

)〉
(2.23)

where η(t) and ζ(t) are Lagrange multipliers enforcing (2.22) and the real variable µ is
the Lagrange multiplier enforcing the intensity constraint. Ignoring initial (and final) con-
ditions for the moment, the Euler-Lagrange equations obtained by setting δF/δy, δF/δz,
and δF/δu to zero are, respectively,

d

dt

(
η

ζ

)
=

(
1 x

−x b

)(
η

ζ

)
−

(
x

0

)
(2.24)

and
µx(t) = y(t) (1− ζ(t)) + η(t) (1− z(t)) (2.25)

that prescribes the optimal stirring strategy x(t) in terms of the dynamical variables and the
Lagrange multipliers. Note that for a given control x(t) the linear inhomogeneous system
(2.24) for the ‘adjoint’ functions η and ζ is precisely the time reversed dynamics of (2.22).1

1If we were interested in maximizing the time average of x(t)y(t) over a finite time interval (0, T ) given
initial conditions y(0) and z(0), the adjoint dynamics in (2.24) would come equipped with homogeneous final
conditions η(T ) = 0 = ζ(T ), following from the integration by parts involved with evaluating the functional
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Operationally one chooses a value of µ, solves the four dimensional nonlinear system
consisting of (2.22) and (2.24) coupled together by (2.25), and then evaluates both the
sought-after extreme value of 〈xy〉 the original parameter of the problem, the Péclet number
Pe.

The time independent solution of the optimal control problem is

xs = ±Pe, ys = ηs = ± bPe
Pe2 + b

, zs = ζs =
Pe2

Pe2 + b
(2.26)

yielding an extreme transport value

xsys =
bPe2

Pe2 + b
. (2.27)

The Lagrange multiplier µ = 2b2/(Pe2 + b)2 ∈ (0, 2] for these solutions. Recalling that
the Nusselt number in terms of the correlation of x(t) and y(t) is Nu = 1 + k2+π2

2π2 〈xy〉 and,
from the abandoned ‘momentum’ Lorenz equation (2.1) the reduced Rayleigh number r is
related to Pe and Nu via Pe2 = 2π2r

k2+π2 (Nu − 1), we may eliminate the Péclet number and
express this steady stirring extreme transport

xsys = b

(
1− 1

r

)
⇐⇒ XsYs = rxsys = b (r − 1), (2.28)

precisely the same upper bound to transport from the previous section.
In the two following subsections we will first display and discuss numerically computed

time-periodic solutions of the optimal Euler-Lagrange equations, and then prove (a) that the
steady solution of the Euler-Lagrange equations realizes the absolute upper bound and (b)
that any non-constant time-periodic control transports strictly less. This establishes the fact
that steady stirring is the unique global maximizer among the infinitely many time-periodic
solutions of the Euler-Lagrange equations.

2.1.3 Time Periodic Stirring Protocols

We numerically constructed some time-periodic solutions of the optimal control problem
defined by (2.22), (2.24), and (2.25) by computationally continuing analytical time-periodic
solutions from the linearized problem at small Pe into the strongly nonlinear regime. In the

derivatives, suitable to specify the time-reversed evolution.
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Figure 2.2: The time dependence of optimal τ = 2π periodic stirring protocols for several
values of the Péclet number and b = 8

3
. Long dashed line: Pe = 0.69; short dashed line:

Pe = 1.71; dotted line Pe = 4.50; solid curve: Pe = 8.96.

limit Pe→ 0 the linearized Euler-Lagrange equations are

ẏ = −y + x (2.29)

ż = −bz (2.30)

η̇ = η − x (2.31)

ζ̇ = bζ (2.32)

µx = y + η. (2.33)

Let τ = 2π
ω

denote the period of the sought-after solutions. Then z(t) = 0 = ζ(t) and,
requiring without loss of generality that y(t) = η(τ − t) to set the phase,

y(t) =

√
2 Pe

1 + ω2
(cosωt+ ω sinωt) (2.34)

η(t) =

√
2 Pe

1 + ω2
(cosωt− ω sinωt) (2.35)

where the Lagrange multiplier µ = 2
1+ω2 , the optimal control is x(t) =

√
2 Pe cosωt, and

the transport is 〈xy〉 = Pe2/(1 + ω2). To computationally search for τ -periodic solutions
of (2.22), (2.24), and (2.25) we first truncate the Fourier series expansion of the full non-
linear system and solve the resulting system of algebraic equations via Newton’s method
continuing from small values of Pe using the linearized solutions as the initial guess.
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Figure 2.3: Solid line: absolute upper bound (2.54) on the long time averaged transport
vs. Péclet number, corresponding to steady stirring, for parameter value b = 8

3
. Dashed

line: transport from numerically computed periodic solution of the optimal Euler-Lagrange
equations for period τ = 2π (ω = 1), which is observed to lie strictly below absolute upper
bound from the steady solutions of the optimal Euler-Lagrange equations.

Figure 2.2 displays τ = 2π periodic solutions for the control x(t) for several values of
the the Péclet number. For Pe > O(1) it is evident that x(t) is ‘attempting’ to take on the
steady stirring value xs = Pe but is frustrated, forced to switch by the mandated periodic
behavior.

Figure 2.3 is a plot of the absolute upper bound for the transport, bPe2/(b + Pe2), and
the transport from numerically computed periodic solutions of the optimal Euler-Lagrange
equations for period τ = 2π. The time dependent solution produces strictly less transport
than steady stirring of the same averaged intensity, as was the case for all periods that we
sampled. This suggests that steady stirring is actually the unique global optimizer—at least
among time-periodic stirring protocols—and in the next subsection we show that this is so.

2.1.4 Analysis and Bounds on Transport by Arbitrary Stirring

Given a general stirring protocol x(t) defined over a semi-infinite interval—without loss of
generality (0,∞)—it is evident that in the long run y(t) and z(t), and hence also the largest
possible long time averaged transport lim

T→∞
〈xy〉T , become independent of the initial data

y(0) and z(0). Indeed, if both y(t) and z(t) and ỹ(t) and z̃(t) satisfy (2.22) with the same
x(t) albeit with different initial conditions, then the differences ∆y = y− ỹ and ∆z = z− z̃
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satisfy the homogeneous linear system

d

dt

(
∆y

∆z

)
=

(
−1 −x
x −b

)(
∆y

∆z

)
(2.36)

so that
d

dt

1

2

(
(∆y)2 + (∆z)2

)
= −(∆y)2 − b(∆z)2 (2.37)

ensuring that the difference |∆y(t)| ≤ c e−αt for some finite nonnegative c depending
on ∆y(0) and ∆z(0) and α = min{1, b} > 0. Then the Cauchy-Schwarz inequality
guarantees

|〈x∆y〉T | ≤ 〈x2〉1/2T

(
T−1

∫ T

0

[∆y(t)]2dt

)1/2

(2.38)

≤ (Pe + o(1))× c√
2αT

−−−→
T→∞

0. (2.39)

That being said, we do not know how to solve the Euler-Lagrange equations, or how to
prove the existence of solutions in the most general setting. We also do not know that the
T →∞ limit of 〈xy〉T exists for locally square integrable x(t) for which the T →∞ limit
of 〈x2〉T does exist.

Nevertheless we can be certain that 〈xy〉T is bounded uniformly as T →∞ so that the
limit supremum is finite and it always makes sense to seek an upper estimate applicable
for all possible values of the long time average. To see this observe that y(t) and z(t) are
bounded uniformly in time, independent of the stirring function x(t) [23]. Indeed,

d

dt

1

2

(
y2 + (z − 1)2

)
= −y2 − bz2 + bz (2.40)

implying

lim
t→∞

[
y2 + (z − 1)2

]
≤

{
1 if 0 < b ≤ 2
b2

4(b−1)
if b ≥ 2.

(2.41)

Cauchy-Schwarz thus guarantees

lim
T→∞

〈xy〉T ≤ Pe×

{
1 if 0 < b ≤ 2

b
2
√
b−1

if b ≥ 2.
(2.42)

But a much lower a priori estimate on the transport, one that is uniform in Pe as Pe→
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∞, is also easily established:

d

dt

1

2

(
y2 + z2

)
= −y2 − b z2 + xy (2.43)

so that
〈xy〉T = 〈y2 + b z2〉T +

y(T )2 + b z(T )2 − y(0)2 − b z(0)2

2T
. (2.44)

In view of the Pe-independent time asymptotic limits on |y| and |z| in (2.41), we conclude
that 〈xy〉T posses a Pe-independent upper bound.

To determine the absolute—and, as will be seen, sharp—upper limit start with the dif-
ferential equation for z(t) in (2.22) to infer

〈xy〉T = b〈z〉T +O(T−1). (2.45)

Then, as in the background analysis, let z(t) = z0 + ς(t), rewrite (2.44) and 2 z0× (2.45)
as

0 = −〈y2 + bς2〉T − 2bz0〈ς〉T − bz2
0 + 〈xy〉T +O(T−1) (2.46)

0 = −2 z0〈xy〉T + 2bz2
0 + 2bz0〈ς〉T +O(T−1) (2.47)

and recall that because the infinite time average 〈x2〉 exists,

0 = 1− 1

Pe2 〈x
2〉T + o(1). (2.48)

Define
a =

bPe
b+ Pe2 (2.49)

and add 0 in the form of (2.46) + (2.47) + a2×(2.48) to 〈xy〉T to deduce

〈xy〉T = bz2
0 + a2 −

〈
a2

Pe2 x
2 + y2 − 2(1− z0)xy + b ς2

〉
T

+ o(1). (2.50)

The quadratic form on the right hand side above is non-negative when

a2

Pe2 − (1− z0)2 ≥ 0. (2.51)

which is guaranteed by the choice

z0 =
Pe2

b+ Pe2 . (2.52)
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Then

〈xy〉T ≤ bz2
0 + a2 + o(1) =

bPe2

b+ Pe2 + o(1). (2.53)

and we have proven the global upper bound

lim
T→∞
〈xy〉T ≤

bPe2

b+ Pe2 . (2.54)

Therefore, when the long time limit exists, transport by any protocol x(t) satisfies
〈xy〉 ≤ bPe2/(b + Pe2). This corresponds precisely to the extreme value (2.27) obtained
from the steady solution (2.26) of the Euler-Lagrange equations for the optimal control
problem. Then, utilizing the relation Pe2 = r〈xy〉 to reintroduce the reduced Rayleigh
number r, we conclude that 〈xy〉 ≤ b(1 − 1

r
) even when x(t) does not satisfy the first

Lorenz equation.
The analysis above is also sufficient to show that steady control is the unique global

optimizer among the class of periodic protocols. To see this, first note that when x(t) =

xτ (t) is τ -periodic both y(t) and z(t) converge to unique τ -periodic functions yτ (t) and
zτ (t).2 This means that the long time average of any continuous function of x, y, and z
exists and is equal to the average of the function of xτ (t), yτ (t), and zτ (t) over just one
period. In the periodic case (2.50) with the choice (2.52) averaged over a period becomes
an equality:

〈xτyτ 〉τ =
bPe2

b+ Pe2 −

〈
a

Pe

(√
b

b+ Pe2 xτ −
√
b+ Pe2

b
yτ

)2

+ b ς2
τ

〉
τ

. (2.55)

Thus 〈xτyτ 〉τ = bPe2

b+Pe2 if and only if

xτ (t) =
b+ Pe2

b
yτ (t) and ςτ ≡ 0⇔ zτ (t) = z0 = Pe2/(b+ Pe2) = constant. (2.56)

But then the differential equation for yτ (t) is

ẏτ = −yτ − xτzτ + xτ = −yτ −
b+ Pe2

b
× yτ ×

Pe2

b+ Pe2 +
b+ Pe2

b
yτ ≡ 0 (2.57)

so yτ (t) = constant as well. Thus it is proved that the only periodic solutions saturating the

2Indeed, the differences ∆y(t) = y(t+ τ)− y(t) and ∆z(t) = z(t+ τ)− z(t) satisfy the homogeneous
system (2.36) when x(t) = xτ (t) is τ -periodic, so both |∆y(t)| and |∆z(t)| converge to zero uniformly (and
exponentially) as t → ∞. This is sufficient to guarantee the existence of a unique periodic solution to the
linear inhomogeneous system of differential equations with periodic coefficients defining yτ and zτ .
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upper bounds are the constant solutions.
We do not know how to state or prove more general claims about the uniqueness of

the steady optimal stirring strategy. One obstruction is the fact that any transiently time-
dependent function x(t) that converge to xs = Pe as t → ∞ will produce precisely the
same time asymptotic mean transport as x(t) = xs. Moreover, at this stage we do not know
how to rule out the existence of optimal protocols that fluctuate non-periodically forever,
i.e., x(t) which are not periodic but do not converge as t →∞, even though the long time
average of 〈x2〉T does converge to Pe2 as as T →∞.

2.2 Double Lorenz

The eight-ODE model of Gluhovsky et al [9] is a generalization of the Lorenz equations
and an extension of the seven-ODE model of Thiffeault. It includes an extra shear mode to
conserve enstrophy as well as energy in the dissipationless limit and captures more details
of the bifurcation structure of Rayleigh’s model near onset [27].

In order to correspond to [16] we change the domain of Rayleigh’s model in the vertical
direction from [0, 1] to [0, π] so that the horizontal domain is now [0, Aπ] where A is the
aspect ratio. The version of Rayleigh’s model in stream function vorticity representation
that we will be using here is of the form,

∂t∆ψ − J(ψ,∆ψ) = σ∆2ψ + Raσ ∂xθ (2.58)

∂tθ − J(ψ, θ) = ∆θ + ∂xψ (2.59)

where ψ(x, z, t) is the stream function and θ(x, z, t) is the deviation of the temperature from
the linear profile of the conduction state. The Jacobian is J(f, g) = ∂xf∂zg − ∂xg∂zf . In
this formulation on this domain Ra is the “traditional” Rayleigh number divided by π4 so
that the onset of convection for A = 2

√
2 occurs at the minimum critical value Rac = 27

4
.

The minus sign in front of the Jacobian is different from the one in §2.1 because of the
change of vertical coordinate y to z and hence a redefinition of the stream function.

We use angle brackets 〈·〉 to denote the spatio-temporal average

〈f〉 = lim
T−→∞

∫ T

0

dt

T

∫ Aπ

0

dx

Aπ

∫ π

0

dz

π
f(x, z, t), (2.60)

assuming that the long time limit exists. The nondimensional measure of heat transport is
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the Nusselt number

Nu = 1 + 〈θ∂xψ〉, (2.61)

and the flow intensity is indicated by the Péclet number Pe which for our purposes is the
root mean square vorticity (i.e., the square root of the enstrophy, which is itself proportional
to the bulk viscous energy dissipation rate):

Pe = 〈(∆ψ)2〉1/2. (2.62)

The Péclet and Nusselt number are related by

Pe2 = Ra(Nu− 1), (2.63)

derived by multiplying (2.58) by ψ and taking the spatio-temporal average employing suit-
able integrations by parts utilizing the boundary conditions.

The Double Lorenz equations [9] emerge from the Galerkin truncation

ψ(x, z, t) ≈ 2
1 + k2

√
2k

x1(t) sin(kx) sin(z) +
4 + k2

√
2k

x2(t) cos(kx) sin(2z)

+ 2
1 + k2

k
w1(t) sin(z) +

2

3

1 + k2

k
w2(t) sin(3z) (2.64)

θ(x, z, t) ≈ 2√
2
y1(t) cos(kx) sin(z) + z1(t) sin(2z)

− 1√
2
y2(t) sin(kx) sin(2z) +

1

2
z2(t) sin(4z), (2.65)

where k = 2/A. Rescaling time t 7→ (1+k2)−1t leads to the ordinary differential equations
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for the modal amplitudes

ẋ1 = −σx1 + σr1y1 + (c1w1 − d1w2)x2 (2.66)

ẏ1 = −y1 + x1 − x1z1 +
1

2
(w1 − w2)y2 (2.67)

ż1 = −b1z1 + x1y1 (2.68)

ẋ2 = −σax2 + σar2y2 − a(c2w1 − d2w2)x1 (2.69)

ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (2.70)

ż2 = −b2az2 + ax2y2 (2.71)

ẇ1 = −σ1

4
b1w1 −

3

8
ax1x2 (2.72)

ẇ2 = −σ9

4
b1w2 +

3

8
ax1x2 (2.73)

where the ri (for i = 1, 2) are related to the Rayleigh number and a rational function of
k, and a and bi, ci, di, (also for i = 1, 2) are parameters that depend on k. The explicit
expressions are tabulated in Appendix C.1. The (x1, y1, z1) variables are precisely the
familiar (albeit rescaled) Lorenz variables which, in this system, are coupled to a second
set of Lorenz-like variables (x2, y2, z2) by the shear flow modal amplitudes w1 and w2.

The Nusselt and Péclet numbers for the Double Lorenz equations are obtained by in-
serting (2.64) and (2.65) into (2.61) and (2.62):

Nu = 1 +
1 + k2

2

(
〈x1y1〉+

a

4
〈x2y2〉

)
, (2.74)

Pe2 =
1

2

(1 + k2)4

k2
〈x2

1〉+
1

8

(4 + k2)4

k2
〈x2

2〉+ 2
(1 + k2)2

k2
〈w2

1〉+ 18
(1 + k2)2

k2
〈w2

2〉. (2.75)

The goal is to bound Nu as a function of Ra or Pe. Relation (2.63), which also holds for
the truncated system, is used to convert between Ra and Pe.

The origin of the eight-dimensional phase space, i.e., x1 = x2 = w1 = w2 = y1 = y2 =

z1 = z2 = 0, corresponds to the no-flow (Pe = 0) conduction solution with Nu = 1. This
state is absolutely stable when r1 ≤ 1 so we are generally interested in the r1 > 1 regime,
i.e., Ra > Rac(k2) = (1 + k2)3/k2.

2.2.1 Background Analysis

We will now use the background method to derive an upper bound to transport values in
the Double Lorenz equations. Decompose the temperature variables as zi(t) = z0

i + ςi(t)

where z0
i are “background” values to be chosen later. The uniform-in-time boundedness of
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all the dynamical variables [9] (see Appendix C) implies

0 =

〈
d

dt

(
y2

1 + ς2
1 − 2z0

1ς1 +
1

4

(
y2

2 + ς2
1 − 2z0

2ς2
))〉

. (2.76)

(As in §2.1 we could take finite time averages for t ∈ [0, T ] throughout the subsequent
calculations, leading toO(T−1) corrections to the formulae as T →∞, but the end result is
a bound on the limit supremum, so for simplicity of exposition we forgo the demonstration.)
The equations of motion for the temperature variables equation inserted into (2.76) reveal

0 = −〈y2
1〉 − b1〈ς2

1 〉+ (1− 2z0
1)〈x1y1〉+ b1(z0

1)2

− a

4
〈y2

2〉 −
a

4
b2〈ς2

2 〉+
a

4
(1− 2z0

2)〈x2y2〉+
a

4
b2(z0

2)2. (2.77)

We emphasize that the derivation of (2.77) relies only on the temperature equations. Then
(2.63) in the form 0 = 2

1+k2

(
−Pe2/Ra + Nu− 1

)
yields

0 = −
(

1

r1

〈x2
1〉+

a

4

1

r2

〈x2
2〉+

1

r3

〈w2
1〉+

1

r4

〈w2
2〉
)

+ 〈x1y1〉+
a

4
〈x2y2〉 (2.78)

where ri (for i = 1, 2, 3, 4) are proportional to Ra and a rational function of k; see C.1.
Adding (2.77) and (2.78) produces the expression

0 = −〈y2
1〉 − b1〈ς2

1 〉 −
a

4
〈y2

2〉 −
a

4
b2〈ς2

2 〉+ 2(1− z0
1)〈x1y1〉+ b1(z0

1)2 − 1

r1

〈x2
1〉

+ 2
a

4
(1− z0

2)〈x2y2〉+
a

4
b2(z0

2)2 − a

4

1

r2

〈x2
2〉 −

1

r3

〈x2
3〉 −

1

r4

〈x2
4〉. (2.79)

Now introduce “balance parameter” α and add zero in the form α× (2.79) to the right
hand side of

〈x1y1〉+
a

4
〈x2y2〉 =

1

r1

〈x2
1〉+

a

4

1

r2

〈x2
2〉+

1

r3

〈w2
1〉+

1

r4

〈w2
2〉 (2.80)

to see that

〈x1y1〉+
a

4
〈x2y2〉 =

〈[
x1 y1

] [ 1
r1

(1− α) α(1− z0
1)

α(1− z0
1) −α

][
x1

y1

]〉
+ b1α(z0

1)2

+
a

4

〈[
x2 y2

] [ 1
r2

(1− α) α(1− z0
2)

α(1− z0
2) −α

][
x2

y2

]〉
+

a

4
b2α(z0

2)2

− αb1〈ς2
1 〉 − α

a

4
b2〈ς2

2 〉+

(
1− α
r3

)
〈w2

1〉+

(
1− α
r4

)
〈w2

2〉. (2.81)
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The essence of the background method is the observation that if we can choose α ∈
[1,∞) and z0

1 and z0
2 so that the matrices in (2.81) are negative semi-definite, then we have

produced an upper bound on 2
1+k2 (Nu− 1) of the form

〈x1y1〉+
a

4
〈x2y2〉 ≤ b1α(z0

1)2 +
a

4
b2α(z0

2)2. (2.82)

For example choosing z0
1 = 0 = z0

2 , it is easy to check that both matrices are negative
semi-definite when r1 ≤ (α − 1)/α. Thus Nu = 1 is the upper bound for Ra ≤ (α −
1)(1 + k2)3/α k2 for any α ∈ [1,∞). Taking the limit α→∞, this shows that the Nu = 1

conduction state is absolutely stable for all Ra < Rac(k2) ≡ (1 + k2)3/k2.
To deduce bounds for higher Rayleigh numbers (r1 > 1), let α =

z0
1+z0

2

(z0
1)2+(z0

2)2 ; we will
soon choose z0

1 ∈ (0, 1) and z0
2 ∈ [0, 1) so that α ∈ (1,∞). Introduce

ρ1 =
(1 + k2)3

k2
and ρ2 =

(4 + k2)3

k2
(2.83)

so that ri = Ra/ρi for i = 1, 2 and let the background variables be

z0
1 =

(
1− ρ1

Ra

)
and z0

2 = 0. (2.84)

Then the matrices in (2.81) are both negative semi-definite for ρ1 < Ra ≤ √ρ1ρ2.
For Ra >

√
ρ1ρ2 choose

z0
1 =
√
ρ1

−ρ1 + 2Ra
√

ρ2

ρ1
− ρ2 +

√
(ρ1 + ρ2)2 + 4Ra(Ra− 2

√
ρ1ρ2)

2Ra(
√
ρ1 +

√
ρ2)

, (2.85)

z0
2 =

√
ρ2

ρ1

(z0
1 − 1) + 1. (2.86)

In Appendix C.3 we show how to derive this background, z0
1 , z

0
2 ∈ (0, 1), and the matrices

are negative semi-definite when Ra >
√
ρ1ρ2. Combining the results, the upper bounds are

Nu ≤


1 for Ra ∈ [0, ρ1)

1 + 2
(
1− ρ1

Ra

)
for Ra ∈ [ρ1,

√
ρ1ρ2)

1 + 2
(
1− ρ1

Ra

)
+

ρ1−ρ2+
√

(ρ2−ρ1)2+4(Ra−√ρ1ρ2)2

Ra for Ra ∈ [
√
ρ1ρ2,∞).

(2.87)

Figure 2.4 is a plot of the bound, the steady state solutions, and results of some direct
numerical simulations (dns) of the Double Lorenz Equations with aspect ratio A = 2

√
2

and Prandtl number σ = 10. For additional information the best known numerically com-
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puted upper bound (the black dashed line) for the PDE is included in the figure as well [2].
The dns data is generated using a finite time sample of a signal that is integrated for a long
enough time interval to eliminate transients. It is computed using three different definitions
of the Nusselt number (which are equivalent in the long time average) and are within one
percent of one another for the finite time samples of the figure. Indeed, the Nusselt number
has all of the following representations,

Nu = 1 +
1 + k2

2
〈x1y1 +

a

4
x2y2〉, (2.88)

Nu = 1 + Pe2/Ra = 1 +

(
1

r1

〈x2
1〉+

a

4

1

r2

〈x2
2〉+

1

r3

〈w2
1〉+

1

r4

〈w2
2〉
)

1 + k2

2
, (2.89)

Nu = 1 + 2〈z1 + z2〉. (2.90)

The absolute upper bound is sharp—saturated by the nontrivial steady state—until Ra =

81
√

3/4 ≈ 35 (i.e.,
√
ρ1ρ2 for this aspect ratio) but not apparently so at higher Rayleigh

numbers. The steady states appear to be stable until around Ra ≈ 140 at which point the
solutions become time-dependent. The second drop in the numerically computed Nusselt
number at around Ra ≈ 290 comes from a transition to seemingly periodic solutions. For
this truncated system the Nusselt number bound asymptotes to Nu = 5 as can be seen from
(2.87) by taking the limit Ra→∞.

As will be shown in the next section, the upper bound cannot be lowered by including
more information from the equations of motion for the temperature variables. This does
not preclude the possibility of lowering the bound by incorporating additional constraints
via the velocity equations x1, x2, w1 and w2. In the background method the only place the
velocity variables came into the background analysis is via the Pe2 = Ra (Nu− 1) relation.

2.2.2 Optimal Control Analysis

We now provide a complementary analysis to bound heat transport in the Double Lorenz
system. Instead of subjecting the velocity variables xi, wi to a momentum equation, we fix
the total intensity of all the variables, the Péclet number (2.75), and attempt to deduce the
optimal stirring strategy. Said differently, we treat the velocity field variables xi and wi for
i = 1, 2 as control variables subject to the finite Péclet number condition. A global upper
bound to this optimal control problem is an upper bound to heat transport in the Double
Lorenz equations with Ra defined by (2.63). This formulation has the additional benefit of
explicitly producing flows for which the upper bound is achieved, something that is lacking
in the background method.
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Figure 2.4: The top (black) dashed line is the best known upper bound for the full
Rayleigh-Bénard problem from [2]. The solid (green) curve is the background method
upper bound on all solutions of the Double Lorenz Equations as well as the transport value
for the global optima of the optimal control solution, see §2.2.2. Rayleigh-Nusselt relations
for several steady states are also shown. The dotted (red) curve asymptoting to Nu = 3 is
the steady solution of the first Lorenz system, and the lower dotted (blue) curve is the steady
state of the second Lorenz system. The long-dashed (purple) curve is the steady state for
the coupled system for σ = 10. The discrete dots are results from time averages of direct
numerical simulations of the Double Lorenz Equations for σ = 10.

The optimal control problem is to maximize 〈x1y1 + a
4
x2y2〉 ≡ 2

1+k2 (Nu− 1) subject to

ẏ1 = −y1 + x1 − x1z1 +
1

2
(w1 − w2)y2 (2.91)

ż1 = −b1z1 + x1y1 (2.92)

ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (2.93)

ż2 = −b2az2 + ax2y2 (2.94)

Pe2 =

〈
2
ρ1

b1

x2
1 + 2

ρ2

b2

x2
2 +

ρ1b1

2

(
w2

1 + 9w2
2

)〉
, (2.95)

where the expression for Péclet has been rewritten using the definitions of ρ1, ρ2, b1, and
b2 in preparation for subsequent calculations (see Appendix C.1 for the definitions of the
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constants). Equivalently, the functional to be extremized is

F = 〈
(
x1y1 +

a

4
x2y2

)
+ υ1

(
−y1 + x1 − x1z1 +

1

2
(w1 − w2)y2 − ẏ1

)
− ζ1(−b1z1 + x1y1 − ż1)

+
1

4
υ2 (−ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 − ẏ2)

− 1

4
ζ2 (−b2az2 + ax2y2 − ż2)

+
µ

2

(
Pe2 −

[
2
ρ1

b1

x2
1 + 2

ρ2

b2

x2
2 +

ρ1b1

2

(
w2

1 + 9w2
2

)])
〉 (2.96)

where the Lagrange multipliers (a.k.a. adjoint variables) υi(t) and ζi(t) for i = 1, 2 en-
force the temperature equations and µ enforces the finite Peclet number condition. The
Euler-Lagrange equations for the extreme values are the temperature and adjoint variable
differential equations

ẏ1 = −y1 + x1 − x1z1 +
1

2
(w1 − w2)y2 (2.97)

ż1 = −b1z1 + x1y1 (2.98)

υ̇1 = υ1 − x1 + x1ζ1 +
1

2
(w1 − w2)υ2 (2.99)

ζ̇1 = b1ζ1 − x1υ1 (2.100)

ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (2.101)

ż2 = −b2az2 + ax2y2 (2.102)

υ̇2 = aυ2 − ax2 + ax2ζ2 − 2(w1 − w2)υ1 (2.103)

ζ̇2 = b2ζ2 − x2υ2 (2.104)

and the optimal stirring conditions

x1 =
1

2µ

b1

ρ1

(υ1(1− z1) + y1(1− ζ1)) (2.105)

x2 =
1

2µ

b1

ρ2

(υ2(1− z2) + y2(1− ζ2)) (2.106)

w1 =
1

µ

1

ρ1b1

(υ1y2 − υ2y1) (2.107)

w2 = − 9

µ

1

ρ1b1

(υ1y2 − υ2y1) (2.108)

Pe2 =

〈
2
ρ1

b1

x2
1 + 2

ρ2

b2

x2
2 +

ρ1b1

2

(
w2

1 + 9w2
2

)〉
. (2.109)
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The identity a
4
b2 = b1 was used in deriving the expression for x2, a helpful simplification for

later calculations. We refer to this entire system as the Optimal Double Lorenz equations,
and in the following analysis we prove that the global optimum upper bound on the Nusselt
number is realized by a steady solution.

Some of the steady solutions to the Optimal Double Lorenz equations for
√

1
µ
b1
ρ2
−1 ≥ 0

are

yi = υi = bi
xi

bi + (xi)2
(2.110)

zi = ζi =
(xi)

2

bi + (xi)2
(2.111)

(xi)
2 = bi

(√
b1

ρiµ
− 1

)
(2.112)

wi = 0 (2.113)

Pe2 = 2

√
b1

µ
(
√
ρ1 +

√
ρ2)− 2ρ1 − 2ρ2 (2.114)

for i = 1, 2. If
√

1
µ
b1
ρ2
− 1 ≤ 0 and

√
1
µ
b1
ρ1
− 1 ≥ 0 then 0 = x2 = y2 = z2 = ζ2 = υ2,

equations (2.110) through (2.113) remain the same for i = 1, and Pe2 = 2
(√

ρ1b1
µ
− ρ1

)
.

Lastly, if
√

1
µ
b1
ρ1
− 1 ≤ 0 then the only solution to the equations is zero. Eliminating µ

in favor of Pe, reveals two exceptional Péclet regimes 0 ≤ Pe2 ≤ 2(
√
ρ1ρ2 − ρ1) and

Pe2 > 2(
√
ρ1ρ2 − ρ1). Of particular interest are the steady state solutions for z1 and z2

rewritten in terms of Péclet in the different regimes,

z1 =

 Pe2

Pe2+2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)]

Pe2+2(ρ2−
√
ρ1ρ2)

Pe2+2(ρ1+ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞),

(2.115)

z2 =

0 for Pe2 ∈ [0, 2(
√
ρ1ρ2 − ρ1)]

Pe2+2(ρ1−
√
ρ1ρ2)

Pe2+2(ρ1+ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(2.116)

Note that Nu= 1 + 2(z1 + z2) so the corresponding transport values are

Nu =

1 + 2 Pe2

Pe2+2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)]

1 + 4
Pe2+(

√
ρ2−
√
ρ1)2

Pe2+2(ρ1+ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(2.117)

Using (2.63) to re-express (2.117) in terms of Ra we recover (2.87). That is, these steady
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states correspond precisely to the background bound.
We now show that the Nusselt number for any solution of the Optimal Double Lorenz

equations is bounded from above by particular steady solutions. To do so we employ
the background method yet again. The equations of motion for the momentum variables
(xi, wi) for i = 1, 2 are no longer available, but we still have the evolution equations for the
temperature variables yi and zi (for i = 1, 2) to work with, and the same background-type
decomposition zi = ςi + z0

i can be used.
Only the temperature equations were used to derive (2.77), so it still holds for the Op-

timal Double Lorenz system. Adding 〈x1y1〉 + a
4
〈x2y2〉 to both sides of (2.77), and then

adding zero in the form

0 = α2

(
1−
〈2ρ1

b1
x2

1 + 2ρ2

b2
x2

2 + ρ1b1
2

(w2
1 + 9w2

2)〉
Pe2

)
(2.118)

(where α2 ≥ 0) to the right hand side of (2.77), it is evident that

〈x1y1〉+
a

4
〈x2y2〉 = α2 + b1(z0

1)2 −

〈[
x1 y1

] [ 2ρ1

b1Pe2α2 z0
1 − 1

z0
1 − 1 1

][
x1

y1

]〉

− b1〈ς2
1 〉 −

α2

Pe2

ρ1b1

2
〈w2

1〉+
a

4
b2(z0

2)2

− a

4

〈[
x2 y2

] [ 2ρ2

b1Pe2α2 z0
2 − 1

z0
2 − 1 1

][
x2

y2

]〉

− a

4
b2〈ς2

2 〉 −
α2

Pe2

9ρ1b1

2
〈w2

2〉. (2.119)

The relation a
4
b2 = b1 was used to rewrite the top left corner of the second matrix.

We must now choose the background and constant α2. Let

α2 = b1(z0
1(1− z0

1) + z0
2(1− z0

2)). (2.120)

For the Pe2 ≤ 2(
√
ρ1ρ2 − ρ1) regime pick the steady states

z0
1 =

Pe2

Pe2 + 2ρ1

and z0
2 = 0 (2.121)

and confirm that the second matrix in (2.119) is positive definite. Also, the relation

2ρ1

b1

α2

Pe2 = (1− z0
1)2 (2.122)
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holds allowing us to rewrite (2.119) in the Pe2 ≤ 2(
√
ρ1ρ2 − ρ1) regime as

〈x1y1〉+
a

4
〈x2y2〉 = b1

Pe2

Pe2 + 2ρ1

− 〈(x1(z0
1 − 1) + y1)2〉 − b1〈ς2

1 〉

− a

4
〈(x2 − y2)2〉 − a

4

(
4ρ1ρ2

(Pe2 + 2ρ1)2
− 1

)
〈x2

2〉 −
a

4
b2〈ς2

2 〉

− α2

Pe2

ρ1b1

2
(〈w2

1〉+ 9〈w2
2〉). (2.123)

This expression implies that b1
Pe2

Pe2+2ρ1
is an upper bound since all the subsequent terms are

negative. An examination of (2.117) reveals a correspondence to a steady state Nusselt
number.

For the Pe2 > 2(
√
ρ1ρ2 − ρ1) regime we again pick steady state solutions for zi for the

backgrounds, namely,

z0
1 =

Pe2 + 2(ρ2 −
√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
and z0

2 =
Pe2 + 2(ρ1 −

√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
. (2.124)

Observe that

1− z0
1 = 2

ρ1 +
√
ρ1ρ2

Pe2 + 2(ρ1 + ρ2)
= 2
√
ρ1

√
ρ1 +

√
ρ2

Pe2 + 2(ρ1 + ρ2)
, (2.125)

1− z0
2 = 2

ρ2 +
√
ρ1ρ2

Pe2 + 2(ρ1 + ρ2)
= 2
√
ρ2

√
ρ1 +

√
ρ2

Pe2 + 2(ρ1 + ρ2)
, (2.126)

α2 = b12
Pe2
(√

ρ1 +
√
ρ2

)2

(Pe2 + 2(ρ1 + ρ2))2
, (2.127)

hence the top left corners of the matrices in (2.119) are simplified to

2ρ1

b1

α2

Pe2 = 4ρ1

(√
ρ1 +

√
ρ2

)2

(Pe2 + 2(ρ1 + ρ2))2
= (1− z0

1)2, (2.128)

2ρ2

b1

α2

Pe2 = 4ρ2

(√
ρ1 +

√
ρ2

)2

(Pe2 + 2(ρ1 + ρ2))2
= (1− z0

2)2. (2.129)

With these facts in place rewrite (2.119) as

〈x1y1〉+
a

4
〈x2y2〉 = 2b1

Pe2 + (
√
ρ2 −

√
ρ1)2

Pe2 + 2(ρ1 + ρ2)
− 〈(x1(z0

1 − 1) + y1)2〉 − b1〈ς2
1 〉

− a

4
〈(x2(z0

2 − 1) + y2)2〉 − a

4
b2〈ς2

2 〉 −
α2

Pe2

ρ1b1

2
(〈w2

1〉+ 9〈w2
2〉). (2.130)
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All the terms following 2b1
Pe2+(

√
ρ2−
√
ρ1)2

Pe2+2(ρ1+ρ2)
are negative and again we have a correspondence

to a steady state Nusselt number in (2.117). This establishes that the absolute maximum
value is realized by the optimal steady state stirring, i.e., for any extremum of F we have

Nu ≤

1 + 2 Pe2

Pe2+2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)],

1 + 4
Pe2+(

√
ρ2−
√
ρ1)2

Pe2+2(ρ1+ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(2.131)

The inability of both the background method and the optimal control problem to pro-
duce demonstrably sharp upper bounds with respect to the Double Lorenz equations past
Ra =

√
ρ1ρ2 deserves some comment. It is possible that unstable time-dependent solutions

to the Double Lorenz system saturate the upper bound, but we do not expect this to be the
case. In the double Lorenz model the only way to activate both Lorenz modes at the same
time ((xi, yi, zi) for i = 1, 2) and hence have enhanced heat transport is to also have non-
zero shear modes (wi for i = 1, 2). That is to say if w1 = 0 or w2 = 0 then the equations of
motion imply that either the first Lorenz mode is zero or the second. These shear modes do
not contribute to heat transport and thus, as far as the optimal control problem or the back-
ground method are concerned, are ineffectual. The optimal control problem may choose to
ignore these modes and achieve the same Nusselt number at a reduced Péclet cost. It seems
that the only ways to lower the bound is to either incorporate a shear mode constraint (or
an advective constraint) into the optimal control formulation or perhaps a more judicious
combination of moments from the equations of motion in the background method. The
advective term of the velocity equations in the PDE is notoriously difficult to deal with
and the goal of the optimal control formulation is precisely to bypass this barrier. Thus
for the optimal control problem considered here incorporating additional constraints on the
velocity variables breaks correspondence to the original PDE optimal control problem.

2.2.3 Comparison of Steady State to Periodic Solutions

Equations (2.123) and (2.130) show that the only periodic solutions that saturate the upper
bound are the steady. Indeed, in the Pe2 ≤ 2(

√
ρ1ρ2 − ρ1) regime if equality holds in

(2.131) then it must be the case that wi = ζi = 0 for i = 1, 2, x1(1 − z1) = y1, x2 =

y2. This means that zi is constant; it is equal to the background. Using the yi equations
and the relations x1(1 − z1) = y1 and x2 = y2, we can conclude that ẏi = 0 and that
x2 = y2 = z2 = 0. Similar reasoning leads to the same conclusion about the optimizer for
Pe2 ≥ 2(

√
ρ1ρ2 − ρ1).

It is interesting to examine why the periodic solutions do worse than the steady state.
We have computed time-dependent periodic solutions to the Optimal Double Lorenz sys-
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tem using standard methods: a Fourier Galerkin truncation, Newton-Kantorovich iteration,
and numerical continuation, the same method that was used for the Lorenz problem. In
Figure 2.5 we show the solutions for x1(t) for several different Péclet number. As the
Péclet number is increased the solutions begin to develop sharp transition regions from
positive/negative steady states. That is, it appears that the controls “want” to remain steady,
but are unable to do so due to the branch that they were numerically continued from.

This is exactly analogous to what happens in the optimal control version of the Lorenz
system §2.1, where the transition between steady states control values is even simpler,
absent some of the “ringing” that is seen in Figure 2.5. The forced transitions in the
time-dependent, albeit locally optimal, control have a cost in terms of the transport: it
is definitely below the transport that is achieved by steady flow variables. This is seen in
Figure 2.6 where the green curve (corresponding to optimal steady solutions) are above the
dashed curve (corresponding to time-dependent periodic solutions). In addition to the op-
timal steady and locally optimal periodic solutions, Figure 2.6 includes some steady states
of the Double Lorenz equations at a selection of Prandtl numbers. We see that the opti-
mal steady solutions are sharp upper bounds until a transition occurs to the “second set” of
optimal solutions. It is interesting to see that the time-periodic optimal solution is closer
to the steady solutions and direct numerical simulations of the Double Lorenz equations.
Whether or not time-dependent periodic optimal solutions correspond to an upper bound
of time-dependent dynamical quantities is not known, hence this observation may just be a
coincidence.
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Figure 2.5: Time dependence of optimal 2π (time) periodic stirring protocols for several
value of the Péclet number and k = 1/

√
2. Here we show x1(t). Long dashed (green) line:

Pe=4.2; short dashed (blue) line: Pe = 5.4; dotted (red) line Pe = 14.1; and solid (black)
curve: Pe = 35.1
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Figure 2.6: The top (green) curve is the upper bound on the Nusselt number. Rayleigh-
Nusselt relations for several steady states of the Double Lorenz equations are also shown.
The long-dashed (purple) purple lines are the coupled steady state solutions for several
Prandtl numbers, σ = 0.44 (bottom), 0.70, 1.42, 5.75 and 104 (top), and wavenumber is
k = 1/

√
2. The upper dotted (red) curve is the first Lorenz system steady state while the

lower dotted (blue) curve is that for the second Lorenz system. The dashed (black) line is
the transport for a time-periodic solution to the optimal Double Lorenz system.
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CHAPTER 3

The Advection-Diffusion Equation

3.1 Introduction

In this chapter we will discuss the well-posedness of the steady state maximization problem

Maximize 〈wT 〉 (3.1)

subject to

~u · ∇T = ∆T (3.2)

〈∇~u : ∇~u〉 ≤ Pe2 (3.3)

∇ · ~u = 0 (3.4)

with relevant boundary/integral conditions in a bounded domain with a well-behaved bound-
ary as well as properties of the first-order optimality conditions. Here we have decomposed
the vector ~u into three components ~u = (u, v, w) = (u1, u2, u3) and w is the velocity in
the vertical direction whereas (u, v) are the components in the horizontal direction. The
notation 〈·〉 denotes an average over the domain Ω (we restrict attention to stead flows) and
∇~u : ∇~u = ∂juk∂juk = |∇~u|2.

To verify that this optimization problem is well-posed we first review well-known the-
orems and then apply it to the optimization problem. We show that the steady optimization
problem admits a maximizer and obtain an upper bound by using the background method
in §3.4. After demonstrating that the functional 〈wT 〉 is differentiable we utilize the Euler-
Lagrange equations (first-order optimality conditions) to find conditions for the “best” do-
main size as well as the optimal boundary conditions for the horizontal velocity fields. We
also deduce that the maximizer must occur when 〈∇~u : ∇~u〉 = Pe2 in §3.5.

In §3.6 we look at additional properties of the Euler-Lagrange equations, formulate
a related optimal control problem, and examine a particular incompressible flow field that
achieves a scaling Nu . Pe1/2. In light of the discussion in this section we see that we must
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both enforce incompressibility and the advection-diffusion equation in order to understand
the true scaling.

3.2 Relevant Theorems and Setting Notation

Let us set notation:

• Let α = (α1, α2, ..., αn) where αi ∈ N
⋃
{0} for i = 1, .., n which we will call

a multi-index. We use |α| =
∑n

i=1 αi and
∑
|α|=β denotes the sum over all multi-

indices α such that the sum adds up to β. The notationDα is shorthand for ∂|α|

∂xα1 ...∂xαn
f

where the partial derivatives are interpreted in the weak sense. For example, for
n = 2 we have that

∑
|α|=1D

αf = ∂f
∂x1

+ ∂f
∂x2

.

• Lp(Ω) the space of Lesbesgue measurable functions f such that
∫

Ω
|f |p < ∞. We

will usually drop the specification of the domain (Ω) and write Lp and ‖f‖p ≡(∫
Ω
|f |p
)1/p.

• W 1,p(Ω) Sobolev space, the space of Lebesgue measurable functions f ∈ Lp such
that Dαf ∈ Lp for each α such that |α| = 1. We will usually drop the specification
of the domain and write W 1,p. Furthermore we use the notation ‖f‖W 1,p = ‖f‖p +∑
|α|=1 ‖Dαf‖p.

• H1 = W 1,2. We will also impose conditions on f such that ‖f‖H1 and
√∑

|α|=1 ‖Dαf‖2
2

are equivalent norms.

• H−1 is the dual of H1.

• V the set of vectors ~u such that∇ · ~u = 0 and ~u ∈ H1.

All the spaces mentioned above are complete. Furthermore we will overload notation when
it comes to scalar and vector functions as well as boundary conditions. For example, denote
the components of ~u by uj , we interpret ~u ∈ H1 to mean

∫
Ω
∂iuj∂iuj < ∞ and that ~u has

boundary conditions (or integral constraints) such that
(∫

Ω
∂iuj∂iuj

)1/2 defines a norm.
Recall that equivalent metrics induce the same topology. Standard references for Lebesgue
and Sobolev spaces include Folland’s anaylsis text [28] and Evan’s PDE text [29]. For
spaces relevant to fluid mechanics (those of incompressible flow fields) see [30].

All the inequalities that we use to prove continuity and differentiability of 3.1 are stan-
dard, the most important of which are as follows.

40



Hölder’s Inequality. Let Ω be an open subset of Rn and pi ≥ 1 for i = 1, ..., n be numbers

whose reciprocal add up to one,

n∑
i=1

1

pi
= 1. (3.5)

For all fi ∈ Lpi(Ω) we have that the product is in L1(Ω),∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
1

≤
n∏
i=1

‖fi‖pi . (3.6)

Lp Inclusions. Let Ω be a subset of Rn with finite Lebesgue measure, i.e. µ(Ω) <∞; then

‖f‖p ≤ µ(Ω)
q−p
pq ‖f‖q (3.7)

(3.8)

for p < q.

Sobolev Embedding Theorem. Let Ω be a bounded open subset of Rn with Lipshchitz

boundary. Let 1 ≤ p < n, and f ∈ W 1,p(Ω), then

‖f‖q ≤ C‖f‖W 1,p (3.9)

where q = np
n−p and C depends on p, n and Ω, but not on the function f .

Although in the functional setting it is not the case that a bounded sequence has a
convergent sequence in the strong topology, we do have convergence in the weak topology
by the Banach-Alaoglu theorem for Hilbert spaces.

Banach-Alaoglu Theorem. Every bounded sequence in a Hilbert space has a weakly con-

vergent subsequence.

To show that a maximizer exists we make use of the compactness of the W 1,p ball in
less regular topologies via Rellich’s theorem.

Rellich-Kondrachov Theorem. Let Ω be an open bounded subset of Rn with Lipschitz

boundary. Suppose that 1 ≤ p < n. Then W 1,p(Ω) is compactly embedded in Lq(Ω) where

1 ≤ q <
np

n− p
. (3.10)
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This theorem states that weak convergence of a sequence in W 1,p(Ω) implies strong
convergence in Lq(Ω). Furthermore it says that the W 1,p(Ω) closed ball B, meaning

B = {u ∈ W 1,p : ‖u‖W 1,p ≤ 1} (3.11)

is a compact set in Lq(Ω). Once we have shown that our functional is continuous with re-
spect to the L3 topology on ~u, we need to verify that the supremum is actually a maximum.
To this end we use the Rellich-Kondrachov theorem to show that the set of functions we
are trying to maximize over is compact. Specifically, we use the fact that the W 1,p closed
ball is compact for 1 ≤ q < 6 in 3-dimensions or less.

The generalizations of these embedding results to vector-valued functions ~u : Rn →
Rm is straightforward. For example, we may take ‖~u‖p to mean

‖~u‖p ≡
(∫

Ω

(~u · ~u)p/2
)1/p

. (3.12)

For the most part we can ignore the subtlety of using vector valued functions and proceed
to applying estimates as if ~u was just a scalar. For example, by Cauchy-Schwarz we have

|φ~u · ∇θ| ≤ |φ|
√
~u · ~u
√
∇θ · ∇θ. (3.13)

hence,

‖φ~u · ∇θ‖1 ≤ ‖φ
√
~u · ~u
√
∇θ · ∇θ‖1 (3.14)

≤ ‖φ‖6‖~u‖3‖∇θ‖2 (3.15)

by applying Hölder’s inequality to the scalar functions φ,
√
~u · ~u and

√
∇θ · ∇θ. All of the

Sobolev embedding results as well as Rellich’s theorem still hold as well.
Showing that the functional is differentiable and a maximizer exists would all be a futile

effort if solutions to the advection-diffusion equation (3.2) didn’t exist. To show that there
exist unique solutions we use the famous Lax-Milgram theorem.

Lax-Milgram Theorem. Let V be a Hilbert Space, B : V × V → R a bilinear form, and

L : V → R a linear form. Suppose that B and L are continuous, i.e., there exist constants

c > 0 and d > 0 such that

|B[u, v]| ≤ c‖u‖V ‖v‖V (3.16)

|L[u]| ≤ d‖u‖V (3.17)
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for each u, v ∈ V , where ‖ · ‖V is the norm for V . Furthermore assume that B[u, v] is

coercive,

e‖v‖V ‖v‖V ≤ |B[v, v]| (3.18)

for a constant e > 0 and each v ∈ V ; then there is a unique v ∈ V such that

B[u, v] = L[u] (3.19)

for each u ∈ V .

3.3 Existence of a Maximizer and Differentiability

To show that the maximization problem is well-posed we will take the following steps:

1. First we will show that we can indeed find a T satisfying the steady advection-
diffusion equation for ~u ∈ V . To do so we will work with the weak form of the
advection-diffusion equation and appeal to Lax-Milgram theorem (§3.2) to guaran-
tee that solutions exist. In fact, due to the way we formulate the weak form of the
advection diffusion equation, we will see that solutions exist as long as ~u ∈ L3.

2. We will show that the functional F [~u] = 〈wθ〉, where θ = T − (1− z), is continuous
with respect to the strong L3 topology on ~u. For incompressible flow fields with the
boundary conditions considered in this thesis we have 〈wθ〉 = 〈wT 〉.

3. By the Rellich-Kondrachov theorem (§3.2) we know that in three dimensions the
closed H1 ball is compact in Lp for 1 ≤ p < 6. This is enough to establish that a
maximizer exists since we are maximizing a continuous (in L3) functionF on a com-
pact (in L3) set {~u : 〈∇~u : ∇~u〉 ≤ Pe}. Explicitly, our functional is continuous in the
L3 topology and the H1 ball is compact in the L3 topology and a continuous function
on a compact set attains its maximum. Specifying boundary/integral conditions on ~u
become essential in this step.

Furthermore we show that the functional is differentiable with respect to the strong L3

topology on ~u, hence we can characterize the maximizer by looking at the first-order opti-
mality conditions.

The choice of ~u ∈ L3 may seem unusual and it is indeed arbitrary. It is the largest class
of flow fields that still preserves continuity and differentiability of the functional 3.1. It is
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motivated by the desire to have control over a term arising in the weak form of the advec-
tion diffusion equation of the form ‖ϕ~u · ∇θ‖1 where θ, ϕ ∈ H1. By applying Hölder’s
inequality we see that

‖ϕ~u · ∇θ‖1 ≤ ‖ϕ‖p1‖~u‖p2‖∇θ‖p3 (3.20)

where

1

p1

+
1

p2

+
1

p3

= 1 (3.21)

We would like to find the smallest p2 such that the estimate is guaranteed to be finite in
order to have the largest class of vector fields possible. This means that we must find the
largest p1 and p3 such that the estimates are guaranteed to be finite. In the case of p3 we
can do no better than p3 = 2 given that θ ∈ H1. For ϕ by the Sobolev embeddings in three
dimensions ‖θ‖6 ≤ c‖∇θ‖2 for a constant c. Hence the largest value of p1 that we may use
is p1 = 6. Solving for p2 then yields p2 = 3.

3.3.1 Existence of the Temperature Field

In order to establish the existence and uniqueness of the temperature function T : R3 → R

~u · ∇T = ∆T (3.22)

subject to T (z = 0) = 1 and T (z = 1) = 0 and appropriate1 boundary conditions in
the horizontal (x, y) directions, we will work instead with the function θ ≡ T − (1 − z)

which satisfies homogeneous boundary conditions in the vertical direction and satisfies the
equation

~u · ∇θ = ∆θ + w, (3.23)

where we have decomposed the vector ~u into three components ~u = (u, v, w) and w is
the velocity in the vertical direction whereas (u, v) are the components in the horizontal
direction.

We now motivate the weak form of the equation. Multiplying through by a smooth

1For example, we can work with periodic boundary conditions or no-flux boundary conditions on the side
walls.
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function φ with compact support and integrating yields the following equation∫
Ω

(φ~u · ∇θ +∇φ · ∇θ) =

∫
Ω

φw. (3.24)

Integrating by parts on the 1
2
φ~u · ∇θ term and using incompressibility yields∫

Ω

(
1

2
[φ~u · ∇θ − θ~u · ∇φ] +∇φ · ∇θ

)
=

∫
Ω

φw. (3.25)

We will define this to be the weak form of our equation. This is convenient because the
advective term is explicitly anti-symmetric which simplifies many of the proofs later on
and guarantees coercivity as required by the Lax-Milgram theorem. Furthermore by taking
(3.25) as the definition of the advection diffusion equation, ignoring the original derivation
using incompressibility, we may consider a larger class of flows than incompressible ones.
The functions θ and φ satisfy homogeneous boundary conditions on the z = 0 and z = 1

plane and, for example, periodic boundary conditions in the horizontal directions. What is
essential is that ‖∇θ‖2 defines a norm.

The bilinear form associated with the weak form is

B[θ, φ] =

∫
Ω

(
1

2
[φ~u · ∇θ − θ~u · ∇φ] +∇φ · ∇θ

)
. (3.26)

We will now show that the conditions for the Lax-Milgram theorem are satisfied for the
advection-diffusion equation. For a fixed ~u ∈ L3 this bilinear form is continuous by the
following estimates,

|B[θ, φ]| =
∣∣∣∣∫

Ω

(
1

2
[φ~u · ∇θ − θ~u · ∇φ] +∇φ · ∇θ

)∣∣∣∣ (3.27)

≤ 1

2
(‖φ~u · ∇θ‖1 + ‖θ~u · ∇φ‖1) + ‖∇φ · ∇θ‖1 (3.28)

≤ 1

2
(‖φ‖6‖~u‖3‖∇θ‖2 + ‖θ‖6‖~u‖3‖∇φ‖2) + ‖∇φ‖2‖∇θ‖2 (3.29)

≤ c‖∇φ‖2‖~u‖3‖∇θ‖2 + ‖∇φ‖2‖∇θ‖2 (3.30)

≤ (c‖~u‖3 + 1) ‖∇φ‖2‖∇θ‖2 (3.31)

and coercive since

B[θ, θ] =

∫
Ω

(
1

2
[θ~u · ∇θ − θ~u · ∇θ] +∇θ · ∇θ

)
=

∫
Ω

∇θ · ∇θ = ‖∇θ‖2
2. (3.32)

The last thing that we need to verify is that the right side defines a continuous linear func-
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tional. This is true since ∫
Ω

φw ≤ ‖φ‖2‖w‖2 (3.33)

≤ C‖∇φ‖2‖~u‖3 (3.34)

for a constant C by Sobolev embedding on ϕ and Lp inclusions on ~u. Thus by the Lax-
Milgram Theorem (§3.2) the solutions to the steady advection-diffusion equation exist as
long as the vector field is in L3. Note that we did not use incompressibility of the vector
field ~u from 3.25 onwards.

3.3.2 Continuity and Existence of a Maximizer

We think of θ as an implicit function of ~u and thus would like to know if it is continuous
with respect to changes in ~u. To this end let ~u,~v ∈ L3 be flow fields and denote the
difference by δ~u = ~v − ~u and consider the equations∫

Ω

(
1

2
[φ~u · ∇θ − θ~u · ∇φ] +∇φ · ∇θ

)
=

∫
Ω

φf (3.35)∫
Ω

(
1

2
[φ~v · ∇ϕ− ϕ~v · ∇φ] +∇φ · ∇ϕ

)
=

∫
Ω

φg (3.36)

There exists solutions θ and ϕ for each φ as long f, g are in the dual space of θ, φ by the
Lax-Milgram theorem and the discussion in the previous paragraph. Taking the difference
of the two equations yields the following equation for δθ ≡ ϕ− θ,∫

Ω

(
1

2
[φ (~u+ δ~u) · ∇δθ − δθ (~u+ δ~u) · ∇φ] +∇φ · ∇δθ

)
(3.37)

=∫
Ω

(
1

2
[θδ~u · ∇φ− φδ~u · ∇θ] + φδf

)
,

where δf = f − g. Set φ = δθ to yield the following balance relation

‖∇δθ‖2 =

∫
Ω

(
1

2
[θδ~u · ∇δθ − δθδ~u · ∇θ] + δθδf

)
. (3.38)
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We may estimate the right hand side to get

‖∇δθ‖2
2 =

∣∣∣∣∫
Ω

(
1

2
[θδ~u · ∇δθ − δθδ~u · ∇θ] + δθδf

)∣∣∣∣ (3.39)

≤
∫

Ω

∣∣∣∣12 [θδ~u · ∇δθ − δθδ~u · ∇θ] + δθδf

∣∣∣∣ (3.40)

≤ 1

2
‖θ‖6‖δ~u‖3‖∇δθ‖2 +

1

2
‖δθ‖6‖δ~u‖3‖∇θ‖2 + ‖δf‖6/5‖δθ‖6 (3.41)

≤ 1

2
‖θ‖6‖δ~u‖3‖∇δθ‖2 +

c

2
‖∇δθ‖2‖δ~u‖3‖∇θ‖2 + c‖δf‖6/5‖∇δθ‖2 (3.42)

=

(
1

2
‖θ‖6‖δ~u‖3 +

c

2
‖δ~u‖3‖∇θ‖2 + c‖δf‖6/5

)
‖∇δθ‖2, (3.43)

where c is the Sobolev embedding constant such that ‖θ‖6 ≤ c‖∇θ‖2. For our problem
(3.25) we have that ‖δf‖6/5 = ‖δw‖6/5 ≤ c′‖δ~u‖3 for a constant c′. Again ~u = (u, v, w).
Hence we have

‖∇δθ‖2
2 ≤

(
1

2
‖θ‖6‖δ~u‖3 +

c

2
‖δ~u‖3‖∇θ‖2 + cc′‖δ~u‖3

)
‖∇δθ‖2 (3.44)

⇔ (3.45)

‖∇δθ‖2 ≤
(

1

2
‖θ‖6 +

c

2
‖∇θ‖2 + c′c

)
‖δ~u‖3 (3.46)

= d′‖δ~u‖3 (3.47)

where d′ ≡ 1
2
‖θ‖6 + c

2
‖∇θ‖2 +c′c is a constant that depends on θ (hence ~u) and the Sobolev

embeddings.
This is enough to show that the functional 〈wθ〉 continuous with respect to the strong

L3 topology on ~u since∣∣∣∣∫
Ω

(w + δw) (θ + δθ)− wθ
∣∣∣∣ =

∣∣∣∣∫
Ω

(wδθ + δwθ + δwδθ)

∣∣∣∣ (3.48)

≤ ‖wδθ‖1 + ‖δwθ‖1 + ‖δwδθ‖1 (3.49)

≤ ‖~u‖3‖δθ‖3/2 + ‖δ~u‖3‖θ‖3/2 + ‖δ~u‖3‖δθ‖3/2 (3.50)

≤ c (‖~u‖3 + ‖δ~u‖3) ‖∇δθ‖2 + ‖δ~u‖3‖θ‖3/2 (3.51)

≤
[
c (‖~u‖3 + ‖δ~u‖3) (‖θ‖6 + d′) + ‖θ‖3/2

]
‖δ~u‖3. (3.52)

The last line followed from (3.46) and the previous lines from Sobolev embeddings and
Hölder’s inequalities. Thus our functional is controlled by the L3 norm of the differences.
Said differently we can invoke L3 perturbations on our functional and still have values
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remain “close” to one another.
Thus far no mention of boundary conditions on ~u were necessary; however, to deter-

mine a global maximizer exists to (3.1) it is essential to be more specific. In fact, any
boundary or integral conditions on ~u such that ‖∇~u‖2 defines a norm would work. Oth-
erwise we could instead work with ‖~u‖2 + γ‖∇~u‖2 where γ ∈ (0,∞) is a fixed number,
but then the connection to Rayleigh-Bénard convection would be lost. Example boundary
conditions include:

1. Periodicity in the horizontal directions and no-slip boundary conditions in the vertical
direction for all components of velocity.

2. Stress-Free boundary conditions and mean-zero on the horizontal velocities for the
vertical boundary conditions, and homogeneous boundary conditions in the vertical
direction for the vertical velocity. Periodic boundary conditions for the horizontal
directions for all the components of velocity.

3. No-slip boundary conditions on the entire domain for all components of velocity.

To confirm that maximizers do indeed exist to the optimization problem (3.1) we may
use the Rellich-Kondrachov theorem (§3.2). A consequence of this theorem is the com-
pactness of the H1 ball in the L3 topology in three dimensions or less. Hence we are
maximizing a continuous function on a compact set, thus a maximizer exists. More ex-
plicitly we can proceed as follows: Let C denote the Poincaré constant. The functional is
bounded above by CPe by the calculation

‖∇θ‖2
2 =

∫
Ω

wθ ≤ ‖w‖2‖θ‖2 ≤ C‖∇~u‖2‖∇θ‖2, (3.53)

hence a supremum exists. Let ~un be a sequence of vectors that converge to the supremum.
Since the H1 ball is compact in the weak H1 topology by the Banach-Alaoglu Theorem
there exists a subsequence such that ~unk converges weakly to a function ~u. This ~u is our
candidate maximizer and we will indeed show that it is a maximizer. By the Rellich-
Kondrachov theorem (§3.2) this sequence converges strongly in L3 which by (3.52) implies
that the value of the functional converges to 〈wθ〉, meaning 〈wnkθ〉 → 〈wθ〉. But we also
know that the sequence converges to the supremum, hence ~u is our maximizer. If we
instead restrict ourselves to incompressible flow fields the argument is exactly the same. In
conclusion a maximizer to (3.1) does indeed exist.
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3.3.3 Differentiability

We will now show that the functional

F [~u] =

∫
Ω

wθ (3.54)

where θ is defined as the solution to∫
Ω

(
1

2
[φ~u · ∇θ − θ~u · ∇φ] +∇θ · ∇φ

)
=

∫
Ω

φw (3.55)

is Fréchet differentiable with respect to the L3 topology on ~u. By definition we must find a
linear operator L (linear in δ~u) such that∣∣∣∣∫

Ω

((w + δw)(θ + δθ)− wθ − L[δ~u])

∣∣∣∣ ≤ c‖δ~u‖2
3 (3.56)

for some constant c, where θ + δθ solves (3.25) for an advective term of ~u+ δ~u, i.e.

∫
Ω

(
1

2
[φ(~u+ δ~u) · ∇(θ + δθ)− ϕ(~u+ δ~u) · ∇φ] +∇φ · ∇ϕ

)
=

∫
Ω

(φδ~u · ∇θ + φδw) .

(3.57)

The choice

L[δ~u] = θδw + δϕw (3.58)

where δϕ is solution to∫
Ω

(
1

2
[φ~u · ∇δϕ− δϕ~u · ∇φ] +∇φ · ∇δϕ

)
=

∫
Ω

(
1

2
[θδ~u · ∇φ− φδ~u · ∇θ]

)
(3.59)

is the linear operator that we are looking for. We have shown that solutions to this equation
exist in §3.3.1 as long as the right hand side defines a continuous linear functional on
φ ∈ H1. This is seen by using θ ∈ H1 and δ~u ∈ L3 and the estimate∣∣∣∣∫

Ω

(
1

2
[θδ~u · ∇φ− φδ~u · ∇θ]

)∣∣∣∣ ≤ 1

2
‖θδ~u · ∇φ‖1 +

1

2
‖φδ~u · ∇θ‖1 (3.60)

≤ 1

2
‖θ‖6‖δ~u‖3‖∇φ‖2 +

1

2
‖φ‖6‖δ~u‖3‖∇θ‖2 (3.61)

≤ c‖δ~u‖3‖∇θ‖2‖∇φ‖2. (3.62)
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This is the same equation as the one for δθ except without the second order δθδ~u·∇θ terms.
Since we are solving a linear equation, the function δϕ is indeed linear in δ~u and hence the
L operator is a linear function of δ~u. To show differentiability we verify that∣∣∣∣∫

Ω

δθδw + w (δθ − δϕ)

∣∣∣∣ ≤ C‖δ~u‖2
3 (3.63)

holds for some constant C that depends on what point in function space we are considering.
The difference between the δθ and δϕ equations yield∫

Ω

(
1

2
[φ~u · ∇ (δθ − δϕ)− (δθ − δϕ) ~u · ∇φ] +∇φ · ∇ (δθ − δϕ)

)
(3.64)

=∫
Ω

1

2
(φδ~u · ∇δθ − δθδ~u · ∇φ) .

choosing φ = δθ − δφ allows us to estimate ‖∇ (δθ − δφ) ‖2 since

‖∇ (δθ − δϕ) ‖2
2 =

∣∣∣∣∫
Ω

1

2
((δθ − δϕ) δ~u · ∇δθ − δθδ~u · ∇ (δθ − δϕ))

∣∣∣∣ (3.65)

≤ 1

2
‖ (δθ − δϕ) δ~u · ∇δθ‖1 +

1

2
‖δθδ~u · ∇ (δθ − δϕ) ‖1 (3.66)

≤ 1

2
‖ (δθ − δϕ) ‖6‖δ~u‖3‖‖∇δθ‖2 +

1

2
‖δθ‖6‖δ~u‖3‖∇ (δθ − δϕ) ‖2

(3.67)

≤ c‖∇ (δθ − δϕ) ‖2‖δ~u‖3‖∇δθ‖2 (3.68)

≤ cd′‖∇ (δθ − δφ) ‖2‖δ~u‖2
3 (3.69)

where we used integration Sobolev embedding, Hölder’s inequality, and (3.46). The c and
c′ are constants. This is enough to show that the functional is differentiable∣∣∣∣∫

Ω

(δθδw + w (δθ − δϕ))

∣∣∣∣ ≤ ‖δθδ~u · ê3‖1 + ‖w (δθ − δϕ) ‖1 (3.70)

≤ ‖δθ‖3/2‖δw‖3 + ‖~u · ê3‖3‖ (δθ − δϕ) ‖3/2 (3.71)

≤ c′‖∇δθ‖2‖δ~u‖3 + c′‖~u‖3‖∇ (δθ − δϕ) ‖2 (3.72)

≤ c′d′‖δ~u‖2
3 + cc′d′‖δ~u‖2

3 (3.73)

Since the functional 〈wθ〉 is Fréchet differentiable with respect to any ~u ∈ L3 the max-
imizer to 3.1 also satisfies this condition. Thus our maximizer must satisfy first-order
optimality conditions. Fréchet differentiability guarantees differentiability in any direction
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and in particular we may constrain ourselves to the set {~u|〈∇~u : ∇~u〉 = Pe2}.

3.4 Upper Bound

From now on we would like to deduce properties of the maximizer and will proceed for-
mally. We only proved existence of a maximizer and differentiability of the functional
with respect to the time-independent case but we will no longer limit ourselves to time-
independent flows to obtain an upper-bound. It is important to note that we will make no
assumptions on the boundary conditions for the horizontal velocity. In fact we will only
use the fact that w = 0 at z = 0 and z = 1. Furthermore, the estimates here apply to the
rigorous time-independent problem for incompressible velocity fields.

To obtain the upper bound will make a background decomposition of the form

T = θ + τ(z) (3.74)

where τ is the “background”. The form of τ will be

τ(z) =


1− 1

2δ
z for 0 ≤ z < δ

1
2

for δ ≤ z ≤ 1− δ
1
2
− 1

2δ
(z − (1− δ)) for 1− δ < z ≤ 1

(3.75)

so that

τ ′(z) =


− 1

2δ
for 0 < z < δ

0 for δ < z < 1− δ

− 1
2δ

for 1− δ < z < 1

(3.76)

with δ > 1
2

being chosen later. Note that 〈(τ ′)2〉 = (2δ)−1.
We see that θ satisfies homogeneous boundary conditions. The equation of motion for

θ is

∂tθ + ~u · ∇θ = ∆θ + τ ′′ − wτ ′. (3.77)

This implies the following balance relation

0 = −〈|∇θ|2〉 − 〈τ ′∂zθ〉 − 〈θwτ ′〉 (3.78)
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and that the Nusselt number is

Nu = 〈|∇T |2〉 (3.79)

= 〈|∇θ + τ ′ẑ|2〉 (3.80)

= 〈|∇θ|2〉+ 2〈τ ′∂zθ〉+ 〈(τ ′)2〉 (3.81)

Since 0 ≤ T ≤ 1 our choice of background implies the boundedness of θ. Hence
limT→∞

θ(T )
T

= 0. If we want to bound the Nusselt number we make the following obser-
vation

Nu = 〈|∇T |2〉 (3.82)

=

〈
|∇T |2 +

∂

∂t
θ2 + αPe2/3

(
1− |∇~u|

2

Pe2

)〉
(3.83)

= 〈(τ ′)2〉+ αPe2/3 −
〈
|∇θ|2 + 2wθτ ′ + αPe−4/3|∇~u|2

〉
(3.84)

where α ≥ 0 and the prefactor Pe2/3 has been factored out in anticipation of the result.
Recall that |∇~u|2 = ∇~u : ∇~u. We would now like to choose δ such that for any θ, ~u ∈ H1

Q[θ, ~u] =
〈
|∇θ|2 + 2wθτ ′ + αPe−4/3|∇~u|2

〉
≥ 0, (3.85)

i.e. Q is positive semi-definite. To do so we must balance the 2〈wθτ ′〉 term with the pos-
itive definite terms |∇θ|2 and |∇~u|2. This was originally accomplished by Constantin and
Doering [4], but for completeness the calculation is repeated in Appendix D. Specifically,
it was shown that

2〈wθτ ′〉 ≥ −δ
2

〈
c(∂zw)2 +

1

c
(∂zθ)

2

〉
≥ −δ

2

〈
c

4
|∇~u|2 +

1

c
|∇θ|2

〉
(3.86)

for a constant c > 0 that will be chosen later. This implies

Q[θ, ~u] =
〈
|∇θ|2 + 2wθτ ′ + αPe−4/3|∇~u|2

〉
(3.87)

≥
〈(

1− δ

2c

)
|∇θ|2 +

(
αPe−4/3 − cδ

8

)
|∇~u|2

〉
. (3.88)

Choosing c = δ/2 so that

Q[θ, ~u] ≥
〈(

αPe−4/3 − δ2

16

)
|∇~u|2

〉
(3.89)
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and δ = 4
√
αPe−2/3 yields

Q[θ, ~u] ≥ 0. (3.90)

Hence our upper bound for the Nusselt number is

Nu ≤ 1

2δ
+ αPe2/3 (3.91)

≤
(

1

8
√
α

+ α

)
Pe2/3. (3.92)

We now pick α = 256−1/3 to minimize the prefactor and obtain,

Nu ≤
(

3

4× 22/3

)
Pe2/3 ≤ 0.473Pe2/3. (3.93)

3.5 The Euler-Lagrange Equations

Let us proceed formally and look at the first-order optimality condition for incompressible
vector fields ~u

0 =

∫
Ω

θδw + δϕw. (3.94)

a little more closely. We think of θ as a functional output given a ~u defined by the equation∫
Ω

φ~u · ∇θ +∇φ · ∇θ =

∫
Ω

φf (3.95)

for each φ ∈ H1 and for a chosen forcing function f (in the context of this chapter f = w).
Let us denote the (linear) mapping of f → θ by G~u, that is, G~u[f ] = θ. The adjoint of this
operator G†~u corresponds to a ϕ such that∫

Ω

−φ~u · ∇ϕ+∇φ · ∇ϕ =

∫
Ω

φf (3.96)

for each φ ∈ H1, hence, G†~u[f ] = ϕ. The adjoint equation comes equipped with boundary
conditions with the same boundary conditions as the one for θ if, for example, the horizon-
tal directions satisfy periodic or homogeneous or no–flux boundary conditions and if the
vertical direction satisfies homogenous boundary conditions. With this notation in place
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we see that the first-order optimality condition becomes,∫
Ω

θδw + δϕw =

∫
Ω

G~u[w]δw + wG~u[−δ~u · ∇θ + δw] (3.97)

=

∫
Ω

G~u[w]δw +G†~u[w] (−δ~u · ∇θ + δw) (3.98)

=

∫
Ω

δ~u ·
(
G~u[w]ê3 +G†~u[w]ê3 −G†~u[w]∇G~u[w]

)
(3.99)

=

∫
Ω

δ~u · (θê3 + ϕê3 − ϕ∇θ) (3.100)

Imposing constraints on ~u changes the null-space of the linear functional
∫

Ω
δ~u. Particu-

larly, by imposing incompressibility and the 〈∇~u : ∇~u〉 = Pe2 constraint we have

0 =

∫
Ω

δ~u · ∇p (3.101)

0 =

∫
Ω

∇δ~u · ∇~u (3.102)

for a p ∈ H1. The first condition comes from noting that (with appropriate boundary
conditions) the velocity field ~u is orthogonal to gradients. The second condition may be
calculated from,

〈∇(~u+ δ~u),∇(~u+ δ~u)〉 = Pe2 (3.103)

〈∇~u,∇~u〉 = Pe2 (3.104)

⇒ (3.105)

〈∇δ~u,∇δ~u〉 = −〈∇~u,∇δ~u〉 − 〈∇δ~u,∇~u〉, (3.106)

noting that 〈∇δ~u,∇δ~u〉 is second order, and that 〈f, g〉 = 〈g, f〉.
Although we have written the first-order optimality conditions, they are a bit incon-

venient to use when trying to establish properties of the maximizer. Instead we will in-
troduce Lagrange multiplies µ, ϕ, and p, to enforce the Péclet constraint, advection diffu-
sion equation, and the incompressibility constraint. Furthermore we will now consider the
time-dependent problem as well. Note that we have not proven that solutions exist to the
time-dependent problem, nor have we shown what space ~u must belong in order for the
problem to make sense. Nevertheless we will proceed formally hoping that the calculations
may someday be made rigorous.

The solution to the time-dependent maximization problem (3.1) is characterized by the
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critical points of the augmented Lagrangian

F =
〈
wθ − ϕ (∂tθ + ~u · ∇θ −∆θ − w) + p(∇ · ~u) +

µ

2
(Pe2 −∇~u : ∇~u)

〉
. (3.107)

The first-order optimality conditions are given by the variations with respect to (~u, θ, ϕ, p, µ).
Variations with respect to the Lagrange multipliers yield the constraint equations

0 =
δF
δϕ

= ∂tθ + ~u · ∇θ −∆θ − w (3.108)

0 =
δF
δp

= ∇ · ~u (3.109)

0 =
δF
δµ

=
1

2

〈
Pe2 −∇~u : ∇~u

〉
(3.110)

variations with respect to the state θ and the control ~u yield the adjoint equation and the
optimality condition respectively,

0 =
δF
δθ

= −∂tϕ− ~u · ∇ϕ−∆ϕ− w (3.111)

0 =
δF
δ~u

= µ∆~u+ (θ + ϕ) ê3 − ϕ∇θ −∇p. (3.112)

Using the Euler-Lagrange equations we will show that the maximum must indeed occur
when 〈∇~u : ∇~u〉 = Pe2 under the assumption that

〈ϕ∂tθ〉 = 〈θ∂tϕ〉 = 0. (3.113)

This is not a restriction in the steady case, but in the time-dependent case this becomes
dubious; however, by assuming that there exists an optimal time period 0 < T ∗ < ∞
that maximizes heat transport and that the functional evaluated on an optimal trajectory is
differentiable with respect to T , variations with respect to T imply

0 =
δF
δT

= −F
T

+
1

Γ1Γ1

∫ Γ1

0

∫ Γ2

0

∫ 1

0

Ht dz dy dx (3.114)

Ht = L − ∂tθϕ. (3.115)

Time averaging (3.114) yields (3.113). See Appendix A. This may be useful when calcu-
lating periodic trajectories, but since we expect steady state solutions to be most optimal
the assumption that there exists a T ∗ for which the above holds should be called into ques-
tion. In fact we expect that the computation of such a gradient would imply that T ∗ → ∞
for solutions to time-dependent problems where ϕ(~x, T ) = θ(~x, 0) = 0 or time-periodic
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problems.
From the augmented Lagrangian we make one further observation. Optimizing over

horizontal boundary conditions implies that the conjugate momenta associated with the
variable must be zero on the boundary, see §A.1.1 and §A.2.2. In the context of this func-
tional this means that the horizontal velocities must satisfy stress-free boundary conditions.
In so far as a maximum exists and is differentiable with respect to varying boundary data
for horizontal components of ~u this would imply that stress-free boundary conditions yield
the absolute optimal transport of heat.

The Euler-Lagrange equations for the system are

∂tθ + ~u · ∇θ = ∆θ + w (3.116)

−∂tϕ− ~u · ∇ϕ = ∆ϕ+ w (3.117)

−µ∆~u = ê3θ − ϕ∇θ + ê3ϕ−∇p (3.118)

0 = ∇ · ~u (3.119)

0 =
1

2
(Pe2 − |∇~u|2). (3.120)

In addition consider the equations for the sum and difference of θ and ϕ

~u · ∇(θ − ϕ) = ∆ (θ + ϕ) + 2w (3.121)

−~u · ∇ (θ + ϕ) = ∆ (θ − ϕ) . (3.122)

From these we have the following integral relations

−〈θ∆θ〉 = 〈∇θ · ∇θ〉 = 〈θw〉 (3.123)

−〈θ∆ϕ〉 = 〈∇ϕ · ∇ϕ〉 = 〈ϕw〉 (3.124)

−〈(θ − ϕ) ∆ (θ + ϕ)〉 = 2〈w (θ − ϕ)〉 (3.125)

−〈(θ + ϕ) ∆ (θ − ϕ)〉 = 0 (3.126)

we rely on the assumption that 〈ϕ∂tθ〉 = 〈θ∂tϕ〉 = 0 when deriving (3.125) and (3.126).
The latter two were derived by multiplying the θ ± ϕ equations by θ ∓ ϕ respectively and
integrating by parts.

Using (3.126) with (3.125) allows us to conclude

〈wθ〉 = 〈wϕ〉 (3.127)
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from whence we see

〈wθ〉 = 〈wϕ〉 = 〈∇θ · ∇θ〉 = 〈∇ϕ · ∇ϕ〉. (3.128)

Dotting the optimality condition (3.118) by ~u and averaging gives

−µ〈~u ·∆~u〉 = 〈wθ + wϕ〉 − 〈ϕ~u · ∇θ〉 − 〈~u · ∇p〉 (3.129)

⇒

−µ〈~u ·∆~u〉 = 2〈∇θ · ∇θ〉 − 〈ϕ~u · ∇θ〉. (3.130)

Multiplying (3.116) by ϕ and (3.117) by θ and averaging yields

〈ϕ~u · ∇θ〉 = 〈ϕ∆θ〉+ 〈wϕ〉 = −〈∇ϕ · ∇θ〉+ 〈∇θ · ∇θ〉 (3.131)

−〈θ~u · ∇ϕ〉 = 〈θ∆ϕ〉+ 〈wθ〉 = −〈∇ϕ · ∇θ〉+ 〈∇θ · ∇θ〉. (3.132)

Here we used the assumption that 〈ϕ∂tθ〉 = 〈θ∂tϕ〉 = 0. Using these integral balance
relations we may reduce (3.130) to

−µ〈~u ·∆~u〉 = 2〈∇θ · ∇θ〉 − 〈−∇ϕ · ∇θ +∇θ · ∇θ〉 (3.133)

⇒

−µ〈~u ·∆~u〉 = 〈∇θ · ∇θ +∇ϕ · ∇θ〉 = 〈∇ϕ · ∇ϕ+∇ϕ · ∇θ〉. (3.134)

We are now finally in the position to show that the maximum of Nu must occur on the
boundary. Observe that if the maximum occurred for 〈|∇~u|2〉 < Pe2 we would not need to
enforce the Pe constraint in the Euler-Lagrange equations, hence µ = 0. If µ = 0 then

0 = 〈∇θ · ∇θ +∇ϕ · ∇θ〉 (3.135)

0 = 〈∇ϕ · ∇ϕ+∇ϕ · ∇θ〉 (3.136)

⇒

0 = 〈∇ (θ + ϕ) · ∇ (θ + ϕ)〉 (3.137)

The last equation lets us conclude that θ = −ϕ, and using

−~u · ∇ (θ + ϕ) = ∆ (θ − ϕ)

gets us that θ = ϕ, and hence θ = 0 = ϕ. But if this is true then w = 0 from either the
advection-diffusion equation or the adjoint equation. Hence µ = 0 implies w = 0 as long
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as 〈ϕ∂tθ〉 = 〈θ∂tϕ〉 = 0. These are the minimizers of the functional. Since there exist
non-zero solutions to the advection-diffusion equation, it must be the case that there are
no maximizers on the interior of the H1 ball. It is worth noting that these conclusions do
not depend on the exact boundary conditions on ~u, in so far as the conditions on ~u define a
well-formulated variational problem.

3.6 Possible Avenues for Improving the Upper Bound

From computations in Chapter 4 it seems to be the case that the upper bound from §3.4 is
suboptimal. There are various properties of the advection-diffusion equation and incom-
pressiblity that were not used in the derivation of the upper bound. In particular we did not
use the fact that θ satisfies the advection-diffusion equation, the maximum principle for θ
(‖θ‖∞ ≤ 1), the optimality condition for the velocity field, nor did we use any boundary
conditions for the horizontal velocity.

The Euler-Lagrange equations imply that the optimal velocity field satisfies Stoke’s
equation,

µ∂jjui = fi + ∂ip (3.138)

∂iui = 0 (3.139)

hence we have the following equation for pressure,

∂kkp = −∂kfk (3.140)

which may be eliminated to yield,

µ∂kk∂jjui = ∂kkfi + ∂i∂kkp (3.141)

= ∂kkfi − ∂ikfk (3.142)

= ∂k (fi,k − fk,i) (3.143)

For the Euler-Lagrange equations this means that

−µ∆2w = ∇ · (∇(θ + ϕ− ϕ∂zθ)− ∂z(θ + ϕ)ê3 + ∂zϕ∇θ + ϕ∇∂zθ) (3.144)

= (∂xx + ∂yy) (θ + ϕ) +∇ · (∂zϕ∇θ − ∂zθ∇ϕ) (3.145)

= (∂xx + ∂yy) (θ + ϕ) + ∂zϕ∆θ − ∂zθ∆ϕ+∇∂zϕ · ∇θ −∇∂zθ · ∇ϕ. (3.146)
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Multiplying through by any function g that vanishes on the boundary and integrate by parts
we get

µ〈g∆2w〉 = 〈g (∂xx + ∂yy) (θ + ϕ)〉+ 〈∇g · (∂zθ∇ϕ− ∂zϕ∇θ)〉. (3.147)

The difficulty preventing us from properly exploiting the Euler-Lagrange equations comes
from the

∇g · (∂zθ∇ϕ− ∂zϕ∇θ) (3.148)

term. The z component of ∂zθ∇ϕ− ∂zϕ∇θ vanishes. Perhaps it is possible to use (3.147)
to improve the analytic upper bound, but even if this is possible one would need to know a
relation between µ and Pe.

3.6.1 Insights on How to Improve the Upper Bound

In order to improve the upper bound it is necessary to look at the essential ingredients that
go into such an analysis. It is known that minimizing the quadratic functional (3.85) over
all incompressible velocity fields ~u and θ ∈ H1 is equivalent to looking for eigenfunctions
of the operator (γ ≥ 0)

Q[θ, ~u] =
[
θ ~u

] [−∆ τ ′ê3

τ ′ê3 −γ∆

][
θ

~u

]
, (3.149)

and finding the τ that gives the lowest value of 〈(τ ′)2〉 subject to the constraint that the
lowest eigenvalue is non-negative. In Constantin and Doering [4], a relaxation of this was
found for the operator

QR[θ, w] =
[
θ w

] [− d2

dz2 τ ′

τ ′ − d2

dz2

][
θ

w

]
. (3.150)

Interestingly both spectral constraints produce the same scaling exponent, suggesting that
incompressibility is not important for the ultimate scaling in the background method [31].

Here we will look at a particular relaxation of the full optimal control problem in order
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to develop some intuition. The full optimal control problem is

Maximize 〈wθ〉 (3.151)

subject to

~u · ∇θ = ∆θ + w (3.152)

〈∇~u : ∇~u〉 ≤ Pe2 (3.153)

∇ · ~u = 0. (3.154)

Observe that for incompressible flow fields

~u · ∇θ = β~u · ∇θ + (1− β)∇ · (~uθ) (3.155)

〈wθ〉 = α〈wθ〉+ (1− α)〈|∇θ|2〉 (3.156)

for parameters α, β ∈ R. Hence (3.151) is equivalent to

Maximize α〈wθ〉+ (1− α)〈|∇θ|2〉 (3.157)

subject to

β~u · ∇θ + (1− β)∇ · (~uθ) = ∆θ + w (3.158)

〈∇~u : ∇~u〉 ≤ Pe2 (3.159)

∇ · ~u = 0. (3.160)

Let us denote the global maximum to (3.151) by Nu1. Now denote the global maximum
of the less restricted problem

Maximize α〈wθ〉+ (1− α)〈|∇θ|2〉 (3.161)

subject to

β~u · ∇θ + (1− β)∇ · (~uθ) = ∆θ + w (3.162)

〈∇~u : ∇~u〉 ≤ Pe2 (3.163)

by Nu2. This is less constrained because we have removed the incompressibility constraint.
It is the case that Nu1 ≤ Nu2 for any choice of parameters α and β since (3.161) includes
solutions of (3.157) as a special case. Getting rid of the incompressibility constraint sug-
gests that we would not want to use any of the enstrophy budget on horizontal directions
or velocities. Physically this would correspond to a flow field that would purely transport
heat from the bottom plate to the top plate, not wasting any time transporting horizontally.
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Thus we consider the following optimization problem

Maximize α〈wθ〉+ (1− α)〈(∂zθ)2〉 (3.164)

subject to

βw∂zθ + (1− β)∂z(wθ) = ∂2
zzθ + w (3.165)

〈‖∂zw‖2
2〉 ≤ Pe. (3.166)

as a model for (3.161) with boundary conditions θ(0) = θ(1) = w(0) = w(1) = 0. We will
not solve this optimal control problem, but rather look at some particular flow fields that
achieve the same scaling as the bound from §3.4 ( Nu . Pe2/3). In light of examining these
flows we then switch to a special class of incompressible flows that share a similar structure
and show how incompressibility ruins this scaling. Thus we come to the conclusion that
we have to both fully enforce incompressibility and the advection-diffusion equation to
understand the true scaling, independent of enforcing the Navier-Stokes equations.

We expect that the flow field should essentially try to remain as a large as possible
everywhere to transport as much heat as possible, hence we will look at the particular flow
field

w(z) =


Pe√
2δ
z for 0 ≤ z ≤ δ

Pe
√
δ√
2

for δ ≤ z ≤ 1− δ
Pe√
2δ

(1− z) for 1− δ ≤ z ≤ 1

(3.167)

for 0 < δ ≤ 1/2. This flow field satisfies the enstrophy budget constraint and the boundary
conditions, but depends on finding an optimal parameter δ. On one hand the smaller the δ
the more the flow field is essentially like constant, on the other hand the lower the infinity
norm of w.

We will look at the particular case β = 1 and α = 0. For this case we can reduce the
advection-diffusion equation

w
d

dz
θ =

d2

dz2
θ + w (3.168)
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to quadrature,

θ(z) = z − 1∫ 1

0
g(ζ)dζ

∫ z

0

g(ζ)dζ (3.169)

g(ζ) = exp

(∫ ζ

0

w(ξ)dξ

)
. (3.170)

The benefit of using this value of β is revealed by examining the structure of the solution.
It satisfies the maximum principle since

−1 ≤ − 1∫ 1

0
g(ζ)dζ

∫ z

0

g(ζ)dζ ≤ θ(z) ≤ z ≤ 1. (3.171)

The inequalities follow from the positivity of g(ζ) and z. Numerical solutions to (3.168)
with w as in (3.167) suggest that the optimal scaling of a Nusselt number defined by α =

0 seems to be Pe2/3, that is to say, asymptotically Nu ∼ Pe2/3 as was derived by the
background method.

Finding analytic representations to for θ that satisfy the advection-diffusion equation
for non-constant incompressible flow fields is difficult, but there are a few cases that can be
solved exactly. For example, as noted in §3.5, if the vertical velocity is zero, i.e. w = 0, the
only solution is θ = 0, regardless of the functional form of the horizontal velocities. Has-
sanazadeh et al. in [32] found non-trivial asymptotic solutions to the advection-diffusion
equation. The derivation is as follows. We start with the ansatz

u = A cos(kx)F ′(z) (3.172)

w = Ak sin(kx)F (z) (3.173)

θ + ϕ = sin(kx)G1(z) (3.174)

θ − ϕ = G2(z) (3.175)

Here k = π
Γ

. Where θ + ϕ and θ − ϕ satisfy

u∂xθ + w∂zθ = ∂xxθ + ∂zzθ + w (3.176)

−u∂xϕ− w∂zϕ = ∂xxϕ+ ∂zzϕ+ w (3.177)

⇒

u∂x(θ − ϕ) + w∂z(θ − ϕ) = ∂xx(θ + ϕ) + ∂zz(θ + ϕ) + 2w (3.178)

u∂x(θ + ϕ) + w∂z(θ + ϕ) = ∂xx(θ − ϕ) + ∂zz(θ − ϕ) (3.179)
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These equations with our ansatz become ordinary differential equations for G1(z), G2(z),
and F

AkFG′2 = −k2G1 +G′′1 + 2AkF (3.180)

FG′1 + F ′G1 =
2

Ak
G′′2 (3.181)

FG′1 = G1F
′, (3.182)

along with boundary conditions F (0) = F (1) = G1(1) = G1(0) = G2(0) = G2(1) = 0.
The solutions to these set of equations are well represented by exponentials as noted in
[32], thus the asymptotic solution takes the form,

u(x, z) =
1√
2µ

(
1− π

2Γ

√
2µ
)

cos
(π

Γ
x
)
H ′(z) (3.183)

w(x, z) =
1√
2µ

π

Γ

(
1− π

2Γ

√
2µ
)

sin
(π

Γ
x
)
H(z) (3.184)

θ(x, z) =
1

2

(
1− π

2Γ

√
2µ
)(

sin
(π

Γ
x
)

+ 2z − 1
)
H(z) (3.185)

ϕ(x, z) =
1

2

(
1− π

2Γ

√
2µ
)(

sin
(π

Γ
x
)
− 2z + 1

)
H(z) (3.186)

H(z) = tanh
(z
δ

)
tanh

(
1− z
δ

)
(3.187)

δ−1 ≡
(

1− π

2Γ

√
2µ
) π

2Γ
√

2µ
. (3.188)

It is required that π
√

2µ < 2Γ for the solutions to remain valid. The parameter µ is related
to Pe implicitly and may be calculated by noting that, asymptotically,∫ 1

0

[H(z)]2dz ∼ 1− 2δ (3.189)∫ 1

0

[H ′(z)]2dz ∼ 4

3
δ−1 (3.190)∫ 1

0

[H ′′(z)]2dz ∼ 16

15
δ−3. (3.191)

The original motivation for considering this class of solutions comes from examining a
related optimal control problem where the constraint on the velocity field is not 〈∇~u :

∇~u〉 = Pe2 but rather 〈~u · ~u〉. Note that H(z) resembles the piecewise function (3.167).
Solving for the best aspect ratio2 in order to maximize the Nusselt number yields a

2For our purposes one may use Γ = π
√

8µ. This makes it so that Nu scales like µ−1 and Pe2 scales like
µ−4.
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transport value of Nu-1 ∼ Pe1/2, well below the Pe2/3 scaling of the bound in §3.4. The
smallness of the boundary layers for the vertical component w incurs a large penalty on
magnitude of the 〈(∂zu)2〉 term, which introduces an extremely large value of Pe into the
system. This aspect of penalty is what prevents this flow field from achieving the optimal
possible scaling. Indeed, if we could neglect the 〈(∂zu)2〉 term, we would achieve an upper
bound scaling of Pe2/3. Here it is the incompressibility constraint that is preventing us
from achieving a supposedly “optimal” scaling. Taking everything together we see that we
must consider both the incompressibility constraint and the enforcement of the advection-
diffusion equation in order to improve the bounds.
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CHAPTER 4

Numerical Discretization and Solutions

We now turn attention to numerically solving the Euler-Lagrange equations for the optimal
velocity field. In Hassanzadeh et al. [33] the Euler-Lagrange equations for 2D stress-free
boundary conditions were solved numerically by using Newton’s method. However, there
were limitations in spatial resolution due to the inversion of large matrix sizes. If there are
relatively few degrees of freedom this is not a problem but even modest accuracy for the
Euler-Lagrange equations involves inverting matrices of sizes 102× 102. In the asymptotic
regime where nonlinearity dominates (for Péclet of around 103) the matrices are 104 × 104

or larger in two dimensions.
Utilizing Newton’s method also leads to less confidence that one has found the global

optimum. Typically a computation is performed in the linear regime and then numerically
continued in the nonlinear regime. It is possible to “miss” more optimal solutions due to
saddle node bifurcations. Furthermore, if one wants to generalize to three dimensions or
time dependent flows, it is necessary to use a different method.

To remedy the some of these problems we employ gradient ascent strategy to solve for
local maxima. Discretizations using gradient ascent in this setting presents some additional
subtleties. In §4.1 we formulate the time-stepping procedure for gradient ascent in the
following contexts: steady state, periodic, and time-dependent flows. This leads us to
consider various methods for handling time-evolution as well.

The time evolution (in either gradient ascent or the time-dependent optimal control
problem) reduces to solving two boundary value problems, a modified Poisson’s equation
and a modified Stokes equation, that we describe how to solve in §4.2. Spectral methods
are natural for these problems since our domain is periodic in the horizontal directions and
bounded in the vertical. We represent numerical solutions by Fourier series in the horizontal
directions and Chebyshev series in the vertical but we do not use the usual methods [34, 35]
for the Chebyshev direction. We instead adopt spectral integration as the method of choice
for solving the resulting boundary value problems. The modified Stokes equation and
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modified Poisson’s equation are discussed in this context. We then apply these techniques
to solve the first-order optimality conditions and present solutions to the Euler-Lagrange
equations as well as various scalings with respect to the Péclet constraint in §4.3.

4.1 Gradient Ascent

Finding the global maximum of a function is a challenging task for a generic function,
even in the one dimensional context. One can compute a finite set of test points and choose
the one that does the best, but this leads to little confidence that one has found a good
candidate for a maximum. However, the maximum of a differentiable function f : Rn → R
is characterized the first-order optimality condition

0 = ∇f(x) (4.1)

where ∇f : Rn → Rn. Typically there are fewer points that satisfy (4.1) but there are
still problems with this approach. One is that the set of solutions to equation 4.1 could still
be large, leading to the same problem as before. Another is that equation 4.1 could give
spurious answers; saddle points and minima also satisfy the equation. Lastly, (4.1) may be
difficult to solve.

A standard method to solve the (4.1) is gradient ascent. This involves introducing a
time derivative on the left hand side and considering the dynamical system

ẋ = ∇f(x), (4.2)

where every local maximum of ∇f(x) is an attracting fixed point of the system. Thus for
generic initial conditions1 the gradient ascent procedure will provide a method for marching
towards a local maximum. There are few variations of this theme.

Adding higher order derivatives on the left hand side leads to the time-marching method

ẍ+ βẋ = ∇f, (4.3)

where β is some real number. With a proper choice of β one may attain significantly
enhanced convergence [36]. Here one is lead to having a “momentum” term in the gradient
ascent procedure.

Applying an invertable “preconditioner” P : Rn → Rn such that P (0) = 0 leads to a

1If one starts at a local minima or saddle point∇f = 0. In the presence of rounding error, time-marching
would move us away from these unstable fixed points but it may take a long time depending on the stability.
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different system of equations to solve

0 = P (∇f(x)). (4.4)

The zeros of this system are the same as 4.1 since ∇f(x∗) = 0 implies P (∇f(x∗)) = 0

and visa-versa. This new equation is time-marched via

ẋ = P (∇f(x)). (4.5)

For example Newton’s method may be viewed as choosing the inverse negative Jaco-
bian of ∇f , P = −J−1(x), and using an Euler time-stepping scheme with timestep equal
to 1,

ẋ = −J−1(x)(∇f(x))⇒ xn+1 = xn − J−1(xn)(∇f(xn)). (4.6)

There is a danger that the preconditioner will change the stability of the fixed point, mean-
ing that we may no longer be converging to a local maxima, but rather a saddle point or
minima.

Yet another option, perhaps best suited for finding global optima, is to implement
stochastic gradient ascent

ẋ = ∇f(x) + χη (4.7)

where η is a noise term and χ : Rn → Rn is a correlation matrix. In the infinite dimensional
context we penalize the excitation of small scales through a proper choice of correlation
matrix.

There is little change when generalizing all of these procedures to the infinite dimen-
sional context; however, care must be taken when discretizing the infinite dimensional
system to a finite one. Additionally there is a subtlety of when one chooses to discretize.
If one discretizes the functional f and then computes the gradient associated with the fi-
nite dimensional system, this normally does not correspond to calculating the functional
derivative of f and then discretizing. Succinctly stated, the operations of discretizing and
differentiating do not normally commute. In this work we will numerically solve the max-
imization problem by discretizing the functional derivative.
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Including constraints presents additional subtleties. As an example, let us look at

Maximize xy (4.8)

subject to

y = 1−x. (4.9)

Think of y as the “state” and x as the “control”. This is equivalent to maximizing x(1− x)

in which case x = 1/2 is the maximizer. We would like to see what happens when we
introduce a Lagrange multiplier λ and perform gradient ascent.

The augmented function is

g(x, y, λ) = xy + λ(1− x− y) (4.10)

and the first-order optimality condition is

0 =
∂g

∂x
= y − λ (4.11)

0 =
∂g

∂y
= x− λ (4.12)

0 =
∂g

∂λ
= 1− x− y. (4.13)

This critical point is a saddle point of the function g as can be seen by calculating the
Hessian, H ,

H =

 0 1 −1

1 0 −1

−1 −1 0

 (4.14)

which has eigenvalues and eigenvectors −1, [−1, 0, 1]T , −1, [−1, 2, 1]T and 2, [1, 1,−1]T .
Thus gradient ascent in the form

d

dt

xy
λ

 =

 0 1 −1

1 0 −1

−1 −1 0


xy
λ

+

0

0

1

 (4.15)

will not converge to a local maximum. If we explicitly enforce the y and λ equations–
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implying that x = λ and y = 1−x–and time march forward, we would instead be evolving

ẋ = 1− 2x, (4.16)

which converges to x = 1/2, as expected.
With proper preconditioning we can still use gradient ascent on the full system. Inter-

changing where we place the evolution of the adjoint and the state variables leads to

d

dt

xλ
y

 =

 0 1 −1

1 0 −1

−1 −1 0


xy
λ

+

0

0

1

 (4.17)

⇔ (4.18)

d

dt

xy
λ

 =

 0 1 −1

−1 −1 0

1 0 −1


xy
λ

+

0

1

0

 . (4.19)

This new matrix has eigenvalues {1
2
(−1 + ı

√
7), 1

2
(−1 − ı

√
7),−1} and thus will evolve

towards [x, y, λ] = [1/2, 1/2, 1/2]. This amounts to using a preconditioner of the form

P =

1 0 0

0 0 1

0 1 0

 . (4.20)

Heuristically, the success of this preconditioner may be reasoned as follows: For an x that
is independent of time the equation ẏ = 1 − x − y will evolve towards y = 1 − x and
λ̇ = x− λ will evolve towards x. The time evolution of y and λ is an iterative way to solve
the linear equations 0 = 1− x− y and 0 = x− λ. At each time step the evolution of the y
and λ equations give an approximation to the gradient associated with the ascent procedure
that fully enforces the constraints.

This method of solving the first-order optimality condition is very similar to the method
that we will use to solve the Euler-Lagrange equations. Additional subtleties related to the
implementation of a numerical scheme are discussed in the following subsections.
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4.1.1 Gradient Ascent in the Optimal Control System

In order to numerically solve

Maximize 〈wT 〉 (4.21)

subject to

∂tT + ~u · ∇T = ∆T (4.22)

〈∇~u : ∇~u〉 = Pe2 (4.23)

∇ · ~u = 0 (4.24)

with suitable boundary conditions we form the augmented functional (substituting θ =

T − (1− z)),

F =
〈
wθ − ϕ (∂tθ + ~u · ∇θ −∆θ − w) + p(∇ · ~u) +

µ

2
(Pe2 −∇~u : ∇~u)

〉
, (4.25)

and derive the Euler-Lagrange equations:

0 =
δF
δϕ

= ∂tθ + ~u · ∇θ −∆θ − w (4.26)

0 =
δF
δp

= ∇ · ~u (4.27)

0 =
δF
δµ

=
1

2

〈
Pe2 −∇~u : ∇~u

〉
(4.28)

0 =
δF
δθ

= −∂tϕ− ~u · ∇ϕ−∆ϕ− w (4.29)

0 =
δF
δ~u

= µ∆~u+ (θ + ϕ) ê3 − ϕ∇θ −∇p. (4.30)

The domain is periodic in the x ∈ [0,Γ1] and y ∈ [0,Γ2] variables, bounded in the
z ∈ [0, 1], and either independent of t (steady state), periodic, or long time2 t ∈ [0, T ]

where T is “large”. In the time-dependent problem we take the initial solution to be in the
conductive state θ = 0 in which case the natural3 final condition for the adjoint is ϕ = 0.

2As a practical point we cannot compute the answer on the infinite domain. Since we expect the answer
to be mostly steady one criteria that may be used to evaluate that one has waited long enough is to compute
∂t~u with respect to a norm and quantify T as large if ‖∂t~u‖ is small.

3One may choose this in two equivalent ways, the first is by demanding that the integration by parts
formula works when deriving the Euler-Lagrange equations. The second is by setting variational derivative
with respect to all final conditions of ϕ equal to zero.
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Denote the Lagrangian density4 by

L = wθ −∇ϕ · ∇θ − ϕ∂tθ − ϕ~u · ∇θ + ϕw −∇p · ~u+
µ

2
(Pe2 −∇~u : ∇~u), (4.31)

and the Hamiltonian densities by

(φ1, φ2, φ3, φ4, φ5, φ6) = (u, v, w, θ, ϕ, p) (4.32)

Ht = ∂tφj
∂L
∂∂tφj

− L (4.33)

Hx = ∂xφj
∂L
∂∂xφj

− L (4.34)

Hy = ∂yφj
∂L
∂∂yφj

− L, (4.35)

where repeated j indices are summed over for j = 1, ..., 6. For the steady state case we
augment the Euler-Lagrange equations with conditions that pick out the optimal domain
size,

0 =
δF
δΓ1

= − 1

Γ1

〈L〉 − 1

Γ1Γ2

∫ Γ2

0

∫ 1

0

Hx dz dy (4.36)

0 =
δF
δΓ2

= − 1

Γ2

〈L〉 − 1

Γ1Γ2

∫ Γ1

0

∫ 1

0

Hy dz dx (4.37)

and in the periodic case we augment with a condition that picks out an optimal time period
T (if one exists),

0 =
δF
δT

= − 1

T
〈L〉 − 1

T Γ1Γ2

∫ Γ1

0

∫ Γ2

0

∫ 1

0

Ht dz dy dx. (4.38)

See Appendix A for details of the derivation.
The optimism with regards to the existence of an optimal domain size comes from

previous experience with the system in the case of stress-free boundary conditions by Has-
sanzadeh et al. [33]. In that study it appeared that there is a unique optimal aspect ratio that
maximizes the Nusselt number. The pessimism with regards to an optimal time period T
for periodic solutions comes from experience with the Lorenz and Double Lorenz systems
where the steady state solutions were the global optimizers.

The gradient ascent procedure needs to be modified depending on what we assume
for the time domain. We will discuss three different cases for performing gradient ascent
and heuristic reasoning as to why we expect convergence. As a matter of terminology

4Note that 〈L〉 = F via integration by parts.
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we will use “ascent-time” for time-steps associated with the gradient ascent procedure to
differentiate it from “regular” time.

We make the following observations that will help us with the gradient ascent proce-
dure:

1. If δF
δϕ

= 0 then we are enforcing the advection-diffusion equation. Here θ is a
unique function of ~u for a fixed initial condition or in the long time limit in the
periodic/steady state cases for any initial condition. However, ~u is not a unique func-
tion of θ. For example both ~u = 0 and ~u = u(z)x̂ + 0ẑ have θ = 0 as a solution in
the steady case.

2. The previous statement holds for δF
δθ

= 0 as well, the adjoint equation.

3. If ~u has a symmetry we may not need to solve both δF
δθ

= 0 and δF
δϕ

= 0, but rather
solve one and use symmetry to compute the other.

4. It is unnecessary to enforce 0 = δF
δµ

= (Pe2−∇~u : ∇~u) since a choice of µ implicitly
determines Pe. In other words we may fix µ and determine the value of Pe after
convergence.

5. If δF
δϕ

= 0 and δF
δp

= 0, then ~u is a unique function of θ, ϕ, and µ. However, this
equation alone does not uniquely determine θ and ϕ given ~u and µ. This optimality
condition is Stokes equation and this equation must hold at each point in time.

In the next three subsections we present gradient ascent procedures for the three differ-
ent situations–time dependent, time periodic, and steady–as well as methods for evolving
equations forward in time.

4.1.2 Time Dependent

For the time-dependent problem we fix µ, take the initial temperature to be in the conductive
state, and the final adjoint to be zero. The high level overview for the type of gradient ascent
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procedure that we use will be as follows:

0 =
δF
δϕ

= ∂tθ + ~u · ∇θ −∆θ − w (4.39)

0 =
δF
δp

= ∇ · ~u (4.40)

0 =
δF
δθ

= −∂tϕ− ~u · ∇ϕ−∆ϕ− w (4.41)

∂τ~u = P

(
δF
δ~u

)
= P (µ∆~u+ (θ + ϕ) ê3 − ϕ∇θ −∇p) , (4.42)

where P is an appropriate preconditioner described shortly. Algorithmically we proceed as
follows,

1. Fix µ and choose an incompressible flow field at each point in space and time.

2. Solve the time-dependent advection-diffusion/adjoint equation by marching forwards/backwards.

3. Update the optimality condition and at each point in time and space via (4.42).

4. Repeat steps 2 and 3 until convergence is achieved.

For step 1 we may generate a good guess for ~u by numerical continuation from previous
values of µ (implicitly Pe). For example, we may compute solutions in the low Péclet (high
µ) regime and numerically continue to higher Péclet (low µ). Since we expect the steady
solutions to be the most optimal, we can start with a time-independent field as a preliminary
guess to the time-dependent ~u and then allow the gradient ascent procedure to modify the
~u to a fully time-dependent solution. It is expected that the solution remains steady for
the majority of the time, with minor modifications at the initial and final time. The initial
time serves as a wind up period to “kick” the temperature field out of the conductive state
and into the optimal steady state whereas the final time has an analogous wind up period
(backwards in time) for the adjoint field. There is a danger that using the steady as the
initial guess only generates a local maximum.

Let us go into step 2 into more detail. To solve the advection-diffusion/adjoint equation
we must evolve the state equation

∂tθ = −~u · ∇θ + ∆θ + w (4.43)

forward in time and the adjoint equation

∂tϕ = ~u · ∇ϕ+ ∆ϕ+ w (4.44)
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backward in time. There are various methods that one may employ to evolve such equa-
tions forward. In order to use Runge-Kutta methods we would need to interpolate the
control variable ~u at intermediary points in ascent-time. This introduces interpolation er-
rors and additional computational costs. Instead we opt for simpler multi-step schemes that
automatically take into account the already-computed times for the control ~u. These multi-
step methods are described in §4.1.5. These methods result in boundary-value problems to
be solved at every time-step. We discuss how to solve these in §4.2.1.

To evolve (4.42) we time-march according to the methods in §4.1.5 and focus on two
different preconditioners: the identity operator and the inverse Stokes operator. The inverse
Stokes operator is defined as the solution to Stokes equation

∆~u = ~f −∇p (4.45)

∇ · ~u = 0 (4.46)

with respect to appropriate boundary conditions. We write S−1 ~f = ~u and show how to
solve the resulting boundary value problems in §4.2.2.

From a computational aspect there is a large memory requirement since ~u(x, t) needs
to be stored at each point in time and in order to update ~u via the optimality condition we
need to know θ(x, t) and ϕ(x, t) for each t. Checkpointing is a popular strategy in other
optimal control problems, but that heavily relies on the fact that one is solving for an initial
condition as opposed to a flow field at each point in time. It can be used in a limited sense
in this context since one does not have to store θ and ϕ at each point in time, but rather
can reconstruct them at certain checkpoints. But this still does not circumvent the necessity
of knowing ~u at each point in time and space. In two dimensions this is not too much of
a limitation, but even in the low Pe setting approximately 1000 evenly spaced time-steps
were necessary for proper convergence of the time-dependent problem.

We opted for limiting computational results to the steady case due to the additional
computational complexity of the fully time-dependent problem as well as insights from the
Lorenz and Double Lorenz system where steady solutions were shown to be optimal. For
the cases that we have attempted, time-dependence seemed to merely kick the conductive
state into the steady state case, with “wind up” and “settling down” periods at the initial and
final times. These computations were by no means exhaustive and further study regarding
the necessity of time-dependence is required.
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4.1.3 Time Periodic

The top level algorithm for solving the time-periodic problem resembles the time-dependent
algorithm of the previous section. We use the same gradient ascent procedure,

0 =
δF
δϕ

= ∂tθ + ~u · ∇θ −∆θ − w (4.47)

0 =
δF
δp

= ∇ · ~u (4.48)

0 =
δF
δθ

= −∂tϕ− ~u · ∇ϕ−∆ϕ− w (4.49)

∂τ~u = P

(
δF
δ~u

)
= P (µ∆~u+ (θ + ϕ) ê3 − ϕ∇θ −∇p) , (4.50)

with a similar loop structure:

1. Fix µ and choose an incompressible time-periodic flow field ~u at each point in space
and time.

2. Solve for time-periodic solutions to the advection-difussion/adjoint equation, by march-
ing forwards/backwards until convergence to a time-periodic solution occurs.

3. Update the optimality condition and at each point in time and space via (4.42).

4. Repeat steps 2 and 3 until convergence has been achieved.

We solve the problem in the linear regime for an initial flow field and numerically
continue to higher values of Péclet (equivalently smaller values of µ). Or we could just as
readily construct a suboptimal flow field and let the gradient ascent procedure converge to
the optimal solution.

Consider step 2 in more detail. Given a time-periodic vector field ~u with period T , we
will show that θ must also converge to a time periodic function in the long time limit. First
observe that θ(x, t) and θ(x, t+ T ) satisfy the same equation of motion since

∂tθ(~x, t) + ~u(~x, t) · ∇θ(~x, t) = ∆θ(~x, t) + w(~x, t) (4.51)

⇒

∂tθ(~x, t+ T ) + ~u(~x, t+ T ) · ∇θ(~x, t+ T ) = ∆θ(~x, t+ T ) + w(~x, t+ T ) (4.52)

⇒

∂tθ(~x, t+ T ) + ~u(~x, t) · ∇θ(~x, t+ T ) = ∆θ(~x, t+ T ) + w(~x, t) (4.53)
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where the last line follows by the periodicity of ~u. Taking the difference of the two equa-
tions, multiplying through by θ(x, t) − θ(x, t + T ), integrating with respect to the spatial
coordinates, integrating by parts, and making use of incompressibility yields

∂t

∫
Ω

[θ(x, t)− θ(x, t+ T )]2 = −
∫

Ω

|∇ [θ(x, t)− θ(x, t+ T )]|2 (4.54)

≤ −C
∫

Ω

[θ(x, t)− θ(x, t+ T )]2 (4.55)

⇒∫
Ω

[θ(x, t)− θ(x, t+ T )]2 ≤
∫

Ω

[θ(x, 0)− θ(x, 0 + T )]2 exp(−Ct), (4.56)

whereC is the Poincaré constant. From this we see that θ(x, t)−θ(x, t+T )→ 0 as t→∞,
suggesting that θ will converge to a periodic solution with period T . The same result holds
for ϕ evolved backwards in time. Note that if θ and ϕ are periodic with period T the
optimality condition for ~u is also guaranteed to be T periodic. Hence if we guess periodic
solutions the gradient-ascent procedure will continue to generate periodic solutions.

4.1.4 Steady

For the steady solution we do not use the algorithms described in the previous section but
instead specialize to take advantage of the structure of the time-independent solutions. The
top level algorithm is more complicated but results in much faster convergence than using
the previous schemes. This method was developed due to the slow convergence of the
steady advection-diffusion equation and the primary insight to its development came from
the observation with regards to constrained optimization in §4.1.

Fix Pe > 0. The gradient ascent procedure in two dimensions is:

−∂τθθ =
δF
δϕ

= ~u · ∇θ −∆θ − w (4.57)

0 =
δF
δp

= ∇ · ~u (4.58)

ϕ = S(θ) (4.59)

∂τ~u = S−1

(
δF
δ~u

)
= S−1 (µ∆~u+ (θ + ϕ) ê3 − ϕ∇θ −∇p) (4.60)

∂τΓ1
Γ1 = (Γ1)2

〈
δF
δΓ1

〉
= Γ1〈Hx − L〉 (4.61)

∂τµµ =
µ

Pe2

δF
δµ

= µ

(
1− 〈∇~u : ∇~u〉

Pe2

)
(4.62)
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where S is a function that computes ϕ from θ using symmetry, and S−1 is the inverse Stokes
operator. In (4.61) multiplication by (Γ1)2 is an invertible preconditioner whose effect is
to invoke percentage, as opposed to absolute, changes to Γ1 once we discretize time. The
same holds for the µ evolution equation. The reason why we compute the average value of
δF/δΓ1 as opposed to its value at the endpoint may seem like a relaxation, but this is not
the case. Hamiltonians that satisfy the Euler-Lagrange equations are independent of where
they are evaluated.

Algorithmically we proceed as follows,

1. Fix Pe and choose an incompressible steady flow field.

2. March one time step of the time-dependent advection-difussion equation.

3. Use symmetry to compute adjoint equation.

4. Update the optimality condition and at each point in time and space via (4.60).

5. Compute the Hamiltonian and the Nusselt number in order to update the aspect ratio
via (4.61).

6. Update the Lagrange multiplier µ via (4.62).

7. Repeat steps 2-5 until convergence has been achieved.

One difference between this algorithm and the previous ones is that the evolution equation
for ϕ and θ are being time-stepped together with the optimality equation. Furthermore we
are computing the aspect ratio evolution as well as the µ evolution. This means that the
domain is changing every time-step as well as the value of µ.

In step 3 the symmetry condition was imposed based off of the structure of optimal flow
fields from the more standard evolution (as in the previous section). It turns out that for
those flow fields

ϕ(x, z) = θ(x,−(z + 1/2) + 1/2), (4.63)

meaning that ϕ is θ reflected on the z = 1/2 plane. The reason these two may be related
comes from the symmetry of the optimal flow field itself.

As in the previous algorithms the method for guessing an optimal flow field ~u for step
1 comes from numerical continuation from low to high values of the Péclet constraint.
For low values of Pe the linearized problem may be related to linearized Rayleigh-Bénard
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convection under the transcription

2

µ
7→ Ra. (4.64)

Thus we may verify that Γ1 and µ are converging to the correct aspect ratio and critical
Rayleigh number for the onset of convection.

4.1.5 Time Evolution Discretization

Suppose that

ẋ = Lx+N (x) + f (4.65)

where x is the state vector, L is a linear operator (i.e. Laplacian here), N is a nonlin-
ear operator (terms involving the advection operator ~u · ∇), and f is a forcing function
(such as pressure). Both the advection-diffusion/adjoint equation and the gradient-ascent
procedures generate evolutions of this form. We follow Viswanath in [37] and consider
time-stepping schemes of the form

1

∆t

(
γxn+1 +

s−1∑
j=0

ajx
n−j

)
=

s−1∑
j=0

bjN (xn−j) + Lxn+1 + fn+1. (4.66)

where s is the order of the time-stepping scheme, ai and bi are parameters, and ∆t is the
time-step size. The parameters values for orders s = 1, 2 and 3 are

s = 1, γ = 1, a0 = −1, b0 = 1 (4.67)

s = 2, γ = 3/2, a0 = −2, a1 = 1/2, b0 = 2, b1 = −1 (4.68)

s = 3, γ = 11/6, a0 = −3, a1 = 3/2, a2 = −1/3 b0 = 3, b1 = −3, b2 = 1.

(4.69)

For example with s = 1 and the advection-diffusion equation

∂tθ = −~u · ∇θ + ∆θ + w (4.70)

we use (
∆− 1

∆t
I
)
θn+1 = ~u n · ∇θn − wn − 1

∆t
θn. (4.71)
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Thus for each time-step we must solve a modified Poisson’s equation of the form

(∆− cI) θ = f (4.72)

where c ≥ 0 and we have made the transcription

θn+1 7→ θ (4.73)
1

∆t
7→ c (4.74)

~u n · ∇θn − wn − 1

∆t
θn 7→ f. (4.75)

For updating the optimality condition with s = 1 one option is to use(
µ∆− 1

∆τ
I
)
~u n+1 = − (ϕn + θn) ê3 + ϕn∇θn − 1

∆τ
~u n +∇pn+1 (4.76)

∇ · ~u n+1 = 0. (4.77)

Each time-step involves solving modified Stokes equation

(∆− cI) ~u = ~f +∇p (4.78)

∇ · ~u = 0 (4.79)

where c ≥ 0 and we have made the transcription

~u n+1 7→ ~u (4.80)

pn+1 7→ p (4.81)
1

∆τ
7→ c (4.82)

(ϕn + θn) ê3 + ϕn∇θn − 1

∆τ
~u n 7→ ~f. (4.83)

In the following section we describe how to solve these boundary value problems.
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4.2 Spectral Methods

Taking the Fourier transform of (4.72) and (4.78) in the horizontal directions leads to the
following set of ODE’s to solve

(
D2 − β2

n`

)
θn` = fn` (4.84)

and

(
D2 − β2

n`

)
~un` = ~fn` +Dpn`ẑ + ıknpn`x̂+ ık`pn`ŷ (4.85)

ıknun` + ık`vn` +Dwn` = 0 (4.86)

for n, ` ∈ Z, where D the derivative in the vertical direction, and

k2
n` = (kn)2 + (k`)

2 (4.87)

β2
n` = k2

n` + c (4.88)

kn =
nπ

Γ1

(4.89)

k` =
`π

Γ2

(4.90)

ı =
√
−1. (4.91)

The square root denotes the principle branch. Although we could discretize the spatial
coordinates using Chebyshev matrices, we instead use spectral integration. This method of
solving boundary value problems of the form

(D − k)y = f (4.92)

subject to boundary conditions has numerous advantages over the differentiation matrix
approach as in [35]. With spectral integration the operators that must be inverted have
bounded condition numbers and are banded matrices as opposed to dense matrices with
unbounded condition numbers.

Instead of solving for functions on z ∈ [0, 1] it is more convenient to take z ∈ [−1, 1]

and then convert results back to the original domain. Solutions in the z ∈ [0, 1] domain–
denoted by subscripted 1’s as in θ1, ~u1–are related to solutions in the z ∈ [−1, 1] domain–
denoted by subscripted 2’s as in θ2, ~u2–via the following relations

θ1 =
1

2
θ2, ~u1 = 2~u2,Pe1 = 4Pe2, (Nu− 1)1 = (Nu− 1)2, µ1 = µ2/16. (4.93)
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When performing calculations we use the [−1, 1] domain but report results in terms of the
original z ∈ [0, 1] domain.

Computing averages (such as the Nusselt number) can be achieved with spectral accu-
racy. As mentioned in [34] the trapezoidal rule is spectrally accurate for periodic functions
and for bounded domains there are quadrature weight formulas both in terms of the Cheby-
shev nodal and modal values.

4.2.1 Spectral Integration

As stated in the previous section all the numerical problems of this Chapter reduce to solv-
ing differential equations of the form

(D − k)y = f, (4.94)

where k ∈ R and z ∈ [−1, 1]. The differential equation has the solution

y(z) = Cekz + e−kz
∫ z

−1

ekxf(x)dx, (4.95)

where C enforces boundary or integral constraints. This reduces the problem to quadrature
and indeed the method that we adopt implicitly constructs the solution in this manner as
noted in [38].

To solve (4.94) we use a modern form of spectral integration developed by Viswanath
[38]. The general principle is remarkably simple. First compute the homogeneous solution

(D − k)yh = 0 (4.96)

and then the particular solution

(D − k)yp = f (4.97)

so that the general solution is then a linear combination of the particular and homogeneous
solution

y = Cyh + yp (4.98)

where C is a constant that enforces boundary conditions or integral constraints. This basic
decomposition of the general solution of an ordinary differential equation serves as the
primary building block in the construction of solutions to (4.72) and (4.78).
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We will now discuss how to construct yh and yp in the domain z ∈ [−1, 1]. First write
y as Chebyshev expansion of the form

y(z) =
y0

2
P0 +

∞∑
n=1

ynPn(z) (4.99)

where Pn(x) n = 0, 1, 2, ... are the Chebyshev polynomials defined by

Pn(z) = cos(n cos−1(z)). (4.100)

The factor of 1/2 in front of the y0 term is standard and convenient for formulas later on.
Let Tn(y) denote the n’th Chebyshev coefficent of y, e.g.

Tn(y) = yn (4.101)

Tn
(∫

y

)
=

0 for n = 0

yn−1−yn+1

2n
for n > 0

(4.102)

where
∫
y here denotes a particular anti-derivative of y. The coefficients may be computed

by the linear operator

yn =
2

π

∫ 1

−1

y(x)
Pn(x)√
1− x2

dx. (4.103)

Instead of working with (4.94) directly we will work with the equation in integral form

y − k
∫
y =

∫
f + C (4.104)

where C is a constant of integration. An important observation is that if f = Dg for some
function g, then we do not need to differentiate g to write it in the form (4.104) but rather
we can directly use

y − k
∫
y = g + C. (4.105)

In other words we can avoid numerically differentiating g.
Use the relation (4.102) to construct (4.104) as a system of equations for the Chebyshev
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coefficents, i.e.

Tn(y)− kTn
(∫

y

)
= Tn

(∫
f

)
+ Tn (C) (4.106)

⇒

y0 = 2C for n = 0 (4.107)

yn − k
yn−1 − yn+1

2n
=
fn−1 − fn+1

2n
for n > 0 (4.108)

The fn are the Chebyshev coefficents of the forcing function f . Note that any choice of C
will yield a particular solution to the problem, but will not enforce the proper boundary con-
ditions. This is an infinite dimensional tridiagonal system of equations for the Chebyshev
coefficients of y.

In order to be amenable to computation any such system of equations must be truncated.
Thus we will assume that the solution y and forcing function f is well represented by a finite
truncation

y(z) =
y0

2
+

N−2∑
n=1

ynPn(z) +
yN−1

2
PN−1(z) (4.109)

f(z) =
f0

2
+

N−2∑
n=1

fnPn(z) +
fN−1

2
PN−1(z). (4.110)

For example, with N = 6 we would have the following system of equations to solve,

1 0 0 0 0 0

−k
2

1 k
2

0 0 0

0 − k
2·2 1 k

2·2 0 0

0 0 − k
2·3 1 k

2·3 0

0 0 0 − k
2·4 1 0

0 0 0 0 − k
2·5 1





y0

y1

y2

y3

y4

y5


=



2C
f0−f2

2
f1−f3

2·2
f2−f4

2·3
f3−f5

2·4
f4

2·5


. (4.111)

The use of this finite representation has additional benefits. The Chebyshev spectral co-
efficients of y are related to the nodal values of y evaluated at cos(πj/(N − 1)) for j =

0, 1, ..., N − 1 via the fast-cosine transform. This allows us to quickly convert spectral co-
efficients into real space, and herein lies one of the many advantages of using a Chebyshev
series.

We are now in a position to show how to construct numerical homogeneous and partic-
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ular solutions yh and yp. To construct yh we solve the following problem

(D − k)v =
k

2
(4.112)

subject to T0(v) = 0. The general solution to (4.112) is

v = Cyh + vp (4.113)

vp = −1/2 (4.114)

yh(z) = ekz (4.115)

where vp = −1/2 is the particular solution. The condition T0(v) = 0 guarantees thatC 6= 0

since

CT0(yh) = T0(v − vp) = T0(v)− T0(vp) = 0− (−1) = 1 (4.116)

and T0(vh) 6= 0. Thus the homogeneous solution is yh = v+1/2. Denoting the Chebyshev
series of v by vn for n = 0, ..., N − 1, we find v by solving the system of equations

v0 = vN−1 = 0 (4.117)

vn − k
vn−1 − vn+1

2n
=
fn−1 − fn+1

2n
for 0 < n < N − 1. (4.118)

We set the N −1’st Chebyshev coefficent of v and f as zero for convenience. For example,
for N = 6 we solve the system of equations,

1 0 0 0 0 0

−k
2

1 k
2

0 0 0

0 − k
2·2 1 k

2·2 0 0

0 0 − k
2·3 1 k

2·3 0

0 0 0 − k
2·4 1 0

0 0 0 0 0 1





v0

v1

v2

v3

v4

v5


=



0

−k
2

0

0

0

0


(4.119)

for the Chebyshev coefficients of v and then add 1 to v0 to construct yh.
For the construction of the particular solution yp we solve (4.97) subject to T0(yp) = 0.
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Thus we solve the system of equations

v0 = vN−1 = 0 (4.120)

vn − k
vn−1 − vn+1

2n
=
fn−1 − fn+1

2n
for 0 < n < N − 1. (4.121)

For N = 6 implies solving the tridiagonal system

1 0 0 0 0 0

−k
2

1 k
2

0 0 0

0 − k
2·2 1 k

2·2 0 0

0 0 − k
2·3 1 k

2·3 0

0 0 0 − k
2·4 1 0

0 0 0 0 0 1





yp0

yp1

yp2

yp3

yp4

yp5


=



0
f0−f2

2
f1−f3

2·2
f2−f4

2·3
f3−f5

2·4

0


. (4.122)

Now that we have constructed the homogeneous and particular solutions we can enforce
boundary conditions. Given y(a) = b for a ∈ [−1, 1] the value of the constant C is
determined:

y(a) = Cyh(a) + yp(a) ⇒ C =
b− yp(a)

yh(a)
. (4.123)

Typically we enforce the boundary conditions at the endpoint z = ±1 for which we have
readily available formulas to compute the values of yh and yp in terms of their Chebyshev
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coefficents. For f = f0/2 +
∑N−2

n=1 fnPn + PN−1fN−1/2 we compute

f(−1) = f0/2 +
N−2∑
j=1

(−1)jfj + (−1)N−1fN−1/2 (4.124)

f(1) = f0/2 +
N−2∑
j=1

fj + fN−1/2 (4.125)

f ′(−1) =
N−2∑
j=1

(−1)j+1j2fj + (−1)N(N − 1)2fN−1/2 (4.126)

f ′(1) =
N−2∑
j=1

j2fj + (N − 1)2fN−1/2 (4.127)

f ′′(1) =
1

3

N−2∑
j=2

(j4 − j2)fj +
[
(N − 1)4 − (N − 1)2

]
fN−1/2 (4.128)

f ′′(−1) =
1

3

N−2∑
j=2

(−1)j(j4 − j2)fj + (−1)N−1
[
(N − 1)4 − (N − 1)2

]
fN−1/2. (4.129)

We will now show how to construct solutions to the second order equation

(D2 − k2)y = f. (4.130)

For this problem we have two homogeneous solutions and one particular solution so that
the general solution to this differential equation is of the form

y = C1y
h1 + C2y

h2 + yp. (4.131)

We solve this as a system of two different equations

(D − k)v = f (4.132)

(D + k)y = v. (4.133)

First we find the particular and homogeneous solution to

(D − k)v = f (4.134)

as described previously so that we have

v = Cvh1 + vp. (4.135)
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Then we find yh2 and yp by solving

(D + k)yh2 = yh1 (4.136)

(D + k)yp = vp (4.137)

subject to T0(yh2) = 0 and T0(yp) = 0 via spectral integration for the particular solution.
Note that yh2 constructed in this manner is linearly independent from yh1 . To enforce
boundary conditions we must now invert a matrix for the coefficients C1 and C2. For
example for boundary condition enforced at the endpoints z = ± we have[

yh1(−1) yh2(−1)

yh1(1) yh2(1)

][
C1

C2

]
=

[
y(−1)− yp(−1)

y(1)− yp(1)

]
(4.138)

for the coefficients a and b.
Once we have our solution y we find derivatives without recourse to differentiation

matrices or Fourier transform methods. Indeed, in the first-order case, i.e. for y that satisfy

(D − k)y = f, (4.139)

we find the derivative by simply rearranging the equation

Dy = f + ky. (4.140)

Hence differentiating is obtained by merely summing the the forcing function and the so-
lution multiplied by k. For the second order case, i.e. for y that satisfy

C1y
h1 + C2y

h2 + yp = y (4.141)

(D2 − k2)y = f (4.142)

(D − k)yh1 = 0 (4.143)

(D + k)yh2 = yh1 (4.144)

(D − k)ydp = f (4.145)

(D + k)yp = ydp, (4.146)
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we compute

Dy = D(C1y
h1 + C2y

h2 + yp) (4.147)

= kC1y
h1 + C2(yh1 − kyh2)− kyp + ydp (4.148)

D2y = k2y + f. (4.149)

It seems that computing derivatives in this manner lead to an order of magnitude improve-
ment of the relative error over other methods (either differentiation matrices or Fourier
methods). Using these formulas we compute the derivatives of y at the endpoints in an
alternative manner. Instead of using (4.126) and (4.127) to the solution y, we apply (4.124)
and (4.124) to (4.147). From numerical experimentation it does not seem to matter which
way the derivatives were evaluated at the endpoint.

We now have all the pieces to solve the modified Poisson’s equation (4.72). As was the
case with the Chebyshev series we must truncate the number of horizontal Fourier wave-
modes in hopes that we achieve a good representation of our solution. This problem is
linear thus we solve

(D2 − β2
n`)θn` = fn` (4.150)

subject to θn`(z = ±1) = 0, mode by mode. Here

k2
n` = (kn)2 + (k`)

2 (4.151)

β2
n` = k2

n` + c (4.152)

c ≥ 0 (4.153)

kn =
nπ

Γ1

for n = −N/2 + 1, ..., 0, ..., N/2 (4.154)

k` =
`π

Γ2

for ` = −L/2 + 1, ..., 0, ..., L/2. (4.155)

and N,L are even. Thus we solve N × L second order boundary value problems. By
using symmetry or realness of the variables we reduce computation. The n = ` = 0 mode
for c = 0 must be handled separately depending on boundary conditions. For example, if
∂zθ00(z = ±1) = 0 there is the solvability requirement that 0 =

∫ 1

z=−1
f00(z)dz otherwise

no solution exists. Changing the value of θ00 by any constant still produces a solution, thus
instead we replace one of the boundary conditions with a normalization condition such as∫ 1

−1
θ00dz = 0.
Solving the modified Stokes equation (4.78) is more complicated and is the subject of
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the next section.

4.2.2 Kleiser-Schumann Algorithm

The Kleiser-Schumann algorithm is a method for solving the modified Stokes problem
(4.78), see [39, 37]. Since the modified Stokes problem is linear we solve wave-number by
wave-number equations of the form

(D2 − β2
n`)~un` = ~fn` − ∇̂pn` (4.156)

∇̂ · ~un` = 0 (4.157)

where

k2
n` = (kn)2 + (k`)

2 (4.158)

β2
n` = k2

n` + c (4.159)

∇̂ = ıknx̂+ ık`ŷ +Dẑ (4.160)

kn =
nπ

Γ1

for n = −N/2 + 1, ..., 0, ..., N/2 (4.161)

k` =
`π

Γ2

for ` = −L/2 + 1, ..., 0, ..., L/2 (4.162)

~fn` = f 1
n`x̂+ f 2

n`ŷ + f 3
n`ẑ (4.163)

~un` = un`x̂+ vn`ŷ + wn`ẑ. (4.164)

Here ı =
√
−1 where the square-root is interpreted as the principle branch. From now

on we will drop the subscript n` with the understanding that the modified Stokes problem
must be solved for all values of n and ` individually. For now we consider the k 6= 0 case
and discuss how to handle this mode separately at the end.

The single wave-number problem is to solve

(D2 − β2)~u = ~f − ∇̂p (4.165)

∇̂ · ~u = 0. (4.166)

Taking the divergence of the first equation yields the following equation for p

(D2 − k2)p = ∇̂ · ~f. (4.167)

As we have seen before we may write the general solution to this problem as the sum of
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two homogeneous terms and a particular solution

p = C1p
h1 + C2p

h2 + pp. (4.168)

Hence we may write the equation for ~u as

(D2 − β2)~u = ~f − ∇̂pp − C1∇̂ph1 − C2∇̂ph2 . (4.169)

We will now split the problem of finding solutions to ~u into three parts. Let ~u i for i = 1, 2, 3

be solutions to

(D2 − β2)~u 1 = ∇̂ph1 (4.170)

(D2 − β2)~u 2 = ∇̂ph2 (4.171)

(D2 − β2)~u 3 = ~f − ∇̂pp. (4.172)

where each ~u i for i = 1, 2, 3 satisfies the boundary conditions for ~u. With this we write ~u
as

~u = ~u 3 − C1~u
1 − C2~u

2. (4.173)

To find C1 and C2 we use auxiliary conditions derived by enforcing incompressibility on
the boundary.

For no-slip boundary conditions we have ∂zw(z = ±1) = 0 and for stress-free bound-
ary conditions ∂zzw(z = ±1) = 0. That is to say (4.173) applies to each component hence
to the vertical velocity w

w = w3 − C1w
1 − C2w

2. (4.174)

For example with no-slip boundary conditions we apply the vertical derivative D to both
sides and solve the following system of equations for C1 and C2[

Dw1(z = 1) Dw2(z = 1)

Dw1(z = −1) Dw2(z = −1)

][
C1

C2

]
=

[
Dw3(z = 1)

Dw3(z = −1)

]
(4.175)

For fixed time-step sizes the matrix for are precomputed and factorized only once. Further-
more ~u 1 and ~u 2 is precomputed. Hence at each time step we only need to solve for ~u 3 and
the coefficients C1 and C2.

For this problem the k = 0 case must be handled separately as well. This is due to
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the fact that the homogeneous solution for the pressure is of the form ph1 = 1/2 and
ph2 = z/2. Letting ~u 1 = (u1, v1, w1) the k = 0 case implies that ~u 1 = 0 for no-slip
boundary conditions and stress-free boundary conditions. For β = 0 one has (u1, v1, w1) =

(D1, D2, 0) in the stress-free case where D1 and D2 are arbitrary constants. By specifying
that (u1, v1) are mean zero we may set these arbitrary constants to zero. The constant C1

becomes a free parameter that doesn’t affect the physical flow field ~u. This corresponds
to the fact that the pressure may be changed by an arbitrary constant. We may choose this
value such that the average of p is zero, but this is by no means necessary. Now we must find
C2. From incompressibility and from the boundary conditions we see thatDw = 0⇒ w =

0 which implies5 C2w
2 = w3. Taking the derivative we find thatDw3(z±1)/Dw2(z±1) =

C2. This may appear overconstrained, but since we are guaranteed that that the functions
w2 and w3 are proportional to one another we could take either conditions to evaluate the
constant C2.

4.3 Numerical Results

We now assemble the methods of previous sections to examine optimal flow fields for
various different values of Péclet. As mentioned in §3.5 we expect stress-free boundary
conditions to be the most optimal boundary conditions, hence no-slip velocity fields should
have a lower Nu than the stress-free boundary conditions. This turns out to be the case for
the numerically computed solutions here.

The stress-free calculation was carried out by Hassanzadeh et al. [33] albeit for different
boundary conditions in the horizontal directions. In that study it was found that, for a
fixed aspect ratio, it was more optimal to have a multiple convection rolls as the enstrophy
budget increased. The solutions to the equations developed recirculation regions within a
single cell. We repeat the calculation here as verification for the algorithm in §4.1.4 and to
compute high resolution velocity fields with stress-free boundary conditions. The Nu-Pe
scalings presented for the stress-free case here are directly related to what was found in
[33]. The highest resolution (in the optimal domain size) used for the stress-free case was
256× 257 Fourier-Chebyshev points reaching a Péclet value of 5× 104 and for the no-slip
case we used 512×1025 Fourier-Chebyshev grid in the optimal domain size which reached
a Péclet of 2.5× 105.

As a point of comparison three different computations of upperbounds to 2D Rayleigh-
Bénard with stress-free boundaries are shown in Figure 4.1. Here we see the rigorous

5Note that for β = 0 we have w2 = (z2 − 1)/4 and for β 6= 0 we have w2 = − 1
2β2 + sinh(β) cosh(βz)

β2 sinh(2β) .
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Figure 4.1: Upper bounds to the Nusselt number in 2D Rayleigh-Bénard convection with
stress-free boundary conditions. The dashed green line is the rigorous upper bound by
Whitehead and Doering [3]. The red dots are numerically computed solutions to the back-
ground method problem by Wen et al.[2]. The black line corresponds to numerically com-
puted optimizers of the steady optimal control problem with stress-free boundary condi-
tions.

upper bound obtained by Whitehead and Doering [3], the numerically computed solutions
to the background method problem by Wen et al. [2], and the upper bound computed
by the methods of this chapter (which corresponds to the envelope over all fixed aspect-
ratio solutions in Hassanzadeh et el. [33]). Astonishingly the numerical solutions to the
background method problem and the optimal control problem seem to coincide over the
range of Rayleigh numbers shown in the figure.

In Figure 4.2 and Figure 4.3 we display the stream-lines and resulting temperature field
for the best known 2D steady optimizers in the stress-free and no-slip case, respectively. In
both cases the unicellular solutions are optimal in the low Pe regime as suggested by linear
theory. The linear optimal aspect ratio is 2

√
2 ≈ 2.82843 in the stress-free case and about

2.01622 in the no-slip case. As the Péclet budget increases it becomes more optimal to
have multiple convection cells for a fixed aspect-ratio. The structure of the solution for the
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stress-free case displays a more prominent “recirculation zone” near the z = 0 and z = 1

walls. The no-slip solution also displays this structure, but one must zoom in to see this
feature. When the gradient ascent procedure was initially performed the large aspect ratio
circulation solutions eventually lost stability and converged to the smaller circulations.

In Figure 4.4 and Figure 4.5 we zoom in to a particular cell to more closely examine
the structure of the optimal flow fields. The aspect ratio changes as the enstrophy budget
increases and all computations using the method of §4.1.4 were performed in the reduced
domain as opposed to the full one. In these plots one can see that the optimal stress-free
solutions have pronounced recirculation zones near the boundaries. On the other hand the
no-slip solutions develop an additional “recirculation zone” in the bulk, with less recircu-
lation near the walls. It seems that the purpose of these regions is to prevent premature
downwelling/upwelling of hot/cold fluid elements. Said differently, the optimal flow field
prevents hot fluid elements from transporting downards and cold fluid elements from trans-
porting upwards.

The asymptotic solutions in §3.6.1 achieve the same effect but with a different mecha-
nism. There the thinness of the boundary layers are what prevents downwelling/upwelling
of hot/cold fluid elements. However, as discussed in §3.6.1, the thinness of the boundary
layers comes at a much greater enstrophy cost. With this in mind the recirculation zones
may be viewed as a compromise. It allows one to have larger boundary layers (hence
reduced enstrophy cost) while still preventing downwelling/upwelling of hot/cold fluid el-
ements. Furthermore one is allowed to have more convection roles for a given aspect ratio.

Finally in Figure 4.6 and Figure 4.7 we display the optimal Nusselt number and aspect-
ratio as a function of the Péclet budget. In these plots there are 20 points per decade. Given
the straightness of the curves in the linear and fully nonlinear regime (on a Log-Log scale)
we can differentiate to examine the local scaling exponents of the Nusselt number and
optimal aspect ratio with respect to the Péclet budget. Interestingly the aspect ratio scaling
exponent in both cases seem to be a damped oscillation converging to an eventual constant
value whereas the Nusselt number’s scaling exponent is a monotone decay. These figures
suggest that Nu ∼ Pe0.58 and Nu ∼ Pe0.54 for the stress-free and no-slip cases respectively.
As stated previously the stress-free case transports more heat than the no-slip case.

We additionally mention the asymptotic scalings of the additional quantities E, I, µ
where

E2 = 〈~u · ~u〉 (4.176)

I = max{‖u‖∞, ‖w‖∞} (4.177)
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and µ is the Lagrange multiplier that enforces the Pe constraint. For the case of no-slip
boundary conditions we have

E ∼ Pe0.64, I ∼ Pe0.75, µ ∼ Pe−1.45, (4.178)

and for stress-free boundary conditions

E ∼ Pe0.66, I ∼ Pe0.83, µ ∼ Pe−1.42. (4.179)

In all cases the scaling exponents are approximate and should be correct to within ±0.03.
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Figure 4.2: Optimal stress-free solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0×10−1, 5.0×102, 1.6×103, 3.2×
103, 8.0×103, 1.2×104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.
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Figure 4.3: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0×10−1, 4.0×102, 1.8×103, 5.0×
103, 8.0×103, 1.3×104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.
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Figure 4.4: Optimal stress-free solutions for different enstrophy budgets in a single cell.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0×10−1, 4.0×100, 4.0×101, 4.0×
102, 4.0×103, 4.0×104. The domain size in the horizontal x direction shrinks as the Péclet
number increases.

97



Figure 4.5: Optimal no-slip solutions for different enstrophy budgets in a single cell. The
black contour lines are the streamlines and the colors represent the temperature field. From
left to right, top to bottom the Péclet numbers are 4.0 × 10−1, 4.0 × 100, 4.0 × 101, 4.0 ×
102, 4.0×103, 4.0×104. The domain size in the horizontal x direction shrinks as the Péclet
number increases.
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Figure 4.6: Computed optimal Nusselt number (Nu) and aspect ratio (Γ) as a function of
the enstrophy budget (Pe), for stress-free boundary conditions. Top Left: Log-Log plot of
Pe vs Nu-1. Bottom Left: The instantaneous slope of the top left plot, Pe vs d log(Nu −
1)/(d log Pe). Top Right: Log-Log plot of Pe vs Γ. Bottom Right: The instantaneous slope
of the top right plot, Pe vs d log(Γ)/(d log Pe). The last instantaneous slope for the bottom
left plot is 0.582 and the last instantaneous slope for the bottom right plot is −0.339. The
largest computed value of Pe is 5.65× 104 corresponding to a µ value of 2.4× 10−8.
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Figure 4.7: Computed optimal Nusselt number (Nu) and aspect ratio (Γ) as a function of
the enstrophy budget (Pe), for no-slip boundary conditions. Top Left: Log-Log plot of
Pe vs Nu-1. Bottom Left: The instantaneous slope of the top left plot, Pe vs d log(Nu −
1)/(d log Pe). Top Right: Log-Log plot of Pe vs Γ. Bottom Right: The instantaneous slope
of the top right plot, Pe vs d log(Γ)/(d log Pe). The last instantaneous slope for the bottom
left plot is 0.544 and the last instantaneous slope for the bottom right plot is −0.371. The
largest computed value of Pe is 2.5× 105 corresponding to a µ value of 1.4× 10−9.
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CHAPTER 5

Discussion

In this thesis we examined transport in solutions of the advection-diffusion equation,

∂tT + ~u · ∇T = 0 (5.1)

where ~u is incompressible, i.e. ∇ · ~u = 0, the domain is [0,Γ1] × [0,Γ2] × [0, 1], and the
boundary conditions for T are T (x, y, z = 0) = 1, T (x, y, z = 1) = 0 and periodic in x, y.
Transport refers to the transfer of passive tracers, characterized by concentration T , from
the z = 0 boundary to the z = 1 boundary as measured by the space and time averaged
vertical heat flux which we call the Nusselt number:

Nu = lim sup
τ→∞

1

τΓ1Γ2

∫ τ

0

∫ Γ1

0

∫ Γ2

0

∫ 1

0

(wT − ∂zT ) dz dy dx dt = 1 + 〈wT 〉 (5.2)

where w is the component of velocity in the vertical direction. In all cases the vertical
velocity vanished on the z = 0 and z = 1 boundaries. Specifically we were interested in
upper bounds to the heat transport in terms of a bulk integral intensity constraint on the
velocity field ~u, namely the magnitude of the enstrophy of the velocity field 〈∇~u : ∇~u〉 =

〈|∇ × ~u|2〉 which we called the Péclet number.
We studied reduced models in Chapter 2 in order to understand transport properties in a

simplified setting, build intuition, test theoretical and numerical tools, as well as to compare
“natural” to optimal flows . The reduced models we analyzed were the Lorenz equations
and the so-called Double Lorenz equations. In both cases, we found that steady solutions
of the optimal control problem achieved maximal transport. This was numerically inves-
tigated (and in fact motivated) by computations of optimal non-steady periodic solutions
of the optimal Lorenz and optimal Double Lorenz equations. We proved that there existed
steady “natural” solutions that coincide with the optimal solutions in the Lorenz equations
and that any sustained time dependence must strictly lower heat transport. On the other
hand the Double Lorenz equations have no steady solutions that coincide with the optimal
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flow fields, nor does it seem like any time dependent flow could reach the optimal transport
values.

We rigorously formulated and analyzed the steady optimal transport problem in Chap-
ter 3. There we showed that the problem is indeed well-posed, i.e. that a maximizer exists
and bounds the Nusselt number 〈wT 〉 in the following manner: 〈wT 〉 ≤ 0.5 Pe2/3. Fur-
thermore it was established that the functional associated with the optimization procedure
is differentiable and hence that the optimizers are characterized by first-order optimality
conditions.

Utilizing the Euler-Lagrange equations we then demonstrated that maximizers must in-
deed occur when 〈∇~u : ∇~u〉 = Pe2. It was also shown that, as long as a maximum exists
and the functional is differentiable with respect to boundary values, that stress-free bound-
ary conditions achieve the highest heat transport among all boundary conditions for the
horizontal components of velocity. We explored possible avenues for improving the ana-
lytic Pe2/3 upper bound and examined the structure of flow fields that achieve an apparently
suboptimal Pe1/2 scaling.

In order to develop deeper insight and inspire further analysis we developed compu-
tational methods for solving the Euler-Lagrange equations in Chapter 4. The method of
choice was gradient ascent because of its ability to generalize to the fully three dimen-
sional time-dependent problem. We developed a framework to apply the gradient ascent
procedure to time-dependent, time-periodic, and steady solutions to the Euler-Lagrange
equations. Methods for discretizing time and space were described in detail. The method
of spatial discretization developed by Viswanath [38] was advantageous since boundary
value problems involved tridiagonal matrices with bounded condition numbers and tradi-
tional numerical differentiation could be avoided: numerical differentiation in the vertical
direction reduced to multiplication by wave-vectors and summation.

We then presented numerically computed 2D steady state solutions to the Euler-Lagrange
equations for both stress-free boundary conditions and no-slip boundary conditions. These
numerical solutions suggest a global upper bound that scales like Nu ∼ Pe0.58 for 2D
stress-free boundary conditions and Nu ∼ Pe0.54 for no-slip boundary conditions.

There are several advantages to investigating bounds for convective heat transport in
the optimal control framework. The first is that it produces saturating flow fields. This has
practical engineering applications since one can specifically examine the fluid dynamical
mechanisms that achieve optimal heat transfer with the hope of designing devices capable
of producing such flows. Another advantage is that numerical evidences suggests that it
produces sharper upper bounds than previous methods.

There are, however, a number of substantial challenges that need to be addressed.
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1. We do not know if the time-dependent problem is well-formulated, i.e., that a maxi-
mizer to the optimal transport problem exists. Furthermore even if the optimizer does
exist, we do not know if it is characterized by the first-order optimality conditions.

2. The variational problem is a non-convex optimization problem so further analysis
is necessary to close the gap between the numerical evidence (Nu . Pe0.58) and
rigorous results (Nu− 1 ≤ 0.5 Pe2/3).

With regards to the first point could circumvent this issue entirely by showing that
steady flows are optimal. If this proves to be untenable then it may be possible to show that
the optimizing solution must obey a Pontryagin’s maximum principle as is the case for finite
dimensional optimization. It is not immediately evident that the methods of Chapter 3 gen-
eralize to the time-dependent setting due to the lack of compactness in the time-direction.
Perhaps working with a constraint of the form 〈γ|∂t~u|2 +∇~u : ∇~u〉 would provide the nec-
essary compactness. This modification loses immediate connection to Rayleigh-Bénard
convection, but if the γ → 0 limit is well defined this would serve as a way to regularize
the problem.

The second issue is serious because it prevents assertions that one has truly achieved the
global upper bound in any numerically computed solution. For the optimization problem
studied here it is possible to be more optimistic: it appears that merely local maxima in a
fixed aspect ratio eventually lose dynamical stability in the gradient ascent procedure for
ever increasing Péclet. This inspires some confidence that numerically computed solutions
presented here are indeed optimal.

The original motivation for studying optimal transport to solutions of the advection-
diffusion equation was to deduce upper bounds in turbulent Rayleigh-Bénard convection.
In light of the relation Pe2 = Ra(Nu − 1) the numerically computed solutions in Chapter
4 suggest upper bounds Nu . Ra0.41 for stress-free boundary conditions and Nu . Ra0.37

for no-slip boundary conditions.
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APPENDIX A

Variations of Boundary Conditions and Domain
Size

Inspiration for the aspect ratio condition and to optimize over all boundary conditions came
from an exercise in Feynman and Hibb’s Quantum Mechanics book [40]. There the reader
was tasked with showing that, for trajectories that satisfied the Euler-Lagrange equations,
derivatives of the action with respect to time were related to the Hamiltonian of a system
and derivatives of the action with respect to boundary values were related to conjugate mo-
menta. In this appendix we revisit those exercises in the one-dimensional context, as well
as the finite-dimensional context for separable domains of the form

∏N
µ=1[aµ, bµ] where

aµ, bµ ∈ R and aµ ≤ bµ for µ = 1, ..., N .
In the Lagrangian density setting we will again see that derivatives with respect to

changes in the domain can be related to Hamiltonians and that variations with respect to
boundary values can be related to conjugate momenta. We will give both a one-dimensional
example and a non-trivial two-dimensional example in the context of the linearized optimal
control problem.

A.1 Lagrangians

Suppose that we find the critical points of the functional

F [x] =

∫ T

0

L(x, ẋ)dt (A.1)

subject to x(0) = a and x(T ) = b. Under suitable conditions the optimal solution x∗

satisfies the Euler-Lagrange equations

∂L
∂x
− d

dt

∂L
∂ẋ

= 0. (A.2)
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The value of the functional at an optimal solution will depend on the domain size T , the
imposed value of the field at the t = 0 boundary (x(0) = a), and imposed the value of the
field at the t = T boundary (x(T ) = b). That is, the the critical values of the functional are

F [x∗] = f(a, b, T ). (A.3)

For example if L = 1
2
(ẋ)2 then the optimal solution is

x∗(t) = a+
b− a
T

t, (A.4)

in which case

F [x∗] =
(b− a)2

2T
. (A.5)

In general, looking at variations with respect to boundary data may be related to conju-
gate momenta. For example

∂

∂b
F [x∗] =

∂

∂b
f(a, b, T ) =

∂L

∂ẋ
(T ) = p(T ), (A.6)

and variations with respect to domain size may be related to Hamiltonians, e.g.

∂

∂T
F [x∗] =

∂

∂T
f(a, b, T ) = L(T )− ẋ∂L

∂ẋ
(T ) = −H(T ). (A.7)

In the particular case L = 1
2
(ẋ)2, we have

−H(T ) = −1

2
(ẋ∗)2 = −1

2

(
b− a
T

)2

=
∂

∂T
F [x∗] (A.8)

and

p(T ) = ẋ∗ =
b− a
T

=
∂

∂b
F [x∗] (A.9)

The same idea generalizes to Hamiltonian and Lagrangian densities as well. In the follow-
ing subsections we derive these relations in the general one-dimensional case.
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A.1.1 Variations with Respect to Boundary Data

We now characterize the dependence of our optimal solution on boundary values. Consider
the functional

F [x] =

∫ T

0

L(x, ẋ)dt (A.10)

subject to x(0) = a and x(T ) = b and examine variations with respect to the final condition
x(T ) = b. A similar result holds for x(0) = a.

Let x be the optimal solution with x(T ) = b and y be the optimal solution with y(T ) =

b+δb and assume that the difference δx(t) ≡ y(t)−x(t) is “small”. The strategy will be to
write y as x+ δx and then Taylor expand the functional in terms of δx. Here the variations
are no longer zero on the boundary.

Look at the difference F [y]−F [x] to first-order:

F [y]− F [x] =

∫ T

0

L(y, ẏ)dt−
∫ T

0

L(x, ẋ)dt (A.11)

=

∫ T

0

L(δx+ x, δẋ+ ẋ)dt−
∫ T

0

L(x, ẋ)dt (A.12)

≈
∫ T

0

[
∂L
∂x

(x, ẋ)δx+
∂L
∂ẋ

(x, ẋ)δẋ

]
dt (A.13)

=

∫ T

0

δx

[
∂L
∂x

(x, ẋ)− d

dt

∂L
∂ẋ

(x, ẋ)

]
dt+ δx(T )

∂L
∂ẋ

(x(T ), ẋ(T )) (A.14)

= δx(T )
∂L
∂ẋ

(x, ẋ) (A.15)

= δb
∂L
∂ẋ

(x(T ), ẋ(T )) (A.16)

where we neglected higher order terms in the approximation. Going from (A.13) to (A.14)
involved integration by parts. To first-order we see that F [y] − F [x] is the conjugate mo-
menta evaluated at the endpoint acted upon by a linear functional that characterizes the
difference between the values of y and x on the boundary. In this case the linear functional
is just multiplication by δb, but in the multi-dimensional setting this changes. Thus if we
want to optimize with respect to endpoints we set the first variation, the conjugate mo-
menta, equal to zero at the boundary. This is a special case of the transversality condition
from calculus of variations.
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A.1.2 Variations with Respect to Domain Interval

We want to characterize the dependence of our optimal solution on the domain size T .
Specifically we will look at ∂

∂T
F [x∗]. To do this we must consider differences of an optimal

solution with domain size T+δT and the optimal solution with domain size T to first-order
in δT . We use the notation FT to signify the functional associated with the T domain and
FT+δT for the functional associated with the T + δT domain. We will consider δT > 0

case but the same result holds for δT < 0. The two cases have to be considered separately
because we shall expand the solution in the larger domain in terms of the solution in the
smaller domain. The results here also hold for periodic domains.

Let y denote the optimal solution for the [0, T + δT ] interval and x be the optimal
solution for the [0, T ] interval. Denote the difference y − x = δx and assume that this is
“small”. The strategy is to write y as x+ δx and Taylor expand the Lagrangian in terms of
δx. Carrying out the calculation,

FT+δT [y]−FT [x] =

∫ T+δT

0

L(y, ẏ)dt−
∫ T

0

L(x, ẋ)dt (A.17)

=

∫ T+δT

T

L(y, ẏ)dt+

∫ T

0

[L(y, ẏ)− L(x, ẋ)] dt (A.18)

≈
∫ T+δT

T

L(y, ẏ)dt+

∫ T

0

[
∂L
∂x

(x, ẋ)δx+
∂L
∂ẋ

(x, ẋ)δẋ

]
dt (A.19)

=

∫ T+δT

T

L(y, ẏ)dt+ δx
∂L
∂ẋ

∣∣∣∣T
0

(A.20)

where (A.20) utilizes the Euler-Lagrange equations.
Now consider the following approximations∫ T+δT

T

L(y, ẏ)dt ≈ δTL(x(T ), ẋ(T )) (A.21)

and

δx(T ) ≈ ẋ(T ), (A.22)

where (A.22) follows Taylor expanding y, i.e.

y(T ) = y(T + δT − δT ) ≈ y(T + δT )− δT ẏ(T + δT ) (A.23)

≈ y(T + δT )− δT ẏ(T ) ≈ y(T + δT )− δT ẋ(T ) (A.24)
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and using y(T + δT ) = x(T ). In conclusion we get

FT+δT [y]−FT [x] ≈ δT

(
L(x(T ), ẋ(T ))− ẋ(T )

∂L
∂ẋ

(x(T ), ẋ(T ))

)
(A.25)

where we used δx(t = 0) = 0. This is the negative of the Hamiltonian evaluated at
the endpoint. If the Lagrangian has no explicit time dependence then the Hamiltonian is
independent of time and may be evaluated anywhere on the domain [0, T ]. The calculation
is as follows

d

dt
H(t) =

d

dt

(
ẋ
∂L
∂ẋ

)
− d

dt
L (A.26)

= ẍ
∂L
∂ẋ

+ ẋ
d

dt

∂L
∂ẋ
− ẋ∂L

∂x
− ẍ∂L

∂ẋ
(A.27)

= ẋ

(
d

dt

∂L
∂ẋ
− ∂L
∂x

)
(A.28)

= 0. (A.29)

The last line is zero since optimal trajectories satisfy the Euler-Lagrange equations. If we
want to optimize the domain interval [0, T ] we set the Hamiltonian equal to zero. This is
also special case of the transversality condition1.

A.2 Lagrangian densities

Let us now deal with the more general case where our our functional F is described by a
Lagrangian density that depends on several fields φj for j = 1, ...,M , coordinates xµ for
µ = 1, ..., N , and are first-order in derivatives. That is,

F [φj] =

∫
L(φj, ∂µφj) (A.30)

where the integral is over the domain
∏N

µ=1[aµ, bµ] and ∂µ denotes the partial derivative with
respect to the xµ coordinate. Under suitable conditions, the extrema of these functionals
satisfy the system of Euler-Lagrange equations

∂L
∂φi
− ∂µ

∂L
∂∂µφi

= 0 (A.31)

1At this point one may obtain the transversality condition using the chain rule. Indeed d/dt(f(a, b(t), t) =
ḃ∂bf + ∂tf = L+ (ḃ− ẋ)∂L/∂ẋ.
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for µ = 1, ..., N , each field φi, and where repeated indices of µ are summed over. These
equations are derived in the following manner. Introduce perturbations to the fields φi in
the form δφi where δφi are vanish on the boundaries and consider differences in values of
the functional, i.e.

F [φj + δφj]−F [φj] =

∫
L(φj + δφj, ∂µφj + ∂µδφj)−

∫
L(φj, ∂µφj) (A.32)

=

∫ (
δφi

∂L
∂φi

+ (∂µδφi)
∂L
∂∂µφi

)
(A.33)

=

∫
δφi

(
∂L
∂φi
− ∂µ

∂L
∂∂µφi

)
, (A.34)

where (A.34) follows from integration by parts and making use of the fact that the perturba-
tions are zero on the boundary. The integrand of (A.34) are the Euler-Lagrange equations
which must hold for all perturbations δφi hence (A.31).

We now introduce notation. Let
∫
`

denote an integral over the domain in all the coor-
dinates except x`, hence an integral over the entire domain may be symbolically broken
down into the following form ∫

=

∫ b`

a`

∫
`

(A.35)

We shall also use
∫
ν`

to denote an integral over the domain in all the coordinates except
xν , x`, e.g., ∫

=

∫ b`

a`

∫ bν

aν

∫
ν`

. (A.36)

We will take on the convention that repeated ` and i indices will never be summed over.
We will also sometimes suspend Einstein convection and explicitly write out the sums for
additional clarity.

As before we examine what happens when we perturb boundary values on a particular
boundary as well as perturbations to endpoints b` for a fixed index `. Let φj satisfy (A.31)
with a prescribed boundary condition. Now perturb the boundary values on the x` = b`

boundary by δφi for fixed indices ` and i and denote the extrema to this perturbed problem
by ϕj for all indices j. (Perturbing the boundary value of one of the fields on a single
boundary potentially changes all the other fields as well.) Furthermore assume that ϕj−φj
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is small. Then

F [ϕj]−F [φj] =

∫
`

δφi(x
` = b`)

∂L
∂∂`φi

(x` = b`) (A.37)

where
∫
`

denotes an integral over all coordinates except x` here the repeated ` and i indices
are not summed over. Note that ∂L

∂∂`φi
is the conjugate momenta of φi associated with the

x` direction and that δφi(x` = b`) is the perturbation invoked on the x` = b` boundary
Now fix the boundary conditions but look at variations with respect to the domain size

in a particular coordinate. Choose an index ` and let us perturb the domain by b` + δb`.
Denote the extrema with respect to the original domain by φj and the extrema with respect
to the perturbed domain by ϕj . Assume that φj − ϕj is small. Then

F [ϕj]−F [θj] = δb`
∫
`

(
L − φj

∂L
∂∂`φj

)
(A.38)

= −δb`H`(x` = b`) (A.39)

where−H`(x`) =
∫
`

(
L − φj ∂L

∂∂`φj

)
and the repeated indices with respect to j are summed

over but the repeated indices with respect to ` are not. As is the case in the one-dimensional
setting the Hamiltonian will, in fact, be independent of x` provided

0 =
∑
j

∑
µ 6=`

∫
µ`

∂`φj
∂L
∂∂µφj

∣∣∣∣xµ=bµ

xµ=aµ
(A.40)

where we wrote out the summations explicitly.

A.2.1 Variations with Respect to Boundary Values

Let φj satisfy the Euler-Lagrange equations (A.31) with a prescribed boundary condition.
Now let us perturb the boundary values on the x` = b` boundary by δφi for fixed indices `
and i and denote the extrema to this perturbed problem by ϕj for all indices j. Furthermore
assume that δφj ≡ ϕj−φj is small. (Note that the notation is consistent since the restriction
of δφj for j = i to the boundary coincides with the previous definition.)

The strategy will be to Taylor expand the Lagrangian density evaluated at ϕj in powers
of δφj . Unlike the perturbations that lead to (A.34) they are non-zero on the x` = b`
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boundary but zero on every other boundary. The calculation is

F [ϕj]−F [θj] = F [φj + δφj]−F [φj] (A.41)

=

∫
[L(φj + δφj, ∂µφj + ∂µδφj)− L(φj, ∂µφj)] (A.42)

≈
∫ (

δφj
∂L
∂φj

+ (∂µδφj)
∂L
∂∂µφj

)
(A.43)

=

∫
δφj

(
∂L
∂φj
− ∂µ

∂L
∂∂µφj

)
+

∫
`

δφi(x
` = b`)

∂L
∂∂`φi

(x` = b`) (A.44)

=

∫
`

δφi(x
` = b`)

∂L
∂∂`φi

(x` = b`). (A.45)

Again repeated i and ` indices are not summed over but repeated j and µ are summed over.
Optimizing over all boundary conditions on the x` = b` boundary for the φi field yields

the condition

0 =
∂L
∂∂`φi

(x` = b`). (A.46)

Thus if there exists a “best” boundary condition and the functional F is differentiable with
respect to boundary values, then this optimality condition characterizes the “best” boundary
condition.

In the context of the optimization problem of this thesis (A.46) implies that stress-free
boundary conditions are extrema of the functional.

A.2.2 Variations with Respect to Boundaries

Now look at variations with respect to the domain size in a particular coordinate while
keeping boundary conditions the same. Fix an index ` and let us perturb the domain∏N

µ=1[aµ, bµ] by b`+ δb` so that our new domain is
∏

µ6=`[a
µ, bµ]× [a`, b`+ δb`]. Denote the

extrema with respect to the original domain by φj , the extrema with respect to the perturbed
domain by ϕj , and the difference by δφj ≡ φj − ϕj . We need to specify the boundary data
along the extended domain in order for the problem to be well defined, e.g., the boundary
associated with xν = bν where ν 6= ` has an extra

∏
µ6=ν and µ 6=`[a

µ, bµ]× [b`, b` + δb`] chunk
where the boundary data needs to be defined. For the most part how the extension is done is
irrelevant. For example if we assume Dirichlet boundary conditions keeping the boundary
conditions fixed means δφj(xν = bν) = 0 for ν 6= ` and ϕj(x` = b`) = ϕj(x

` = b` + δb`).
If the xν coordinate is periodic we apply periodicity to the extended domain as well and
results again carry through. We can also directly with the Neumann boundary conditions
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in certain circumstances. If Neumann boundary conditions imply that the conjugate mo-
menta associated with a specific boundary are zero on said boundary–as is the case for
stress-free boundary conditions in the optimal transport problem of this thesis–the results
of this section again carry through. In what follows we will assume Dirichlet boundary
conditions.

Denote the functional associated with the original domain size by Fb` , the functional
associated with the perturbed domain size by Fb`+δb` , and

∫
as an integral over the unper-

turbed domain. Assume that δφj ≡ φj − ϕj is small. The strategy to derive (A.38) is to
Taylor expand the Lagrangian density evaluated at ϕj in powers of δφj .

We calculate as follows:

Fb`+δb` [ϕj]−Fb` [θj] =

∫ b`+δb`

a`

∫
`

L(ϕj, ∂µϕj)−
∫ b`

a`

∫
`

L(φj, ∂µφj) (A.47)

=

∫ b`+δb`

b`

∫
`

L(ϕj, ∂µϕj) +

∫ b`

a`

∫
`

[L(ϕj, ∂µϕj)− L(φj, ∂µφj)]

(A.48)

≈
∫ b`+δb`

b`

∫
`

L(ϕj, ∂µϕj) +

∫ (
δφj

∂L
∂φj

+ (∂µδφj)
∂L
∂∂µφj

)
.

(A.49)

For the first term we approximate as follows∫ b`+δb`

b`

∫
`

L(ϕj, ∂µϕj) ≈ δb`
∫
`

L(θj, ∂µθj). (A.50)

Now focus attention on the second term. Integrating by parts yields∫ (
δφj

∂L
∂φj

+ (∂µδφj)
∂L
∂∂µφj

)
=

∫ (
δφj

∂L
∂φj
− δφj∂µ

∂L
∂∂µφj

)
(A.51)

+

∫
`

δφj(x
` = b`)

∂L
∂∂`φj

(x` = b`) (A.52)

=

∫
`

δφj(x
` = b`)

∂L
∂∂`φj

(x` = b`) (A.53)

≈ −
∫
`

∂`φj(x
` = b`)

∂L
∂∂`φj

(x` = b`) (A.54)

where we made use the Euler-Lagrange equations and the fact that the variations on all the
boundaries vanished except for the one associated with the x` direction, and the approxi-
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mation

δφj(b
`) = ϕj(b

`)− θj(b`) = ϕj(b
` + δb` − δb`)− θj(b`) (A.55)

≈ ϕj(b
` + δb`)− δb`∂`ϕj(b` + δb`)− θj(b`) = −δb`∂`ϕj(b` + δb`) (A.56)

≈ −δb`∂`θj(b`). (A.57)

Putting the two terms together yields the desired result:

Fb`+δb` [ϕj]−Fb` [θj] ≈ δb`
∫
`

(
L − ∂`φj

∂L
∂∂`φj

)
(A.58)

= −δb`H`(x` = b`), (A.59)

where

H` ≡
∫
`

(
∂`φj

∂L
∂∂`φj

− L
)
. (A.60)

The Hamiltonian H` is potentially a function of x` along an optimal trajectory since the
other directions are integrated out. It is also independent of x`. To see this calculate

− d

dx`
Hν =

∫
`

∂`

(
L − ∂`φj

∂L
∂∂νφj

)
(A.61)

=

∫
ν

(
∂`φj

∂L
∂φj

+ ∂µ`φj
∂L
∂∂µφj

− (∂``φj)
∂L
∂∂`φj

− (∂`φj) ∂`
∂L
∂∂`φj

)
(A.62)

=

∫
`

(
∂`φj

(
∂L
∂φj
− ∂µ

∂L
∂∂µφj

))
+
∑
µ6=`

∫
µ`

∂`φj
∂L
∂∂µφj

∣∣∣∣xµ=bµ

xµ=aµ
(A.63)

=
∑
µ6=`

∫
µ`

∂`φj
∂L
∂∂µφj

∣∣∣∣xµ=bµ

xµ=aµ
(A.64)

= 0 (A.65)

There are several reasons why (A.64) may vanish: periodicity, homogeneous Dirichlet
boundary conditions, the vanishing of the conjugate momenta on the boundary, and the
independence of the fields φj on the coordinate x`.
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A.2.3 Application to the Optimal Transport System

We shall now apply the methods of the previous sections to the functional associated with
optimal transport

F [~u, θ, ϕ, p] =
〈
wθ − ϕ (∂tθ + ~u · ∇θ −∆θ − w) + p(∇ · ~u) +

µ

2
(Pe2 −∇~u : ∇~u)

〉
(A.66)

where 〈·〉 denotes the space-time average,

〈f〉 =
1

τΓ1Γ2

∫ τ

0

∫ Γ1

0

∫ Γ2

0

∫ 1

0

f dz dy dx dt, (A.67)

τ is “large”, and we have decomposed ~u = (u, v, w) = (u1, u2, u3). The ∇~u : ∇~u term is
∂juk∂juk, explicitly

∇~u : ∇~u = (∂xu)2 + (∂yu)2 + (∂zu)2 (A.68)

+ (∂xv)2 + (∂yv)2 + (∂zv)2 (A.69)

+ (∂xw)2 + (∂yw)2 + (∂zw)2. (A.70)

In order to use the methods of the previous section we rewrite the integrand as a first-
order system with a Lagrangian density

L = L(~u, θ, ϕ,∇~u,∇θ,∇ϕ,∇p, ∂tθ) (A.71)

= wθ −∇ϕ · ∇θ − ϕ∂tθ − ϕ~u · ∇θ + ϕw −∇p · ~u+
µ

2
(Pe2 −∇~u : ∇~u). (A.72)

All field variables ~u, θ, ϕ, p are periodic in the horizontal directions x ∈ [0,Γ1] and y ∈
[0,Γ2]. The field variables θ, ϕ, and w satisfy homogeneous boundary conditions in the
vertical direction z at z = 0 and z = 1, p has no explicit boundary conditions in the
vertical direction, and u and v either have homogeneous boundary conditions (no-slip) or
Neumann boundary conditions ∂zu = ∂zv = 0 at z = 0, 1 (stress-free). In time the θ is
zero at t = 0 and ϕ is zero at t = τ . The other fields ~u and p do not have any specified
boundary conditions in time. We are interested in

1. The “best” possible boundary conditions for the u and v fields on the z = 0, 1 bound-
ary.

2. The “best” aspect ratios Γ1 and Γ2 in the x and y directions, respectively.

3. The optimal time period T in the τ for periodic boundary conditions.
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With regards to picking out the best boundary conditions for u and v on the z = 0, 1

boundary we may use the result from §A.2.1. There we saw that setting the conjugate
momenta equal to zero yielded a critical point. In this case we set

∂L
∂∂zu

= 0 and
∂L
∂∂zv

= 0, (A.73)

at z = 0 and z = 1 where L is (A.71). But these imply

−µ∂zu(x, y, z = 0, t) = −µ∂zu(x, y, z = 1, t) = 0 (A.74)

and

−µ∂zv(x, y, z = 0, t) = −µ∂zv(x, y, z = 1, t) = 0 (A.75)

respectively, t z = 0, 1. These are precisely stress-free boundary conditions.
To pick the “best” aspect ratios Γ1 and Γ2 in the x and y direction (or period T in the t

direction) is more subtle. We limit discussion to the x direction and note that the argument
for the y direction is precisely the same. Similar results hold in the t direction.

The subtlety comes from the assumption of Dirichlet boundary or periodic conditions
for all the field variables, which is precisely not the case for p at the z = 0, 1 boundary as
well as u and v for stress-free boundary conditions. In particular homogeneity (or period-
icity) was used to arrive at (A.52) (which are boundary terms coming from integration by
parts). However (A.52) still holds but due to a different reason: the conjugate momenta of
p, u and v vanish on the z = 0 and z = 1 boundary, i.e.

∂L
∂∂zp

= −w (A.76)

∂L
∂∂zu

= −µ∂zu (A.77)

∂L
∂∂zv

= −µ∂zv (A.78)

are all zero at z = 0 and z = 1.
Furthermore (A.64) also holds so that the Hamiltonian is independent of where it is

evaluated. This amounts to checking that the boundary terms from integration by parts
goes to zero. For example, in steady and two dimensions (x, z), letting φ denote any of the

115



field variables u,w, θ, ϕ or p, we need to check

∂xφ
∂L
∂∂zφ

= 0 (A.79)

at z = 0 and z = 1. For w, θ, ϕ these are zero due to homogeneous boundary conditions.
For no-slip boundary conditions the φ = u case is zero for the same reason. The φ = p

case is zero because the conjugate momenta (which is w) is zero on the boundary. For
stress-free boundary conditions and φ = u the conjugate momenta is proportional to ∂zu
and this is zero on the boundary.

Derivatives of the functional F = 〈L〉 are then related to the Hamiltonians along a
particular direction since all the conditions of §A.2.2. The functional involves averages,
hence

∂

∂Γ1

〈L〉 =
∂

∂Γ1

(
1

τΓ1Γ2

∫ τ

0

∫ Γ1

0

∫ Γ2

0

∫ 1

0

L dz dy dx dt
)

(A.80)

= −〈L〉
Γ1

− 1

τΓ1Γ2

∫ τ

0

∫ Γ2

0

∫ 1

0

Hx dz dy dt (A.81)

where

−Hx = L − ∂xu
∂L
∂∂xu

− ∂xv
∂L
∂∂xv

− ∂xw
∂L
∂∂xw

(A.82)

− ∂xθ
∂L
∂∂xθ

− ∂xϕ
∂L
∂∂xϕ

− ∂xp
∂L
∂∂xp

(A.83)

= L+ µ|∂x~u|2 + 2∂xθ∂xϕ+ u∂xp+ ϕu∂xθ. (A.84)

The spatial Hamiltonian is independent of where it is evaluated, hence we write our opti-
mality condition for the best aspect ratio as

0 =
∂

∂Γ1

〈L〉 = −〈L+Hx〉
Γ

. (A.85)

In the section that follows we will look at this condition in a scenario where we can calcu-
late everything analytically.
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A.2.4 Example: Application to Linearized Optimal Control System

In order to explicitly confirm these results we consider the functional

F [~u, θ,Γ, τ ] =
1

Γ

∫ 1

0

∫ Γ

0

[
wθ − ϕ (−∆θ − w) + p(∇ · ~u) +

µ

2
(Pe2 − |∇~u|2)

]
dz dx

(A.86)

with stress-free ∂zu(x, z = 0, 1) = 0, w(x, z = 0, 1) = 0 boundary conditions and period-
icity in the x direction with period Γ. Here |∇~u|2 = ∂juk∂juk. This is the same functional
as the one in the previous section but without the ϕ~u · ∇θ and ϕ∂tθ terms. Since there is
no penalty for integration by parts in the spatial coordinates we will rewrite this functional
as the first-order system

F [~u, θ,Γ, τ ] =
1

Γ

∫ 1

0

∫ Γ

0

[
wθ −∇ϕ · ∇θ + ϕw −∇p · ~u+

µ

2
(Pe2 − |∇~u|2)

]
dz dx.

(A.87)

Here the Lagrangian depends on the fields u,w, θ, ϕ, p

L = L(u,w, θ, ϕ, ux, wx, uz, wz, θx, θz, ϕx, ϕz, px, pz), (A.88)

and variations of the functional lead to the Euler-Lagrange equations

∆θ = w (A.89)

∆ϕ = w (A.90)

µ∆~u = ∇p− (θ + ϕ)ẑ (A.91)

∇ · ~u = 0 (A.92)

Pe2 =
1

Γ

∫ 1

0

∫ Γ

0

|∇~u|2dxdz. (A.93)
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A solution is

u = −Amπ
k

cos(mπz) sin(kx) (A.94)

w = A sin(mπz) cos(kx) (A.95)

θ =
A

m2π2 + k2
sin(mπz) cos(kx) (A.96)

ϕ = θ (A.97)

p =
2mπ

(m2π2 + k2)2
cos(mπz) cos(kx) (A.98)

A2 =
4k2Pe2

(m2π2 + k2)2
(A.99)

µ =
2k2

(m2π2 + k2)3
(A.100)

where m is an integer that indexes branches of solutions and k = 2π/Γ. The Nusselt
number is

Nu− 1 =
k2Pe2

(m2π2 + k2)3
. (A.101)

The spatial Hamiltonian density is

−Hx = L − ∂xu
∂L
∂∂xu

− ∂xw
∂L
∂∂xw

− ∂xθ
∂L
∂∂xθ

− ∂xϕ
∂L
∂∂xϕ

− ∂xp
∂L
∂∂xp

(A.102)

= L − ∂xu (−µ∂xu)− ∂xw (−µ∂xw)− ∂xθ (−∂xϕ)− ∂xϕ (∂xθ)− ∂xp (−u)

(A.103)

= wθ + ∂xθ∂xϕ− ∂zθ∂zϕ+ wϕ− ∂zpw (A.104)

+
µ

2

(
Pe2 + (∂xu)2 + (∂xw)2 − (∂zu)2 − (∂zw)2

)
(A.105)

and spatial Hamiltonian is

−Hx = −
∫ z=1

z=0

Hxdz =
k2Pe2(5k2 −m2π2)

(k2 +m2π2)4
. (A.106)

The optimal aspect ratio satisfies

0 =
δF
δΓ

= (−〈L〉 − 〈Hx〉) /Γ (A.107)

= −2k2Pe2(2k2 −m2π2)

(k2 +m2π2)4

k

2π
(A.108)
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which is the same we would have deduced by differentiating the Nusselt number with
respect to Γ (we can use dΓ = d2π

k
= −2π/k2dk) and set this equal to zero. Each branch

of solutions (indexed by m) yields a distinct optimal aspect ratio (hence the assumption
that trajectories were nearby).
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APPENDIX B

Compact Sets in Hilbert Spaces

In this appendix we discuss sufficient condition for weak convergence to imply strong
convergence in the Hilbert space `2. We look at this to better understand the Rellich-
Kondrachov theorem as well as to understand what kind of sets are compact in infinitely
many dimensions.

Let λn where n ∈ N be a sequence of numbers such that for each constant c ∈ (0,∞)

the cardinality of the set {|λn| ≤ c} is finite, but there exists an N such that for each
c ∈ (0,∞) we have |λN | ≥ c. Said succinctly, for each c ∈ N the sequence λn satisfies
|{λn : |λn| ≤ c}| < ∞ and |{λn : |λn| > c}| = ∞. We will also assume that the set has
a minimal (not necessarily unique) element that is non-zero, i.e. |λn| > 0 for all n ∈ N.
For example, the set of integers satisfy this property as does the set of eigenvalues of the
Laplacian in a “nice” domain with Dirichlet boundary conditions. We call sequences that
satisfy this criteria “guard sequences”.

Let

‖f‖λ =

√√√√ ∞∑
n=1

(λn)2(fn)2 (B.1)

and

(f, g)λ =
∞∑
n=1

(λn)2fngn. (B.2)

where fn, gn are the components of f, g ∈ `2, respectively. The way that we defined the λn
means that ‖ · ‖λ is a norm and (f, g)λ is an inner product.

We prove the following theorem about a sufficient condition for weak convergence to
imply strong convergence.

Theorem. Suppose that a sequence fm for m ∈ N converges weakly to zero in `2 and
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choose any sequence λn that is a guard sequence. If the sequence of elements fm satisfy

‖fm‖λ ≤ α (B.3)

for each m ∈ N and a fixed positive number α, then fm converges strongly in `2 to zero.

Proof. Fix ε > 0 and let Gε = {n ∈ N : |λn| ≥ α
√

2
ε
} and denote that the cardinality of

the complement (which is finite by definition) by N . Since

α2 2

ε

∑
n∈Gε

(fmn )2 ≤
∑
n∈Gε

(λn)2(fmn )2 ≤
∑
n∈Gε

(λn)2(fmn )2 +
∑
n/∈Gε

(λn)2(fmn )2 (B.4)

=
∞∑
n=1

(λn)2(fmn )2 = ‖fm‖2
λ ≤ α2 (B.5)

for each m, we have ∑
n∈Gε

(fmn )2 <
ε

2
(B.6)

for each m. If N = 0 we are done, otherwise we proceed as follows. The sequence
converging weakly to zero in `2 means that for each g ∈ `2 there exists an Mg (dependent
on the g ∈ `2) such that for all m > Mg∣∣∣∣∣

∞∑
n=1

fmn gn

∣∣∣∣∣ <
√

ε

2N
, (B.7)

where N is the cardinality of the complement of Gε. Consider the finite collection of basis
elements {ej : j /∈ Gε}. For each ej we can find a corresponding Mj such that for all
m > Mj we have |fmj | <

√
ε

2N
. Now choose M = max{Mj : j /∈ Gε}. Then we have that∑

n/∈Gε

(fmn )2 <
ε

2
(B.8)

for each m > M . Putting the two together yields

∞∑
n=1

(fmn )2 < ε. (B.9)

Thus our norm in `2 converges to zero. Since we have weak convergence in `2 and conver-
gence of the norm, we have strong convergence.
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This is a sufficient condition to prove strong convergence in the `2 space of concern. In
particular this shows that a function who has a Fourier series representation that converges
weakly in H0+ε[Ω] (unrelated ε) will converge strongly in L2[Ω], where Ω is a nice domain
that allows for a Fourier series representation, i.e. a periodic domain with finite period.
This also shows that the set {f ∈ `2 : ‖f‖λ ≤ 1} is compact in `2.
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APPENDIX C

Double Lorenz Properties

C.1 Coefficients and Parameters

The constants in the Double Lorenz equations are as follows

Ra = The Rayleigh number (C.1)

Nu = The Nusselt number (C.2)

σ = Prandlt number (C.3)

A = Aspect Ratio (C.4)

k = 2/A (C.5)

ρ1 =
(1 + k2)3

k2
(C.6)

ρ2 =
(4 + k2)3

k2
(C.7)

c1 =
(3 + k2)(4 + k2)

2(1 + k2)2
(C.8)

d1 =
(4 + k2)(k2 − 5)

2(1 + k2)2
(C.9)

c2 =
2k2(1 + k2)2

(4 + k2)3
(C.10)

d2 =
2(1 + k2)2(k2 − 8)

(4 + k2)3
(C.11)
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a =
4 + k2

1 + k2
(C.12)

b1 =
4

1 + k2
(C.13)

b2 =
16

4 + k2
(C.14)

r1 =
Ra
ρ1

(C.15)

r2 =
Ra
ρ2

(C.16)

r3 =
k2b1

16
Ra (C.17)

r4 =
k2b1

128
Ra. (C.18)

We use the relations

2ρ1

b1

c1 −
2ρ2

b2

c2 −
3

4
aρ1 = 0 (C.19)

−2ρ1

b1

d1 +
2ρ2

b2

d2 +
3

4
aρ1 = 0 (C.20)

to derive (2.63) for the truncated system.

C.2 Bounds

Consider the energy function

E(y1, z1, y2, z2) =
1

2

(
y2

1 + (z1 − 1)2 +
1

4

[
y2

2 + (z2 − 1)2
])

. (C.21)

Taking the time derivative and making use of the temperature variable equations (2.67),
(2.68), (2.70), and (2.71) yields

Ė(y1, z1, y2, z2) = −y2
1 − b1z

2
1 + b1z1 +

a

4

(
−y2

2 − b2z
2
2 + b2z2

)
. (C.22)
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Adding zero in the form 2α(E − E) where α ∈ (0,min{1, b1}) to the right hand side of
(C.22) results in the following differential inequality,

Ė(y1, z1, y2, z2) = −2αE +
5

4
α + (α− 1)y2

1 + (α− b1)z2
1 + (b1 − 2α)z1

+
1

4

[
(α− a)y2

2 + (α− ab2)z2
2 + (ab2 − 2α)z2

)
] (C.23)

= −2αE +
5

4
α +

(b1 − 2α)2

4(b1 − α)
+

(ab2 − 2α)2

16(ab2 − α)

+ (α− 1)y1 + (α− b1)

(
z1 +

b1 − 2α

2(α− b1)

)2

+
α− a

4
y2 +

α− ab2

4

(
z2 +

ab2 − 2α

2(α− ab2)

)2

(C.24)

≤ −2αE +
b2

1

4(b1 − α)
+

b2
1

(4b1 − α)
. (C.25)

The differential inequality may be solved to yield

E(t) ≤ e−2αt

(
E0 −

1

2α

[
b2

1

4(b1 − α)
+

b2
1

(4b1 − α)

])
+

1

2α

[
b2

1

4(b1 − α)
+

b2
1

(4b1 − α)

]
(C.26)

where E0 is the initial value of the energy (C.22). The α ∈ (0,min{1, b1}] that minimizes
the steady state of (C.26) is not terribly illuminating (it is the root of a cubic), thus we will
instead pick the simpler but suboptimal α = b1/2 for b1 ∈ (0, 2] and α = 1 for b1 ∈ (2,∞)

to explicitly display the time-asymptotic bounds

lim sup
t−→∞

E(y1, z1, y2, z2) ≤


9
14

for b1 ∈ (0, 2)

1
2

[
b21

4(b1−1)
+

b21
(4b1−1)

]
for b1 ∈ [2,∞)

(C.27)

on the temperature variables.
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C.3 Deriving the Background

To obtain a bound for when Ra ≥
√

(1+k2)3(4+k2)3

k4 we demand that the determinants of
each matrix [

1
r1

(1− α) α(1− z0
1)

α(1− z0
1) −α

]
and

[
1
r2

(1− α) α(1− z0
2)

α(1− z0
2) −α

]
(C.28)

be zero. Based off of intuition from the Lorenz system we make the following choice for α

α =
z0

1 + z0
2

(z0
1)2 + (z0

2)2
. (C.29)

If z0
1 , z

0
2 ∈ [0, 1] then

z0
1 + z0

2 ≥ (z0
1)2 + (z0

2)2 ⇔ α ≥ 1, (C.30)

as required. This leads to the system of equations

− 1

r1

(1− α) = α(1− z0
1)2 (C.31)

− 1

r2

(1− α) = α(1− z0
2)2. (C.32)

Dividing the first equation by the second yields

r2

r1

=

(
1− z0

1

1− z0
2

)2

⇔ z0
2 = γ(z0

1 − 1) + 1 (C.33)

where γ =
√
r1/r2 = a3/2 ∈ (1, 8). We can eliminate z0

2 in favor of z0
1 , use definition of α

and the equation − 1
r1

(1− α) = α(1− z0
1)2 to get

α(1− (1− z0
1)2) = 1 (C.34)

⇔

(z0
1 + γ(z0

1 − 1) + 1)(1− r1(1− z0
1)2) = (z0

1)2 + (γ(z0
1 − 1) + 1)2 (C.35)

Note that z0
1 = 1 is a root and that if z0

1 > 1 the left hand side is negative while the right
hand side is positive. We still need to check that z0

1 is positive. Solving for the other two
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roots yields

z0
1 =
−1 + 2r1γ − γ2 ±

√
(γ2 + 1)2 + 4r1(r1 − 2γ)

2(r1 + r1γ)
. (C.36)

We will take the positive root1. We need a few observations about z0
1 as a function of r1.

First note that Ra ≥
√

(1+k2)3(4+k2)3

k4 ⇔ r1 ≥ γ. When r1 = γ we have

z0
1 =

γ2 − 1

γ + γ2
= 1− 1

γ
(C.37)

which is the minimum value of the discriminant. From r1 ≥ γ onwards the z0
1 is strictly

increasing. To see this we can calculate the derivative to be

∂

∂r1

z0
1 =

4r1γ + (1 + γ2)
(
−1− γ2 +

√
4r2

1 − 8r1γ + (1 + γ2)2
)

2r2
1(1 + γ)

√
4r2

1 − 8r1γ + (1 + γ2)2
. (C.38)

Note that the denominator is always positive so we can concentrate on the positiveness of
the numerator. When r1 = γ we have that the numerator is 2(−1 + γ2) which is positive.
From this point onwards the numerator is an increasing function of r1 since the derivative
of the numerator is

4γ +
(8r − 8γ)(1 + γ2)

2
√

4r2 − 8rγ + (1 + γ2)2
(C.39)

which is positive for r1 ≥ γ. Thus we have that z0
1 is a monotonic function of r1 for r1 ≥ γ

that starts at 1 − 1/γ. Note that in the limit as Ra → ∞ we have that z0
1 → 1 (going back

to the original expression). From what we observed earlier z0
1 ≤ 1 as well. Hence the z0

1

conditions that we needed for the α term are satisfied. Now let us check the z0
2 term. With

the relation

z0
2 = γ(z0

1 − 1) + 1 (C.40)

1If we choose the other root it seems to be the case that z02 will always be negative.
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we observe that since z1 is strictly increasing so is z0
2 . The quantity z0

2 starts at zero and
asymptotes to one. Hence we have the upper bound

〈x1y1〉+
a

4
〈x2y2〉 ≤ b1z

0
1 +

a

4
b2z

0
2 (C.41)

⇔

Nu ≤ 1 + 2(1 + γ)

(
−1 + 2r1γ − γ2 +

√
(γ2 + 1)2 + 4r1(r1 − 2γ)

2(r1 + r1γ)

)
+ 2(1− γ) (C.42)

⇔

Nu ≤ 1 + 2

(
1− 1

r1

)
+

1

r1

(
1− γ2 +

√
(γ2 + 1)2 + 4r1(r1 − 2γ)

)
(C.43)

for Ra ≥
√

(1+k2)3(4+k2)3

k4 .
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APPENDIX D

Background Bound Details

Here we will show

2〈wθτ ′〉 ≥ −δ
2

〈
c

4
|∇~u|2 +

1

c
|∇θ|2

〉
, (D.1)

where |∇~u|2 = ∇~u : ∇~u = ∂juk∂juk and 2〈wθτ ′〉 is

2〈wθτ ′〉 = lim sup
T−→∞

2

TΓ1Γ2

∫ T

0

dt

∫ Γ1

0

dx

∫ Γ2

0

dy

(∫ 1

0

dzτ ′wθ

)
(D.2)

= lim sup
T−→∞

− 1

δTΓ1Γ2

∫ T

0

dt

∫ Γ1

0

dx

(∫ Γ2

0

dy

(∫ δ

0

dzwθ +

∫ 1

1−δ
dzwθ

))
.

(D.3)

We will do this by making use of a few observations. The first observation is that for
0 ≤ z ≤ 1

2

|w(x, y, z, t)| =
∣∣∣∣∫ z

0

dζ
∂w

∂ζ
(x, y, ζ, t)

∣∣∣∣ ≤ ∫ z

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣ (D.4)

≤
√
z

√∫ z

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2 ≤ √z
√∫ 1

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2. (D.5)

We used the fundamental theorem of calculus, the homogeneous boundary condition, and
Cauchy-Schwarz on 1 and ∂zw. The θ term has a similar pointwise inequality

|θ(x, y, z, t)| ≤
√
z

√∫ 1

0

dζ

∣∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣∣2 (D.6)

129



and for 1
2
≤ z ≤ 1 we have similar bounds

|w(x, y, z, t)| ≤
√

1− z

√∫ 1

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2 (D.7)

|θ(x, y, z, t)| ≤
√

1− z

√∫ 1

0

dζ

∣∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣∣2. (D.8)

Let 0 ≤ a =

√∫ 1

0
dζ
∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣2 and 0 ≤ b =

√∫ 1

0
dζ
∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣2, thus

|θw| ≤ min{z, 1− z}ab (D.9)

≤ min{z, 1− z}
2

(
ca2 +

1

c
b2

)
(D.10)

=
min{z, 1− z}

2

(
c

∫ 1

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2 +
1

c

∫ 1

0

dζ

∣∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣∣2
)

(D.11)

with c to be chosen later. We need two more inequalities. One is∫ 1

0

dζ

[
∂θ

∂ζ
(x, y, ζ, t)

]2

≤
∫ 1

0

dζ|∇θ|2. (D.12)

The other inequality that we need will be the only place incompressibility will be used.
Incompressibility implies

2

〈(
∂w

∂z

)2
〉

= −2

〈
∂u

∂x

∂w

∂z
+
∂v

∂y

∂w

∂z

〉
(D.13)

= −2

〈
∂u

∂z

∂w

∂x
+
∂v

∂z

∂w

∂y

〉
(D.14)

and 〈(
∂w

∂z

)2

+

(
∂w

∂z

)2
〉

=

〈(
∂w

∂z

)2

+

(
∂u

∂x
+
∂v

∂y

)2
〉

(D.15)

=

〈(
∂w

∂z

)2

+

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂x

∂v

∂y

〉
(D.16)

=

〈(
∂w

∂z

)2

+

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂y

∂v

∂x

〉
. (D.17)

Adding (D.13) and (D.15), adding zero in the form 〈|∇~u|2 − |∇~u|2〉 to the right hand side,
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and grouping terms by color yields

4

〈(
∂w

∂z

)2
〉

=
〈
|∇~u|2

〉
−

〈(
∂w

∂x

)2

+

(
∂w

∂y

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
〉

(D.18)

+

〈(
∂v

∂x

)2

+

(
∂v

∂z

)2

− 2
∂u

∂z

∂w

∂x
+ 2

∂v

∂z

∂w

∂y
− 2

∂u

∂y

∂v

∂x

〉
(D.19)

=
〈
|∇~u|2

〉
−

〈(
∂u

∂y
− ∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2
〉

+

〈(
∂v

∂z
+
∂w

∂y

)2
〉

(D.20)

≤ 〈|∇~u|2〉 (D.21)

which means

−1

4
〈|∇~u|2〉 ≤ −

〈(
∂w

∂z

)2
〉
. (D.22)

The spatial integral of the background decomposition yields∫ 1

0

dzτ ′wθ = − 1

2δ

(∫ δ

0

dzwθ +

∫ 1

1−δ
dzwθ

)
. (D.23)

We will concentrate on the
∫ δ

0
integral, noting that calculations for

∫ 1

1−δ will be identical.
This will result in a factor of 2 to account for in the end. The calculation goes as follows

− 1

2δ

∫ δ

0

dzwθ ≥ − c

2δ

∫ δ

0

dz

[
min{z, 1− z}

2

(∫ 1

0

dζ

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2
)]

(D.24)

− 1

2cδ

∫ δ

0

dz

[
min{z, 1− z}

2

(∫ 1

0

dζ

∣∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣∣2
)]

(D.25)

= −δ
8

∫ 1

0

dζ

[(
c

∣∣∣∣∂w∂ζ (x, y, ζ, t)

∣∣∣∣2 +
1

c

∣∣∣∣∂θ∂ζ (x, y, ζ, t)

∣∣∣∣2
)]

. (D.26)

Using (D.12) and (D.22) yields,

− 1

2δΓ1Γ2

∫ Γ1

0

dx

∫ Γ2

0

dy

∫ δ

0

dzwθ ≥ −δ
4

〈
c

4
|∇~u|2 +

1

c
|∇θ|2

〉
. (D.27)
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In total we have the lower bound

2〈wθτ ′〉 ≥ −δ
2

〈
c

4
|∇~u|2 +

1

c
|∇θ|2

〉
. (D.28)
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