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For the objective evaluations that unite our values,

and the subjective preferences that keep them interesting.
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ABSTRACT

Crowdsourcing for Engineering Design:
Objective Evaluations and Subjective Preferences

by

Alexander Burnap

Co-Chair: Panayiotis Y. Papalambros

Co-Chair: Richard D. Gonzalez

Crowdsourcing enables designers to reach out to large numbers of people who may not

have been previously considered when designing a new product, listen to their input

by aggregating their preferences and evaluations over potential designs, aiming to im-

prove “good” and catch “bad” design decisions during the early-stage design process.

This approach puts human designers–be they industrial designers, engineers, mar-

keters, or executives–at the forefront, with computational crowdsourcing systems on

the backend to aggregate subjective preferences (e.g., which next-generation Brand A

design best competes stylistically with next-generation Brand B designs?) or objective

evaluations (e.g., which military vehicle design has the best situational awareness?).

These crowdsourcing aggregation systems are built using probabilistic approaches

that account for the irrationality of human behavior (i.e., violations of reflexivity,

symmetry, and transitivity), approximated by modern machine learning algorithms

and optimization techniques as necessitated by the scale of data (millions of data

points, hundreds of thousands of dimensions).
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This dissertation presents research findings suggesting the unsuitability of current

off-the-shelf crowdsourcing aggregation algorithms for real engineering design tasks

due to the sparsity of expertise in the crowd, and methods that mitigate this lim-

itation by incorporating appropriate information for expertise prediction. Next, we

introduce and interpret a number of new probabilistic models for crowdsourced design

to provide large-scale preference prediction and full design space generation, building

on statistical and machine learning techniques such as sampling methods, variational

inference, and deep representation learning. Finally, we show how these models and

algorithms can advance crowdsourcing systems by abstracting away the underlying

appropriate yet unwieldy mathematics, to easier-to-use visual interfaces practical for

engineering design companies and governmental agencies engaged in complex engi-

neering systems design.
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CHAPTER I

Introduction

1.1 Introduction

Engineering design problems, particularly those addressed by enterprises governed

by self-sustaining profit and contribution within a market, involve human designers

with the goal of making the best design decisions during the design process for the

targeted end user or market segment (Simon, 1969; Cross, 2007; Bayazit, 2004). These

human designers make decisions that ultimately affect the final product or service in

every step of the design process, from market assessment, to initial conceptualization,

to concept selection, to engineering optimization, to manufacturing, and finally to

mass distribution and service (Krishnan & Ulrich, 2001).

We take this notion in this dissertation by putting human designers at the forefront–

be they industrial designers, engineers, marketers, or executives–with computational

crowdsourcing systems on the backend that aggregate objective evaluations or subjec-

tive preferences from members in a given crowd, separate from the designer herself,

who have relevant information to the design problem. The goal of these computa-

tional crowdsourcing systems is to augment the designer’s decision-making process

by aggregating the crowd’s relevant information to further improve “good” design

decisions and to catch potentially “bad” design decisions. At the enterprise level,

these crowdsourcing systems allow industrial companies and governmental agencies
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the opportunity to improve decision making during the early-stage engineering de-

sign process, with the promise of significant cost savings relative to late-stage design

decisions, both in budget expenditures and time overruns (Oehmen & Seering, 2011).

These crowdsourcing systems are enabled by the scale and reach of the internet,

as well as ubiquitous computing and data collection on the crowd member side (e.g.,

desktop computers and smartphones). Moreover, these systems are built using the

language of probability theory and they are approximated by modern data-driven ma-

chine learning and optimization algorithms. While we adopt intuition and definition

rigor from axiomatic approaches to aggregating the crowd’s input, we opt to develop

statistical approaches that are more flexible with regards to otherwise irrational hu-

man input behavior (e.g., violations of reflexivity, symmetry, and transistivity).

We begin this introduction by laying the groundwork for later discussed research

experiments and findings: First, we introduce the notion of “crowdsourcing” as well

as our own practical definition for design science. This is backed up by current

uses of crowdsourcing in industry, government agencies, and academia; a taxonomy

of various types of crowdsourcing processes; and previous practical findings as to

crowdsourcing’s relative pros and cons. We then detail the framework of design as a

decision-making process, the currently dominant paradigm in the way design is con-

ceptualized and subsequently formalized. This framework leads to a very important

dichotomy relevant to this work–the difference between subjective design decisions

and objective design decisions. Next, we discuss the potential benefit of crowdsourc-

ing for engineering design, in that it may improve “good” design decisions and catch

“bad” design decisions at early stages of the design process, thus enabling the oppor-

tunity for design changes that would otherwise be very costly for the enterprise at

later stages of the design process.

Second, we move to quantitative models relevant to the formalizations through-

out various research contributions in this work. The presentation begins with an
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axiomatic formalization of a single evaluator’s input during a crowdsourcing process.

We discuss issues stemming from limitations imposed by real-world engineering de-

sign problems (e.g., incomplete or noisy evaluator input data, and contradictory input

data), thus justifying the use of statistical approaches to model a single evaluator.

This notion is then extended to the case of multiple evaluators constituting a crowd, in

which we detail a number of historically important quantitative models from diverse

disciplines including psychometrics, econometrics, and statistics such as test theory,

social welfare theory, and discrete choice theory; as well as more recent models from

the machine learning and crowdsourcing communities, which often repeat or extend

these historic models.

Third, we discuss the research gap between the current quantitative models and

the particular demands for their suitability to engineering design. We note that these

models do not specifically account for: (1) The relative sparsity of expertise imbued

in the crowd for the given design decision in question, a common scenario in even

“simple” engineering design; and (2) the “heterogeneity” in the crowd, in which either

the types of expertise needed for the design task or the similarity in design preferences

for various market segment are not sufficiently modeled. These two shortcomings are

major obstacles to practical adoption of quantitative crowdsourcing processes within

real engineering design enterprises, particularly as designs are shifting to ever more

complexity (e.g., hybrid-electric and autonomous vehicles) as well as customization

(e.g., built-to-order vehicles from the manufacturer) in an increasingly diverse and

globalized world (e.g., preferences in different geographic markets or market segment

demographics).

Fourth, we discuss the general research framework used–a spectrum spanning

objective evaluations to subjective preferences–according to the amount of expertise

needed for a given design task. Upon this spectrum, we place the five chapters

detailing research findings within this dissertation, as well as brief overviews of how
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each of these chapters addresses the research gap identified in this first chapter.

1.2 Crowdsourcing in Engineering Design

1.2.1 What is Crowdsourcing?

Crowdsoucing as a concept is not new. As the concept of crowdsourcing deals

with the systematic aggregation of input from humans for a shared task, perhaps the

earliest formalization of crowdsourcing may indeed be the Athenian democracy in 5th

century B.C. Moving forward in history, the earliest formalized notion of crowdsourc-

ing directly relevant to this dissertation is the 1785 treatise on voting theory by the

Marquis de Condorcet (Condorcet, 1785), in which a paradox showing that there is

no formal voting method for more than two alternatives in which a combined vote

satisfies a majority of individual votes; in other words, the popular vote is inconsis-

tent; a finding that was further formalized in 1951 by Arrow to later receive the 1972

Nobel Prize in Economics (Arrow, 1951).

Explicit usage of the term ‘crowdsoucing’ is generally attributed to being first

coined in 2006 by a journalist for Wired magazine (Howe, 2006) as a play on the

more commonly known term ‘outsourcing.’ Since then, there have been hundreds of

definitions of ‘crowdsourcing’ in the academic literature, oftentimes tailored to the

particular context (Estelles-Arolas & Gonzalez-Ladron-de Guevara, 2012). Given this

dissertation’s focus on design science, we define crowdsourcing as:

“The aggregation of input for a given design task from a number of people

other than the designer herself, using a systematic aggregation procedure

enabled by the reach and scale of the internet and modern computation,

with the goal of augmenting the designer’s decision-making during the

design process.”

Thus, while the concept of crowdsourcing is not new, what is new is the reach and
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scale we now have to interact with evaluators and customers. We give an overview

of these enablers in Figure 1.1. In general, the reach and scale of crowdsourcing are

due to the internet and modern computational processing. The internet has led to

world-wide networking, which has promoted standardized communication protocols

as well as creation of online communities relevant for a given design task. This net-

working is accessible by a number of devices, in particular desktops and smartphones

that even in basic forms often have multicore processors and on-board graphics pro-

cessing. On the client side, these processing architectures allow much higher fidelity

2D and 3D real-time rendering and manipulation of design concepts. On the server

side, we have vastly increased computational power via multicore architectures and

RAM/VRAM, allowing highly-parallel CPU and GPU computing. The proliferation

of these networked devices and subsequent customer use of web and smartphone ap-

plications contribute to massive increases in data sizes. The availability of open source

machine learning and optimization libraries, which much of the time far surpass the

capabilities of proprietary software, enables fast progress across research disciplines to

support the development of the new models and algorithms used in this dissertation.
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Figure 1.1: Enablers of crowdsourcing as we define in this dissertation; while crowd-

sourcing as human input aggregation is not new, what is new is the reach

and scale we now have to access evaluators and customers who may have

potentially valuable input during the early-stage design process.
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Figure 1.2: Taxonomy of crowdsourcing processes as identified for this dissertation;

most identified properties are not considered within this dissertation.

Grey shaded boxes show properties that were varied within this disser-

tation. The red shaded box shows the property that was varied and

explicitly studied throughout this dissertation, namely, crowd expertise

or crowd preferences.
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Taxonomy of Crowdsourcing Processes In our definition we do not restrict who

is in the crowd, the number of people in the crowd, or properties of the crowd member

themselves. There is, however, a number of properties that differentiate crowdsourc-

ing processes. We give a taxonomy of task properties, crowdsourcing mechanism

properties, and crowd properties in Figure 1.2. We focus only on a few properties of

a crowdsourcing process, and subsequently, the results of our research contributions

are limited to these cases. In short, we only manipulate whether we are using the

crowd for design evaluation or generation, the type of task elicitation, the design

representation, and the expertise of the crowd.

Numerous major veins of research into aggregation of human input during the

engineering design process have preceded the advent of crowdsourcing for engineering

design. One such vein is that of coordination of subsystems during systems decom-

position, found in the research areas of distributed design or decentralized design

(Lee & Whang, 1999; Gurnani & Lewis, 2008), in which a complex design (e.g., ve-

hicle), is decomposed into a number of subsystems (e.g., powertrain, chassis, body),

followed by subsequent coordination and recombination. Results show that even in

small teams, though slower to converge, group decisions may outperform single expert

decisions for certain design tasks (Yang, 2010).

Another major area within the engineering design community relevant to the cur-

rent work is that of collaborative design with iterative processes such as the Delphi

Method, in which a crowd of evaluators, typically restricted to relevant industry or

academic professionals, is asked to collectively evaluate a number of possible design

options using an iterative survey (Linstone et al., 1975; Dalkey & Helmer, 1963). Such

iterations typically involve long time periods while evaluations are collected, and gen-

erally involve results of the previous iteration (though not applicable on the first

iteration) to spur convergence of the crowd’s consensus. While the original Delphi

Method is conducted for future technology predictions, work within the engineer-
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ing design community has focused on the case of large-scale engineering enterprises,

with examples such as risk-assessment of product designs with long development and

service lifetimes (Ahn et al., 2014).

Our work is a major departure from many of these previous works, and has the

limitation that we do not consider collaboration or other forms of information passing

between evaluators. Clearly in a real “crowd,” such independence assumptions may

be violated, particularly when information passing strongly correlates with expertise,

or when collaborative teams have greater expertise than the summation of its indi-

viduals (Hong & Page, 2004a). It has been recently shown at enterprises engaged

in complex engineering systems design that lack of information passing stifles exper-

tise (McGowan et al., 2013); or that communication is withheld for work negotiation

purposes (Austin-Breneman et al., 2014).

1.2.2 The Design Process and Decision-Based Design

The design process refers to the path that a product or service moves through

during development, from initial conceptualization to final embodiment and beyond

as shown in Figure 1.3. For complex products or services, this path may require

thousands of people—from market researchers, designers, engineers, manufacturers,

on down—who may be distributed over a number of divisions, companies, and ge-

ographical locations. Similarly, for simple products or services, this path may only

require one person. Numerous frameworks outlining the design process exist within

the academic literature on design, with a number of other design process frameworks

having originated within industrial companies or governmental agencies. Surveys of

these frameworks show that these frameworks are less a matter of standardization, but

more niche-based depending on the complexity and the particular industry (Krishnan

& Ulrich, 2001).
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Figure 1.3: Depiction of the design process from the enterprise standpoint laid out

in chronological order. Note that while general for many complex en-

gineering products, this design process was recorded from interviews

with practicing design executives at a major automotive manufacturer

(Manoogian II, 2013; Hartley, 1996a), and may not generalize to all prod-

uct or service designs. In particular, the partitioning or even existence of

various design process steps may be different, as well as the number of

major and minor design concepts. Further, note that while technically all

major and minor design concepts are unique within the design space, we

make the distinction between competing design concepts that are very far

apart (major) and those that are small perturbations around a baseline

design concept (minor). This distinction assumes some notion of distance

within the design space.

Formalizing these concepts, the framework of design as a decision-making process

has become the currently dominant paradigm in the way design is mathematically

represented within the design research community (Hazelrigg, 1998; Chen et al., 2013;

Papalambros, 2002; Wassenaar & Chen, 2001). The design process is conceptualized

as a number of sequential or parallel design decisions made by any number of decision

makers at all levels of a hierarchy within the enterprise. Example decisions may be,

“which emerging market segment is most suitable for new product development,” or
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“should we use a series, parallel, or power-split hybrid electric architecture,” to “what

ratio of thread to pitch should this grade 8 bolt be?”

In this dissertation, we use the term ‘designer’ to mean ‘decision-maker’ within

the decision-based design framework. Designer is thus a loose term, and could be any

number of various people involved in the design process, as long as they are associ-

ated with a given design task. Moreover, following the definition of crowdsourcing in

Section 1.2.1, the designer for a given design task may use a crowdsourcing system

made up of a crowd of other designers for other design tasks, rather than unknown

people distributed across the internet. In other words, the term ‘designer’ is context

dependent on the design task itself. We will note later that one of the most practical

uses of crowdsourcing within a large complex engineering systems enterprise is in-

deed to use “internal crowdsourcing” to circumvent siloing and communication issues

throughout the enterprise.

Subjective and Objective Decisions We establish and important distinction

between subjective design decisions and objective design decisions. Subjective design

decisions are those that depend on opinion or preferences within a given group of

people, whereas objective design decisions have a “true score” regardless of who is

asked. For example, the most preferred aesthetic styling of a next generation entry-

level luxury vehicle depends greatly on who is asked, whereas the weight of the vehicle

has a true measurable value regardless of who is asked.

The distinction between subjective and objective decisions leads to the correspond-

ing type of human input required–preference relations for subjective design decisions,

evaluations for objective design decisions. Likewise, this distinction also leads to the

language we use to describe members of the crowd. If the designer and subsequent

design task are given a subjective design decision, then members in the crowd who

are queried for their input regarding this decision are called customers. Likewise, if
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the designer and subsequent design task are given a objective design decision, then

members in the crowd who are queried for their input regarding this decision are

called evaluators.

Crowdsourcing is useful for both types of design decisions. Subjective design

decisions, by definition, need a group of potential customers. For objective design

decisions, oftentimes we require human evaluation for design decisions that cannot

be feasibly or easily deduced through experimentation or computational simulation.

This dissertation will use two recurring case studies, bracket topology optimization for

objective evaluation and passenger vehicle aesthetic styling for subjective preferences,

as benchmarks for our crowd aggregation models.

1.2.3 The Promise of Crowdsourcing for Making “Good” and Catching

“Bad” Decisions

“Quia parvus error in principio magnus est in fine, secundum philoso-

phum ... (A small error at the outset can lead to great errors in the final

conclusions, as the Philosopher says ...).” - Thomas de Aquinas, 1255

A well-known finding within design research is that the cost of making changes to the

design increases monotonically and precipitously as the design reaches further stages

of refinement during the design process. In other words, when the design concept(s)

are just sketches, it is virtually free to make changes, while late-stage manufacturing

changes or even changes after the final design embodiment lead to significant costs to

the enterprise (e.g., recalls for defects after the customer has already purchased the

design).

If we couple the notion of potentially crippling costs regarding early versus late-

stage design changes, with the notion that product development lead times are ever

shrinking given increased competition across the globalized world (Bloebaum et al.,

2012), we have a recipe for disaster if the enterprise is not able to make “good” design
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decisions and catch “bad” design decisions in a timely manner during the product

development process. An extreme example is that of the U.S. Department of Defense,

which in a single year has on average $296 Billion and 22 months of cost and time

overruns, respectively (Francis et al., 2010; Oehmen & Seering, 2011).

Figure 1.4: Depiction of design process augmented with crowdsourcing system to help

designers make better decisions, particularly during design stage-gates.

These cost and time overruns have not gone unnoticed, and a number of research

findings within the product innovation and corporate management academic litera-

tures have shown that with ever more globalized markets and enterprises competing

on the world stage, it is becoming increasingly imperative to incorporate design in-

novation to stay market competitive. The banner that these methods often go under

is “open innovation,” with crowdsourcing being one such method within this greater

umbrella. In particular, there is potential for crowdsourcing to augment the designer’s

decision making at critical junctions during the design process termed “stage-gates”

(Cooper, 1990; Hauser et al., 2006). Specifically, before letting a design concept move

on to later stages of the design process, a designer may seek relevant information dis-

tributed over a crowd (e.g., which of these 5 related concept designs is too conservative

or too innovative for the market (Manoogian II, 2013)). We depict how crowdsourcing

may improve “good” decisions and catch “bad” decisions during stage-gates in the
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design process in Figure 1.4.

While it is difficult to say with certainty the number of enterprises engaged in

crowdsourcing practices—no doubt unaccommodated by our practical definition of

crowdsourcing, which does not explicitly demarcate between crowdsourcing, outsourc-

ing, and simply asking people for evaluations—cursory analysis suggests there are over

2000 active websites related to crowdsourcing crowdsourcing.org (2014). Further, a

number of academic publications and industrial white papers give some indication of

the uses of crowdsourcing within industry, government agencies, and academia. We

show in Figure 1.5 a small subset of enterprises engaged in crowdsourcing, chosen as

their experiences have been analyzed by academic researchers or have helped drive

adoption of the term crowdsourcing. One of the earliest successful uses of crowd-

sourcing by a large enterprise (though it was not called crowdsourcing at the time)

is that of IBM’s InnovationJam, in which 46,000 ideas, submitted over two periods

of 72-hours, resulted in 10 new businesses and $100 million in funding (Bjelland &

Wood, 2008).
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Figure 1.5: Selected subset of enterprises spanning industry, governmental agencies,

and academia, engaged in crowdsourcing. This selection was made to

cover enterprises that have had recurring academic and media coverage,

as well as a diversity of enterprises exhibiting both successes and failures

of crowdsourcing.

1.3 Quantitative Crowd Aggregation Models

We now introduce quantitative modeling techniques for aggregating crowd input,

be it subjective preferences or objective evaluations, in order to parallel the qualitative

motivation for crowdsourcing systems for the designer within the enterprise given in

Section 1.2.3.

We begin with quantitative models of the decision-making process for a single

evaluator or customer. The discussion starts axiomatically, listing the deficiencies of

axiomatic approaches for real engineering design problems, and justifying the use of

statistical approaches. Next, we examine multiple evaluators or customers constitut-

ing a crowd. We will see that the problem of crowd aggregation has been formally
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studied for centuries, particularly in the area of voting theory, yet still leaves open

challenges for engineering design leading to a number of research gaps later detailed

in Section 1.4.

1.3.1 Single Evaluator Models

We begin with definitions of the customers or evaluators (note that we use these

terms interchangeably at this point), designs, as well as preferences or evaluations

between the designs by the customer or evaluator.

A single customer (or evaluator) x
(j)
c ∈ Xc ⊆ RMc , j = {1, . . . C} is represented

by a vector of variables (e.g., age, gender, income) in an Mc-dimensional space. Sim-

ilarly, a single design x
(p)
d ∈ Xd ⊆ RMd , p = {1, . . . D} is represented by a vector of

variables (e.g., geometric shape, color, price) in an Md-dimensional space. We use the

superscript indices in parentheses, (j) for customers and (p) for designs, to denote

the j-th customer or p-th design known to the designer or customer, whichever is

later appropriate. Note that for practicality, we always assume these are finite or

countably infinite sets.

As we introduced earlier, the designer wishes to improve her design decision mak-

ing, and thus asks a design task to the customer or evaluator. For example, a subjec-

tive design decision may be: “Which of these concept passenger vehicle designs are

you most likely to purchase?” Similarly, an objective design decision may be: “Which

of these concept military vehicle designs has the most situational awareness?” We

assume that, for this given design task, the customer or evaluator has a strict, linear

ordering of designs (i.e., satisfying completeness, reflexive/antisymmetric, and tran-

sitive relations). Formally, customer x
(j)
c prefers or evaluates x

(p)
d � x

(q)
d . . . � x

(r)
d

for the entire set of designs p, q, r = {1, . . . D}, in which � denotes strictly prefers

or strictly evaluates. We may equivalently associate a single permutation or rank-

ing τ (j) ∈ R(Xd) of the indices of set of designs 1, . . . , D with a given customer j,
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corresponding to her ordering of designs, and in which R(Xd) is the set of all linear

ordering of designs. It is now up to the designer to deduce this ranking of designs to

improve her decision-making during the design process. The designer would like to

capture this ranking in the form of a mathematical function, one that inputs designs

(or some subset of the designs) and outputs the corresponding correct ordering for

the given customer.

This is a mature area of study, termed utility theory, as originally motivated

by the Marquis de Condorcet (Condorcet, 1785) and formalized by von Neumann

and Morgenstern (Von Neumann & Morgenstern, 2007). In short, utility theory is

an approach to convert a set of designs to a set of numbers, while still preserving

ordering properties. Formally, there exists a utility model u(j) : Xd×Xc → Y pairing

each design with a number (typically the reals, i.e., Y = R) for a given customer j, for

the assumptions on finite or uncountably infinite linear orderings defined above (ord,

n.d.). With knowledge of this utility model, a customer’s ranking x
(p)
d � x

(q)
d . . . � x

(r)
d

may be deduced by ranking an associated set of values of corresponding designs as

mapped by u(j)(x
(p)
d ,x

(j)
c ) > u(j)(x

(q)
d ,x

(j)
c ) . . . > u(j)(x

(r)
d ,x

(j)
c ). More generally, we

aim to find the utility function U (j) : (Xd)D × Xc → (Y)D from which we can sort y

to obtain the corresponding ranked permutation of designs τ (j) for the customer j.

Problems with Axiomatic Methods for Engineering Design

Obtaining this utility model, relating a number for a given customer with a given

design, is nontrivial for a variety of reasons. The first major problem with axiomatic

approaches is sheer size of possible preference or evaluation comparisons possible for

a given set of designs. Even in the case of perfect preference or evaluation responses

by the customer or evaluator, asking a customer or evaluator to rank an entire set

of designs is unreasonable due to the effectiveness of human judgment between large

sets to rank versus smaller sets of designs to rank. Accordingly, instead of directly
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estimating the ranking function, often a small subset of the full set of designs is asked

for ranking, many times just 2 at a time for a binary preference relation (Hüllermeier

et al., 2008; Herbrich et al., 1998). Decomposition of the full ranking to consistent

binary pairs may be done to create the set S(j) = {(x(p)
d ,x

(q)
d ), sign(y(p), y(q))} ⊂

Xd × Xd × {−1,+1}. For full enumeration of the complete ranking, this results in

D(D− 1)/2 design pairs for evaluation, again an unreasonable request, this time due

to the number of designs evaluations. As a result, we often ask for only a small subset

of design evaluations, resulting in only a known partial ordering for each customer or

evaluator.

The second major problem with axiomatic approaches is the irrationality of hu-

man behavior. Even if the customer or evaluator did not fatigue, and we were able

to ask for a complete ranking of evaluations or preferences, human behavior is of-

ten far from rational. While there are entire research fields dedicated to irrational

economic behavior, we make note now on results showing evaluation and preference

inconsistencies in engineering design (MacDonald et al., 2009). In particular, human

behavior often exhibits violations of reflexivity (e.g., answering the same preference

or evaluation differently at separate times; violations of symmetry (e.g., “Do you see

yourself driving a Ferrari or Prius?” vs. “Do you see yourself driving a Prius or

Ferrari?”); and violations of transitivity (e.g., A � B,B � C ⇔ A � C) (Simon,

1956).

The third major problem with axiomatic approaches, and perhaps the most im-

portant in terms of interpreting results for later actionable design decisions, is that

we simply do not know all the relevant customer variables, design variables, their

respective representations, and their deterministic dependency (i.e., functional form).

For example, given a design decision regarding aesthetic styling of a passenger car,

we may be missing relevant customer or design variables (e.g., the customer prefers

round body shapes that elicit eco-friendliness (Reid et al., 2010b)).

18



Practicality: From the Axiomatic Approach to the Probabilistic Approach

Given the number of challenges with implementing axiomatic deterministic ap-

proaches to asses utility models, we turn to stochastic approaches. In other words,

our originally deterministic utility function is now treated stochastically, and we turn

to statistical estimation procedures. Formally, we move from our original determin-

istic model of utility for customer or evaluator j:

u(j)(xd,x
(j)
c ) = y (1.1)

to a probabilistic model of utility for customer or evaluator j,

p(j)(y|xd,x(j)
c ,Ω). (1.2)

We use Ω to capture all the factors other than known design variables xd and

known customer variables xc that affect customer j’s response during the crowd-

sourcing process. For example, given a design task (e.g., rate the aesthetic styling of

this vehicle concept according to its aggressiveness compared to the leading market

competitor), we may ask the “same” customer (same age, same gender, etc.) and get

wildly varying answers. This is understandable, as we will essentially never have full

knowledge of these factors (e.g., the customer just had some bad food poisoning and

everything seems aggressive). Enumerating these factors contributing to uncertainty

(i.e., what is in Ω), we may have:

• Known Unknowns in Ω

– Customer attributes ac(xc) - Factors that are known to the designer, are

functions of the customer variables themselves, but are hard to deduce

explicitly, e.g., “environmentally-conscious customer”

– Design attributes ad(xd) - Factors that are known to the designer, are func-
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tions of the design variables themselves, but are hard to deduce explicitly,

e.g., “eco-friendly design.”

– Model parameters θ - Factors that govern the probability distribution for

a model from a given model class M̂, e.g., mean and variance of a Gaus-

sian. This is equivalent to the analogous fully deterministic model, e.g.,

coefficients A of a linear model Ax = b.

• Unknown Unknowns in Ω

– Customer features hc - Factors that are not known to the designer and are

functions of the known customer variables and other unknown variables,

e.g., “truck-owning liberal voter”

– Design features hd - Factors that are not known to the designer and are

functions of the known design variables and other unknown variables, e.g.,

“Chevy Nova did not sell well in Mexico since ‘No va’ means ‘no go’ in

Spanish”

– True model family M∗ - The true relationship among all known knowns,

unknown knowns, and unknown unknowns. As we do not know this, we al-

ways make an assumption on the model class M̂ and hope we overlap, and

if subsume, hope the model class itself is not too large to make statistical

estimation inefficient.

1.3.2 Crowd Aggregation Models

As we have seen in Section 1.3.1, we may mathematically model the preferences

or evaluations of a single customer or evaluator using utility theory, specifically via a

probabilistic approach to account for real-world human behavior as well as practicality

with data collection. Recall that, as our main goal with a crowdsourcing system is to

support the designer and help her make better decisions during the design process,
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our job now is to combine the input from all crowd members into a manageable

summary useful to the designer via relevant information regarding the design decision

in question. This manageable summary will be in the form of an aggregation of

the customers or evaluators constituting the crowd, leading to clusters of similar

evaluations or clusters of market segments. We will see that, in the näıve case, and

indeed the most commonly used case in design and marketing research, we only have

one cluster–an assumption that will be tested later in this dissertation.

We define the crowd Xc = {x(j)
c }Cj=1 as the entire set of evaluators in our crowd-

sourcing system as seen by the designer. The goal of a crowdsourcing system is to col-

lect and aggregate the preferences or evaluations of the crowd, in the perfect case rep-

resented as a a collection of heterogeneous linear orderings T = {τ (j)}Cj=1, τ
(j) ∈ R(Xd)

to a set of K preference or evaluation rankings that help the designer make a decision.

Formally, the crowdsourcing system acts as a function F : R(Xd)C → R(Xd)K . In

this manner, the K may be interpreted as clusters of similar preferences or evalua-

tions, and may be all customers’ rankings or just a single ranking, i.e., K = D or

K = 1, respectively. Similar to the single evaluator or customer case, we will assume

a utility function exists for each customer or evaluator, which will be captured as Y,

a C ×D matrix of individual evaluator utilities.

Similar to the single customer or evaluator case discussed in Section 1.3.1, de-

terministically deducing the values of Y is challenging for many engineering design

problems due to incomplete preference or evaluation data as well due to human behav-

ioral issues. Accordingly, we again move to the probabilistic approach for aggregation

of customer preference or evaluator orderings τ (j) as mapped via their corresponding

utility function u(j), and treat Y as a random matrix,

p(Y|Xc,Xd,Ω), (1.3)

such that sorting each row y(j) results in the evaluation ranking or preference ranking
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τ (j) over all designs. In other words, each element of the matrix Y is an instance of

Equation (1.2). Like its analogous single evaluator formulation, Equation (1.3) is a

general probabilistic equation for the crowd’s utility function, one which generalizes

the five research chapters in this dissertation. At the same time, this equation again is

uninformative alone, as all the differences between various models are due to various

random factors within Ω; for example, Ω may include random variables which tie

together all evaluators at the crowd level.

What is different now, compared to the single evaluator case, is that we have

access to a number of other customers or evaluators whose preferences or evaluations

we may leverage. In this view, there are two major approaches amongst crowdsourcing

aggregation methods: (1) Content-based aggregation, in which we are explicitly using

known customer Xc and design variables Xd when inferring utility values Y, or (2)

collaborative filtering, in which we only use values in Y as computed from preferences

or evaluations, though sometimes implicitly inferring the unknown customer Xc and

design variables Xd.

Collaborative filtering tends to perform better purely from a prediction accuracy

standpoint, as it abstracts away the customer and design variables and instead uses

unknown but relevant features. This is not a paradox, in that we are not doing better

from a prediction accuracy standpoint with less information (i.e., no knowledge of

customer Xc and design variables Xd); instead, this is due to the type of prediction

problems collaborative filtering is applied to. Specifically, collaborative filtering works

well with a large number of previously observed data indicating preferences or eval-

uations for the same customer. Examples include music recommendation or search

engine queries, in which even for a single customer or evaluator, a large number of

previous “upvotes” or “downvotes” or “chosen web link out of a ranked search” is

available. Collaborative filtering is able to look at other customers with similar pat-

terns of “upvotes” and “downvotes” to predict overall utility values Y and ultimately
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ranked permutation τ (j) of designs (in this case songs), without knowing anything

about the customer Xc (e.g., age, gender, culture) or design Xd (e.g., melodic pat-

terns, drum beat styles). In this manner, collaborative filtering acts as a “black box”

preference or evaluation function, which in general has limited general usefulness to

the designer.

Content-based preference or evaluation aggregation directly uses customer Xc and

design variables Xd, and consequently, has major advantages for designers due to the

fact that it is often much easier to interpret as the designer has direct access to the

underlying variables that affect preferences or evaluations. For example, the designer

may see that environmentally-conscious customers may strongly prefer vehicles that

are 4-cylinder hybrids less than 1.5 liters in displacement, and which have slow ac-

celeration. By assessing these preferences, and in particular the customer or design

variables that most influence preferences or evaluations, the designer is more able to

ultimately make actionable design decisions that positively affect the end design.

Another major reason we are interested in crowdsourcing systems built using

content-based preference or evaluation aggregation is because many real engineering

design problems simply do not have previous “upvotes” and “downvotes”–in other

words, content-based preference and evaluation aggregation is oftentimes the only

approach that works for particular engineering design tasks. For example, the au-

tomobile purchase decision is one of the most significant personal decisions a family

must make regarding both quality of life as well as personal finances. This decision

only occurs on average every 6 years, leading to the average age of vehicles on the

U.S. road at 11 years old. Moreover, one’s decision 6 years ago likely is much less

relevant than the current set of variables governing ones present life (e.g., number of

children, income, location of residence). Contrast this decision with that of search

queries on an internet search engine, or upvoting and downvoting songs you enjoy on

an online music streaming service, in which a large corpus of your previous decisions

23



is captured, decisions that are relevant due to recency and relatively-static music

preferences over this short period.

Accordingly, while we use both collaborative-filtering-based approaches (Chapters

2, 4, and 6) and content-based preference and evaluation aggregation (Chapters 3,

5), in the end we are most interested in crowdsourcing systems that use the latter

due to its usefulness for designers and resulting actionable design decisions. This

is fortuitous, as though we are currently in a period of increasingly large dataset

sizes (thus increasing the performance of both approaches), content-based aggregation

has perhaps more opportunity for research advances compared with collaborative

filtering. This is due to (1) the task-specificity of content-based aggregation, and

(2) the relatively recent advances in the number and sophistication of content-based

aggregation of preferences and evaluations. We will discuss these notions in detail

throughout the rest of this dissertation, particularly in the Chapters 3, 5, and 6.
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Name y Xc,Xd Ω M̂ Reference

Item Response

Theory
{0, 1} -

Expertise,

Difficulty,

Scaling, Bias

Logit (Lord, 1952)

Rasch Models {0, 1} -
Expertise,

Difficulty
Logit

(Rasch, 1966,

1960/1980)

Placket-Luce τ (j) - -

Rank-

Ordered

Logit

(Plackett, 1975;

Luce, 1959)

Thurstone

Model
τ (j) - -

Rank-

Ordered

Logit,

Gaussian

(Thurstone,

1927)

Conjoint

Analysis,

Discrete Choice

{0, 1} Designs - Logit
(McFadden &

others, 1973)

Dawid-Skene {0, 1} Designs

Expertise,

Difficulty via

Confusion

Matrix

Logit
(Dawid &

Skene, 1979)

Table 1.1: Seminal crowd aggregation models from the research disciplines of psycho-

metrics, econometrics, social welfare models. Note that we only give the

basic form of these models, as most of these models have extensions to

include additional terms.
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Name y Xc,Xd Ω M̂ Reference

Bayesian Truth

Serum
{0, 1} -

Common

Prior on

“Expertise”

Undefined (Prelec, 2004a)

DARE {0, 1} -

Expertise

Clusters,

Difficulty,

Expertise

Scaling

Gaussian
(Bachrach et al.,

2012b)

Instrumenting

Crowd
{0, 1} Customers -

Decision

Tree

(Rzeszotarski &

Kittur, 2011)

Raykar {0, 1} Designs

Expertise,

Difficulty via

Confusion

Matrix

Logit
(Raykar et al.,

2009)

GLAD {0, 1} -

Expertise,

Difficulty,

Adversaries

Logit

(Welinder et al.,

2010a; Whitehill

et al., 2009a)

Table 1.2: Modern crowd aggregation models from statistics and machine learning.

Note that we only give the basic form of these models, as most of these

models have extensions to include additional terms.

Seminal and Modern Crowd Aggregation Models

While there are hundreds of models of crowd aggregation that all fall under a

similar umbrella, Tables 1.1 and Table 1.2 give an overview of selected seminal works

from psychometrics, econometrics, and social welfare models, and relate these mod-

els to the general crowd aggregation model given in Equation (1.3). Most of these

26



models have seen extension to different evaluation types (e.g., rating, choice, partial

ranking), extensions to fully probabilistic Bayesian or empirical Bayesian formula-

tions, methods of parameter estimation (e.g., Markov Chain Monte Carlo (MCMC),

various loss functions; however, we only give their most basic form as introduced in

their seminal works. We similarly include modern crowd aggregation models from

statistics, machine learning, and the crowdsourcing community. Given that most of

these recent models are repeats or extensions of historic models, we choose to list

modern models that are qualitatively different from each other.

1.4 Research Gap and Dissertation Contributions

As we have seen in Section 1.2.3, there is much qualitative justification for a

crowdsourcing system to improve “good” and to catch “bad” design decisions during

the early-stage design process in an effort to mitigate cost and time overruns for the

enterprise. To build these crowdsourcing systems, we have discussed quantitative

models for crowd aggregation in Section 1.3.

While success has been shown with crowdsourcing systems within certain niches

in which a single expert designer is fully capable of outputting a complete design em-

bodiment, such as graphic design and image annotation, there is less reported success

with companies engaged in “complex” design problems. In fact, current business case

studies and academic literature report that there are significantly more unsuccessful

uses of crowdsourcing by enterprises (Chiu et al., 2014).

To gain qualitative insight to successful crowdsourcing for complex designs include,

we may look at the following examples: (1) Boeing’s concurrent engineering processes

involve creating cross-functional teams of experts from a number of relevant disciplines

to evaluate design concepts at stage-gate reviews (Klein et al., 2006); (2) IBM’s

InnovationJam used an expert crowd of 50 internally selected executives to evaluate

innovative design concepts (Bjelland & Wood, 2008; Blohm et al., 2013); and (3)
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Fiat’s Mio used its internal engineering design team to evaluate crowdsourced design

concepts (Celaschi et al., 2011a).

The observation here is that these companies have shown success with crowdsourc-

ing through the use of expert evaluators or lead uses as an ad hoc filtering mechanism

for the crowd itself, certainly not the systematic crowd aggregation methods used in

simple problems such as image annotation. In other words, a major reason crowd-

sourcing is often unsuccessful for complex designs is in the filtering of low-quality

submissions–there is often too little “signal” to “noise” in the crowd for complex de-

sign problems (Peisl et al., 2014). Instead, these successes are often only the result of

a small subset of motivated expert evaluators or lead users in a market (Chiu et al.,

2014; Dahlander & Gann, 2010).

The academic literature thus suggests that there are major practical limitations to

the usefulness of current crowdsourcing processes within companies engaged in com-

plex engineering design. In particular, the large number of low-quality submissions

results in low “signal-to-noise,” as well as the tendency for successful crowdsourcing

to be the result of just a small subset of the overall crowd with appropriate exper-

tise, leads to heterogeneity of expertise across various evaluators or customers in the

crowd.

Parallel to these qualitative findings, the academic literature is rife with mathe-

matical models of crowd aggregation for simple design tasks. As was shown in Tables

1.1 and 1.2, crowdsourced aggregation models typically do not include terms explic-

itly accounting for: (1) Variables representing the evaluators or customers themselves,

and (2) heterogeneity of expertise or preferences. If these models do include expertise,

they are applied to “simple” tasks in which a majority of the crowd is able to perform

the task, and in which “expertise” maps to attention or fatigue.

Combining the qualitative justifications for crowdsourcing systems for enterprises

engaged in complex engineering design, with the lack of quantitative models tailored
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to this case, the research gap pursued in this dissertation is:

To quantitatively investigate why the heterogeneity of evaluator expertise

and customer preferences has led to unsuccessful crowdsourcing systems,

and to develop crowd aggregation models of both objective and subjective

design decisions that mitigate these issues and lead to practical crowd-

sourcing systems for engineering design.

Our main research contribution in this dissertation, which is summarized in greater

detail in Section 7.2, is a quantitative study on the above gap across the spectrum of

objective design decisions to subjective design decisions in complex engineering de-

sign. This systematic study provides quantitative understanding why crowdsourcing

systems fail for both objective design decisions and subjective design decisions due

to the heterogeneity of evaluator expertise or customer preferences.

For objective design decisions, heterogeneity in expertise results in “consistently

wrong clusters” of evaluators that are statistically impossible to find and filter out,

thus washing out the combined crowd evaluation. For subjective design decisions,

heterogeneity in preferences results in a number of different optimal designs, which

get missed by traditional design preference models.

We develop a number of probabilistic crowd aggregation models that capture and

thus mitigate heterogeneity in the crowd, and contribute to practical crowdsourcing

systems for engineering design.
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Figure 1.6: Spectrum of heterogeneity for a given objective or subjective design de-

cision. The left-hand end is the case of only a very sparse minority of

the crowd having enough expertise for the given design task. In between

both extremes are various levels of expertise needed for a given design

task. The right-hand end is the case in which by definition no expertise

is needed due to individual-level preferences.

1.5 Dissertation Overview

The rest of this dissertation consists of five chapters of research findings conceptu-

ally organized as shown in Figure 1.6. The dissertation is organized by moving from

right to left on this “spectrum of expertise needed” for a given design decision. In

other words, we start with the case of a design decision that requires a very high level

of expertise to correctly evaluate, and move to the case in which the design decision

requires no expertise by definition.

Chapter 2 models the crowd aggregation process by including evaluator exper-

tise and design difficulty, in a manner qualitatively similar to many of the models

in Tables 1.1 and 1.2. We show that these models fail even for “simple” engineer-

ing design tasks due to the relative sparsity of expertise in the crowd. Chapter 3
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attempts to find discriminative information to identify experts in a crowd of experts

and non-experts, such that non-experts may be filtered out for a better crowd aggre-

gation. We show that many evaluator variables such as demographics, reaction times,

and benchmark mechanical skills tests fail to predict expertise; instead, evaluation

expertise is predicted by performance on an“easy” version of the actual “hard” engi-

neering design task. Chapter 4 moves to the case in which the design task consists

of multiple clusters of “expertise,” specifically brand recognition, in which we now

filter out non-experts. Chapter 5 examines the case of a single crowd-level preference,

namely, the visual realism of designs generated using an algorithm. Chapter 6 finally

deals with the case in which no expertise is needed for the design task by definition,

in which the heterogeneity of every customer is modeled as everyone is an expert

of their own individual-level preferences. Chapter 7 concludes by summarizing key

takeaways, contributions to engineering design, and opportunities for future work.
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CHAPTER II

Why does Crowdsourcing Fail for Objective

Evaluations?

2.1 Context: Do current crowdsourcing aggregation models

work for engineering design?

Suppose we wish to evaluate a set of vehicle design concepts with respect to

attributes that have objective answers. For many of these objective attributes, the

“true score” may be determined using detailed physics-based simulations, such as

finite-element analysis to evaluate crashworthiness or human mobility modeling to

evaluate ergonomics; however, for some objective attributes such as maintainability,

physics-based simulation is difficult or not possible at all. Instead, these objective

attributes require human input for accurate evaluation.

To obtain evaluations over these objective attributes, one may ask a number of

specialists to evaluate the set of vehicle design concepts. This assumes the requisite

expertise is imbued within this group of specialists. Oftentimes though, the expertise

to make a comprehensive evaluation is instead scattered over the “collective intelli-

gence” of a much larger crowd of people with diverse backgrounds (Hong & Page,

2004b).

Crowdsourced evaluation, or the delegation of an evaluation task to a large and
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possibly unknown group of people through an open call (Estellés-Arolas & González-

Ladrón-de Guevara, 2012; Gerth et al., 2012), is a promising approach to obtain such

design evaluations. Crowdsourced evaluation draws from the pioneering works of

online communities, such as Wikipedia, which have shown that accuracy and com-

prehensiveness are possible in a large crowdsourced setting requiring expertise. Al-

though crowdsourcing has seen recent success in both academic studies (Kittur et al.,

2008) and industry applications (Von Ahn et al., 2008; Warnaar et al., 2012), there

are limited reference materials on the use of crowdsourced evaluation for engineering

design.

In this chapter, we explore how the expertise of evaluators in the crowd affects

crowdsourced evaluation for engineering design, where expertise is defined as the

probability that a evaluator gives an evaluation close to the design’s true score. The

choice of exploring expertise comes from an important lesson in managing success-

ful online community efforts, namely, the need to implement a systematic method

of filtering “signal” from “noise” (Ipeirotis & Paritosh, 2011). In a crowdsourced

evaluation process, this manifests itself as a need of screening good evaluations from

bad evaluations, in particular when we are given a heterogeneous crowd made up of a

mixture of expert and non-expert evaluators. In this case, averaging evaluations from

all participants with equal weight will reduce the accuracy of the crowd’s combined

evaluation, also called the crowd consensus (Sheshadri & Lease, 2013a), due to incor-

rect design evaluations from low-expertise evaluators. Accordingly, a desirable goal

is to identify the experts from the rest of the crowd, thus allowing a more accurate

crowd consensus by giving their evaluations more weight.

With this goal in mind, we developed and benchmarked a crowd consensus model

of the crowdsourced evaluation process using a Bayesian network that does not require

prior knowledge of the true scores of the designs or the expertise of each evaluator in

the crowd, yet still aims to estimate accurate design scores by identifying the experts
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within the crowd and overweighting their evaluations. This statistical model links

the expertise of evaluators in the crowd (i.e., knowledge or experience for the design

being evaluated), the evaluation difficulty of each design (e.g., a detailed 3D model

provides more information than a 2D sketch and may therefore be easier for an expert

to evaluate accurately), and the true score of each of the designs. It must be noted

that this model relies only on evaluations from the crowd; i.e., we do not explicitly

measure expertise or difficulty; these variables are latent and only implicitly inferred.

This crowd consensus model rests on the key assumption that low-expertise eval-

uators are more likely to “guess,” and are thus more likely to give random evaluations

to designs. This assumption is modeled by defining an evaluation as a random vari-

able centered at the true score of the design being evaluated (Nunnally & Bernstein,

2010). A graphical representation of the Bayesian network showing these relationships

is given in Figure 2.2.

The performance of the Bayesian network crowd consensus model versus the base-

line method of averaging evaluations is explored through two studies on the same

“simple” engineering design evaluation task of rating the strength of a load-bearing

bracket (Papalambros & Shea, 2005). First, we created simulated crowds to generate

evaluations for a set of designs. These crowds had a homogeneous or heterogeneous

expertise distribution, representing two cases that may be found in a human crowd.

Second, we used a human crowd recruited from the crowdsourcing platform Amazon

Mechanical Turk (Amazon, 2005), and performed a crowdsourced evaluation with the

same crowd and task properties as in the simulation.

Our results show that we are not able to achieve a more accurate design evaluation

using the crowd consensus model than just averaging all evaluations. Even for the

simple engineering design evaluation task in this chapter, the modeling assumption

that low-expertise evaluators guess more randomly was found not to hold. Upon

further investigation, it was found that there exist numerous clusters of “consistently
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wrong” evaluators that wash out the evaluations from the cluster of experts.

The main contribution of this chapter is this finding; namely, that crowdsourced

evaluation can fail for even a simple engineering design evaluation task due to the

expertise distribution of the crowd. Averaging already gives a low-accuracy estimate

of design scores due to the large number of low-expertise evaluators, and a crowd

consensus model relying only on information about evaluations may not be able to

find the experts in the crowd. This chapter thus serves as justification for further

research into methods of finding experts within crowds, particularly when they are

shrouded by numerous clusters of consistently wrong non-experts.

The remainder of this chapter is organized as follows. Section 2.2 reviews relevant

research within the engineering design, psychometrics, and crowdsourcing literature,

as well as research motivations from industry. Section 2.3 presents the Bayesian net-

work crowd consensus model and modeling assumptions. Section 2.3 details the sta-

tistical inference scheme of the Bayesian network. Section 2.4 describes the simulated

crowds experiment and results. Section 2.5 describes the human crowd experiment

and discusses its results. We conclude in Section 2.8 with implications of this work

and opportunities for future research.

2.2 Related Work

Within the engineering design community, attention is being drawn to the use

of crowdsourcing for informing design decisions (Van Horn et al., 2012). Design

preferences have been captured using crowdsourced data on social media sites (Tuarob

& Tucker, 2013; Stone & Choi, 2013), as well as through more directed crowdsourced

elicitation using online surveys for preference learning (Ren & Papalambros, 2012a;

Ren et al., 2013b). Our work differs from these works in that we focus on design

evaluation with an objective answer, thus necessitating the estimation of evaluator

expertise. Within design evaluation for objective attributes, recent research has used
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crowdsourcing for idea evaluation (Kudrowitz & Wallace, 2013; Grace et al., 2014)

and creativity evaluation (Fuge et al., 2013). There also exists much research studying

the effect of a single decision maker versus crowd consensus decisions (Yang, 2010;

Gurnani & Lewis, 2008). Our work is relevant to these research efforts in that we

extend previous findings of the potential limitations of using the entire crowd for

design evaluation.

Modeling the crowdsourced evaluation process exists in the literature extending

at least back to Condorcet (de Caritat et al., 1785), with foundational contributions

from the psychometrics community under Item Response Theory (Lord, 1980) and

Rasch Models (Rasch, 1960/1980). These models have been applied to standardized

tests, with several extensions to include hierarchical structure (Oravecz et al., 2013)

similar to the crowd consensus model in this work. Additional foundational literature

from econometrics includes “mechanism design” such as prediction markets and peer

prediction (Miller et al., 2005; Prelec, 2004b). For simplicity, we do not consider im-

portant findings and approaches from this econometrics literature, instead assuming

all evaluators give truthful evaluations and are similarly incentivized by a fixed-sum

payment.

More recently, the crowdsourcing community has developed numerous crowd con-

sensus models capturing the expertise of evaluators in a crowdsourced evaluation

process (Sheshadri & Lease, 2013a). Many of these models are qualitatively simi-

lar, with differences in the treatment of evaluator bias (Wauthier & Jordan, 2011;

Bachrach et al., 2012a; Welinder et al., 2010b), form of the likelihood function (e.g.,

ordinal, ranking, binary) (Lakshminarayanan & Teh, 2013), extent to which the true

score is known (Tang & Lease, 2011), and methods of scaling up to larger data sets

(Welinder et al., 2010b; Liu et al., 2012). These models are most often applied to

tasks that are “human easy, computer hard,” such as image annotation (Whitehill

et al., 2009b; Welinder et al., 2010b), planning and scheduling (Kim et al., 2013),
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and natural language processing (Snow et al., 2008; Zaidan & Callison-Burch, 2011).

Our research is also qualitatively similar to this literature, but with a key difference

on the application to an engineering design task and the subsequent distribution of

expertise in the crowd.

Specifically, many of these recent crowdsourced evaluation efforts are applied to

tasks in which a majority of evaluators within the crowd have the expertise to give

an accurate evaluation (e.g., does this image contain a ’duck’?) (Sheshadri & Lease,

2013a). As a result, either averaging or taking a majority vote of the crowd’s eval-

uators is often already quite accurate (Sheng et al., 2008a). For these cases, ex-

pertise may often represent the notion of task consistency and attentiveness, with

low-expertise evaluators being more spammy or malicious (Welinder et al., 2010b).

In contrast, many engineering design tasks may require expertise that only ex-

ists in a sparse minority of the crowd. This notion is supported by prior industrial

applications of crowdsourced evaluation for engineering design. The Fiat Mio was

a fully crowdsourced vehicle design concept, yet the large number of low-expertise

submissions resulted in Fiat using its design and engineering teams as a filter without

the use of algorithmic assistance (Celaschi et al., 2011b). Local Motors Incorporated

developed the Rally Fighter using a crowdsourced evaluation system similar to this

research, but heavily weighted evaluations of the internal design team (Bommarito

et al., 2011). For these engineering design tasks, the notion of expertise may in-

stead represent specialized knowledge and heuristics necessary to give an accurate

evaluation.

2.3 A Bayesian Network Model for Crowd Aggregation

We introduce a crowd consensus model that statistically aggregates the evaluations

from the set of evaluators using a Bayesian network to estimate the true design scores.

More formally, let the crowdsourced evaluation contain D designs and P evaluators.
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Figure 2.1: Graphical representation of the Bayesian network crowd consensus model.
This model describes a crowd of evaluators making evaluations rpd that
have error from the true score Φd. Each evaluator has an expertise ap and
each design has an difficulty dd. The gray shading on the evaluation rpd
denotes that it is the only observed data for this model.

We denote the true score of design d as Φd ∈ [0, 1], and the evaluation from evaluator

p for design d as R = {rpd} where rpd ∈ [0, 1]. Each design d has an evaluation

difficulty dd, and each evaluator p has an evaluation expertise ap.

The evaluation rpd is modeled as a random variable following a truncated Gaussian

distribution around the true performance score Φd as detailed by Eq. (2.1) and shown

in Figure 2a.

rpd ∼ Truncated-Gaussian
(
Φd, σ

2
pd

)
, rpd ∈ [0, 1] (2.1)

The variance of density σ2
pd is interpreted as the error an evaluator makes when

using his or her cognitive processes while evaluating the design, and is described by

a random variable taking an Inverse-Gamma distribution:
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Figure 2.2: (a) Low evaluation expertise (dashed) relative to the design evaluation
difficulty results in an almost uniform distribution of an evaluator’s eval-
uation response, while high evaluation expertise (dotted) results in eval-
uators making evaluations closer to the true score. (b) An evaluator’s
evaluation error variance σ2

pd as a function of that evaluator’s expertise
ap given some fixed design difficulty dd and crowd-level parameters θ and
γ.

σ2
pd ∼ Inverse-Gamma (αpd, βpd) (2.2)

The average evaluation error for a given evaluator on a given design is a function

of the evaluator’s expertise ap and the design’s difficulty dd. In addition, this function

is sigmoid to capture the notion that there exists a threshold of necessary background

knowledge to make an accurate evaluation. Figure 2b illustrates this function. We set

the first requirement on the evaluator’s error random variable using the expectation

operator E in Eq. (2.3).

E
[
σ2
pd

]
=

1

1 + eθ(dd−ap)−γ
(2.3)

The random variables θ and γ are introduced as model parameters to allow more

flexibility in modeling evaluation tasks and are assumed to be the same for all evalu-

ators and designs: A high value of the scale parameter θ will sharply bisect the crowd

into good evaluators with negligible errors and bad evaluators that evaluate almost
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Case Type of Crowd Varied Parameter Figure # Sim. Crowds

I Homogeneous Crowd Avg. Crowd Expertise 4 250
II Heterogeneous Crowd Var. Crowd Expertise 5 250

Figure 2.3: Crowd expertise distributions for Cases I and II that test how the exper-
tise of evaluators within the crowd affect evaluation error for homogeneous
and heterogeneous crowds, respectively. Three possible sample crowds are
shown for both cases.

randomly; the location parameter γ captures evaluation losses intrinsic to the system,

such as those stemming from the human-computer interaction.

Next, the variance V of the evaluator error is considered constant, capturing the

notion that, while we hope the major variability in the evaluation error to be captured

by Equation ((2.3)), other reasons exist to spread this error, represented by constant

C in Equation ((2.4)).

V
[
σ2
pd

]
= C (2.4)

Following the requirements given by Eq. (2.3) and (2.4), we reparameterize the

Inverse-Gamma of Eq. (2.2) to obtain Eq. (2.5) and (2.6).

αpd =
1

C (1 + eθ(dd−ap)−γ)
2 + 2 (2.5)

βpd =

(
1

eθ(dd−ap)−γ

)(
1

Ce2θ(dd−ap)−2γ
+ 1

)
(2.6)
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The hierarchical random variables of the evaluator’s evaluation expertise ap and

the design’s evaluation difficulty dd are both restricted to the range [0,1]. We let their

distributions be truncated Gaussians with parameters µa, σ
2
a, µd, σ

2
d set globally for

all evaluators and designs as shown in Eq. (2.7) and (2.8).

ap ∼ Truncated-Gaussian
(
µa, σ

2
a

)
, ap ∈ [0, 1] (2.7)

dd ∼ Truncated-Gaussian
(
µd, σ

2
d

)
, dd ∈ [0, 1] (2.8)

The probability densities over θ and γ are assumed as Gaussian with parameters

µθ, σ
2
θ , µγ, σ

2
γ as shown in Eq. (2.9) and (2.10).

θ ∼ Gaussian
(
µθ, σ

2
θ

)
(2.9)

γ ∼ Gaussian
(
µγ, σ

2
γ

)
(2.10)

Finally, by combining all random variables described in this section, we obtain

the joint probability density function shown in Eq. (2.11).

p (a,d,Φ,R, θ, γ) = (2.11)

p(θ)p(γ)
P∏
p=1

p(ap)
D∏
d=1

p(rpd|ap, dd, θ, γ,Φd)p(dd)p(Φd)

Note that all hyperparameters are implicitly included.
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Estimation and Inference of the Bayesian Network

The Bayesian network crowd consensus model is built upon the following random

variables: Evaluators’ expertises {ap}Pp=1, designs’ difficulties {dd}Dd=1, true scores of

designs {Φd}Dd=1, and parameters θ, γ, µa, σ
2
a, µd, σ

2
d. This section explains the

settings for inferring the random variables and estimating the parameters using the

observed evaluations of the evaluators R = {rpd}p=1,...,P ;d=1,...,D.

Two techniques are used in sequence. Maximum a posteriori estimation is per-

formed using Powell’s conjugate direction algorithm (Powell, 1964), a derivative-free

optimization method, to get initial estimates of the parameters that maximize Equa-

tion ((2.11)). These point estimates are then used to initiate an adaptive Metropolis-

Hastings Markov Chain Monte Carlo (MCMC) algorithm (Haario et al., 2001; Gelfand

& Smith, 1990; Patil et al., 2010) that determines the estimates of all unknown pa-

rameters and infers posterior distributions of the random variables. The posterior

sample size of the single-chained MCMC simulation is set to 2x105, thinned by a

factor of 2, with the first half discarded as burn-in.

2.4 Simulated Crowds Experiment

We now conduct an experiment to assess how the expertise distribution of the

crowd affects the crowdsourced evaluation process using Monte Carlo simulations.

There are two main goals of this experiment. First, we want to understand how crowds

made up of different mixtures of high and low-expertise evaluators affect the crowd’s

combined scores of designs and the subsequent evaluation error from the true scores of

the designs. Second, we want to understand the performance differences between the

Bayesian network and by Averaging. Specifically of interest are the conditions under

which the Bayesian network is able to find the subset of high-expertise evaluators

within the crowd so that it can give greater weight to their responses.
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There are two crowd expertise distribution cases we test, as shown in Figure 2.3.

Case I is that of a homogeneous crowd, where all evaluators making up the crowd

have similar expertise. The varied parameter in the homogeneous case is the average

expertise of the crowd, thus testing the question: How well can a crowd perform if

no individual evaluator can evaluate correctly or, alternatively, if every evaluator can

evaluate correctly? Case II is that of a heterogeneous crowd, where the crowd is made

up of a mixture of high and low-expertise evaluators. In this case, we fix the average

expertise of the crowd to be low, so that most evaluators cannot evaluate designs

correctly. Instead, the varied parameter in the heterogeneous case is the variance of

the crowd’s expertise distribution. This tests the question: How well can a crowd

perform as a function of its proportion of high-expertise to low-expertise evaluators?

The procedure for these experiments is to use the Monte Carlo simulation en-

vironment to: (1) Generate a crowd made up of evaluators with expertise drawn

from the tested expertise distribution (Case I or II), and a set of designs with true

scores unknown to the crowd; (2) simulate the evaluation process by generating a

rating between 1 and 5 that each evaluator within the crowd gives to each design; (3)

combine the evaluator-level ratings into the crowd’s combined score for each design

using either the Bayesian network or by Averaging; and (4) calculate the evaluation

error between the true scores of the designs and the combined scores from either the

Bayesian network or by Averaging.

The simulation setup for these experiments consisted of 60 evaluators per crowd, as

well as eight designs with scores drawn uniformly from the range [0,1] and evaluation

difficulties {dd} set at 0.5 for all designs. The evaluation process for each evaluator is

to rate all eight designs in the continuous interval [1,5] according to a deterministic

equation given by the right hand side of Equation (3), with the location parameter

γ set at 0 and the scale parameter θ set at 0.1. After the crowd’s combined scores

are obtained, either by the Bayesian network or by Averaging, the evaluation error
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Figure 2.4: Case I: Design evaluation error from the Averaging and Bayesian network
methods as a function of average evaluator expertise for homogeneous
crowds. This plot shows that, when dealing with homogeneous crowds,
aggregating the set of evaluations into the crowd’s consensus score only
sees marginal benefits from using the Bayesian network around 0.4 to 0.7
range of evaluator expertise.

between the combined scores Φ̂d and the true scores is calculated using the mean-

squared error (MSE) metric as shown in Equation ((2.12)).

MSE =
1

D

D∑
d=1

(
Φ̂d − Φd

)2
(2.12)

The results of Case I are shown in Figure 2.4. Each data point represents a

distinct simulated crowd with average expertise given on the x-axis, and associated

design evaluation error between the overall estimated score and the true scores on the

y-axis. All crowds in Case I were generated using the same narrow crowd expertise

variance σa = 0.1 to create homogeneous crowds. The results show that if the aver-

age evaluator expertise is relatively high, both Averaging and the Bayesian network
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perform similarly with small design evaluation error. In contrast, when the average

expertise is relatively low, neither Averaging nor the Bayesian network can estimate

the true scores very well. Note that around an average evaluator expertise of 0.4 to

0.7, the Bayesian network performs marginally better than Averaging.

This observation agrees with intuition. A group of evaluators where “no one has

the expertise” to evaluate a set of designs should not collectively have the expertise

to evaluate a set of designs just by changing the relative weightings of evaluators

and their individual evaluation responses upon combination when determining the

crowd’s combined score. Similarly, a group of evaluators where “everyone has the

expertise” to evaluate a set of designs should perform well regardless of the relative

weighting between evaluators. The key result for Case I is this: When the crowd has

a homogeneous distribution of evaluator expertise, it does not significantly matter

which weighting scheme one assigns between various evaluators and their evaluations;

the Bayesian network and Averaging will perform similarly to each other.

The results of Case II are shown in Figure 2.4. Contrary to Case I, distinct

crowds represented by each data point have on average the same expertise µa = 0.2.

Moving right along the x-axis designates crowds with increasingly higher proportions

of high-expertise evaluators within the crowd. We observe that the Bayesian net-

work performs much better than Averaging after a certain point on the x-axis; the

point where a sufficient number of high-expertise evaluators is contained within the

crowd. Under these conditions, the Bayesian network identifies the small group of

experts from the less competent crowd and weighs their evaluation more than the

rest, thus leading to combined scores much closer to the true scores of the designs.

This observation is not present when the crowd does not have the sufficient number

of high-expertise evaluators within the crowd. When this occurs, as is shown on the

left side of the x-axis, the situation of “no one has the expertise” is recreated from

Case I.
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Figure 2.5: Case II: Design evaluation error over a set of designs for a mixed crowd
with low average evaluation expertise. With increasing crowd variance of
expertise there is an increasingly higher proportion of high-expertise eval-
uators present within the crowd. This leads to a point where the Bayesian
network is able to identify the cluster of high-expertise evaluators, upon
which evaluation error drops to zero.

In summary, we created simulated crowds to test the influence of crowd expertise

on the crowdsourced evaluation process. Two cases were tested, representing homo-

geneous and heterogeneous expertise distributions. Under the modeling assumptions

described in Section 2.3, we find that: (1) When the crowd is homogeneous, it does

not matter what weighting scheme is used, as both Averaging and the Bayesian net-

work give similar results; (2) when the crowd is heterogeneous, the Bayesian network

is able to output the crowd’s combined score much closer to the true scores under the

condition that a sufficient number of “expert” evaluators exist within the crowd.
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Figure 2.6: (a) Boundary conditions for bracket strength evaluation, (b) the set of all
eight bracket designs

2.5 Human Crowd Experiment

In this section we test the performance of the Bayesian network crowd consensus

model as compared with Averaging using an engineering design evaluation task and a

real human crowd. The evaluation task was chosen to be a “simple” classic structural

design problem for a load-bearing bracket (Papalambros & Shea, 2005), in which

evaluators are asked to rate the capabilities of bracket designs to carry a vertical load

as shown in Figure 2.4.

Participants

The human crowd consisted of 181 evaluators recruited using the crowdsourcing

platform Amazon Mechanical Turk (Amazon, 2005). For the bracket designs, eight

bracket topologies were generated using the same amount of raw material. The defor-

mation induced by tensile stress upon vertical loading of each bracket was calculated

in OptiStruct (Schramm et al., 1999). The strength of a bracket was defined as the

amount of deformation under a common load, and was subsequently scaled linearly

between 1 and 5 as labeled in Figure 2.4. The scaled strength values were consid-

ered as the true scores, which were later used to calculate evaluation errors from the

estimations from either the Bayesian network or Averaging methods.
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Procedure

The evaluation process for each evaluator was as follows: The eight bracket de-

signs were first presented all together to the evaluator, who was then asked to review

these designs to get an overall idea of their strengths. After at least 20 seconds,

the evaluator was allowed to continue to the next stage where the designs were pre-

sented sequentially and in random order. For each design, the evaluator was asked

to evaluate its strength using a rating between 1 and 5, with 1 being “Very Weak”

and 5 “Very Strong.” To gather these data, a website with a database backend was

set up that recorded when an evaluator gave an evaluation to a particular bracket

design(University of Michigan - Optimal Design Laboratory, 2013).

Data analysis

A preprocessing step was carried out before the data were fed into either the

Bayesian network or Averaging crowd consensus methods. Specifically, since some

evaluators would give ratings all above 3 while some others tended to give ratings all

around 3, all evaluations were linearly rescaled to a range of 1-5. It should be noted

that while this mapping ensures that everyone gives ‘1’s and ‘5’s, it does not help

to remove nonlinear biases in between an evaluator’s most extreme evaluations. To

calculate design evaluation error, the same mean-squared error metric was used as in

the simulated crowd experiment and as given in Equation ((2.12)).

2.6 Results

The Bayesian network crowd consensus model did worse than Averaging when

estimating the true scores of the bracket designs as shown in Table 2.1.

According to the simulation results, the Bayesian network can only do worse than

Averaging if it is not able to find the experts in the crowd. This could happen under
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Design Evaluation Error (std.)
Averaging 1.001 (N/A)

Bayesian Network 1.728 (0.006)

Table 2.1: Mean-squared evaluation error and standard deviation from entire human
crowd using Averaging and Bayesian network estimation.

either of the following two situations: (1) The modeling assumption made in Section

2.3 holds, namely, that low-expertise evaluators are less consistent (more random) in

their evaluations, but there are just no high-expertise evaluators; (2) the modeling

assumption is violated, in that there exist low-expertise evaluators consistently wrong

in their evaluations. In this situation, the Bayesian network crowd consensus model

would mistakenly identify evaluators as having high expertise due to their consistency

and overweigh their incorrect evaluations.

Visualizing the crowd’s expertise distribution

We now show that situation (2) above has occurred; namely, there are indeed

“consistently wrong” evaluators that exist in the human crowd. To show this, we

cluster the eight-dimensional human evaluation data to find clusters of similar eval-

uators, and then flatten these clustered data to two dimensions for visualization.

This clustering finds groups of evaluators who give consistent evaluation, regardless

of whether such evaluations are correct or incorrect. In other words, members of

a cluster were consistent in their evaluations not necessarily to the right or wrong

answer, but consistent to others in the cluster.

The clustering algorithm we used is density-based and uses the Euclidean dis-

tance metric to identify clusters of evaluators who gave similar evaluations (Ester

et al., 1996). This clustering method was chosen as it can account for varying clus-

tering sizes, as well as not necessitating that every evaluator belong to a cluster. The

flattening from eight dimensions to two dimensions was done using metric multidi-

mensional scaling.
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Figure 2.7: Clustering of evaluators based on how similar their evaluations are across
all eight designs. Each black or colored point represents an individual
evaluator, where colored points represent evaluators who were similar to
at least 3 other evaluators, and black points represent evaluators who
tended to evaluate more uniquely.

We see in Figure 2.6 that five clusters of similar evaluators were found, while Table

2.2 gives the evaluation error of each cluster. We find that the cyan cluster is made

up of high-expertise “expert” evaluators, as evidenced by their evaluation error. In

contrast, the other four clusters were “consistently wrong” in their evaluations.

This analysis suggests that finding expert evaluators through an open call is pos-

sible even for a task like structural design, in which expertise is sparsely distributed

through the crowd. However, while the Bayesian network crowd consensus is a the-

Cluster Color Design Evaluation Error

Blue 1.415
Cyan “Experts” 0.544

Red 1.652
Green 2.203

Magenta 6.031

Table 2.2: Mean-squared evaluation errors from the 5 clusters of similarly evaluators.
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oretical way to identify these evaluators, its application in reality is limited by the

fact that there exist other (more numerous) clusters of evaluators who are just as

consistent yet wrong in their evaluations.

2.7 Additional experiments to assess what went wrong?

For completeness of the human crowd experiment, we conducted three follow-

up experiments to capture the differences between the simulated crowd assumptions

and results, and the human crowd results. The first follow-up experiment augments

the human crowd data with simulated experts, in order to offset the “consistently

wrong” evaluators with a larger cluster of experts. The second follow-up experiment

tests the effect of removing the “consistently wrong” evaluators from the human

crowd experiment. The third follow-up experiment remains entirely in simulation,

and shows that the existence of enough “consistently wrong” evaluators will also

cause the Bayesian network crowd consensus to fail to find experts in simulation as

well, thus mimicking the results of the human experiment.

2.7.1 Human crowd augmented with simulated experts

We show in Figure 2.8 how the design evaluation error would be reduced if extra

expert evaluators, i.e., evaluators with evaluations exactly the same as true scores,

were collected in addition to the original 181 evaluators from the human experiment.

Notice that the error should be reduced monotonically as the number of experts

increases. However, the stochastic nature of the estimation process of a Bayesian

network could cause sub-optimal estimations. Similar to the simulations in Figure

2.4, one can observe the phase-changing phenomenon in the change of the design

evaluation error. This phase change represents when the Bayesian network is indeed

able to find the experts in the crowd. Notice that although adding 10 additional

experts does not make a majority of the crowd as expert, it is sufficient for the
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Figure 2.8: Design evaluation error with respect to additional experts.

Bayesian network crowd consensus model to locate the experts and subsequently

overweigh their evaluations.

2.7.2 Human crowd with “consistently wrong” evaluators removed

We address how removing the “consistently wrong” evaluators affects the crowd’s

evaluation error, in which the “consistently wrong” evaluators are those found by

clustering as shown in Figure 2.6. As reference, averaging the evaluations of the

entire crowd results in a mean-squared error of 1.001 as given earlier in Table 1.

Removing the “consistently wrong” evaluators resulted in a worse evaluation er-

ror at 1.228 than averaging the entire crowd. This finding suggests that either the

“consistently wrong” evaluators are not as wrong as the non-consistent non-experts

(i.e., the humans that were not clustered as represented black dots in Figure 2.6), or

that non-expert evaluation errors at the design level tend to cancel each other out.

It is found that indeed evaluation errors are being canceled at the design level.
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Figure 2.9: Design evaluation error with respect to the proportion of the expert group.

This is suggested by finding that the evaluation error of only the non-consistently

wrong (black dots) is 1.339, while the evaluation error of both the consistent and non-

consistently wrong (i.e., all but the experts) is 1.060. Note that the non-consistently

wrong evaluators have an average evaluation error lower than that of any of the

“consistently wrong” evaluators.

This analysis suggests that it is not sufficient, at least as far as this sample goes,

to use the Bayesian network crowd consensus model to identify “consistently wrong”

evaluators and simply omit them from the evaluation task. While their evaluations

may obscure identification of the experts, they may be useful as they may be also

canceling out errors from other evaluators.

2.7.3 Simulated crowd with “consistently wrong” evaluators

In this scenario, we tested a set of simulations in which the crowd contained two

clusters of evaluators. One cluster, the “experts”, can always evaluate correctly; the
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other cluster is almost the same, except that evaluators in this cluster always rate

one design consistently wrong by 0.5. We vary the crowd proportion of “consistently

wrong” evaluators from 100% to 0% and calculate the corresponding evaluation errors

as shown in Figure 2.7.2. While the error from Averaging changes linearly with

respect to the proportion, that from the Bayesian network takes only two phases.

The result mimics what we saw with the human experiment; the Bayesian network

simply considers one of the clusters as the experts based on the cluster size and spread,

regardless of whether that cluster is consistently correct or consistently wrong.

2.8 Summary

Crowdsourcing is a promising method to evaluate engineering design concepts

that require human input, due to the possibility of leveraging evaluation expertise

distributed over a large number of people. For engineering design tasks, a common

characteristic of typical crowdsourced design evaluation processes is that the crowd

is composed of a heterogeneous mixture of high and low-expertise evaluators. Sim-

ply averaging all evaluations from the crowd results in inaccurate crowd consensus

scores for the set of designs, due to the large number of low-expertise evaluators.

Consequently, a key challenge in such crowdsourced evaluation processes is to find

the subset of expert evaluators in the crowd so that their evaluations may be given

more weight.

In this chapter we developed and benchmarked a crowd consensus model in the

form of a Bayesian network that aims to find the expert evaluators and subsequently

give their evaluations more weight. The key modeling assumption for this crowd

consensus model is that low-expertise evaluators tend to “guess,” resulting in more

random evaluations than expert evaluators.

We tested, using both simulated crowds and a human crowd, how the Bayesian

network crowd consensus model performs compared to averaging all evaluations for
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a “simple” engineering design evaluation task. We showed in simulation that when

assumptions hold, the Bayesian network is able to find the experts in the crowd and

outperform averaging. However, the results of the human crowd experiment show that

we were not able to achieve a more accurate design evaluation using the Bayesian

network crowd consensus model than just averaging all evaluations. It was found

that there were numerous clusters of “consistently wrong” evaluators in the crowd,

causing the Bayesian network to believe they were the experts, and consequently

overweighting their (wrong) evaluations. These results suggest that crowd consensus

models that only observe evaluations may not be suitable for crowdsourced evaluation

tasks for engineering design, contrasting with many of the recent successes from the

crowdsourcing literature.

Crowdsourced evaluation can fail for even a simple engineering design evaluation

task due to the expertise distribution of the crowd; averaging already gives a low-

accuracy estimate of design scores due to the large number of low-expertise evaluators,

and crowd consensus models relying only on evaluations may not be able to find the

experts in the crowd. Consequently, further research is needed into practical methods

to find experts when they are only a small subset of the crowd as well as shrouded

by numerous clusters of consistent yet incorrect evaluators.

Promising avenues in this direction may be in extending crowd consensus model

to include relevant information to the engineering design evaluation task as has been

done with item features (Raykar et al., 2010), evaluator confidence (Prelec et al.,

2013), evaluator behavioral measures (Rzeszotarski & Kittur, 2011), and expertise as-

sessed over longitudinal tasks (Budescu & Chen, 2014a). Another useful direction may

be in analytic conditions for when experts in the crowd may be found (Della Penna &

Reid, 2012; Waggoner & Chen, 2013; Davis-Stober et al., 2014; Kruger et al., 2014),

possibly in the form of practical questions or tests to run before setting up an entire

crowdsourced evaluation process. While this initial step displays potential challenges
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for crowdsourced evaluation for even simple engineering design tasks, such extended

crowd consensus models are likely to benefit a multitude of research communities.
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CHAPTER III

Finding Experts in the Crowd using “Expertise

Heuristics”

3.1 Context: How do we find the experts in the crowd?

In this chapter we again consider only objective design evaluation tasks, namely,

tasks that possess a true score. For example, an objective task for the Chevrolet

Volt would be to evaluate which hybrid powertrain architecture achieves the best

fuel economy under emissions constraints (Bayrak et al., 2013a). Contrast this with

a subjective design evaluation task, such as asking a crowd of potential customers

which aesthetic styling options should be offered for the same Chevrolet Volt design

concept (Burnap et al., 2015a).

The goal of a crowdsourced design evaluation is to aggregate the set of individual

evaluations into a single combined evaluation, called the crowd consensus (Sheshadri

& Lease, 2013b), that is as close to the (unknown) true score as possible. While

methods of aggregating a number of evaluations into a single evaluation have been

studied in many communities (e.g., scoring questions for aptitude tests (Embretson

& Reise, 2013; Bachrach et al., 2012b)), as well as continually utilized in a number

of societal-level scenarios (e.g., voting for a democratically elected leader), there still

exist open challenges when aggregating design evaluations.
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As we saw in Chapter 2, a key issue that differentiates even “simple” engineering

design tasks with other evaluation tasks is the relatively sparse distribution of ex-

pertise in the crowd (Peisl et al., 2014; Burnap et al., 2015b). Oftentimes complex

engineering systems require specialized knowledge and experience for correct evalu-

ation, namely, a high level of evaluation expertise, resulting in only a minority of

experts in the crowd. This observation is supported by a number of business case

studies, in which successful design evaluations are made by small groups within the

crowd or even single evaluators (Chiu et al., 2014; Diener & Piller, 2010; Peisl et al.,

2014); it is also supported in academic studies showing that “consistent, yet wrong”

non-expert evaluators can overwhelm the relatively smaller set of “consistent, yet cor-

rect” expert evaluators resulting in a very incorrect crowd consensus (Burnap et al.,

2015b).

Accordingly, another stipulation in the present work is that we only consider dif-

ficult design evaluation tasks characterized by having a “minority of experts” in the

overall crowd. This is in contrast to the more straightforward, yet relatively more

academically researched, task of aggregating evaluations when the largest consistent

group within the crowd is actually the experts themselves (Sheng et al., 2008b; She-

shadri & Lease, 2013b). An example of such an evaluation task is image annotation,

in which a large database of unannotated images is tagged according to objects in

the image (Welinder et al., 2010a). In this case, the task is simple, and “everyone is

an expert;” performing a majority vote is sufficient to get a crowd consensus near the

true scores of the designs (Sheng et al., 2008b).

Given this overall narrowing of focus—aggregation of evaluations for objective

engineering design evaluation tasks in which the experts are in the minority—a key

challenge is to identify the experts in the crowd, such that non-experts and their

evaluations may be filtered out (Peisl et al., 2014). If engineering enterprises can suc-

cessfully filter the minority of experts from the majority of non-experts, they can then
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Figure 3.1: Overall flow of traditional crowdsourced evaluation process for an en-
gineering enterprise. The enterprise starts with a set of designs with
unknown true scores and a crowd with unknown experts. The crowd
evaluates the designs and provides a score. Traditionally during the last
step the crowd consensus is obtained by averaging all evaluations since
expertise is unknown. The correct expert evaluations can be overshad-
owed by the incorrect non-expert evaluations. This research aims to add
to the beginning of the process an additional expert identification stage to
automatically identify a crowd with known experts, such that non-experts
may be filtered out to improve the final crowd consensus evaluation.

aggregate the crowd consensus much closer to the objective true scores of the designs.

With a filtered crowd of experts, complex engineering systems enterprises could in-

corporate crowdsourced evaluation methods into stage-gate reviews, improving their

design processes and mitigating increased time and cost overruns.

Research Aim

Identifying and filtering expert from non-expert evaluators for a design stage-gate

is not a new challenge, and has been studied under various names across a number

of fields; for example: (1) Boeing’s concurrent engineering processes involve creating

cross-functional teams of experts from a number of relevant disciplines to evaluate

design concepts at stage-gate reviews (Klein et al., 2006); (2) IBM’s InnovationJam

used an expert crowd of 50 internally selected executives to evaluate innovative design

concepts (Bjelland & Wood, 2008; Blohm et al., 2013); and (3) Fiat’s Mio used its

internal engineering design team to evaluate crowdsourced design concepts (Celaschi

et al., 2011a). Common practice in these examples is that skilled managers identify
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and filter expert evaluators to create the team or crowd.

The current research aims to create automation tools for expert identification in

the crowd, to augment rather than replace the “manual” choices made by skilled

managers. We give a high-level overview of this augmented crowdsourced design

evaluation process in Figure 3.1. If expert prediction heuristics can be found, the au-

tomated filtering system can be placed at the beginning of a crowdsourced evaluation

process as shown in Figure 3.1, thus keeping existing engineering stage-gate review

workflows intact.

We conducted an experiment to automatically identify experts in the crowd. This

experiment uses a standard “simple” problem in engineering design, topology opti-

mization of a 2D bracket, where evaluators are asked to select the bracket topology

that is strongest for given boundary conditions (Antonsson & Cagan, 2005; Papalam-

bros & Chirehdast, 1990). Since we know the true score of each 2D bracket, we can

correctly identify expert evaluators based on how consistently an evaluator correctly

identifies the stronger bracket.

We provide some background in Section 3.2 and a description of the problem in

Section 3.3. A pilot study is detailed in Section 3.4, followed by the experiment

using four expertise prediction heuristics corresponding to four Research Questions

(RQ) listed below. The pilot study calibrated the 2D bracket topology evaluation

experiment and the experiment considered the following RQs:

1. Can we identify experts from evaluator demographics such as age, gender, ed-

ucation level, and performance self-critique? The hypothesis is that similar to

a resume, one can identify experts from their personal information.

2. Can we identify experts from their evaluation reaction time behavior including

average reaction time and variance in reaction time? The hypothesis here was

that experts would solve the problems more quickly resulting in shorter average

and smaller variance in reaction times.
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3. Can we identify experts from their aptitude on seemingly-related mechanical

reasoning tests? The hypothesis here is that experts would have greater aptitude

and perform better on these tests.

4. Can we identify experts on an “easy known version” of the actual “difficult

unknown” evaluation task? The hypothesis here is the same as in RQ 3, but

with a different type of test.

The results show that we are unable to identify experts using traditional heuristics

of demographics, reaction times, or seemingly-related mechanical reasoning aptitude

tests, giving negative answers to RQ 1, 2, and 3. In contrast, a positive answer to

RQ 4 was indicated.

3.2 Related Work

While the motivation for this work comes from business case studies from the open

innovation and organizational management research communities detailing successes

and failures implementing crowdsourcing processes (Huizingh, 2011; Peisl et al., 2014),

our research approach builds on studies regarding expertise within design teams from

the engineering design community, as well as more general heuristics of expertise from

the psychometrics community.

Expert Identification Heuristics

Expert identification heuristics refers to methods used to identify “experts” in

a crowd, generally using some sort of testing procedure. In this work, we examine

heuristics from studying expert and novice designers, general mechanical reasoning

aptitude tests, and correlations with evaluator demographics.

Behavioral studies of designers, particularly expert designers and their differences

from novices, have been a key focus of much design research in the last 30 years
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(Dinar et al., 2015). These studies often are involved with in-depth observation via

ethnographic studies of the representation, thinking processes, and knowledge transfer

of designers (Cross, 2004a). Much research in this direction is based on that of a single

designer. Results have found that experts are “better” at representation, in which

better is defined as level of detail and interconnectedness of current design knowledge

(Björklund, 2013; Chai et al., 2015), as well as previous knowledge as assessed through

sketch recognition (Kavakli & Gero, 2001a) and of prior knowledge modeled using

patent repositories (Fu et al., 2013a) Another major point of divergence between

experts and novices in design is experience, which lends itself to experts being more

aware of pitfalls such as design fixation (Crilly, 2015; Moreno et al., 2014).

For teams of designers, similar behavioral studies have been conducted. Yang

studied single evaluator versus group consensus evaluation, and found that while

single evaluators can make faster decisions, diverse group decisions often lead to better

outcomes (Yang, 2010). The composition of the design team has shown that diversity

leads to better designs (Lau et al., 2012), as well as inter-team communication and

“openness” (Telenko & Wood, n.d.). These studies have shown that diversity of

demographics may be important for expertise. Design thinking has been found to

be significantly different between experts and novices. Ho et al. found that experts

tended to work backwards from the solution (Ho, 2001a). Expert designers are also

found to not make “leaps” but more “hops” between analogies when traversing their

internal design representation space (Ozkan & Dogan, 2013), perhaps due to the

amount of short-term-memory required for variable design coupling (Flager et al.,

2014). When assessing ideas, expert designers may be more “breadth first” versus

“depth first” searching of the design space (Cross, 2004a) and likewise tend to quickly

prioritize design issues, while novices treat things equally (Ho, 2001a). Such factors

may be integral in design thinking and conceptual speeds during design tasks, as is

being pursued via the Applied Test of Design Skills (Shah et al., 2013).
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These various differences in design thinking and evaluation motivate us to capture

reaction times for evaluators making evaluations, as a crude proxy for certain design

thinking processes. Moreover, we ask evaluators to self-critique (also known as “meta-

knowledge”) their performance on the evaluation task. This approach has been shown

to be useful to capture expert thinking processes on other non-engineering tasks as

well, for example memorization of U.S. state capitols (Prelec & Seung, 2007; Prelec,

2004a).

Mechanical reasoning refers to innate or learned expertise in various mental tasks

such as spatial manipulation and being able to correctly intuit the dynamics of a

physical system. Many standardized tests of mechanical reasoning aptitude have

been used to asses both students and practitioners; in particular, we are guided from

previous results correlating mechanical reasoning aptitude and undergraduate student

grades in engineering design courses (Field, 2007a) and physics courses(Kozhevnikov

et al., 2007).

With respect to spatial abilities, we used the standardized Mental Cutting Test

(1939) and the Purdue Visualization of Rotations Test (Bodner & Guay, 1997; Van-

denberg & Kuse, 1978). For our dynamics tests, we follow results provided by

McKenna and Agogino (McKenna & Agogino, 2004) and Hegarty (Hegarty, 2004)

showing the use of rope and pulley dynamics, Kozhevnikov et al. for the use of a

kicked ball (Kozhevnikov et al., 2007), and Hegarty for 2D and 3D intermeshed gear

rotations (Hegarty, 2004).

3.3 Problem Formulation: Models of Expertise Prediction

In this section, we describe the “simple” engineering design evaluation task, as

well as notions of expertise and difficulty necessary to carry out experiments and

present results of our tested crowdsourced design evaluations.
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Figure 3.2: Overall flow of traditional crowdsourced evaluation process for an en-
gineering enterprise. The enterprise starts with a set of designs with
unknown true scores and a crowd with unknown experts. The crowd
evaluates the designs and provides a score. Traditionally during the last
step the crowd consensus is obtained by averaging all evaluations since
expertise is unknown. The correct expert evaluations can be overshad-
owed by the incorrect non-expert evaluations. This research aims to add
to the beginning of the process an additional expert identification stage to
automatically identify a crowd with known experts, such that non-experts
may be filtered out to improve the final crowd consensus evaluation.

Case Study: Bracket Topology Design Optimization

We used the bracket design evaluation task for all studies in this chapter(Antonsson

& Cagan, 2005; Papalambros & Chirehdast, 1990); namely, given rectangular bound-

ary conditions and a constant amount of material, which topology is able to hold the

most weight at its tip? As shown in Figure 3.3, boundary conditions are setup to se-

cure a bracket against a fixed support with the goal of optimizing a bracket topology

for supporting a tip load using a constant amount of material. This toy problem has

a very large (2ˆC, where C is the number of finite-elements) set of possible design

concepts, characterized by very nonlinear regions of bracket strength when moving

around the design space, i.e., small perturbations in bracket topology often result in

large changes in bracket tip loading strength.

We provide two example bracket design evaluation tasks in Figure 3.3. For exam-

ple, given the same amount of material, the top design is stronger than the bottom

design in Figure 3.3(b); while this comparison is not as straightforward for the bracket

pair shown in Figure 3.3(c).
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Evaluation Expertise

We assume there is a single metric of expertise for the bracket design evaluation

task. However, unlike a large body of previous work (e.g., (Bachrach et al., 2012b;

Burnap et al., 2015b; Welinder et al., 2010a)), we do not aim to explicitly estimate this

expertise as a value prescribed by some assumed metric. Instead, we define expertise

by proxy through what we are actually interested in—evaluation accuracy. Similar

to how we pretend not to know the true score of bracket designs during evaluation,

we pretend not to know who is an expert. Accordingly, we use evaluation accuracy,

or how many correct binary evaluations an evaluator makes divided by the number

of total binary evaluations, as the value of evaluation expertise.

Evaluation Difficulty

As stated in Section 3.1, one contribution of this work is the use of a controllable

evaluation difficulty during the design of experiments, thus helping to better measure

evaluator expertise by removing evaluation difficulty from the equation. Previous

studies have measured evaluator expertise while assuming all designs are equally diffi-

cult to evaluate (Dawid & Skene, 1979), or by jointly inferring design difficulty along

with evaluator expertise (Bachrach et al., 2012b), thus posing potential statistical

unidentifiability problems (Lakshminarayanan & Teh, 2013).

In this work, we algorithmically generate bracket designs and bin them into a

histogram according to their true score as measured by bracket loading strength.

These brackets are then presented in pairs to evaluators, followed by binary choice

evaluation corresponding to which bracket the evaluator believes is stronger. We

control evaluation difficulty by selecting brackets at varying “bin differences.” A pair

of brackets separated by many bins, or equivalently with very large differences in

bracket strength, is easier to evaluate than a pair of brackets from adjacent bins.

We give an example of two bracket pairs in Figure 3.3(b) and 3.3(c) showing how
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evaluation difficulty may be parameterized by bracket strength bin difference.

However, mapping evaluation difficulty to bracket bin difference must be cali-

brated. While we intuitively know that small bin differences result in a more difficult

evaluation task, and equivalently large bin differences result in an easier evaluation

task, for the purposes of the experiment, we must know what this relationship looks

like quantitatively. Consequently, we conducted a pilot study to discover this rela-

tionship. Using the results of this pilot study, a new crowd of evaluators was gathered

for the now calibrated Experiment, as will be detailed in Section 3.4.

3.4 Hypotheses and Experiments

The experiment consisted of an initial pilot study to calibrate design difficulty,

followed by an experiment consisting of 4 studies to test each of the research questions

posed in Section 3.1.

3.4.1 Pilot Study: Calibrating Design Difficulty

The goal in the pilot study is to calibrate the 2D bracket topology evaluation task.

Since we seek a controlled method of varying design difficulty, we generate bracket

topologies for various boundary conditions and calculate true scores for load perfor-

mance; thus, we can control how the magnitude and distribution of bracket design

difficulty is presented to evaluators. We generated thousands of bracket designs, ran-

domly assigned a crowd of evaluators to pairs of brackets, and let their evaluations

determine what is difficult to evaluate and what is easy to evaluate on average.

3.4.1.1 Evaluators

A total of 272 evaluators were sourced for the Pilot Study using the crowdsourc-

ing platform Amazon Mechanical Turk, in which evaluators were given a monetary

incentive for completing a predefined number of 2D bracket topology evaluation
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tasks. These evaluators were given randomly selected bracket bins for evaluation.

Accordingly, most bracket pairs clustered around probabilistically likely draws—akin

to rolling the sum of two die and rolling a 7 than either a 2 or a 12. Accordingly, for

the Pilot Study, we required evaluators see at least 6 unique bracket bin differences,

with a median bracket evaluation time between 3 and 10 seconds. This resulted in

a filtered set of 34 evaluators. This means that most of the original participants did

not see a sufficient number of unique bracket difficulties (e.g., bin difference of 3 and

4).

Note that this set of evaluators was only used for the Pilot Study to calibrate

bracket evaluation difficulty. They were not used for the Experiment as detailed in

Section 5. Moreover, bracket bin differences were forced to be uniform during the

subsequent Experiment, thus retaining the majority of evaluators in contrast with

this Pilot Study.

3.4.1.2 Designs

A total of 4,829 designs were generated according to 2D boundary conditions on

the left side as well as the lower-right tip as shown in Figure 2(a). These brackets

were generated using an open-source topology optimization software (Andreassen

et al., 2011) with an element-binning of 250 units wide and 40 units tall, 20% of the

bounding area containing mass and 80% no mass, Young’s modulus of 1.0 N/mm2,

and Poisson ratio of 0.3. To obtain variability in the bracket topologies, an additional

random boundary condition on the interior of the bracket volume was added during

the generation of each design. This random component had the same magnitude, but

a different angle than the tip boundary condition.

The true score of each of these designs was assessed via finite-element analysis

(Andreassen et al., 2011). True scores were defined as the deflection at the lower-

right tip of the bracket with a range between 2,980 and 1,238,533 and with a highly-
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skewed distribution. In order to have roughly similar numbers of brackets of various

true scores for later bracket evaluation, these bracket designs were subsampled to

obtain a uniform distribution into 10 bins. This subsampling process proceeded by

sampling 100 brackets from the first 10 bins, resulting in a total of 1,000 brackets

filtered from the original 4,829.

3.4.1.3 Procedure

A web-based interactive survey was created to collect evaluations. Evaluators first

visited a home page, where the experiment background and experiment instructions

were provided. Evaluators were told that they would be given 18 bracket design

evaluations, followed by 8 mechanical reasoning tests, followed by a demographic

survey.

After clicking the mouse to proceed to the evaluations, a randomly selected pair of

brackets was presented to the evaluator for binary comparison. For the Pilot Study,

the random selection process involved randomly selecting a bracket from a random

bin between Bin 1 and Bin 10. Bins were uniquely selected such that each bracket

pair consisted of two brackets from separate bins. The bracket difference was recorded

according to the absolute distance between the bins.

3.4.1.4 Pilot Study Results

The goal in the Pilot Study was to calibrate the evaluation difficulty for various

bracket design pairs. As shown in Figure 3.4.1.3, we found that brackets with a

“bin difference” of 1-5 result in low average crowd accuracies. Importantly, these

pilot results show that the relationship between average accuracy and bin difference

is relatively linear, suggesting our use of bin difference as a proxy for evaluation

difficulty is useful during the design of the Experiments for RQ 1, 2, 3, and 4. These

results are echoed by plotting the distribution of individual evaluator accuracies for
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Figure 3.3: Pilot study results used to calibrate bracket difficulty for design evalu-
ations in Studies 1, 2, 3, and 4. By taking the “bin difference” from
the 10 true strength bins, we show brackets that are relatively similar in
true strength are much more difficult to evaluate, as evidenced by average
crowd evaluation being close to a random guess (0.50). In contrast, large
bracket bin difference result in higher average accuracy. We thus chose
to calibrate our experiment by splitting bracket bin differences from 1-5
and 6-9, as we can see individual accuracy is symmetrically distributed
for the bin differences of 1-5.

bin difference 1-5 and 6-9. As is shown in Figure 3.4.1.3, evaluation tasks with a bin

difference between 6-9 show many evaluators get significantly above random guesses of

50% accuracy, while bin difference of 1-5 show evaluations symmetrically distributed

around an accuracy of 50%.

3.4.2 Demographics, Task Behavior, Mechanical Reasoning, and Using

an Easy Task to Predict Expertise on the Actual Hard Task

Our goal in the Experiment was to ask four research questions, corresponding to

four expertise prediction heuristics, in an attempt to filter expert evaluators from non-

expert evaluators. The four research questions assess expert identification heuristics
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using demographics, reaction times, mechanical reasoning aptitude, or an easy known

version of the hard unknown evaluation task.

3.4.2.1 Evaluators

A crowd of 398 evaluators were sourced for the Experiment. These evaluators were

different from those evaluators in the Pilot Study, thus constituting a new crowd. Fur-

ther this new crowd was used for Research Questions 1, 2, 3, and 4. The 398 evaluators

were filtered according to the same criteria used in the Pilot Study. In particular, all

participants that did not fully complete the demographics survey, or those who had a

median time bracket evaluation time less than 2 seconds or greater than 10 seconds,

were removed. After this filtering process, a total of 334 evaluators constituted the

crowd, which is a significantly greater retention ratio than were retained in the Pilot

Study.

3.4.2.2 Designs

The same set of 1,000 designs generated and subsampled for the Pilot Study, as

detailed in Section 4, was used in the Experiment.

3.4.2.3 Research Question 1 Variables: Demographics

The hypothesis tested by Research Question 1 is that demographics can be used to

identify expert evaluators for the 2D bracket evaluation task. A total of 5 demographic

variables were used in this research question: self-critique, age, gender, education

level, and whether the evaluator was an engineer. Note that all of these variables

are self-reported, and may not accurately reflect the true status of the evaluator.

These demographic variables were tested for statistically significant correlation with

evaluation expertise, and thus subsequently used for identifying experts in the crowd

to improve the crowdsourced evaluation process.
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1. The self-critique demographic variable refers to how well an evaluator felt she/he

did at evaluating bracket designs. This variable was selected as previous research

has shown self-critique may be used for identifying expertise for tasks such as

remembering U.S. state capitals (Prelec & Seung, 2007). This variable had an

integer range from 1 to 5.

2. Age refers to the number of years that the evaluator has been alive. The age

demographics variable had 5 categorical options consisting of age ranges that

were then converted to sequentially increasing integers for analysis.

3. Gender refers to the self-identified gender of the evaluator. The gender de-

mographic variable was binary, and was converted to 0 or 1. These variables

included a “Prefer not to say” option, in which case the evaluator was filtered

out.

4. Education level refers to the highest level of education an evaluator has achieved,

including currently enrolled students. This variable had 4 options: Some high

school, high school graduate, some college, college graduate, some graduate

school, and graduate school graduate. This demographic variable was converted

to sequentially increasing integers for analysis.

5. The engineer demographic variable refers to whether an evaluator was currently

working in an engineering field or was in school to be an engineer. This variable

was binary, and was converted to 0 or 1.

3.4.2.4 Research Question 2 Variables: Reaction Time

The hypothesis tested by Research Question 2 is that evaluator reaction times can

be used to identify expert evaluators for the 2D bracket evaluation task. The reaction

time, defined as the time from the when the bracket pair are presented to the time the

evaluation is submitted, was recorded. A total of 3 reaction time variables were used
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in this research question: mean evaluation time, median evaluation time, and variance

in evaluation time. These response time variables were tested with a goal of significant

correlation with evaluation expertise, and thus subsequent use for identifying experts

in the crowd to improve the crowdsourced evaluation process.

3.4.2.5 Research Question 3 Variables: Mechanical Reasoning

The hypothesis tested by Research Question 3 is that mechanical reasoning ap-

titude can be used to identify expert evaluators for the 2D bracket evaluation task.

In this research question, we attempt to identify experts by using standardized me-

chanical reasoning aptitude tests from the psychometrics and mechanical reasoning

testing communities. As detailed in Section 2, a number of studies have correlated

mechanical reasoning aptitude with engineering student success as defined by grades

(Bodner & Guay, 1997; Hegarty, 2004; Kozhevnikov et al., 2007).

We choose five categories of standardized mechanical reasoning tests: block cut-

ting, spatial rotation, gear rotation, dynamics, and a combination of all. Each of

the first 4 categories consisted of two multiple choice questions, leading to a total of

8 mechanical reasoning questions given to each evaluator. The 5th category was a

composite score of the responses from the 8 questions. We give a description of all 5

categories below, with references to their original standardized tests.

1. The Mental Cutting Test (Field, 2007b) presented evaluators with a 3D block

that was bisected with a 2D plane. Evaluators were then asked what the cor-

responding cross section of the bisected block would look like from a viewpoint

orthogonal to the cutting plane. Each block cutting test had 5 possible multiple

choice options, with only one correct answer.

2. The Purdue Visualization of Rotation test (Vandenberg & Kuse, 1978; Bodner

& Guay, 1997) presents evaluators with two 3D blocks, hereafter referred to as

Block A and Block B. Block A was rotated along multiple axis, with its new
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orientation A’ shown next to the original orientation A. Evaluators were asked

to rotate Block B with the same rotation as Block A. Overall, these tests were

of the form, “A is to A’ as B is to ?” Five possible rotations of the Block B

were provided, with only one correct answer.

3. The Gear Rotation Test showed evaluators either a 2D or 3D set of numerous

intermeshed gears. Evaluators were asked which direction the last gear would

turn after providing rotation to the first gear in the sequence. Note that inher-

ently this mechanical reasoning variable had binary options, corresponding to

either clockwise or counter-clockwise rotation.

4. The Dynamics mechanical reasoning variable consisted of two tests. The first

test asked evaluators which possible flight path would be taken for a kicked

ball (Kozhevnikov et al., 2007). This test had 5 possible options. The second

test asked evaluators which direction a pulley would spin (Hegarty, 2004), given

that it was intertwined with a number of other pulleys and masses. Similar to

the gear rotation test, this test only had binary options corresponding to either

clockwise or counter-clockwise rotation.

5. The ‘all mechanical reasoning’ variable gave a uniform combination of all four

previous mechanical reasoning variables. In other words, no new questions were

asked, just an averaging of previous mechanical reasoning test scores.

3.4.2.6 Research Question 4 Variable: Easy Known Task

The hypothesis tested by Research Question 4 is that performance on an easy

known evaluation task can be used to identify expert evaluators for the 2D bracket

evaluation task. The easy known version of the evaluation task refers to a scaled down

version of the of the hard unknown evaluation task that the engineering enterprise is

actually after. Figure 3.3(b) given an example of an easy known version as compared
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Figure 3.4: Diagram of the experiment procedure in order shown to evaluators. Three
stages comprised of bracket evaluation and expertise assessment, mechan-
ical reasoning tests, and demographic questionnaire were presented in
sequential order. Within each stage, evaluation pairs or tests were pre-
sented randomly. The corresponding research question for each stage is
highlighted in red.

to an example of the hard unknown evaluation task given in Figure 2(c). In other

words, we selected only brackets with bracket difficulty with bin difference greater

than 6 as shown in Figure 3.4.1.3. The evaluator accuracy on the easy known ver-

sions of the bracket evaluation task acted as a single variable for predicting evaluator

expertise.

Experimental Procedure

We use the same crowd for all four research questions in the Experiment, and

give a high-level overview of the procedure in Figure 3.4.2.6. A web-based interactive

survey was created to collect evaluations. Evaluators first visited a home page, where

the experiment background and experiment instructions were given. Evaluators were

told that they would be given 18 bracket design evaluations, followed by 8 mechanical

reasoning tests, followed by a demographic survey.

After clicking the mouse to proceed to the evaluations, a randomly selected pair of

brackets was presented to the evaluator for binary comparison. For the Pilot Study,

two brackets selected randomly from the 10 bins were presented. In the Experiment,

however, each bracket pair consisted of two brackets from separate bins. Within each
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bracket pair, one bracket design was from either Bin 1 or Bin 10. The evaluation task

difficulty was recorded as the absolute distance between the bins. Always selecting

one of bracket from either bin 1 or bin 10 ensured that the distribution of evaluation

difficulties was relatively uniform for each evaluator.

Evaluators were asked to choose the stronger of the two bracket design topologies

for holding a vertical tip load by clicking their mouse on one of the two presented

bracket designs. Evaluators were allowed to change the selected bracket before choos-

ing to submit a given pair, but were not allowed to go back and change previously

selected brackets. Evaluation time, defined as the time from the when the bracket

pair are presented to the time the evaluation is submitted was recorded.

After each evaluator completed 18 randomly generated bracket design evalua-

tions, they then proceeded to the mechanical reasoning portion of the experimental

procedure. Evaluators were then presented mechanical reasoning test questions one

at a time, but in a random test question order (i.e., permutation of the integers 1-

8). Mechanical reasoning test questions were either binary choice or multiple choice.

Finally, evaluators proceeded to a demographic survey consisting of 6 demographic

questions. After completing these demographic questions, evaluators were given a

code to redeem a cash incentive.

3.5 Results

Research Question 1 Results: Demographics

We were not able to find any demographic variables that significantly correlated

with evaluation expertise. This is shown visually in Figure 3.5, in which correlation

coefficients between all demographic variables and expertise are given.
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Figure 3.5: Experimental results of correlating demographics with expertise for Re-
search Question 1. As can be seen by the bottom row of the correlation
plot, expertise does not correlate significantly with any of the tested de-
mographics.

Research Question 2 Results: Reaction Times

We were not able to find any reaction time variables that significantly correlated

with evaluation expertise. This is shown visually in Figure 3.5, in which correlation

coefficients between all reaction time variables and expertise are given.

Research Question 3 Results: Mechanical Reasoning

We were not able to find any mechanical reasoning categories that significantly

correlated with evaluation expertise. This includes the additional fifth mechanical

reasoning variable corresponding to the combined accuracy of all four individual me-

chanical reasoning categories. This is shown visually in Figure 3.5, in which correla-

tion coefficients between all mechanical reasoning categories and expertise are given.
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Figure 3.6: Experimental results of correlating evaluation reaction time with exper-
tise for Research Question 2. As can be seen by the bottom row of the
correlation plot, expertise does not correlate significantly with any of the
tested reaction time variables

Research Question 4 Results: Easy Known Evaluation Task

We were able to find significant correlation between how well evaluators performed

on the easy known version and evaluation expertise. Figure 3.5 shows the raw scatter

plot, with the same scatter plot with additional jitter just for visualization purposes

due to many data points being stacked upon each other. Additional visualization of

the relationship between easy known version accuracy and expertise is given in Figure

3.5, in which the mean and variance are plotted, followed by plotting ordinary linear

regression to convey the general trend between using an easy known version of the

evaluation task and evaluation expertise on the actual unknown evaluation task. Note

that the slope and intercept governing this trend is likely limited to the particular

evaluation task of binary choice on bracket topology designs.
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Figure 3.7: Experimental results of correlating mechanical reasoning aptitude with
expertise for Research Question 3. As can be seen by the bottom row of
the correlation plot, expertise does not correlate significantly with any of
the tested mechanical reasoning categories.

3.5.1 Practical Usage: Identifying Experts to Improve Crowd Aggrega-

tion

As stated in Section ??, the research aim of this work is to provide complex

engineering systems enterprises a practical method for improving the crowd consen-

sus evaluation by adding a preliminary expert filtering step as shown in Figure 3.1.

Accordingly, we use the only practical method we found in our four Research Ques-

tions—the use of an easy known version of the actual unknown evaluation task—to

show the degree of improvement on the bracket evaluation task used in this research.

In particular, we used the same crowd of 334 evaluators from Research Questions

1-4, and filtered out those who had an evaluation accuracy of less than 75% on the

easy known evaluation task. This expert filtering left a subset of 134 experts. The
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Figure 3.8: Experimental results of assessing accuracy on an “easy known evaluation
task” with for Research Question 4. As can be seen in the linear regression
plot, expertise accuracy on an easy known version of the evaluation task
exhibits a positive trend with evaluation expertise. Also plotted are the
raw scatter plot and “jittered” scatter plot since many data points lay on
top of each other.

table below shows the average evaluation accuracy of the expert filtered crowd as

compared with the original unknown crowd.

This accuracy improvement is promising, particular given that the crowd used in

this research was recruited from a crowdsourcing website. More significant improve-

ments in evaluation accuracy are possible given an initial crowd that is more likely

to have expertise. In particular, “internal” crowdsourcing within a large engineering

Crowdsourcing Method Crowd Consensus
Evaluation Accuracy

Conventional Crowdsourced Evaluation 59.77%
Conventional Crowdsourced Evaluation +

Expert Filtering
66.16%

Table 3.1: Practical usage of filtering experts to obtain improved crowd aggregation
evaluation accuracy.
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company is more likely to have relevant expertise (Erickson et al., 2012). Business

case studies have suggested that these internal crowds may not only gather exper-

tise from non-traditional stakeholders, but offer a method of bypassing bureaucratic

barriers (Erickson, 2013). Readers are referred to survey papers (Chiu et al., 2014;

Peisl et al., 2014) and recent thesis (Erickson, 2013) for more discussion of enterprise

benefits of crowdsourcing, particularly as used internally within an enterprise.

Furthermore, this work only focused on finding which variables correctly identify

experts. These variables, in particular accuracy on an “easy known task,” may be

input to more advanced statistical models to further improve the crowd consensus.

While out of the scope of this current work, readers are referred to recent models that

capture evaluator expertise as a function of these variables (Budescu & Chen, 2014b;

Miller et al., 2014; Raykar et al., 2009).

3.6 Summary

Crowdsourced evaluation is method of aggregating human input from evaluators

outside the conventional design process, thus leveraging additional expertise during

design stage-gates that may help mitigate increasing cost and time overruns character-

istic of engineering systems enterprises. While successes of crowdsourced evaluation

have been documented by a number of business case studies, a key challenge for engi-

neering systems enterprises is to identify and filter expert evaluators from non-expert

evaluators, so that the combined crowd consensus evaluation is closer to the true

scores of designs concepts.

We conducted an experiment to identify expert evaluators in the crowd using

four expertise prediction heuristics found in the engineering design and psychomet-

rics communities. In particular, these four heuristic, corresponding to four research

questions, assessed the correlation between evaluator demographics, reaction times,

mechanical reasoning aptitude, and accuracy on an “easy known version” of the ac-
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tual unknown evaluation task. Using an online web survey, our experiment used a

real crowd of 334 evaluators to evaluate the loading strength of various 2D bracket

topologies.

The results showed that identifying experts is not correlated with traditional ex-

pertise prediction heuristics, as we were not able to find correlation between evaluator

expertise and demographics, reaction times, or mechanical reasoning aptitude. In-

stead, we found that evaluator accuracy on the “easy known version” of the 2D bracket

evaluation task was able to identify experts on the actual “hard unknown version”

of interest. We showed that automatically filtering experts increases the combined

crowd consensus evaluation over conventional crowdsourced evaluation. This auto-

matic expert identification and filtering stage offers an additional tool to management,

alongside manual selection of expert evaluation teams, to help incorporate expertise

into early stage-gates of the engineering systems design process.
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CHAPTER IV

Do we need to Filter Experts for Subjective

Preferences?

4.1 Context: Balancing Design Freedom and Brand Recog-

nition

When developing the next generation of an existing vehicle model, an automotive

designer must balance tradeoffs between two competing customer considerations. One

consideration is the customer’s desire for novelty, as the appeal of the current model

tends to fade with time (Martindale, 1990; Coates, 2003). The extent the designer is

able to reach toward increasingly novel designs, in other words by deviating from past

designs, defines the amount of design freedom available to the design team. Another

consideration is the customer’s desire for consistency with past designs, which can play

an important role in brand recognition. Much as there is family resemblance among

members of a family, the designer seeks to maintain a recognizable brand character

among all the brand’s members. Any deviation from the past may reduce the new

design’s association with the brand, as well as how it conveys design attributes known

to be important to the customers (e.g., luxuriousness) (Aaker & Keller, 1990).

At the enterprise level, both design freedom and brand recognition are known to

contribute significantly to market competitiveness (Bloch, 1995; Person et al., 2007;
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Yin Wong & Merrilees, 2008). On the academic side, studies have shown that vehicle

manufacturers that focus on maximizing design freedom for vehicle styling are more

likely to capture market share through innovation capacity, particularly during early

stages of the product life cycle (Talke et al., 2009). Given too little design reach

relative to the market’s desire for change and the brand’s history of innovation, the

product appears weak and stale: given too much reach, the customer reaction may be

anxiety and discomfort(Berlyne, 1971). If the reach is in the wrong direction, because

it either violates the brand’s identity or strays from the benefits desired by the target

market, the product may fail within the market (Hartley, 1996a).

On the automotive industry side, brand loyalty is a significant factor in customer

purchase decisions. Brands such as BMW and Cadillac have taken more than 100

years to build a brand reputation; and oftentimes, in stated customer responses, brand

is near or at the top in influencing purchase decisions (201, 2014c). By maintaining

brand recognition, the equity of the brand may be leveraged for new products, thus

influencing customer preference (Barney, 1991; Person & Snelders, 2010; Schmitt,

2012; Srinivasan et al., 2006).

As a result, both design freedom and brand recognition are competing considera-

tions during the design process for both the designer and the enterprise as a whole.

Correctly balancing this tradeoff is paramount to realizing market success (Moulson

& Sproles, 2000)—akin to musicians aiming to produce their next great hit while still

sounding true to their unique musical style.

Automotive Design Process

The automotive design process may be conceptualized as a long sequence of de-

pictions, each one becoming more detailed and realistic. The design may begin as

just a verbal description (e.g., “The next generation Chevrolet Malibu, coming off

engineering platform B, aimed at owners of midsize cars who want a versatile and
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modern design at a moderate price.”). Or it may start with some rough physical

dimensions (e.g., overall length, width, and height, within specified bounds).

Over a number of months, the depiction gains specificity in terms of physical

dimensions, features, and options. What began as a description in words and numbers

eventually transitions, first to 2D images and eventually to 3D models and prototypes.

In these latter stages many decisions are made that will affect the aesthetic appeal and

projected image of the design, and consequently the emotional reaction of customers.

While these decisions are ultimately based on the intuition of highly trained designers,

there is a long history of attempts to influence these decisions with a more data-driven

approach.

The most common approach has been to conduct theme studies where designs

are shown to customers who then rate them on several dimensions (e.g., appeal, in-

novativeness, distinctiveness, sportiness), and also take part in focus groups. This

approach has often fallen short because evidence counter to designer intuition is met

with skepticism by the designers. Another issue is that design activity typically

occurs for 6-12 months before any customer feedback is collected. This creates an

environment where designers’ preferred designs gain momentum and backing by man-

agement, and are subsequently less likely to be changed given preliminary customer

data.

Aim of This Chapter

In this study, we measure how brand recognition and design freedom interact and

trade off with each other for four automotive luxury vehicle brands—Audi, BMW,

Cadillac, and Lexus. Luxury brands are chosen primarily due to strong brand affil-

iation in their market segment (Aaker & Keller, 1990; Mannering et al., 1991). To

make such measurements, we decompose both brand recognition and design freedom

to a common set of styling design attributes—an approach supported by psychology
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and design research suggesting styling design attributes such as ‘aggressiveness’ may

be more representative of visceral human perceptions of design than geometric design

variables such as ‘120 cm vehicle grill’ (Norman et al., 2003; Norman, 2004; Reid

et al., 2010b). By manipulating the values of these styling design attributes rather

than geometric design variables, we can better trace relative changes in both design

freedom and brand recognition.

Manipulation of these design attributes, however, still requires a mapping to the

geometric design variables that the designer controls: We cannot choose the ‘ag-

gressiveness’ level of the vehicle, but we can decide the width of the wheelbase.

Accordingly, we build on a general methodology common in the design commu-

nity—determining the values of design attributes as functions of the underlying ge-

ometric design variables using customer responses (Louridas, 1999; McWilliam &

Dumas, 1997; Mulder-Nijkamp & Eggink, 2013). A key difference in our approach,

however, is that we do not explicitly model the functional form of the nonlinear map-

ping between styling attributes and geometric variables. Instead, we crowdsource

this mapping as a black-box function that is hypothesized to model the judgments

of customers. This approach may be too simplistic—see, e.g., (MacDonald et al.,

2009)—but we adopt it here as a starting point to address our research question of

measuring the balance between design freedom and brand recognition.

Our experimental procedure involved three steps: (1) Determination of styling

attribute values for existing vehicles using a Markov chain derived for partial rank-

ings over customer responses to 2D design representations; (2) Generation of new

conceptual designs using morphable 3D design representations; and (3) Determina-

tion of design freedom and brand recognition via deviations from previous designs

of both styling design attributes and geometric design variables, using a proposed

design freedom distance metric and a conditional multinomial logit model. Customer

responses and new concept designs were gathered using an online interactive survey
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consisting of sequential design evaluation and design generation stages using both

two-dimensional (2D) images and three-dimensional (3D) morphable vehicle models

rendered in real time. Using the data from this experimental procedure, we quanti-

tatively capture the relationship between design freedom and brand recognition on a

brand-by-brand basis.

This research approach thus puts its entire emphasis on determining an accurate

relationship between design freedom and brand recognition, at the expense of being

unable to ask the reasons “why” this relationship exists. This is due to the use

of nonparametric and nonlinear predictive models to assess design freedom; in which

such models do not have a known functional form much less a known inverse. In other

words, we do not know which sets of geometric design variables affect which perceptual

design attributes, yet we know the value of its corresponding design freedom and

brand recognition.

Significance of this Study

The results of this study show that there is indeed a tradeoff between brand

recognition and design freedom according to the proposed design freedom metric. This

tradeoff is predicted to significantly affect BMW and Cadillac the most, suggesting

that these brands face greater challenges to maintain brand recognition while evolving

the styling of future vehicles. The tradeoff is predicted to affect Audi and Lexus less,

however these tradeoffs are less conclusive as both these brands are found to have low

absolute brand recognition across customers surveyed throughout the world.

The main contribution of this work is an extension of previous descriptive inves-

tigations (Kreuzbauer & Malter, 2005; McCormack et al., 2004b; Ranscombe et al.,

2012) of brand recognition and design freedom to a predictive investigation involving

modeling of brand recognition and design freedom. While it is often qualitatively

recognized that brand recognition and design freedom must trade off with each other,
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we make an early effort to a quantitative measurement of this tradeoff.

This work does not seek to optimize the tradeoff between design freedom and

brand recognition, which would require modeling decisions by a multitude of stake-

holders—particularly designers, marketers, and strategic design managers. Instead,

we posit that the present work can augment stakeholder intuition during the strategic

design decision-making process.

Additional contributions include: (1) The combined use of multiple design repre-

sentations for predictive modeling including styling attributes and more conventional

geometric variables as previously studied (Ersal et al., 2011; McWilliam & Dumas,

1997; Orsborn et al., 2009a; Sylcott et al., 2013b); (2) A hybrid combination of para-

metric models and non-parametric representations; (3) The use of realistic, morphable

3D modeling techniques in an interactive web-based environment, an approach gaining

popularity in areas such as design co-creation (Ramanujan et al., n.d.); (4) Filtering

crowdsourced data on “brand-conscious” customers to filter data relevant for this

study; and (5) Using the crowd as a “black box” for modeling an implicit nonlinear

function distributed over a number of people.

Using the crowd as a “black box” is perhaps the most important methodological

contribution. In particular, measuring styling has always been problematic because

it is perhaps one of the most challenging problems from a statistical and modeling

standpoint. In particular, a realistic design’s styling, for example, a full 3D model

of a vehicle, must be represented by more than 10,000 to 100,000 dimensions (e.g.,

a door handle has length, width, curvature dimensions, thickness, color, sheen, etc.).

Building a function with unknown functional form that maps styling from this high-

dimensional space to a single number is challenging. Instead, using crowdsourcing to

‘discover’ this function from the responses of a large number of people does not require

making a priori functional form assumptions, similar to recent work on constructing

implicit functions from kernel feature spaces (Ren & Papalambros, 2012b).
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4.2 Related Work

Balancing between design freedom and brand recognition has been studied ex-

tensively in the product innovation and styling strategy literatures as well as the

design research literature. From the strategic management and customer product

innovation communities, we establish qualitative justifications for upholding design

freedom and brand recognition. From the design community, we consider previous

efforts toward measuring tradeoffs between design styling and other considerations,

as well as methodologies towards eliciting customer preferences via various design

representations.

Design Freedom and Brand Recognition

Several studies have considered the importance of design freedom from the per-

spective of organizational innovation capability, with a consensus that there is an

optimal amount of deviation from previous designs (Hekkert et al., 2003; Person

et al., 2008). Customers expect novelty in new product offerings (Martindale, 1990),

yet such novelty must be bounded (Berlyne, 1971). Companies that follow a “design-

driven” approach toward balancing this tradeoff via strategic design decisions have

been shown empirically to capture larger market shares (Person et al., 2008).

The effect of brand recognition on customer preferences has been studied in depth

for new product offerings (Aaker & Keller, 1990). General conclusions from these

studies are that brands are comprised of highly complex associations between within-

brand products and features (Milburn & Childs, 2001; Ranawat et al., 2012), as well as

related people, places, and out-of-brand products (Keller, 2003). Particularly because

automobiles fall under the category of “durables,” namely, products where lifecycle

use is important to the customer, brand recognition plays a very important role

(Zeithaml, 1988). These conclusions are aligned with observations in the automotive

sector, where brand has been shown to be one of the foremost contributors to customer
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Figure 4.1: Example images shown to customers in the 2D representation portion
of the experiment. These images were used to assess styling attribute
values, as well as brand recognition. The images remained static (were
not morphed by customers) during the experiment and did not contain
brand logos.

preference (Mannering et al., 1991; 201, 2014c).

The current chapter builds on recent results showing that the front fascia or “face”

of the vehicle—the view looking directly at the front of the vehicle—is most closely

associated with vehicle brand (Ranscombe et al., 2012). Moreover, anecdotal evidence

from experienced sources within the industry support this notion (Manoogian II,

2013). Accordingly, all stimuli used in this study consider the face view of vehicle

designs.

Brand-Conscious Customers

Brand-conscious customers, able to correctly identify brand from unbranded ve-

hicles, are used for filtering the data collected in the study. These brand-conscious

customers are filtered, because data from customers unable to identify brand add

noise to the construction of predictive models for brand recognition. Moreover, ap-

pealing to brand-conscious customers has been found to be important for premium

brands such as those considered in this study (Aaker, 2009).

To identify brand-conscious customers, we filter out customers not able to cor-

rectly identify brands above a given threshold for designs that already exist in the
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market (see below for filtering criteria). Recent literature in crowdsourcing research

has shown that data from “experts” within a crowd, in this case “brand-conscious cus-

tomers” within a crowd, may be aggregated to obtain an accurate ‘crowd consensus

vote’ using simple algorithms such as majority vote (Sheng et al., 2008b; Sheshadri &

Lease, 2013b)). However, if such filtering on the “experts” in the crowd is not done,

simple algorithms to aggregate customer input may result in heavily biased crowd-

level evaluations (Burnap et al., 2015b). In our current case, this may skew estimates

of design freedom when trading off brand recognition. Such filtering of customer data

to guide the design process has been similarly explored by using customers to interac-

tively guide the creative aspect of early-stage design (Ind & Watt, 2006; Crilly et al.,

2004a)).

Design Representation

Design representation refers to the method that a design artifact is encoded by

either a computer or a customer during one of many steps in the design process

(Chandrasegaran et al., 2013a). We make a distinction between the two as it has

been shown that computer representations and human representations may be entirely

different, resulting in the need to construct models and conduct experiments in the

appropriate space (Tversky & Gati, 1978; Tversky & Hutchinson, 1986). Moreover, we

consider three different forms of design representation: 2D and 3D model geometry;

parametric and non-parametric geometry; and as a function of styling attributes and

geometric variables.

2D and 3D Representations

Recent studies have shown that brand recognition is dependent on the fidelity of

the design representation (Ranscombe et al., 2012; Rasoulifar et al., 2015). Informally,

there is a level of realism to the design that must be achieved for customers to correctly
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Figure 4.2: Example images shown to customers in the 2D representation portion
of the experiment. These images were used to assess styling attribute
values, as well as brand recognition. The images remained static (were
not morphed by customers) during the experiment and did not contain
brand logos.

identify vehicle brand (Orbay et al., 2015a). We build on this notion by representing

vehicle designs using the highest fidelity representation possible whether a 2D image

or a 3D high polygon mesh, as shown in Figures 4.2 and 4.2, respectively.

Studies have also shown differences between 2D and 3D design representations

regardless of fidelity. In particular, customer preferences assessed through conjoint

analysis have been found to be inconsistent when contrasting the type of design

representation (Bao et al., 2014a; Reid et al., 2013a; Toh & Miller, 2014a). The area

of assessing the level of fidelity or abstraction to a given threshold for a customer’s

perception is still an active area research, including both 2D and 3D representations.

Parametric and Non-Parametric

Design representations may be also categorized as parametric or non-parametric.

Parametric design representations have numerous applications via conjoint analysis

using 2D silhouettes (Orsborn et al., 2009a; Petiot & Dagher, 2010; Reid et al., 2010b;

Sylcott et al., 2013b), gestalt quantification using 2D representations (Lugo et al.,

2015), and 3D interpolated Bezier curves (Ren et al., 2013b; Tovares et al., 2014a);

however, perhaps the most realistic 3D interpolated Bezier curves come from design

research done within the automotive industry (Kókai et al., 2007a).
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In the shape grammar literature, non-parametric design representations are used

as basic constituent shape elements to generate larger and more complex forms. These

include automotive applications (Orsborn et al., 2006a; Orsborn & Cagan, 2009), some

with focus on vehicle face details (McCormack et al., 2004b) and vehicle side profiles

(Bluntzer et al., 2014; Pugliese & Cagan, 2002a; Yannou et al., 2008a). Such shape

grammar techniques are applicable to generation of 3D design representations, for

example, with fluid channel layouts (Hooshmand & Campbell, 2014).

The representation approach here is qualitatively similar to the shape grammar

approach in that it employs a design generation process where an agent creates new

designs, but it is limited in scope when contrasting the corresponding design spaces.

In particular, shape grammars are able to generate a much larger set of possible

designs as defined by the Cartesian product of grammar enumeration, whereas the

design generation considered in this study is limited to the convex hull defined by the

morphing bounds on the 3D design representations.

In this study, we cast the 3D design representation as a set of geometric features

that morph not strictly related via a mathematical function, nor non-parametrically

such as volumetric deformation (Tiwari et al., 2014), but instead requiring pre-defined

input, say from professional vehicle designers (Manoogian II, 2013). This results

in a hybrid of the parametric and non-parametric design representations, where a

number of geometric features morphs the 3D design via Laplacian deformation of its

constituent polygonal mesh (Botsch & Sorkine, 2008). Note that we use morphable

3D models but only static images for the 2D design representations.

Visceral Attributes and Geometric Variables

While geometric variables via 2D and 3D representations, parametric or non-

parametric, capture the physical form of the design as a computer may interpret

it, human perceptions are better suited to a different representation (Coates, 2003;
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Norman, 2004). In particular, design attributes such as ‘Friendly’ versus ‘Aggressive’

have been posited to represent human perceptual understanding better than variables

such as ‘130 cm long airdam’ (Norman, 2004).

To develop analytical decision-making models(Papalambros & Wilde, 2000), we

further assume that the attributes themselves are functions of geometric design vari-

ables. Styling attributes are likely nonlinear functions of geometric variables, e.g.,

slight geometric changes in the edges between a smile and a frown may make large

differences in an attribute such as ‘happiness’ (201, 2014c). By gathering customer

responses within the space of design attributes versus design variables, we are operat-

ing at a level analogous to similarity models in the psychological literature (Tversky

& Hutchinson, 1986).

Quantitative Models of Product Styling

Previous research in quantitative modeling of styling and aesthetics has often come

from the marketing community, where conjoint analysis has proven valuable (Green

et al., 1981). This modeling technique takes a number of variables representing the

design’s form as input and elicits customer preferences across a set of discrete points

within the design space.

The design community has similarly used conjoint analysis to model styling form

in efforts to optimize customer preferences in decision-based design (Chen et al., 2013;

Hazelrigg, 1998; Papalambros, 2002). Relevant examples of such applications include

2D vehicle side view silhouettes (Orsborn et al., 2009a; Reid et al., 2010b) and 2D

vehicle faces (Petiot & Dagher, 2010). Recently, 3D vehicles studies such as perceived

safety (Ren et al., 2013b) and vehicle interiors (Poirson et al., 2013a), as well as virtual

reality studies (Tovares et al., 2014a) have been investigated. Some applications have

used nonlinear conjoint models such as explicit feature mappings (Fuge et al., 2013)

and implicit feature mappings (Ren et al., 2013b). Additional 3D extensions include
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Figure 4.3: Dependencies between design freedom and brand recognition, design at-
tributes, and design variables. Note that while design freedom and brand
recognition are explicit linear functions of design attributes, design at-
tributes are nonlinear functions of geometric design variables implicit in
the customer perceptions of vehicles. On the right hand side, we denote
the functional form of the associated dependencies.

the use of hierarchical geometric representations that may be used for salient feature

extraction (Orbay et al., 2015b).

4.3 Problem Formulation

We formally define brand recognition and design freedom, and the manner in which

the two are measured. We additionally define how customer responses to conceptual

designs are aggregated to assess the overall crowd consensus to changes in conceptual

designs.

Let fDFb : A → R and fBRb : A → [0, 1] denote design freedom and brand recog-

nition, respectively, in which A = {a = [a1, . . . , aM ] : am ∈ R} is the space of styling

attribute vectors, and R is the real space. Note that as discussed in the background

section, this definition assumes the styling design attributes are a common set of in-

puts to both design freedom fDFb (a) and brand recognition fBRb (a), and that both are

defined over the set of existing and conceptual designs x ∈ {x = [x1, . . . , xN ] : an ∈ R}
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for an associated brand b = 1 . . . B.

These design attributes am
M
1 are defined as the building blocks of customer per-

ceptual representation of design styling, following the idea of how human perception

is chunked (Norman, 2004). Informally, humans conceptualize a vehicle using terms

such as ‘sportiness’ rather than a large number of geometric design variables that

constitute sportiness such as ‘length of upper air dam.’

The design attributes must be empirically manipulated to measure relative changes

across brand recognition and design freedom. Accordingly, we parameterize the de-

sign attributes as a nonlinear function of a set of predefined geometric design vari-

ables denoted {x n } 1ˆN. This parameterization attempts to capture the notion that

changing a given design variable may affect multiple attributes at the same time in a

complex manner.

The dependencies of design freedom and brand recognition, design attributes, and

design variables are shown in Figure 4.2. We next define the functional form of each

dependency. In particular, we detail the mathematical relationship between (1) design

freedom and design attributes, (2) brand recognition and design attributes, and (3)

design attributes and design variables.

4.3.1 L1 Multinomial Logit for Brand Recognition

We define brand recognition as a linear combination of design attributes, in which

the attributes maximally discriminate between brands. To determine the linear coef-

ficients to predict brand, we assume a multinomial logistic regression functional form,

conditioned only on brand-conscious customers and regularized using the L1-norm,

as given in Equation (4.1).

fBRb (a) =
ew

T
b a∑B

b=1 e
wT
b a

+ |wb|1 (4.1)

To train the coefficients wb of this model, we use a quasi-Newton optimization
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algorithm (l-BFGS) to maximize the penalized multinomial likelihood (Papalambros

& Wilde, 2000). Note that we use here the notation for coefficients from the machine

learning literature; these coefficients are also often denoted with the symbols β in

marketing and θ in statistics. The data are conditioned using a hard threshold,

where a brand-conscious customer must achieve greater than T percentage correct

recognition of brands across a set of existing designs.

4.3.2 Design Freedom Distance Metric

Design freedom is the leeway designers have to generate conceptual designs while

accounting for many implicit and explicit constraints (Hartley, 1996a). To capture

this leeway, we adopt the information processing flow in Crilly et al. (Crilly et al.,

2004a) by assuming that the communication from designer to customer is conveyed

through information of multiple modes—in our case a vector of design attributes and

vector of geometric values representing the design artifact.

With this design representation of multiple modes, we define design freedom as

a distance from existing designs to a new conceptual design both across design at-

tributes and across geometric variables. This design freedom distance is mathemat-

ically captured using a distance metrics; yet while various metrics have been previ-

ously used for engineering specifications (Simpson et al., 1998), representations such

as abstract knowledge databases (Chandrasegaran et al., 2013a), and text (Fu et al.,

2013b), these metrics do not accommodate various stakeholder inputs as specifically

needed in the current chapter.

We thus propose a distance metric between two designs α and β for brand b as

given in Eq. (4.2). This metric is used to assign a scalar value that captures both

geometric and perceptual styling differences between designs.
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||fDF,αb − fDF,βb || =
M∑
m=1

Iwb,m 6=0

[
λ1
(
a(α)m − a(β)m

)2
+ λ2

N∑
n=1

rb,nm
(
x(α)n − x(β)n

)2]
(4.2)

where,

am = design attributes measured using 2D representation

xn = geometric design variables common to both 2D and 3D representation

λ1 = importance/normalizing operator of design attributes

λ2 = importance/normalizing operator of geometric design variables

Iwb,m 6=0 = indicator function if attributem is important for brand b

rb,nm = sensitivity of attributem to variable n for brand b

This distance metric captures stakeholder considerations to the overall design

freedom in two ways: First, design freedom implicit in the mind of the customer

is captured using r(b,nm) and Iwb,m 6=0, both of which are assessed using the customer

crowd. Informally, these values capture the notion that differences between two de-

signs exist with both geometric and perceptual representations in the mind of the

customer.

Second, design freedom explicit from stakeholders within the producing organi-

zation are captured using λ1 and λ2, which may represent, say, relative influences of

the marketing and engineering departments, respectively. Informally, we use these

operators to tune how important it is to maintain an attribute like “aggressiveness”

for a marketing campaign, or a certain geometric shape for vehicle aerodynamics.

Accordingly, these operators are specific to the brand being considered.

Using this distance metric, overall design freedom is assessed as the distance from

the current design in Model Year 2014 (MY2014) to a proposed design (x′, a′). De-
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noting the current design (x0, a0), design freedom for the proposed design is given by

Eq. (4.3) using vector notation for brevity.

fDFb (x′, a′) = ||fDFb (x′, a′)− fDFb (x0, a0)|| (4.3)

= λ1(a
′ − a0)Tdiag

[
Iwb6=0

]
(a

′ − a0)

+ λ2(x
′ − x0)Tdiag

[
RIwb 6=0

]
(x

′ − x0)

where,

Iwb 6=0 = Mx1 vector of indicator functions for brand b

R = NxM matrix of attribute− variable sensitivities

diag [·] = operator to transform vectors to diagonal matrices

To calculate the sensitivities of design attributes to design variables r(b,nm), we

conduct a one-sided t-test between the baseline design variable x0n and the morphed

x
′
n from customer responses for a given attribute m and brand b. This hypothesis

test sets the r(b,nm) = 1 if the p-value for the t-test is less than 0.05, and r(b,nm) = 0

otherwise. The values of the indicator function Iwb,m 6=0 are calculated by assigning

the value 1 to all non-zero elements of the corresponding weight vector described in

Section 3.1. This weight vector is already sparse due to L1 regularization, and is thus

suited to picking out attributes that most contribute to the brand styling (Ranawat

et al., 2012).

4.3.3 Crowdsourced Markov Chain for Design Attributes

Our next goal is to develop a method of obtaining the attribute values for each

design, for example, “this vehicle is 0.7 out of 1.0 for aggressiveness, 0.2 out of 1.0 for

distinctiveness,” and so on. This method is a function that maps a design’s geometric
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Figure 4.4: Diagram of Markov chain used to aggregate customer responses in the
form of partial rankings of cars to obtain design attribute values for each
brand. Black arrows show non-zero transition probabilities from the raw
transition matrix, while red dashed arrows show perturbation probabili-
ties added to ensure a unique stationary distribution.

variables x to the design’s corresponding attributes a.

Within the design community, this function has conventionally been approximated

by explicitly assuming a functional form, such as the linear logit model often used in

design utility theory treatments, followed by estimating part-worth coefficients of the

assumed model. However, this function is likely highly nonlinear, particularly when

dealing with high-dimensional representations required for realistic design stimuli.

Here we take a different approach by assuming that the nonlinear function relating

design attributes to design variables is implicitly captured by the responses of brand-

conscious customers. By crowdsourcing the attribute values of the designs—asking a

crowd of customers to evaluate designs over attributes—we avoid needing to make a

priori assumptions regarding this complex nonlinear functional form explicitly. This

has advantages as we are capturing a function that may exist in a more expressive

function space, allowing complex modeling of nonlinear interactions. Moreover, we

avoid the need of explicit mathematical representation of geometric variables, given

that realistic 3D vehicle polygon meshes may contain more than 100,000 vertices.

Under this approach, there are several ways to extract attribute values of designs

from the evaluations provided by the crowd. We choose to extract these values using

only relative comparisons between the set of designs, avoiding the notion of a non-
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relative scale, i.e., “what would it mean to give a design a 0.4 out of 1.0 ‘aggressive’

score without seeing the entire set of designs, and how could we ensure everyone used

the same scale?”

In particular, we ask the crowd to evaluate the attributes of designs as a ranking

between just a few designs at a time. Formally, the responses rc
C
1 made by customers

c = 1 . . . C, in which each evaluation is in the form of a partial ranking for a single

design attribute. Partial rankings without ties are chosen as more intuitive for human

evaluation (Gonzalez & Nelson, 1996).

To obtain attribute values using this set of evaluation responses from the crowd,

i.e., to aggregate these partial rankings into numbers for each attribute and for each

design, we derive a Markov chain solved using a modified version of PageRank (Brin

& Page, 1998) as given in Equations (4.4), (4.5), and (4.6). Informally, this Markov

chain treats the ranking of all designs for a specific attribute as a set of “states,” for

car designs to jump between. Every time a car is ranked above another, that car pair

jumps to the higher ranked state. The set of states that correspond to the maximal

number of correctly ranked cars is called the “stationary distribution.” Finding this

desired final ranking of states requires an iterative optimization procedure.

This iterative procedure is characterized by the Markov chain jumping around

to different states as shown in Figure 4.3.2. This jumping action is governed by a

transition probability from one state to another, and in our case those transition

probabilities depend on partial rankings. The converged stationary probability dis-

tribution of the Markov chain is then used as the value of the attribute. Specifically,

we define the attribute value as the probability that the car is ranked higher than

other cars, thus the attribute value of a car equals its average percentage of the time

that it is ranked higher than other competing cars. Following the jumping analogy,

if a car is more likely to be ranked higher than others, then the agent will jump into

that state more often.
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More formally, the transition probability Pij, i, j = 1, . . . , N from the state rep-

resenting car i to the state representing car j is defined as the frequency that car j

is ranked higher than car i in all partial ranks that contain car i. If the transition

probability Pij is large, we define car j as being more likely to have greater relative

attribute value than car i. We denote the transition probability matrix as P = (Pij),

hereafter referred to as the raw transition probability matrix. The stationary distri-

bution π of a Markov chain is a distribution vector unchanged after the operation of

transition matrix P, as given in Eq. (4.4).

π = πP (4.4)

π = (π1, π2, . . . , πN)

πi ≥ 0 and
∑N

i=1
πi = 1

Consistent with Markov chain theory, there is no guarantee that the raw transition

probability matrix P will have unique stationary distribution (Ross, 1996) without

some strong assumptions. To achieve uniqueness in the resulting distribution, we

make two extensions to convert the raw transition matrix P to a stochastic, irre-

ducible, and aperiodic matrix (Brin & Page, 1998).

Extension 1.

The rows in P containing only 0’s are replaced with 1
N

eT , where eT is a column

vector consisting of 1’s, and T denotes the transpose operator. This adjustment

results in a stochastic matrix denoted S as given in Eq. (4.5).
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S = P + Q

(
1

N
eT
)

(4.5)

Qi =


1 if Pi = 0

0 otherwise

Extension 2.

To convert S into an irreducible and aperiodic matrix G, we use Eq. (4.6).

G = γS + (1− γ)
1

N
eeT (4.6)

where γ is a scalar between 0 and 1 controlling the intensity of the perturbation that

ensures uniqueness.

With these extensions, a unique stationary distribution exists for G. From Eq.

(4.6), the stationary distribution vector π can be obtained by calculating the eigenvec-

tors of G or by iteratively calculating π(k+1) = π(k)G, k = 1, 2, . . . until convergence.

To calculate the values of attributes ab for brand b based on the set of all partial

rankings from customer responses rc
C
1 , we define the attribute value for car i as

πm,m = 1, 2, . . . ,M .

4.4 Experiment

We conducted two experiments to measure how brand recognition changed as

design freedom increased. Experiment 1 assessed brand recognition using 2D images

of current MY2014 vehicle designs, followed by generation of new morphed concept

designs using 3D morphable models. Experiment 2 assessed brand recognition using

2D images of both the MY2014 vehicle designs and the new morphed concept designs.
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The data collected from the MY2014 baseline designs allowed us to measure cur-

rent brand recognition for each brand, as well as develop a predictive model for brand

recognition as a function of design attributes. The data collected from the morphed

concept designs allowed us to measure brand recognition at various values of design

freedom.

Customers

We gathered a total of 315 customers through the crowdsourcing platform Amazon

Mechanical Turk (201, 2014a). As online crowdsourcing has been empirically shown

to be a noisy process, partially due to various motivations of customers (Gerth et al.,

2012; Panchal, 2015b; Pilz & Gewald, 2013; Sheshadri & Lease, 2013b), we filtered

out data from customers using two data processing steps to ensure data fidelity.

First, customers that simply “clicked through” the survey were filtered out by

requiring their average time on the 2D portion of the site to be greater than 6 seconds

per ranking. Second, a brand recognition accuracy threshold of 30% was chosen to

filter out customers who were not “brand-conscious” as justified in Section 2. For

reference, the average brand recognition accuracy for the unfiltered crowd was 32.78%.

Brand recognition accuracy was treated as a constant variable across the entire survey,

and all data were filtered out for a given participant if he or she did not fall above

the threshold.

After filtering mechanisms, 139 customers were retained from a total of 315 cus-

tomers gathered over two experiments, as described in the experimental procedure. In

particular, experiments gathered 196 and 119 customers, of which 96 and 43 remained

after filtering, respectively.
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Brand Compact Midsize Fullsize Crossover SUV

Audi A4 A6 A8 Q5 Q7
BMW 3-series 5-series 7-series X3 X5

Cadillac ATS CTS XTS SRX Escalade
Lexus IS GS LS RX GX

Table 4.1: Description of the four vehicle manufacturer brands and five associated
vehicle classes used in this study.

Vehicle Brands and Models

The brands chosen were Audi, BMW, Cadillac, and Lexus (B = 4), due to their

relative similarities over a targeted market segment of luxury vehicles, as well as

similarity of product offerings across vehicle classes. For each brand, five models were

chosen from MY2014 corresponding to five vehicle classes as given in Table 4.4.

2D Images and 3D Morphable Vehicle Models

Images of the vehicle face were sourced from an online vendor (201, 2014b). The

face image has been shown to be more correlated with brand recognition than side

view or rear vehicle view (Ranscombe et al., 2012). Each image consisted of a white

vehicle on a white background to minimize confounding interactions from color as

shown in Figure 4.2. Moreover, the brand logo was removed for each vehicle image

in order to focus customer responses just on styling as in (Fu & Kara, n.d.).

Four morphable 3D models, one for each brand, were created as shown in Figure

2. Morphing was pre-computed offline using Laplacian deformation and volumetric-

based mesh deformation techniques (Botsch & Sorkine, 2008). The models were

then imported into the web-based survey using the browser-based WebGL renderer,

allowing real-time and realistic deformation via client-side graphics processing unit

interpolation.
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Low Attribute High Attribute Low Attribute High Attribute
Awkward Well Proportioned Passive Active

Weak Powerful Traditional Innovative
Conservative Sporty Understated Expressive

Basic Luxurious Friendly Aggressive
Conventional Distinctive Mature Youthful

Table 4.2: Description of the four vehicle manufacturer brands and five associated
vehicle classes used in this study.

Design Attributes

As discussed above, design attributes link brand recognition with design freedom.

We selected ten design attributes given in Table 4.4 based on input from actual design

teams in the automotive industry (201, 2014c).

Experimental Procedure

We conducted two experiments: Experiment 1 gathered attribute values and brand

recognition accuracies via partial rankings of 2D images of MY2014 baseline designs.

This was followed by generation of new morphed concept designs using a 3D mor-

phable model. Experiment 2 similarly gathered attribute values and brand recognition

accuracies, except this time using 2D images of both the MY2014 baseline designs

mixed with 2D images of the 3D morphed concept designs from Experiment 1. The

overall procedure is given in Figure 4.4, and was as follows:

Experiment 1

Participants were first directed to an introduction page, where they were given

instructions on ranking vehicles according to a semantic differential. This semantic

differential consisted of only one of the ten attributes from low to high value or vice

versa to act as a counterbalance for ordering biases. Over the entire interactive survey,

a participant was always given the same semantic differential to reduce participant

burden.
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Figure 4.5: Overview of the experimental procedure for both Experiment 1 and Ex-
periment 2. Experiment 1 asked participants to give partial rankings of
current MY2014 baseline designs for a given design attribute, followed by
asking which brand each of the images corresponded to. Participants were
then asked to morph a 3D design to create new concept designs given the
same design attribute. Experiment 2 asked a different set of participants
to give partial rankings of current MY2014 baseline designs mixed with
images of the morphed concept designs from Experiment 1. Similarly,
participants were then asked which each brand the images corresponded
to.

Next, participants were directed to the 2D design ranking page, with the four

vehicles in a top row and four outlined placeholders in a bottom row. Instructions on

the page were given to drag-and-drop the four MY2014 baseline designs from the top

row to the bottom row using the mouse, including possibility of reordering the partial

ranking. Upon clicking the “Submit” button for the partial ranking, participants were

then asked to choose the brand of each MY2014 baseline design using a drop-down

menu with 34 possible options (e.g., Audi, Volvo, Toyota).

After participants chose a recognized brand for each of the vehicles, they were

allowed to continue to the next partial ranking. After participants completed five

partial rankings on the 2D portion of the site, they were directed to the 3D portion

of the site for generating new designs. In this portion, each participant was given

a randomly chosen 3D model in the midsize vehicle segment from the four brands.
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Participants were then asked to maximize the same design attribute as their semantic

differential from the 2D portion of the site by morphing the 3D design using four

sliders. They were able to rotate the 3D vehicle model to assess the gestalt of the

face. Upon submitting their chosen 3D design, participants were then directed to a

short survey in which they were asked basic demographic information as well as task

relevant information.

Experiment 2

A new set of participants was asked to give partial rankings for a randomly as-

signed design attribute, but now with both 2D images of MY2014 baseline designs

mixed with 2D images of face views of the 3D morphed concept designs from Exper-

iment 1. Recall that this mixture of MY2014 baseline designs and morphed concept

designs is necessary to get relative attribute values using the partial ranking Markov

chain method derived earlier. A total of 52 possible 2D images was shown to partici-

pants, 20 from the original MY2014 baseline designs given in Table 4.4, and 32 from

3D designs morphed concept designs from Experiment 1.

Data Analysis

We give a diagram in Figure 4.4 of the data analysis using the methods detailed

and developed in Section 4.3, and list this methods flow here: We aggregated the

partial rankings from each brand-conscious participant using the method described

earlier to obtain the design attribute values for each new conceptual design. These

design attributes were used to build a model of brand recognition. The filtered data

included participants from 2D images of both morphed and non-morphed designs due

to the relative values obtained using the partial ranking aggregation method.

Brand recognition was assessed by calculating the number of correct responses to

th set of 32 morphed conceptual designs over the total number of times that that
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Figure 4.6: Diagram of the data flow and methods used in the data analysis of the
experiment. As described earlier and shown in Figure 5, Experiment
1 provides the Partial Ranking Markov Chain and L1 Multinomial Re-
gression with data from only MY2014 vehicle designs, thus provided the
attribute-variable sensitivities R and brand-attribute sensitivies I(ω 6=0).
Experiment 2 provides the Partial Ranking Markov Chain with combined
MY2014 and morphed vehicle designs, of which only morphed design
attributes and variables are passed on to the Design Freedom Distance
Metric. The values of design freedom for each morphed design are then
compared with their corresponding brand recognition to obtain the de-
sired slope on a brand-by-brand basis.

particular conceptual design showed up in the partial rankings. Design freedom was

calculated using the metric described above. The operators λ1 and λ2 are chosen to

scale the design freedom by subtracting the mean and dividing the standard deviation

of each brand’s design variables and design attributes, respectively, resulting in a

normalized design freedom. This operation was chosen on a brand-by-brand basis as

this did not change the brand recognition versus design freedom distributions.

4.5 Results

Four plots depicting the empirical relationships between brand recognition and

design freedom for each manufacturer are given in Figure 4.4. Each plot includes a

trend line obtained using Thiel-Sen robust linear regression to assess, to first order
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Figure 4.7: Brand recognition versus design freedom for the four vehicle brands in this
study over 2D images taken of the conceptual designs generated during
the 3D portion of the experiment. Brand recognition accuracy is de-
fined as the percentage of time a brand-conscious customer—a customer
who correctly identified more than 30% of the MY2014 baseline vehicle
brands—was able to correctly recognize a new morphed design.

Brand Slope of Brand
Recognition vs
Design Freedom

Median Abso-
lute Deviation

Audi -0.009 0.302
BMW -0.085 0.074
Cadillac -0.054 0.134
Lexus -0.047 0.426

Table 4.3: Slope coefficients of Thiel-Sen robust linear model fit to brand recognition
vs. design freedom for the four brands in this study.

only, how fast brand recognition decreases as design freedom is increased (Sen, 1968).

The slopes of each of these trend lines is given in Table 4.5. As given by the median

absolute deviation, linear relations for Audi and Lexus are not very meaningful but

one can still discern a trend. Histograms showing the marginal distributions are also

plotted in Figure 4.4 to convey the relative coverage of the data for each brand.

The brand recognition versus design freedom slope for each of the four manufac-

turers is negative, a result obtained entirely from the data, confirming intuition that

increasing design freedom results in decreased brand recognition. From these slopes,

we can see that BMW and Cadillac have the quickest loss of brand recognition with

increasing design freedom. These results suggest that designers at BMW have much

less leeway in their freedom to create future design concepts without sacrificing brand
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Figure 4.8: Brand recognition for the four vehicle brands in this study. Brand-
conscious customers refer to those customers who could correctly identify
at least on average 30% the brands of baseline (MY2014) designs.

image and heritage. Cadillac is second in this ordering, yet has significantly less sharp

of a slope, suggesting that designers at Cadillac are not as constrained as designers

at BMW.

Lexus and Audi are shown to be third and fourth in this ranking; however, both of

these manufacturers have results that are less meaningful due to both poor linear fit

as given by Table 4.5, as well as low overall brand recognition. In particular, Figure 8

shows the overall brand recognition accuracy across the four brands for both brand-

conscious customers and non-brand conscious customers. We observe that BMW

and Cadillac have the most recognizable brand, justified as the ‘All Customers’ data

consist of over 5428 brand identifications from a pool of 315 customers. Audi and

Lexus were found to have the lowest brand recognition, both among brand-conscious

customers and non-filtered customers.

Application to Industry

The study was inspired by working with real automotive design teams, and direct

practical implementation seems likely. One such implementation may be a tool to
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Figure 4.9: Example application to industry of the approach and results of this study.
Three representations are given corresponding to the MY2014 Baseline
BMW 5 Series, the morphed BMW 5 Series with the least design freedom
from the baseline, and the morphed BMW 5 Series with the most design
freedom from the baseline according to the data. Note that the MY2014
baseline is a 2D image, while the two morphed vehicles are images of the
3D morphing model.

generate “thought seeds” to act as inspiration for new design concepts. Such thought

seeds may be used at very early stages of the design process in an effort to inspire

creativity in directions that are most likely successful in the marketplace. Another

implementation may be a check for promising design concepts such that they may

be steered away from areas of “too much brand recognition” and not enough innova-

tion and appeal, or on the other hand, “too much design freedom” and not enough

resemblance to the brand and the current product family.

A future implementation could be a decision support tool for product researchers

and strategic design managers to document explicitly which visceral design attributes

and geometric design variables have the most leeway when creating a future design. As

an example, we show in Figure 4.5 a baseline BMW 5 Series, along with two morphed

BMW 5 Series with the least and most design reach from the baseline according to the

data. For this example, we can see that the “kidney bean” grill significantly affects the

relationship between design freedom and brand recognition; however, this was intuited

a priori and is only able to be confirmed by the present works methodology—i.e., we
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did not find this result introspectively—see the Limitations section for more discussion

of this lack of ability to ask “why” design freedom trades off with brand recognition.

Such tools could augment the experience and intuition of designers and strategic

design managers using real-time feedback from a targeted crowd of customers. This

tool could be combined with more advanced 3D design and semantic representations

(Yumer et al., 2015c), gamification of real-time crowd feedback (Ren et al., 2015a),

and advances in virtual and augmented reality technologies (Ramani et al., 2014;

Shankar & Rai, 2014; Tovares et al., 2014a; Faas et al., 2014). Combinations of these

recent technologies, all characterized by having a human-in-the-loop, would likely

improve the outcomes of such efforts.

4.6 Summary

Design freedom and brand recognition are considerations that were measured for

four vehicle manufacturers—Audi, BMW, Cadillac, and Lexus—since balancing be-

tween these two considerations has been shown to influence consumer purchase de-

cisions significantly. An experiment was conducted measuring change in ten styling

attributes common to both design freedom and brand recognition for automotive de-

signs, soliciting customer responses to vehicle designs created interactively using 2D

and 3D design representations. Results show that, while brand recognition is highly

dependent on the particular vehicle manufacturer, measuring tradeoffs between design

freedom and brand recognition using predictive models can augment human intuition

in making strategic design decisions.
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CHAPTER V

A Representation to Assess Evaluations and

Preferences

5.1 Context: A “perfect” product form design tool?

When developing product form for a new design concept, human designers use a

mental representation of possible concept designs that implicitly defines the “true”

conceptual design space (Rosenman & Gero, 1993; Goldschmidt, 1997; Gero & Maher,

2013; Crilly et al., 2004b) and is restricted only by the designer’s cognitive skills.

This true design space is searched using human creativity and experience (Hartley,

1996b; Cross, 2004b; Eckert & Stacey, 2000), with a search process that is both

flexible, i.e., moving from one design to another happens naturally and fluidly, and

realistic, i.e., product form representations mirror their eventual embodiment or, if

the representation is an abstraction such as a sketch, convey sufficient information to

capture the eventual design embodiment (Kavakli & Gero, 2001b).

Quantitative design methods use explicit mathematical representations of the de-

sign space, constituted of formalized elements such as vectors (Orsborn et al., 2009b;

Reid et al., 2010a; Petiot et al., 2009), trees (Orbay et al., 2015c), graphs (Bayrak

et al., 2013b; Zhang & Rai, 2014), control points or handles for 2D pixels (Toh &

Miller, 2014b; Bao et al., 2014b) or 3D voxels (Yumer et al., 2015b; Mukherjee et al.,
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2014; Kang & Tucker, 2015; Ren et al., 2013a; Tovares et al., 2014b), and 2D (Pugliese

& Cagan, 2002b; McCormack et al., 2004a; Orsborn et al., 2006b; Yannou et al.,

2008b) and 3D shape grammars (Perez Mata et al., 2015). Each unique combination

of elements and their values represents a design. These explicit formal representa-

tions tend to be either flexible but of limited realism, due to being low dimensional

(e.g., a silhouette), or realistic but of limited flexibility, due to being high dimensional

but only flexible in the local design space (e.g., 3D polygon mesh morphed by a few

control points). A high-level positioning chart of different representations in terms of

flexibility and realism is shown in Figure 5.1.

This chapter describes a new representation that is both more realistic and flexible

than previous efforts. The design space is represented as designs x sampled from a

statistical distribution p(x), and a generative model of this distribution is estimated

using a large set of images and associated design attributes of previous designs. The

key design contribution in this work is the approach of changing the product form

design representation to a statistical distribution, and estimating the product form

design space using large-scale data of previous designs. A methodological contribu-

tion is the use of a crowd to act as an optimization algorithm for deep generative

models; namely, we crowdsource opinions on whether generated designs look realistic

from varying generative models. This step is important because validation of genera-

tive models is not objective, and significant differences may exist between numerical

validation metrics such as “reconstruction error” versus visual quality (Theis et al.,

2015).

To demonstrate these ideas, we conduct an experiment within the product form

area of automobile styling. The design space distribution p(x) is approximated using

a variational autoencoder (Kingma & Welling, 2013), over a data set of 2D images

and design attributes of 179,702 automobile designs from the last decade. Prelimi-

nary results show that we are able to estimate a mathematical representation that
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Figure 5.1: Positioning chart of product form design representations according to
levels of realism and flexibility of representation.

is both realistic and flexible. We then explore this estimated design space by mor-

phing vehicles via manupulation of design attributes such as body type, brand, and

viewpoint.

This rest of this chapter is structured as follows: Section 5.2 discusses human

and mathematical design representations, as well as generative models. Section 5.3

develops the mathematical representation underpinning of the conceptual design pro-

cess and the deep generative model used to approximate it. Section 5.4 details the

numerical and crowdsourced experiment used to estimate the design space for auto-

mobile styling. Section 5.5 explores the design space and crowdsourcing results, and

discusses the implications of this design representation, limitations, and opportunities

for future work. We conclude in Section 5.5.
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5.2 Related Work

We discuss product form design representations in behavioral science research

conducted on novice and expert designers during the conceptual design process, and

in the mathematical formalization of design representations by design researchers.

Next, we discuss generative models used in design and machine learning research,

including the difficulty in establishing objective validation metrics for such models.

Human Designer Mental Representation

The human designer’s mental representation has been studied by design researchers

extensively, with much focus on behavioral differences between novice and expert de-

signers (Dinar et al., 2015; Cross, 2004b), and their mental representation of design

knowledge (Chandrasegaran et al., 2013b). Experts have been found to be better

at representation realism, where realism is defined as the degree of design detail

(Björklund, 2013), and ability to connect design knowledge through sketches (Kavakli

& Gero, 2001b) and design analogies (Fu et al., 2015; Linsey, 2007).

Expert designers have also been found to be significantly different with regards to

flexibility during the conceptual design search process. Expert designers make smaller

“leaps” between design analogies when traversing their mental design representation

space (Ozkan & Dogan, 2013), and are more likely to work backwards from the design

solution (Ho, 2001b), using a design problem decomposition strategy that enables

“efficient” traversal of the design space.

Mathematical Design Representations

Mathematical representations of the product design space are more straightfor-

ward to compare as they are defined explicitly, thus constructing the design space

according to all possible states of the representation. As noted in Section 5.1, these

mathematical representations use a variety of formal elements that can be placed into
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Figure 5.2: Example designs from various mathematical product form representa-
tions: (a) 2D fully parametric (Reid et al., 2010a), (b) 2D shape gram-
mar (McCormack et al., 2004a), (c) 3D shape grammar (Oberhauser et al.,
2015), (d) 3D fully parametric (Ren et al., 2013a), (e) 3D partially para-
metric with estimated handles (Yumer et al., 2015b), (f) 3D partially
parametric with hand-engineered handles (Burnap et al., 2015a).

six major categories as shown in Figure 5.2. While these mathematical representa-

tions have found numerous successes, including use by real designers (Reid et al.,

2010a; McCormack et al., 2004a; Kókai et al., 2007b; Telenko et al., 2016), each is

limited by the tradeoff between flexibility and realism as illustrated in the positioning

chart of Figure 1.

Fully parametric 2D or 3D vector representations have a high degree of flexibility

since they are generally capable of morphing between all designs in the design space.

This characteristic is important for the validity of results drawn from experiments

using these representations. For example, assessing customer preferences using these

representations enables full coverage of the space. The drawback of these representa-

tions, as shown in Figures 5.2(a) and 5.2(d), is that the resulting representations are

often of limited realism due to their relatively low dimensionality.

Partially parametric 2D and 3D vector representations are manipulated with a

lower dimensional set of “handles” or “control points” that affect the design repre-

sentation’s pixels or voxels using an attachment function. This function can be defined

through a functional form, such as a kernel (Yumer et al., 2015b; Murugappan et al.,

2013), or statistically estimated model (Yumer et al., 2015a). The attachment func-

tions often work on the entire design representation via manipulating all pixels or

vertices, or by deforming the area or volume itself as shown in Figure 5.2(e). Another

category shown in Figure 5.2(f) works on more fine details (e.g., headlight form and
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LEDs), but requires the use of design experts to hand-engineer various parametric

handles.

Opposite of the fully parametric vector representations, partially parametric rep-

resentations typically are very high-dimensional (i.e., 10,000’s of pixels or 100,000’s

of voxels), and are subsequently very realistic. This comes at the cost of limited

flexibility–the extent of possible manipulations is restricted to local perturbations.

For larger changes, constraints must be placed between existing designs, typically

through correspondence points with very strong and perhaps unrealistic assumptions

on the interpolation function (e.g., linear or quadratic) (Kókai et al., 2007b).

Shape grammars, both 2D and 3D as shown in Figure 5.2(b) and Figure 5.2(c),

occupy a middle ground in terms of flexibility and realism. These representations are

interesting in that the design space they define is much larger than fully or partially

parametric vector representation due to being combinatorial in in their composition of

designs. Accordingly, while they offer flexibility across various designs, such “paths”

between designs are not readily apparent. This comes with the advantage of being

able to extrapolate much more reasonably as compared with vector representations.

We discuss possible directions in combining random vector representations in the

current work and grammar representations in Section 5.5.

Design Generative Models

Methods to generate design concepts have received attention by the design research

community (Orsborn et al., 2009b; Reid et al., 2010a; Ren et al., 2013a; Yannou et al.,

2008b; Petiot et al., 2009) and practicing designers (Kókai et al., 2007b). These

methods employ the mathematical representations noted in Section 5.2 and a variety

of design generation schemes.

Human-guided design selection use queries with multiple generated designs in re-

sponse or as an iterative communication between human and machine. A single query
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for a set of generated responses is often the focus of knowledge representation tools

geared towards product form representations (Chandrasegaran et al., 2013b) follow-

ing early ideas from Herbert Simon (Simon, 1996). Iterative communication tools

include interactive genetic algorithms (Smith, 1991; Yannou et al., 2008b; Poirson

et al., 2013b) and more recently proposed online crowdsourcing methods (Ren et al.,

2013a; Ren & Papalambros, 2012a).

Deep Generative Models

Deep generative models refer to a class of hierarchical statistical models (referred

to as “deep learning” in the computer science community; see (Bengio, 2009; Schmid-

huber, 2015) for survey) characterized by being composed of multiple layers of nonlin-

ear functions, with each layer connected to its adjacent layers via a set of connecting

“weights.” Like all generative statistical models, these deep generative models work

by modeling the data distribution, using assumptions on the data space, rather than

the locally connective assumptions used in graph methods. Such models have re-

cently received renewed attention due to their successes on benchmark tasks such as

2D image object recognition (Krizhevsky et al., 2012). Here we discuss three related

models that form the state-of-the-art with regards to 2D image generation.

The generative adversarial network (GAN) is a generative model that has a unique

parameter estimation approach (Goodfellow et al., 2014). The model is divided into

two parts, a generator and a discriminator; the generator is trained to generate images

so that the discriminator cannot distinguish them from the ground truth images, while

the discriminator is trained to discriminate generated images from the known “ground

truth” images. The two parts are trained simultaneously to force the generator to

produce images as similar to the ground truth images as possible, where similarity

is defined by the discriminator. Experiments have shown that this model is capable

of generating highly realistic images with some exceptions. In particular, since the
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discriminator makes decisions based on pixel-level distance metrics, the generator can

make unrealistic mistakes important to human reviewers, e.g., a face with a displaced

nose.

The deconvolutional neural network is a multi-layer model composed of fully con-

nected layers followed by two sets of convolutional layers–one tasked to generate

design images and the other to generate segmentation masks of the design (Dosovit-

skiy et al., 2014). This model takes multiple design attribute to be generated (e.g.,

types of chairs). The model assembles a deterministic function that maps a set of

input attributes to one output; however, this modelling assumption does not align

well with our goal of capturing uncertainty from design attributes–we discuss this in

detail in Section 5.3.

The variational autoencoder (VAE) (Kingma & Welling, 2013) used in this work

is an advanced version of the deconvolutional neural network, with major differences

in the method of statistically estimating the model parameters of the model in its

parametrization to introduce randomness to the generating process. A detailed in-

troduction of the VAE model is in Section 5.3.

Validation of Generative Models

One challenging issue inherent to generative models is their the lack of straight-

forward validation. The requirements of this validation are twofold: The model needs

to generate realistic 2D images that can be recognized by human viewers as a par-

ticular category of objects (e.g., cars), while these images must be different from

any image the model has seen in the data set, or otherwise overfitting on the data

set would model a simple solution of memorizing known training images. While the

former requirement leads the model to produce similar images to the ones used in

training, the later one forces the model in the opposite direction (i.e., generalization

via interpolation and extrapolation).
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Consequently, it is nontrivial to establish a quantitative validation that reflects

model performance on both requirements. Research has been done using measure-

ments such as pixel-level Euclidean distance, image retrieval from the known data

set, and structured similarity indices from nearest neighbor images in the training

set. However, none of these methods can give direct validation regarding the two

requirements. In many cases, a generated 2D image that results in a favorable score

under numerical measures scores very low on visual quality as assessed by a hu-

man (Theis et al., 2015). To address this issue, we propose to utilize a crowd as a

direct validation of the model’s capability to generate realistic images.

5.3 Problem Formulation

The problem formulation begins with assuming a fictitious conceptual design sce-

nario involving three ingredients: (1) A “true” product form design space X contain-

ing the product forms of all 2D images capturing what it means to be the particular

design (e.g., a passenger vehicle); (2) a “complete” (possibly infinite) list of design

attributes, denoted a∗, and obtained by being the exact set of design attributes most

preferred by the targeted customer; and (3) a “perfect” design tool f ∗, able to map

deterministically a single complete design attribute list a∗ to a single design x ∈ X :

x = f ∗(a∗) (5.1)

In reality, we do not have access to this complete set of design attributes a∗ (e.g.,

the customer would most prefer exactly these bodyline curves, taillight shape and

illumination, etc.), and must instead settle for a dramatically smaller finite set of

design attributes a (e.g., the customer would prefer a ‘Cadillac’ ‘Coupe’). We now

have a massive number of unknown latent variables called “design features” denoted

h as introduced in (Burnap et al., 2016). In other words, the previous complete list of
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design attributes is now partitioned into known design attributes and unknown design

features a∗ = {a,h}. This introduces uncertainty into our originally deterministic

function, which may now be represented according to a statistical distribution p∗

with unknown functional form:

h ∼ p∗(h). (5.2)

Since we do not know this functional form, we instead assume the uncertainty

from the random vector h may be captured by a distribution parametrized by θ,

giving us the conditional distribution we aim to estimate:

x ∼ pθ(x|a) (5.3)

Practically estimating the parameters of this distribution is challenging due to the

high dimensionality of X , which itself is a subset of a universal domain (Gero & Maher,

2013) of all 256-bit RGB values of the number of pixels forming the 2D image (i.e.,

N = 256(3·pixels)). Accordingly, we turn to a variational approximation (Wainwright

& Jordan, 2008) of the conditional likelihood of the data, one that will be particularly

suited to online mode-seeking optimization methods.

This requires introduction of a latent random vector z as a tool to make the

variational approximation using a tractable distribution qφ:

log pθ(x|a) =
∑
z

qφ(z|x, a) log pθ(x|a) (5.4)

= −
∑
z

qφ(z|x, a) log pθ(z|x, a))

+
∑
z

qφ(z|x, a)) log pθ(x, z|a))

= KL
(
qz|x,a||pz|x,a

)
+ L (θ, φ; x)
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where KL
(
qz|x,a||pz|x,a

)
is the KL divergence, which is always non-negative. There-

fore, the second term L (θ, φ; x) becomes a lower bound of the conditional likelihood

given in Equation (5.3), and becomes the objective function we seek to maximize.

We expand L (θ, φ; x) into three terms, which are then amenable to the deep

generative model in Section 5.3.1:

L (θ, φ; x) =
∑
z

qφ(z|x, a) (log pθ(x, z|a)− log qφ(z|x, a)) (5.5)

=
∑
z

qφ(z|x, a) (log pθ(x|z, a) + logpθ(z|a)− log qφ(z|x, a)) .

5.3.1 Deep Generative Model

We estimate the parameters θ and φ for the conditional likelihood given in Equa-

tion (5.5) using a hierarchical parametric model (i.e., “deep learning”) that exploits

invariance in 2D images, as well as optimization techniques to obtain point estimates

to the values of these parameters. In particular, we use a variational autoencoder

(VAE), a variational Bayesian approach introduced by Kingma and Welling (Kingma

& Welling, 2013) that learns a directed probabilistic model by approximating the

posterior expectation with a reparametrization trick.

The VAE is made up of two networks: an “encoder” that transforms the 2D

images within the data space to a latent representation (i.e., the last term in Equation

(5.5), and a generative “decoder” model that transforms the latent representation

back to a 2D image reconstruction in the data space, i.e., the first term in Equation

(5.5). We use an extension to the VAE that includes conditioning on additional data

(Kingma et al., 2014; Yan et al., 2015; Louizos et al., 2015), in our case known design

attributes a associated with a given design x. These conditional terms allow the

latent representation to instead focus on encoding the uncertainty from features h

not contained in the known design attributes a:
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z ∼ Encoder(x) = qφ(z|x, a) (5.6)

x̂ ∼ Decoder(x) = pθ(x|z, a) (5.7)

The reparametrization trick discussed (Kingma & Welling, 2013) expresses our

introduced latent random variable z ∼ qφ(z|x, a) with a deterministic variable z =

gφ(ε,x, a), where ε is an independent “auxiliary” random variable, and gφ(·) is some

vector-valued function parametrized by φ. Further, we approximate this axillary

variable using Monte Carlo sampling:

Eqφ(z|x,a) [f (z)] = Ep(ε) [f (gφ (ε,x, a))] (5.8)

≈ 1

L

L∑
l=1

f
(
gφ
(
ε(l),x, a

))
with ε(l) ∼ p (ε)

in which l denotes Monte Carlo draws and L denotes the total number of draws.

Using Equation (5.8), we reparametrize the lower bound of the conditional likelihood

we are after in Equation (5.5):

L (θ, φ; x) ≈ 1

L

L∑
l=1

log pθ
(
x|z(l), a

)
+

1

L

L∑
l=1

log pθ(z
(l)|a) (5.9)

− 1

L

L∑
l=1

qφ
(
z(l)|x, a

)
where z(l) = gφ

(
ε(l),x

)
, ε(l) ∼ p (ε)

Lastly, we define qφ(z|x), pθ(z), pθ(x|z) as Gaussian distributions, whose parame-

ters θ and φ we estimate using the VAE:
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Figure 5.3: Deep generative model architecture of variational autoencoder; on the left
is the encoder, while the right is the decoder. Shaded boxes represent in-
puts, white boxes represent fully connected layers, and rectangular prisms
represent convolutional and pooling layers in the encoder, and upsampling
layers in the decoder.

qφ (z|x, a) = N
(
z;µφ (x, a) , σzφ (x, a)

)
(5.10)

pθ (z) = N (z; 0, I) (5.11)

pθ(x|z, a) = N
(
x;µ (z, a) , σ2 (z, a)

)
(5.12)

5.3.2 Model Architecture

The architecture of a deep hierarchical model concerns the types of (i) “layers”, i.e.,

vectors of functions that define function compositions between layers; (ii) “neurons”

or “filters” making up the various layers, particularly their functional form; and (iii)

connectivity linking layers to each other via parameters θ and φ.

The chosen architecture significantly influences the performance of the deep gen-

erative model, as architecture decisions constrain the flow of information throughout

the model. Poor architecture choices increase the number of parameters of the model

θ and φ or sub-optimal generative performance. For a VAE, a number of special lay-
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ers is used to reduce the number of parameters while trading off information capture

of the underlying data distribution. We show in Figure 5.3.1 the model architecture

that uses four types of layers as described below:

Fully Connected Layers

With a fully connected layer, the input x ∈ RBxN and the output y ∈ RBxM are

associated with the function of y = f(xTw + b), where w ∈ RNxM ,b ∈ RM , and f(·)

denotes a nonlinear function–in our case, the Rectified Linear (ReLu).

Convolutional Layers

Convolutional layers capture the notion that there are translation and rotation

invariance, such as local regions forming image components that exist globally across

the image. Such convolutional filters greatly reduce the number of parameters nec-

essary in the layer relative to a fully connected layer, while still capturing a similar

amount of information.

Similar to the fully connected layer, in a convolutional layer the input x and the

output y are associated with the function of y = f(w
⊗

x + b), where
⊗

denotes

the 2D convolution operation and f(·) denotes a nonlinear function, in which we use

Rectified Linear (ReLu), except the last layer where output is produced in which no

nonlinearity function is employed.

Pooling Layers

Because pixel value information is highly redundant in images (i.e., neighbor pixels

values are highly correlated) additional measurements are taken to reduce the number

of parameters in the model. In a pooling layer, one output value will be used to replace

a square area of input values. In this work, we use max pooling layers with a pooling

size of 2 by 2, i.e., the maximum value of the 2 by 2 pixels in an area will be used,
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Figure 5.4: Morphing between various body types from the estimated product form
design space.

and the rest are discarded thus reduced the parameters by a factor of 2 for each

dimension.

Upsampling Layers

Upsampling refers to the inverse of a “pooling” operation, which is used to ”up-

sample” the coded information back to the same dimension as the input images.

This operation necessarily loses information; however, the choices for such approxi-

mate inversion are varied (e.g., fixed location upsampling, average upsampling, and

upsampling with switch units). In the current work, we use average upsampling.

5.4 Experiment: Generating the Last Decade of Automo-

biles

Our goal in the experiment was to statistically estimate the design space pθ(x)

to obtain a mathematical representation with realism and flexibility advantages as

described in Section 5.1, using the model described in Section 5.3.1 and optimized
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using both numerical techniques and crowdsourcing.

Dataset

The data set consisted of 179,702 data points, with each point made up of a

2D image and four design attributes–make, model, body type, and viewpoint–with

corresponding dimensionality shown in Figure 5.3.1 . Each 2D image was downscaled

to 120x120 pixels using OpenCV, an open source computer vision library (Bradski &

Kaehler, 2008). We then split this data of previous designs into a “training set” and

“validation set” with a 3:1 split ratio.

Numerical Parameter Estimation

The variational autoencoder described in Section 5.3.1 requires a number of hy-

perparameters (i.e., user-defined values such as learning rate and batch size) during

the statistical estimation of the parameter sets θ and φ, as well as hyperparameters

of the architecture itself (e.g., number of neurons or filter in a layer). We give these

architecture hyperparameters in Figure 5.3.1. This architecture was implemented us-

ing Theano (Bergstra et al., 2010), an open source symbolic differentiation library

with a graph-based compiler and GPU-acceleration support.

First-order methods have shown to be often better suited to estimation of deep

generative models, particularly when extended with terms that mitigate being affected

by saddle points (Dauphin et al., 2014) and sharp discontinuities (Szegedy et al.,

2013). For these reasons, we use the ADAM optimizer (Kingma & Adam, 2015),

which has is particularly suited to parameter estimation of deep generative models.

We use the ADAM optimization parameter of β1 = 0.1 and β2 = 0.2 with a learning

rate of α = 0.0002. Moreover, estimation of the parameter sets θ and φ in practice

requires the use of “mini-batches” due to large data set sizes; accordingly, we used a

mini-batch size of 100.
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Crowdsourced Hyperparameter Estimation

The goal for crowdsourced hyperparameter estimation was to assess whether there

were significant differences in visual quality of generated 2D images, when varying the

number of latent random variables Z used in the model architecture as described in

Section 5.3.1. This assessment was performed as it has been shown that using numer-

ical performance measures (e.g., log-likelihood) does not necessarily correspond with

human perception of visual quality (Theis et al., 2015). While certain theories (e.g.,

manifold hypothesis (Bengio et al., 2015)) suggest that the effective dimensionality

may not be best modeled as fixed, the addition of humans-in-the-loop may provide

complementary advantages.

5.4.0.1 Participants

A total of 69 participants were gathered using the crowdsourcing platform Ama-

zon Mechanical Turk using an open call and a monetary incentive. We filtered out

participants that “clicked through” the online application if their responses took less

than 3 seconds per “survey question.”

5.4.0.2 Procedure

A web application with a database backend was developed to collect participant

responses to generated 2D images with varying model architecture hyperparameters.

Participants were first directed to a home page, which described the instructions for

inputting visual quality responses to 2D images.

After clicking to proceed past the instructions, participants were presented with

an ordered set of 2D images, and asked to select the 2D image that was most realistic.

Each ordered set contained three 2D images, corresponding to three settings of the

hyperparameters controlling the number of dimensions (i.e., 32, 128, 256 dimensions)

in the latent representation Z. Each ordering was random, in order to not bias
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Figure 5.5: Morphing between various brands from the estimated product form design
space.

participants, while all the same design attributes were held constant (e.g., ‘Cadillac,’

‘coupe.’). The possible set of 2D image triplets contained all pairwise combinations

of bodytypes from the sideview of the vehicle.

Participants were only allowed to click one of the three 2D images, and were

able to change their selection. After participants completed 20 randomly selected 2D

image triplets, they were redirected to web page thanking them for their time and

presenting them with a unique code for monetary redemption.

5.5 Results and Discussion

We explore the estimated product form design space by morphing between various

pairs of design attributes. To show the flexibility of the estimated mathematical

representations pθ(x), we morph between various body types in Figure 5.4, various

brands in Figure 5.5, and rotational viewpoints in Figure 5.6.

The designs x sampled for these results are all artificially generated (i.e., none are

in the dataset). Moreover, we show multiple steps in between each design attribute
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Figure 5.6: Rotations of various body types from the estimated product form design
space.

pair to indicate that we are not overfitting on the data set, as none of these generated

designs exist. In particular, we observe that the visual quality of the generated designs

is uniform across various morphing steps between known design attributes (e.g., from

coupe to SUV); this reinforces the notion that we are not simply overfitting, and

instead we are estimating the true product design space pθ(x|a).

The motivation for this work was developed in part from working with practicing

designers in the automotive industry and recognizing the necessity of a design repre-

sentation that can morph between various brands and body types, yet realistic enough

to convey sufficient meaning to designers (Burnap et al., 2015a). This representation

is not limited to brand studies. A number of design questions can be explored. For

example, we show in Figure 5.7 a generated vehicle between a ‘sedan’ and an ‘SUV,’

which is currently the fastest growing design segment in the automotive market. This

type of design generation can serve as inspiration to designers working on designs for

new market segments (Hartley, 1996b).

Figure 5.8 shows the results of the crowdsourced parameter optimization. Prelim-

inary results indicate that we cannot conclusively state whether the crowd was able
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Figure 5.7: Generated vehicle between ‘sedan’ and ‘SUV’ for randomly set brand that
looks like a ‘crossover.’

to discriminate between various hyperparameter settings during the design space es-

timation. Further research is required into using a crowd to fine-tune parameters

affecting image quality after an initial computer-only optimization is performed.

Thus, the hypothesized value of using crowdsourced optimization requires deeper

investigation. If the crowd is shown to improve the statistical estimation procedure,

we may be able to build more robust crowd-powered optimization systems for these

generative models. The current approach is not in real time; however, a worthwhile

goal may be to build a real-time optimization loop including the crowd, particularly

if incentivized as in the emerging area of gamification (Ren et al., 2015b).

Limitations and Future Work

Interpretation of the latent space remains a challenging and potentially rewarding

goal in thus research. Nonlinear predictive models, particularly those recently popu-
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Figure 5.8: Effect of various number of z random variables in hidden representation
on generated 2D image quality as assessed by crowd. Morph index refers
to how far between two known design attributes a design was morphed–
e.g., 0 and 8 may be ‘convertible’ and ‘truck’, respectively.

larized by data science studies around large-scale datasets, offer significantly improved

generalization performance, and thus significantly improved capture of the underly-

ing physics of the design task, e.g., preference prediction, design space representation,

and market segmentation.

These models are in contrast with the interpretable linear models commonly used

in design task modeling, which often work on strong modeling assumptions comprised

of main effects and pairwise interaction terms, and thus neglect all other statistical

dependencies amongst design variables. Future work towards interpretation of these

latent representation may offer much deeper insight into underlying design prefer-

ences, translated into actionable design decisions that capture how the designer can

adjust design attributes to elicit desired preferences within a specific population.

We show in Figure 5.9 an example of the design feature “color” that we do not

currently capture. While this feature may be simpler to capture using crowds, numer-
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Figure 5.9: Generated design displaying the design features ‘color,’ which we do not
yet control.

ous other features still exist that are not as straightforward. Current work towards

such “feature interpretation” has shown preliminary promise, including data-driven

approaches to predict which visual features of a design most elicit attention (Pan

et al., 2016). These approaches aim to move into the causality behind features in

deep convolutional neural networks (Zeiler & Fergus, 2014; Simonyan et al., 2013).

Interpreting such features may lead to new shape grammars. The combination

of top-down statistical estimation of the design space and bottom-up definition of

the space using shape grammars may be a valuable direction for future research.

Validation such combination may be aided by methods that use humans-in-the-loop,

such as online crowdsourcing (Burnap et al., 2015c), or in-person eye tracking (Reid

et al., 2013b; Du & MacDonald, 2014).
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5.6 Summary

Human designers use a mental design representation of product form that is both

flexible and realistic, allowing efficient exploration of the design space during the

conceptual design process. Mathematical representations of the product form design

space impose constuctivist restrictions on the design space and trade off representation

flexibility for representation realism.

We changed a statistical distribution as a mathematical representation that is

more flexible and realistic than previously proposed representations. We formulated

this representation by assuming a “perfect” conceptual design scenario and progres-

sively introduced uncertainty as dictated by the real world. We approximated this

true statistical distribution using a deep generative model, in particular a variational

autoencoder, which is amenable to efficient computing of large-scale data sets.

We conducted an experiment in the product form domain of automotive styling,

using design attributes and 2D images of automobile designs from the last decade.

The results showed that we are able to find a design representation that is both flexible

and realistic in exploring the design space over design attributes such as body type,

brand, and viewpoint. We also examined using a crowd to improve the parameter

estimation process of the deep generative model; our preliminary results showed that

we are not yet able to improve our generative model results to statistically significant

levels in this way.

Lastly, we discussed a number of possible improvements to this work within the

emerging area of data-driven design. In particular, interpretation of design features

otherwise wrapped up in uncertainty offers design researchers and practicing design-

ers opportunities for valuable design insight. Further investigation into crowdsourcing

mechanisms, real-time and gamified, may prove fruitful. Aligning design augmenta-

tion tools with practicing designers and design researchers who study expert designers

remains important and can further the value of design automation tools.
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CHAPTER VI

Why does Crowdsourcing Fail for Subjective

Preferences?

6.1 Context: Which passenger vehicle would you purchase?

Much research has been devoted to develop design preference models that predict

customer design choices. A common approach is to: (i) Collect a large database

of previous purchases that includes customer data, e.g., age, gender, income, and

purchased product design data, e.g., # cylinders, length, curb weight — for an auto-

mobile; and (ii) statistically infer a design preference model that links customer and

product variables, using conjoint analysis or discrete choice analysis such as logit,

mixed logit, and nested logit models (?McFadden & Train, 2000).

However, a customer may not purchase a vehicle solely due to interactions between

these two sets of variables, e.g., a 50-year old male prefers 6-cylinder engines. Instead,

a customer may purchase a product for more ‘meaningful’ design attributes that are

functions of the original variables, such as environmental sustainability or sportiness

(?Norman, 2007). These meaningful intermediate functions of the original variables,

both of the customer and of the design, are hereafter termed features. We posit that

using customer and product features, instead of just the original customer and product

variables, may increase the prediction accuracy of the design preference model.
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Figure 6.1: The concept of feature learning as an intermediate mapping between vari-
ables and a preference model. The diagram on top depicts conventional
design preference modeling (e.g., conjoint analysis) where an inferred pref-
erence model discriminates between alternative design choices for a given
customer. The diagram on bottom depicts the use of features as an in-
termediate modeling task.

Our goal then is to find features that improve this preference prediction accuracy.

To this end, one common approach is to ask design and marketing domain experts

to choose these features intuitively, such as a design’s social context (?) and visual

design interactions (?). For example, eco-friendly vehicles may be a function of miles

per gallon (MPG) and emissions, whereas environmentally active customers may be

a function of age, income, and geographic region. An alternative explored in this

paper is to find features ‘automatically’ using feature learning methods studied in

computer science and statistics. As shown in Figure 6.1, feature learning methods

create an intermediate step between the original data and the design preference model

by forming a more efficient “feature representation” of the original data. Certain well-

known methods such as principal component analysis may be viewed similarly, but

more recent feature learning methods have shown impressive results in 1D waveform

prediction (?) and 2D image object recognition (?).

We conduct an experiment on automobile purchasing preferences to assess whether

three feature learning methods increase design preference prediction accuracy: (1)

principal component analysis, (2) low-rank + sparse matrix decomposition, and (3)
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exponential family sparse restricted Boltzmann machines (?Salakhutdinov et al.,

2007). We cast preference prediction as a binary classification task by asking the

question, “given customer x, do they purchase vehicle p or vehicle q.” Our data

set is comprised of 1,161,056 data points generated from 5582 real passenger vehicle

purchases in the United States during model year 2006 (MY2006).

The first contribution of this work is an increase of preference prediction accuracy

by 2%-7% just using simple “single-layer” feature learning methods, as compared

with the original data representation. These results suggest features indeed better

represent the customer’s underlying design preferences, thus offering deeper insight

to inform decisions during the design process. Moreover, this finding is complemen-

tary to recent work in crowdsourced data gathering (?Panchal, 2015a) and nonlinear

preference modeling (?Evgeniou et al., 2007a)) since they do not affect the preference

model or data set itself.

The second contribution of this work is to show how features may be used in the

design process. We show that feature interpretation and feature visualization offer

designers additional tools for augmenting design decisions. First, we interpret the

most influential pairings of vehicle features and customer features to the preference

task, and contrast this with the same analysis using the original variable represen-

tation. Second, we visualize the theoretically optimal vehicle for a given customer

within the learned feature representation, and show how this optimal vehicle, which

does not exist, may be used to suggest design improvements upon current models of

vehicles that do exist in the market.

Methodological contributions include being the first to use recent feature learn-

ing methods on heterogeneous design and marketing data. Recent feature learning

research has focused on homogeneous data, in which all variables are real-valued

numbers such as pixel values for image recognition (?Lee et al., 2011); in contrast,

we explicitly model the heterogeneous distribution of the input variables, for example
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‘age’ being a real-valued variable and ‘General Motors’ being a categorical variable.

Subsequently, we give a number of theoretical extensions: First, we use exponen-

tial family generalizations for the sparse restricted Boltzmann machines, enabling

explicit modeling of statistical distributions for heterogeneous data. Second, we de-

rive theoretical bounds on the reconstruction error of the low-rank + sparse matrix

decomposition feature learning method.

This paper is structured as follows: Section 6.2 discusses efforts to increase pre-

diction accuracy by the design community, as well as feature learning advances in

the machine learning community. Section 6.3 sets up the preference prediction task

as a binary classification problem. Section 6.4 details three feature learning methods

and their extension to suit heterogeneous design and market data. Section 6.5 details

the experimental setup of the preference prediction task, followed by results show-

ing improvement of preference prediction accuracy. Section 6.7 details how features

may be used to inform design decisions through feature interpreation and feature

visualization. Section 6.8 concludes this work.

6.2 Related Work

Design preference modeling has been investigated in design for market systems,

where quantitative engineering and marketing models are linked to improve enterprise-

wide decision making (?Lewis et al., 2006; Michalek et al., 2005). In such frameworks,

the design preference model is used to aggregate input across multiple stakeholders,

with special importance on the eventual customer within the targeted market segment

(?).

These design preference models have been shown to be especially useful for the

design of passenger vehicles, as demonstrated across a variety of applications such as

engine design (?), vehicle packaging (?), brand recognition (?), and vehicle styling

(?Reid et al., 2012; Sylcott et al., 2013a). Connecting many of these research efforts is
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the desire for improved prediction accuracy of the underlying design preference model.

With increased prediction accuracy, measured using “held out” portions of the data,

greater confidence may be placed in the fidelity of the resulting design conclusions.

Efforts to improve prediction accuracy involve: (i) Developing more complex sta-

tistical models to capture the heterogeneous and stochastic nature of customer prefer-

ences; examples yuinclude mixed and nested logit models (?Berkovec & Rust, 1985),

consideration sets (?), and kernel-based methods (?Evgeniou et al., 2007a; Ren et al.,

2013b); and (ii) creating adaptive questionnaires to obtain stated information more

efficiently using a variety of active learning methods (?Abernethy et al., 2008).

This work is different from (i) above in that the set of features learned is agnostic

of the particular preference model used. One can just as easily switch out the l2 logit

design preference model used in this paper for another model, whether it be mixed

logit or a kernel machine. This work is also different from (ii) in that we are working

with a set of revealed data on actual vehicle purchases, rather than eliciting this

data through a survey. Accordingly, this work is among recent efforts towards data-

driven approaches in design (?), including design analytics (?) and design informatics

(?), in that we are directly using data to augment existing modeling techniques and

ultimately suggest actionable design decisions.

Feature learning

Feature learning methods capture statistical dependencies implicit in the original

variables by “encoding” the original variables in a new feature representation. This

representation keeps the number of data the same while changing the length of each

data point from M variables to K features. The idea is to minimize an objective

function defining the reconstruction error between the original variables and their new

feature representation. If this representation is more meaningful for the discriminative

design preference prediction task, we can use the same supervised model (e.g., logit
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model) as before to achieve higher predictive performance. More details are given in

Section 6.4.

The first feature learning method we examined is principal component analysis

(PCA). While not conventionally referred to as a feature learning method, PCA

is chosen for its ubiquitous use and its qualitative difference from the other two

methods. In particular, PCA makes the strong assumption that the data is Gaussian

noise distributed around a linear subspace of the original variables, with the goal

of learning the eigenvectors spanning this subspace (?). The features in our case

are the coefficients of the original variables when projected onto this subspace or,

equivalently, the inner product with the learned eigenvectors.

The second feature learning method is low-rank + sparse matrix decomposition

(LSD). This method is chosen as it defines the features implicitly withing the prefer-

ence model. In particular, LSD decomposes the “part-worth” coefficients contained

in the design preference model (e.g., conjoint analysis or discrete choice analysis) into

a low-rank matrix plus a sparse matrix. This additive decomposition is motivated by

results from the marketing literature suggesting certain purchase consideration are

linearly additive (?), and thus well captured by decomposed matrices (?). An addi-

tional motivation for a linear decomposition model is the desire for interpretability

(?). Predictive consumer marketing oftentimes uses these learned coefficients to work

hand-in-hand with engineering design to generate competitive products or services

(?). Such advantages are bolstered by separation of factors captured by matrix de-

composition, as separation may lead to better capture of heterogeneity among market

segments (?). Readers are referred to (?) for further in-depth discussion.

The third feature learning method is the exponential family sparse restricted

Boltzmann machine (RBM) (?Lee et al., 2008). This method is chosen as it explicitly

represents the features, in contrast with the LSD. The method is a special case of a

Boltzmann machine, an undirected graph model in which the energy associated within
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an energy state space defines the probability of finding the system in that state (?).

In the RBM, each state is determined by both visible and hidden nodes, where each

node corresponds to a random variable. The visible nodes are the original variables,

while the hidden nodes are the feature representation. The “restricted” portion of

the RBM refers to the restriction on visible-visible connections and hidden-hidden

connections, later detailed and depicted in in Section 6.4 and Figure 6.4, respectively.

All three feature learning methods are considered “simple” in that they are single-

layer models. The aforementioned results in 1D waveform speech recognition and

2D image object recognition have been achieved using hierarchical models, built by

stacking multiple single-layer models. We chose single-layer feature learning methods

here as an initial effort and to explore parameter settings more easily; as earlier

noted, there is limited work on feature learning methods for heterogeneous data (e.g.,

categorical variables) and most advances are currently only on homogeneous data

(e.g., real-valued 2D image pixels).

6.3 Preference Prediction as Binary Classification

We cast the task of predicting a customer’s design preferences as a binary classifi-

cation problem: Given customer j, represented by a vector of heterogeneous customer

variables x
(j)
c , as well as two passenger vehicle designs p and q, each represented by a

vector of heterogeneous vehicle design variables x
(p)
d and x

(q)
d , which passenger vehicle

will the customer purchase? We use a real data set of customers and their passenger

vehicle purchase decisions as detailed below (?).

Customer and vehicle purchase data from 2006

The data used in this work combines the Maritz vehicle purchase survey from

2006 (?), the Chrome vehicle variable database (?), and the 2006 estimated U.S.

state income and living cost data from the U.S. Census Bureau (?) to create a data
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Table 6.1: Customer variables xc and their variable types
Customer Variable Type Customer Variable Type

Age Real
U.S. State Cost of

Living
Real

Number of House

Members
Real Gender Binary

Number of Small

Children
Real Income Bracket Categorical

Number of Med.

Children
Real House Region Categorical

Number of Large

Children
Real Education Level Categorical

Number of Children Real U.S. State Categorical

U.S. State Average

Income
Real

set with both customer and passenger vehicle variables. These combined data result

in a matrix of purchase records, with each row corresponding to a separate customer

and purchased vehicle pair, and each column corresponding to a variable describing

the customer (e.g., age, gender, income) or the purchased vehicle (e.g., # cylinders,

length, curbweight).

From this original data set, we focus only on the customer group who bought pas-

senger vehicles of size classes between mini-compact and large vehicles, thus excluding

data for station wagons, trucks, minivans, and utility vehicles. In addition, purchase

data for customers who did not consider other vehicles before their purchases were

removed, as well data for customers who purchased vehicles for another party.

The resulting database contained 209 unique passenger vehicle models bought

by 5582 unique customers. The full list of customer variables and passenger vehicle

variables can be found in Tables 6.1 and 6.2. The variables in these tables are grouped

into three unit types: Real, binary, and categorical, based on the nature of the

variables.
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Table 6.2: Design variables xd and their variable types
Design Variable Type Design Variable Type

Invoice Real AWD/4WD Binary

MSRP Real
Automatic

Transmission
Binary

Curbweight Real Turbocharger Binary

Horsepower Real Supercharger Binary

MPG (Combined) Real Hybrid Binary

Length Real Luxury Binary

Width Real Vehicle Class Categorical

Height Real Manufacturer Categorical

Wheelbase Real Passenger Capacity Categorical

Final Drive Real Engine Size Categorical

Diesel Binary

Choice set training, validation, and testing split

We converted the data set of 5582 passenger vehicle purchases into a binary choice

set by generating all pairwise comparisons between the purchased vehicle and the

other 208 vehicles in the data set for all 5582 customers. This resulted in N =

1, 161, 056 data points, where each datum indexed by n consisted of a triplet (j, p, q)

of a customer indexed by j and two passenger vehicles indexed by p and q, as well as

a corresponding indicator variable y(n) ∈ {0, 1} describing which of the two vehicles

was purchased.

This full data were then randomly shuffled, and split into training, validation, and

testing sets. As previous studies have shown the impact on prediction performance

given different generations of choice sets (?), we created 10 random shufflings and

subsequent data splits of our data set, and run the design preference prediction ex-

perimental procedure of Section 6.5 on each one independently. This work is therefore

complementary to studies on developing appropriate choice set generation schemes

such as (?). Full details into the data processing procedure are given in Section 6.5.
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Bilinear design preference utility

We adopt the conventions of utility theory for the measure of customer preference

over a given product (?). Formally, each data point consists of a pairwise comparison

between vehicles p and q for customer j , with corresponding customer variables x
(j)
c

for j ∈ {1, . . . , 5582} and original variables of the two vehicle designs, x
(p)
d and x

(q)
d

for p, q ∈ {1, . . . , 209}. We assume a bilinear utility model for customer j and vehicle

p:

Ujp =

[
vec
(
x(j)
c ⊗ x

(p)
d

)T
,
(
x
(p)
d

)T]
ω, (6.1)

where ⊗ is an outer product for vectors, vec (·) is vectorization of a matrix, [·, ·] is

concatenation of vectors, and ω is the part-worth vector.

Design preference model

The preference model refers to the assumed relationship between the bilinear

utility model described in Section 6.3 and a label indicating which of the two vehicles

the customer actually purchased. While the choice of preference model is not the

focus of this paper, we pilot-tested popularly used models including l1 and l2 logit

model, näıve Bayes, l1 and l2 linear as well as kernelized support vector machine, and

random forests.

Based on these pilot results, we chose the l2 logit model due to its widespread use

in the design and marketing communities (?Fuge, 2015); in particular, we used the

primal form of the logit model. Equation (6.2) captures how the logit model describes

the probabilistic relationship between customer j’s preference for either vehicle p or

vehicle q as a function of their associated utilities given by Equation (6.1). Note that

ε are Gumbel-distributed random variables accounting for noise over the underlying

utility of the customer j’s preference for either vehicle p or vehicle q.
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P (n) = P(j,p,q) = P (Ujp + εjp > Ujq + εjq) =
eUjp

eUjp + eUjq
(6.2)

Parameter Estimation

We estimate the parameters of the logit model in Eq. (6.2) using conventional

convex loss function minimization using the log-loss regularized with the l2 norm.

min
ω,α

1

N

N∑
n=1

(y(n) logP (n) + (1− y(n)) log(1− P (n))) + α ‖ω‖2 (6.3)

where y(n) = y(jpq) is 1 if customer j chose vehicle p to purchase, and 0 if vehicle q was

purchased; and α is the l2 regularization hyperparameter. The optimization algorithm

used to minimize this regularized loss function was stochastic gradient descent, with

details of hyperparameter settings given in Section 6.5.

6.4 Feature Learning Models for Preference Prediction

We present three qualitatively different feature learning methods as introduced in

Section 6.2: (1) principal component analysis, (2) low-rank + sparse matrix decompo-

sition, and (3) exponential family sparse restricted Boltzmann machine. Furthermore,

we discuss their extensions to better suit the market data described in Section 6.3,

as well as derivation of theoretical guarantees.

6.4.1 Principal Component Analysis

Principal component analysis (PCA) maps the original data representation x =

[x1, x2, . . . , xM ]T ∈ RM×1 to a new feature representation h = [h1, h2, . . . , hK ]T ∈

RK×1, K ≤ M , with an orthogonal transformation W ∈ RM×K . Assume that the

original data representation x has zero empirical mean (otherwise we simply subtract

the empirical mean from x). The mapping is given by:
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Figure 6.2: The concept of principal component analysis shown using an example
with a data point represented by three original variables x projected to a
two dimensional subspace spanned by w to obtain features h.

h = xTW (6.4)

The PCA representation has the following properties: (1) h1 has the largest vari-

ance, and the variance of hi is not smaller than the variance of hj for all j < i;

(2) the columns of W are orthogonal unit vectors; and (3) h and W minimize the

reconstruction error ε:

ε = ||x− h||2 (6.5)

When the q columns of W consist of the first q eigenvectors of xTx, the above

properties are all satisfied, and the PCA feature representation can be calculated by

Equation (6.4). Since PCA is a projection onto a subspace, the features h in this

case are not “higher order” functions of the original variables, but rather a linear

mapping from original variables to a strictly smaller number of linear coefficients

over the eigenvectors.
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6.4.2 Low-Rank + Sparse Matrix Decomposition

The utility model Urp given in Equation (6.1) can be rewritten into matrix form,

in which Ω is a matrix reshaped from the “part-worth” coefficients vector ω:

Urp = [
(
x(j)
c

)T
, 1]Ωxpd (6.6)

The decomposition of the original part-worth coefficients into a low-rank matrix and

a sparse matrix may better represent customer purchase decisions than the large

coefficient matrix of all pairwise interactions given in Equation ((6.1)) and as detailed

in Section 6.2. Accordingly, we decompose Ω into a low-rank matrix L of rank r

superimposed with a sparse matrix S, i.e. Ω = L + S. This problem may be solved

in the general case exactly with the following optimization problem:

min
L,S

l(L,S; Xc,Xd,y) (6.7)

s.t. rank(L) ≤ r

S ∈ C

where Xu and Xc are the full set of customer and vehicle data, y is the vector of

whether customer j chose vehicle p or vehicle q, l(·) is the log-loss without the l2

norm,

l(L,S; Xc,Xd,y)

=
1

N

N∑
n=1

(y(n) logP (n) + (1− y(n)) log(1− P (n))) (6.8)

and C is a convex set corresponding to the sparse matrix S. As this problem is

intractable (NP-hard), we instead learn this decomposition of matrices using an ap-
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Figure 6.3: The concept of low-rank + sparse matrix decomposition using an example
“part-worth coefficients” matrix of size 10 x 10 decomposed into two 10
x 10 matrices with low rank or sparse structure. Lighter colors represent
larger values of elements in each decomposed matrix.

proximation obtained via regularized loss function minimization:

min
L,S

l(L,S; Xc,Xd,y) + λ1||L||∗ + λ2||S||1 (6.9)

where ||·||∗ is the nuclear norm to promote low-rank structure, and ||·||1 is the l1-norm.

In particular, while a number of low-rank regularizations may be used to solve Eq.

(6.9), e.g., trace norm and log-determinant norm (?). We choose the nuclear norm as

it may be applied to any general matrix, while the trace norm and log-determinant

regularization are limited to positive semidefinite matrices. Moreover, the nuclear

norm is often considered optimal as ||L||∗ is the convex envelop of Rank(L), implying

that ||L||∗ is the largest convex function smaller than Rank(L) (?).

Definition 1. For matrix L,the nuclear norm is defined as,

||L||∗ :=

min(dim(L))∑
i=1

si(L)

where si(L) is a singular value of L.
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6.4.2.1 Parameter Estimation

The non-differentiability of the convex low-rank + sparse approximation given

in Eq. (6.9) necessitates optimizations techniques such as augmented Lagrangian

(?), semi-definite programming (?), and proximal methods (?). Due to theoretical

guarantees on convergence, we choose to train our model using proximal methods

which are defined as follows.

Definition 2. Let f : Rn → R ∪ {+∞} be a closed proper convex function. The

proximal operator of f is defined as

proxf (v) = arg min
x

(
f(x) +

1

2
||v − x||22

)

With these preliminaries, we now detail the proximal gradient algorithm used to

solve Eq. (6.9) using low-rank and l1 proximal operators. Denote f(·) = λ1|| · ||∗,

and its proximal operator as proxf . Similarly denote the proximal operator for the

l1 regularization term by proxS, i = 1, . . . n.

With this notation, the proximal optimization algorithm to solve Equation ((6.9))

is given by Algorithm 1. Moreover, this algorithm is guaranteed to converge with

constant step size as given by the following lemma (?).

Lemma 3. Convergence Property

When ∇l is Lipschitz continuous with constant ρ, this method can be shown to con-

verge with rate O( 1
k
) when a fixed step size ηt = η ∈ (0, 1/ρ] is used. If ρ is not

known, the step sizes ηt can be found by a line search; that is, their values are chosen

in each step.

6.4.3 Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is an energy-based model in which an

energy state is defined by a layer of M visible nodes corresponding to the original
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Input: Data Xc, Xd, y
Initialize L0 = 0,S0 = 0
repeat

Lt+1 = proxf (L
t − ηt∇Ltl(L,S; Xc,Xd,y))

St+1 = proxS(St − ηt∇Stl(L,S; Xc,Xd,y))
until Lt, Sti are converged

Algorithm 1: Low-Rank + Sparse Matrix Decomposition

variables x and a layer of K features denoted as h. The energy for a given pair

of original variables and features determines the probability associated with finding

the system in that state; like nature, systems tend to states that minimize their

energy and thus maximize their probability. Accordingly, maximizing the likelihood

of the observed data x(1) . . .x(N) ∈ RM and its corresponding feature representation

h(1) . . .h(N) ∈ RK is a matter of finding the set of parameters that minimize the

energy for all observed data.

While traditionally this likelihood consists of binary variables and binary features,

as described in Table 6.1 and Table 6.2, our passenger vehicle purchase data set

consists of MG Gaussian variables, MB binary variables, and MC categorical variables.

We accordingly define three corresponding energy functions EG, EB, and EC , in which

each energy function connects the original variables and features via a weight matrix

W, as well as biases for each original variable and feature, a and b respectively.

Real-valued random variables (e.g., vehicle curb weight) are modeled using the

Gaussian density. The energy function for Gaussian inputs and binary hidden nodes

is:

EG(x,h; θ) =−
MG∑
m=1

K∑
k=1

hkwkmxm

+
1

2

MG∑
m=1

(xm − bm)2 −
K∑
k=1

akhk

(6.10)

where the variance term is clamped to unity under the assumption that the input

data are standardized.

Binary random variables (e.g., gender) are modeled using the Bernoulli density.
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The energy function for Bernoulli nodes in both the input layer and hidden layer is:

EB(x,h; θ) =−
MB∑
m=1

K∑
k=1

hkwkmxm

−
MB∑
m=1

xmbm −
K∑
k=1

akhk

(6.11)

Categorical random variables (e.g., vehicle manufacturer) are modeled using the

categorical density. The energy function for categorical inputs with Zm classes for

m-th categorical input variable (e.g., Toyota, General Motors, etc.) is given by:

EC(x,h; θ) =−
Km∑
m=1

K∑
k=1

Zm∑
z=1

hkwkmzδmzxmz

−
MC∑
m=1

Zm∑
z=1

δmzxmzbmz −
K∑
k=1

akhk

(6.12)

where δmz = 1 if xmz = 1 and 0 otherwise.

Given these energy functions for the heterogeneous original variables, the proba-

bility of a state with energy E(x,h; θ) = EG(x,h; θ) + EB(x,h; θ) + EC(x,h; θ), in

which θ = {W, a,b} are the energy function weights and bias parameters, is defined

by the Boltzmann distribution.

P (x,h) =
e−E(x,h;θ)∑

x

∑
h e
−E(x,h;θ)

(6.13)

The “restriction” on the RBM is to disallow visible-visible and hidden-hidden node

connections. This restriction results in conditional independence of each individual

hidden unit h given the vector of inputs x, and each visible unit x given the vector

of hidden units h.

P (h|x) =
N∏
n=1

P (hn|x) (6.14)
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Figure 6.4: The concept of the exponential family sparse restricted Boltzmann ma-
chine. The original data are represented by nodes in the visible layer
by [x1, x2], while the feature representation of the same data is repre-
sented by nodes in the hidden layer [h1, h2, h3, h4]. Undirected edges are
restricted to being only between the original layer and the hidden layer,
thus enforcing conditional independence between nodes in the same layer.

P (x|h) =
K∏
k=1

P (xk|h) (6.15)

The conditional density for a single binary hidden unit given the combined KG

Gaussian, KB binary, and KC categorical input variables is then:

σ(an +

KG∑
k=1

wnkxk +

KB∑
k=1

wnkxk +

KC∑
k=1

Dk∑
d=1

wnkδkdxk) (6.16)

where σ(s) = 1
1+exp(−s) is a sigmoid function.

For an input data point x(n), its corresponding feature representation h(n) is given

by sampling the “activations” of the hidden nodes.

[P (h1 = 1|x, θ) , ... , P (hN = 1|x, θ)] (6.17)
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Parameter Estimation

To train the model, we optimize the weight and bias parameters θ = {W,b, a}

by minimizing the negative log-likelihood of the data {x(1) . . .x(N)} using gradient

descent. The gradient of the log-likelihood is:

∂

∂θ

N∑
n=1

logP
(
x(n)

)
=

∂

∂θ

N∑
n=1

log
∑
h

P
(
x(n),h

)
=

∂

∂θ

N∑
n=1

log
∑
h

e−E(x(n),h)∑
x,h e

−E(x(n),h)

=
N∑
n=1

Eh|x(n)

[
∂

∂θ
E
(
x(n),h

)]
− Eh,x

[
∂

∂θ
E (x,h)

]
(6.18)

The gradient is the difference of two expectations, the first of which is easy to compute

since it is “clamped” at the input datum x, but the second of which requires the joint

density over the entire x space for the model.

In practice, this second expectation is approximated using the contrastive diver-

gence algorithm by Gibbs, sampling the hidden nodes given the visible nodes, then

the visible nodes given the hidden nodes, and iterating a sufficient number of steps

for the approximation (?). During training, we induce sparsity of the hidden layer by

setting a target activation βk, fixed to 0.1, for each hidden unit hk (?). The overall

objective to be minimized is then the negative log-likelihood from Equation (6.18)

and a penalty on the deviation of the hidden layer from the target activation. Since

the hidden layer is made up of sigmoid densities, the overall objective function is:

N∑
n=1

log
∑
h

P
(
x(n),h

)
+ λ3

K∑
k=1

(
β
(n)
k log hk +

(
1− β(n)

k

)
log (1− hk)

)
,

(6.19)
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where λ3 is the hyperparameter trading off the sparsity penalty with the log-likelihood.

6.5 Experiment

The goal in this experiment was to assess how preference prediction accuracy

changes when using the same preference model on three different representations of

the same data set. The preference model used, as discussed in Section 6.3, was the l2

logit, while the three representations were the original variables, low-rank + sparse

features, and RBM features. The same experimental procedure was run on each

of these three representations, where the first representation acts as a baseline for

prediction accuracy, and the next two representations demonstrate the relative gain

in preference prediction accuracy when using features.

In addition, we performed an analysis of how the hyperparameters affected design

preference prediction accuracy for the hyperparameters used in the PCA, LSD, and

RBM feature learning methods. For PCA, the hyperparameter was the dimensional-

ity K of the subspace spanned by the eigenvectors of the PCA method. For LSD, the

hyperparameters were the rank penalty λ1, which affects the rank of the low-rank ma-

trix L, and the sparsity penalty λ2, which influences the number of non-zero elements

in the sparse matrix S, both found in Equation (6.9). For RBM, the hyperparam-

eters were the sparsity penalty λ3, which controls the number of features activated

for a given input datum, and the overcompleteness factor γ, which defines by what

factor the dimensionality of the feature space is larger than the dimensionality of the

original variable space, both of which are found in Equation (6.19).

The detailed experiment flow is summarized below and illustrated in Figure 6.5:

1. The raw choice data set of pairs of customers and purchased designs, described

in Section 6.3, was randomly split 10 times into 70% training, 10% validation,

and 20% test sets. This was done in the beginning to ensure no customers in
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Figure 6.5: Data processing, training, validation, and testing flow.

the training sets ever existed in the validation or test sets.

2. Choice sets were generated for each training, validation, and test sets for all

10 randomly shuffled splits as described in Section 6.3. This process created a

training data set of 832,000 data points, a validation data set of 104,000 data

points, and a testing data set of 225,056 data points, for each of the 10 shuffled

splits.

3. Feature learning was conducted on the training sets of customer variables and

vehicle variables for a vector of 5 different values of K for PCA features, a grid

of 25 different pairs of low-rank penalty λ1 and sparsity penalty λ2 for the LSD

features, and a grid of 56 different pairs of sparsity λ3 and overcompleteness

γ hyperparameters for RBM features. For PCA features, these hyperparam-

eters were K ∈ {30, 50, 70, 100, 150}. For LSD features, these hyperparame-

ters were λ1 ∈ {0.005, 0.01, 0.05, 0.1, 0.5} and λ2 ∈ {0.005, 0.01, 0.05, 0.1, 0.5}.

For RBM, these hyperparameters were λ3 ∈ {4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0} and

γ ∈ {0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0}. These hyperparameter settings were

selected by pilot testing large ranges of parameter settings to find relevant re-

gions for upper and lower hyperparameter bounds, with numbers of hyperpa-
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Design
Preference

Model

Feature
Representation

Prediction Accuracy
(std. dev.)
(ρ-value)

N = 10, 000

Prediction Accuracy
(std. dev.)
(ρ-value)

N = 1, 161, 056

Logit Model
Original
Variables

(No Features)

69.98% (1.82%)
(N/A)

75.29% (0.98%)
(N/A)

Logit Model
Principle

Component
Analysis

61.69% (1.24%)
(1.081e-7)

62.03% (0.89%)
(8.22e-10)

Logit Model

Low-Rank +
Sparse
Matrix

Decomposition

76.59% (0.89%)
(3.276e-8)

77.58% (0.81%)
(4.286e-8)

Logit Model
Exponential

Family
Sparse RBM

74.99% (0.64%)
(2.3e-5)

75.15% (0.81%)
(0.136)

Table 6.3: Averaged preference prediction accuracy on held-out test data using the
logit model with the original variables or the three feature representations.
Average and standard deviation were calculated from 10 random training
and testing splits common to each method, while test parameters for each
method were selected via cross validation on the training set.

rameters selected based on computational constraints.

4. Each of the validation and testing data sets were encoded using the feature

learning methods learned for each of the 5 PCA hyperparameters K, 25 (λ1, λ2)

LSD hyperparameter pairs, and 56 (λ3, γ) RBM hyperparameter pairs.

5. The encoded feature data was combined with the original variable data in order

to separate linear term effects of the original variables with higher order effects

from the features. While this introduces a degree of information redundancy

between features and original variables, the regularization term in Equation 6.3

mitigates effects of collinearity. Each datum consists of the features concate-

nated with the original variables, then input into the bilinear utility model.

Specifically, for some customer features hu and customer variables xu, we used

hTu′ := [xTu ,h
T
u ] to define the new representation of the customer; likewise, for
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some vehicle features hc and vehicle variables xc, we used hTc′ := [xTc ,h
T
c ] to

define the new representation of the customer. Combined with Equation (6.1),

a single data point used for training is the difference in utilities between vehicle

p and vehicle q for a given customer r.

[
h
(r)
u′ ⊗

(
h
(p)
c′ − h

(q)
c′

)
,h

(p)
c′ − h

(q)
c′

]
(6.20)

Note that the dimensionality of each datum could range above 100,000 dimen-

sions for the largest values of γ.

6. For each of these training sets, 6 logit models were trained in parallel over

minibatches of the training data, corresponding to 6 different settings of the l2

regularization parameter α = 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0. These logit

models were optimized using stochastic gradient descent, with learning rates

inversely related to the number of training examples seen (?).

7. Each logit model was then scored according to its respective held-out validation

data set. The hyperparameter settings (αBASELINE) for the original variables,

(KPCA, αPCA) for PCA feature learning, (λ1, λ2) for LSD feature learning, and

(λ3, γ, αRBM) for RBM feature learning with the best validation accuracy were

saved. For each of these four sets of best hyperparameters, Step 3 was repeated

to obtain the set of corresponding features on each of the 10 random shuffled

training plus validation sets.

8. Logit models corresponding to the baseline, PCA features, LSD features, and

RBM features were retrained for each of the 10 randomly shuffled and combined

training and validation. The prediction accuracy for each of these 10 logit

models was assessed on the corresponding “held out” test sets in order to give

average and standard deviations of the design preference predictive accuracy
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for the baseline, PCA features, LSD features, and RBM features.

6.6 Results

Table 6.3 shows the averaged test set prediction accuracy of the logit model using

the original variables, PCA features, LSD features, and RBM features. Prediction

accuracy averaged over 10 random training and held-out testing data splits are given,

both for the partial data N = 10, 000 and the full data N = 1, 161, 056 cases. Fur-

thermore, we include the standard deviation of the prediction accuracies and a 2-sided

t-test relative to the baseline accuracy for each feature representation.

The logit model trained with LSD features achieved the highest predictive accu-

racy on both the partial and full data sets, at 76.59% and 77.58%, respectively. This

gives evidence that using features can improve design preference prediction accuracy

as the logit model using the original variables achieved an averaged accuracy of 69.98%

and 75.29%, respectively. The improvement in design preference prediction accuracy

is greatest for the partial data case, as evidenced by both the LSD and RBM, yet the

improvement with the full data case shows that the LSD feature learning method is

still able to improve prediction accuracy within the capacity of the logit model. The

RBM results for the full data case do not show significant improvement in prediction

accuracy. Finally, we note a relative loss in design preference prediction accuracy

when using PCA as a feature learning method, both for the partial and full data sets,

suggesting the heavy assumptions built into PCA are overly restrictive.

The parameter settings for the LSD feature learning method give additional insight

to the preference prediction task. In particular, the optimal settings of λ1 and λ2

obtained through cross validation on the 10 random training sets was ranged from

r = 29 to r = 31. This significantly reduced rank of the part-worth coefficient matrix

given in Eq. (6.1) suggests that the vast majority of interactions between customer

variables and design variables given in Table 6.1 and Table 6.2 do not significantly
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contribute to overall design preferences. This insight allows us to introspect into

important feature pairings on a per-customer basis to inform design decisions.

We have shown that even “simple” single-layer feature learning can significantly

increase predictive accuracy for design preference modeling. This finding signifies that

features more effectively capture the design preferences than the original variables, as

features form functions of the original variables more representative of the customer’s

underlying preference task. This offers designers opportunity for new insights if these

features can be successfully interpreted and translated to actionable design decisions;

however, given the relatively recent advances in feature learning methods, interpre-

tation and visualization of features remains an open challenge–see Section 6.7 for

further discussion.

Further increases to prediction accuracy might be achieved by stacking multiple

feature learning layers, often referred to as “deep learning”. Such techniques have

recently shown impressive results by breaking previous records in image recognition by

large margins (?). Another possible direction for increasing prediction accuracy may

be in developing novel architectures that explicitly capture the conditional statistical

structure between customers and designs. These efforts may be further aided through

better understanding of the limitations of using feature learning methods for design

and marketing research. For example, the large number of parameters associated

with feature learning methods results in greater computational cost when performing

model selection; in addition to the cross-validation techniques used in this paper,

model selection metrics such as BIC and AIC may give further insight along these

lines.

6.7 Using Features for Design

Using features can support the design process in at least two directions: (1) Fea-

tures interpretation can offer deeper insights into customer preferences than the orig-
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inal variables, and (2) feature visualization can lead to a market segmentation with

better clustering than with the original variables. These two directions are still open

challenges given the relative nascence of feature learning methods. Further investiga-

tion is necessary to realize the above design opportunities and to justify the computa-

tional cost and implementation challenges associated with feature learning methods.

The interpretation and visualization methods may be used with conventional lin-

ear discrete choice modeling (e.g., logit models). However, deeper insights are possible

through interpreting and visualizing features, assuming that features capture more

effectively the underlying design preference prediction task of the customer as shown

through improved prediction accuracy on held-out data. Since we are capturing

“functions” of the original data, we are more likely to interpret and visualize feature

pairings such as “eco-friendly” vehicle and “environmentally conscious” customer;

such pairing may ultimately lead to actionable design decisions.

6.7.1 Feature Interpretation of Design Preferences

Similar to PCA, LSD provides an approach to interpret the learned features by

looking at the linear combinations of original variables. The major difference between

features learned using PCA versus LSD is their different linear combinations; in par-

ticular, features learned by LSD are more representative as they contain information

from both the data distribution and the preference task, while PCA features only

contain information from the data distribution.

As introduced in section 6.4.2, the weight matrix Ω is decomposed into a low-rank

matrix L and a sparse matrix S, i.e. Ω = L + S. The nonzero elements in the sparse

matrix S may be interpreted as the weight of the product of its corresponding original

design variables and customer variables. As for the low-rank matrix L, features can be

extracted by linearly combining the original variable according to the singular value

decomposition (SVD) for L. The singular value decomposition is a factorization of
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the (m + 1) × n matrix L in the form L = UΣV, where U is a (m + 1) × (m + 1)

unitary matrix, Σ is an m × n rectangular diagonal matrix with non-negative real

numbers σ1, σ2, . . . , σmin(m+1,n) on the diagonal, and V is a (n)× (n) unitary matrix.

Rewriting Equation (6.6):

Urp =
[(

x(j)
c

)T
, 1
]

Lxpd +
[(

x(j)
c

)T
, 1
]

Sxpd

=
[(

x(j)
c

)T
, 1
]

UΣVxpd +
[(

x(j)
c

)T
, 1
]

Sxpd

=

min(m+1,n)∑
i=1

σi

[(
x(j)
c

)T
, 1
]

uivix
p
d +

[(
x(j)
c

)T
, 1
]

Sxpd

(6.21)

where ui is the i-th column of matrix U , and vi is the i-th row of matrix V . The

i-th user feature

[(
x
(j)
c

)T
, 1

]
ui is a linear combination of original user variables; the

i-th design feature vix
p
d is a linear combination of original design variables; and σi

represents the importance of this pair of features for the customer’s design preferences.

Interpreting these features in the vehicle preference case study, we found that the

most influential feature pairing (i.e., largest σi) corresponds to preference trends at

the population level: Low price but luxury vehicles are preferred, and Japanese ve-

hicles receive the highest preference while GM vehicles receive the lowest preference.

The second most influential feature pairing represents a rich customer group, with

preferred vehicle groups being both expensive and luxurious. The third most influ-

ential feature pairing represents an elder user group, with their preferred vehicles as

large but with low net horsepower.

6.7.2 Features Visualization of Design Preferences

We now visualize features to understand what insights for design decision making.

Specifically, we make early-stage inroad to visual market segmentation performed in

an estimated feature space, thus clustering customers in a representation that better

captures their underlying design preference decisions.
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Figure 6.6: Optimal vehicle distribution visualization. Every point represents the
optimal vehicle for one consumer. In the left column, the optimal vehicle
is inferred using the utility model with original variables. In the right
column, LSD features are used to infer the optimal vehicle. In the first
row, the optimal vehicles from SCI-XA customers are marked in big red
points. Similarly, the optimal vehicles from MAZDA6, ACURA-TL and
INFINM35 customers are marked in big red points respectively.

We begin by looking at the utility model Urp given in Equation (6.1) and note

that the inner product between Ω and the variables x
(r)
u representing customer r may

be interpreted as customer r’s optimal vehicle, denoted x
(r)
opt:

x
(r)
opt =

(
x(r)
u

)T
Ωout + 1TΩmain (6.22)

where Ωout is the matrix reshaped from the coefficients of Ω corresponding to the outer

product given in Equation (6.1), Ωmain is the matrix reshaped from the remaining

coefficients, and 1 is a vector consisting of 1’s with the same dimension as x
(r)
u . We

rewrite the utility model Urp given in Equation (6.1) in terms of the optimal vehicle

x
(r)
opt:
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Urp =
(
x
(r)
opt

)T
xpd (6.23)

According to the geometric meaning of inner product, the smaller the angle be-

tween xpd and x
(r)
opt is, the larger will be the utility Urp. In this way, we have an

interpretable method of improving upon the actual purchased vehicle design in the

form of an ’optimal’ vehicle vector. This optimal vehicle vector could be useful for a

manufacturer developing a next-generation design from a current design, particularly

as the manufacturer would target a specific market segment.

We now provide a visual demonstration of using an optimal vehicle derived from

feature learning to suggest a design improvement direction. First, we calculate the

optimal vehicle using Equation (6.22) for every customer in the data set. Then, we

visualize these optimal vehicle points by reducing their dimension using t-distributed

stochastic neighbor embedding (t-SNE), an advanced nonlinear dimension reduction

technique that embeds similar objects into nearby points (van der Maaten, 2008).

Finally, optimal vehicles from targeted market segments are marked in red.

Figure 6.6 shows the optimal vehicles for the SCI-XA, MAZDA6, ACURA-TL

and INFINM35 customer groups using red points respectively. We observe that the

optimal vehicle moves from the left-top corner to the right-bottom corner as the

purchased vehicles become more luxurious using the LSD features, while the optimal

vehicles in the original variable representation show overlap, especially for MAZDA6

and ACURA-TL customers. In other words, we are visualizing what has been shown

quantitatively through increased preference prediction accuracy; namely, that optimal

vehicles represented using LSD features as opposed to the original variables result in

a larger separation of various market segments’ optimal vehicles.

The contribution of this demonstration is not the particular introspection on the

chosen example with MAZDA6 and ACURA-TL customers. Instead, this demon-

stration is significant as it suggests it is possible to perform feature-based market
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segmentation purely using visual analysis. Such visual analysis is likely to be more

useful to practicing designers and marketers, as it abstracts away the underlying

mathematical mechanics of feature learning.

6.8 Summary

Feature learning is a promising method to improve design preference prediction

accuracy without changing the design preference model or the data set. This im-

provement is obtained by transforming the original variables to a feature space acting

as an intermediate step as shown in Figure 6.1. Thus, feature learning complements

advances in both data gathering and design preference modeling.

We presented three feature learning methods–principal component analysis, low-

rank plus sparse matrix decomposition, and sparse exponential family restricted

Boltzmann machines–and applied them to a design preference data set consisting of

customer and passenger vehicle variables with heterogeneous unit types, e.g., gender,

age, # cylinders.

We then conducted an experiment to measure design preference prediction accu-

racy involving 1,161,056 data points generated from a real purchase dataset of 5582

customers. The experiment showed that feature learning methods improve preference

prediction accuracy by 2-7% for a small and full dataset, respectively. This finding

is significant, as it shows that features offer a better representation of the customer’s

underlying design preferences than the original variables. Moreover, the finding shows

that feature learning methods may be successfully applied to design and marketing

data sets made up of variables with heterogeneous data types; this is a new result

as feature learning methods have primarily been applied on homogeneous data sets

made up of variables of the same distribution.

Feature interpretation and visualization offer a promise for using features to sup-

port the design process. Specifically, interpreting features can give designers deeper
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insights of the more influential pairings of vehicle features and customer features,

while visualization of the feature space can offer deeper insights when performing

market segmentation. These new findings suggest opportunities to develop feature

learning algorithms that are not only more representative of the customer preference

task as measured by prediction accuracy but also easier to interpret and visualize by a

domain expert. Methods allowing easier interpretation of features would be valuable

when translating the results of more sophisticated feature learning and preference

prediction models into actionable design decisions.
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CHAPTER VII

Conclusion

7.1 Summary of Dissertation

Crowdsourcing for engineering design is an approach for obtaining human input

across a number of evaluators or customers separate from the designer herself, en-

abled by the reach and scale of the internet and modern computational processing,

for a given objective or subjective design decision. This approach has seen much

recent attention at industrial companies and governmental agencies, as it offers the

opportunity to make good design decisions and to catch bad design decisions at the

early stages of the design process, thus saving on cost and time overruns that often

plague complex engineering design.

While a number of successes has been qualitatively documented via both business

case studies and academic literature from the product innovation and management

communities, these successes are primarily related to simple tasks, e.g., image annota-

tion. In contrast, crowdsourcing for complex tasks associated with engineering design

decisions have often been unsuccessful due to the heterogeneity of evaluator exper-

tise or customer preference within the crowd. These qualitative findings run parallel

to the observation that this lack of quantitative models to appropriately model this

heterogeneity for engineering design.

Chapter 1 discussed these aforementioned qualitative findings and observations,
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leading to the research gap studied in the dissertation. We then introduced the

framework for the following chapters, namely, the spectrum of expertise necessary for

a given design task as was given in Figure 1.6.

Chapter 2 investigated the case in which only a small minority of the crowd

has sufficient expertise for accurate evaluation, and showed that a Bayesian network

model, qualitatively similar to other “off-the-shelf” crowd aggregation models, failed

to combine the crowd’s evaluations into an accurate combined evaluation due to the

relatively few experts in the crowd. Most importantly, it was found that this failure

was due to the relatively few experts being overshadowed by numerous clusters of

“consistent, yet incorrect” evaluators.

Chapter 3 aimed to “identify the experts” in the crowd, yet was not able to use

commonly prescribed variables such as demographics, reaction times, or a number of

benchmark tests of mechanical reasoning as identifiers of expertise. Instead, we were

only able to find the experts using a “simple version” of the actual hard version of the

design task, thus allowing successful crowd aggregation by filtering out non-experts.

Chapter 4 moved to the case of a subjective design decision, the balance between

brand recognition and design freedom of the aesthetic styling of concept vehicle de-

signs, a design decision that incorporated expertise in the form of how well a customer

could recognize previous models of a design. Heterogeneity of expertise in this case

was used to filter non-experts, to successfully aggregate customer preferences across

various brands.

Chapter 5 examined the case of very low expertise required for design decisions,

specifically preferences over the visual fidelity of generated 2D images of vehicle de-

signs in a design space estimated using deep generative models. In this case, the single

crowd-level preference acted as an optimizer for parameters and model architecture

decisions governing the resulting visual fidelity of the generated designs.

Chapter 6 then looked at the case of no expertise needed for the design task,
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in which every individual was assumed to perfectly know his or her preferences as

elicited by actual design purchase decisions. In this case, capturing the heterogeneity

of preference resulted in improvements in design purchase prediction, thus enabling

more successful crowd aggregation models for design.

7.2 Contribution to Design Science

The main research contribution of this work is a systematic quantitative study

across the spectrum of heterogeneity of evaluator expertise or customer preferences

within the crowd, leading to quantitative understanding of why crowdsourcing sys-

tems have often been unsuccessful for industrial companies and governmental agencies

engaged in engineering design. This contribution may be expanded as follows:

(i) We have quantitatively investigated and characterized clusters of heterogeneity

found within the crowd for both objective evaluations and subjective prefer-

ences. In the objective case, these clusters led to “consistent, yet incorrect”

evaluators, which washed out the crowd consensus. In the subjective case, these

clusters led to difficulty in suggesting optimal designs, as these clusters were

more appropriately represented as functions of the original variables themselves

in the form of known design attributes and unknown design features.

(ii) We have introduced probabilistic models of crowd aggregation that mitigate the

issues of heterogeneity across this spectrum from objective evaluations to sub-

jective preferences. In the objective case, this included incorporating discrimi-

native information about the evaluator’s expertise in the form of performance on

a simple version of the difficult design task. In the subjective case, this included

explicitly modeling heterogeneity of design attributes and design features.

(iii) We have made inroads to visual analysis tools that abstract away the un-

derlying mathematics, thus allowing more practical usage by designers within
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enterprises–be they industrial designers, marketers, or executive strategists.

This main contribution is supported by five chapters of research spanning a spec-

trum from objective design decision requiring high expertise (i.e., only a few experts

exist in the crowd) to subjective design decisions requiring no expertise (i.e., everyone

is an expert of their own preferences).

7.2.1 Limitations

A number of limitations exist in our research findings. First, we will discuss two

major limitations common to all chapters in this dissertation, then discuss limitations

specific to each chapter.

The first limitation common to all chapters is that we are only dealing with a very

specific type of crowdsourcing—offline, static, non-collaborative, non-active, incen-

tivized by fiscal payment, and other properties as detailed in Figure 1.2. There are a

very large number of other types of crowdsourcing, with many ongoing research chal-

lenges and active research programs both within and outside of the design research

community (e.g., see Panchal (2015c) or gamification Ren et al. (2015a)).

The second limitation common to all chapters is that we have assumed design

representations that are often very restrictive in eliciting an evaluator or customer’s

true visceral and perceptual responses. These representations have often been in the

form of 2D images or 3D meshes. Contrast these representations with those used at

industrial companies, e.g., partial and full scale vehicle concept designs.

Chapter 2 had the following additional limitations: (1) Evaluators evaluate de-

signs without systematic biases, i.e., given infinite chances of evaluating one specific

design, the average score of the evaluators will converge to the true score of that

design regardless of their expertise Nunnally & Bernstein (2010); Caragiannis et al.

(2013); note that this assumption also implies that no evaluators purposely give bad

evaluations; (2) evaluations are independent, i.e., the evaluation on one design from
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one evaluator will not be affected by the evaluation made by that evaluator for any

other design, nor will it be affected by the evaluation given by a different evalua-

tor; (3) the expertise of evaluators is constant during the entire evaluation process;

(4) all evaluators are fully incentivized and do not exhibit fatigue. Without loss of

generality, we consider human evaluations real-valued in the range of zero to one.

Chapter 3 assumed that all evaluations are noiseless and occur at the same time for

the same engineering design task. These assumptions are not strictly valid for real

engineering design tasks in the workplace due to inter-team communication issues

Austin-Breneman et al. (2014); McGowan et al. (2013), as noted in Section 1.2. We

also did not account for evaluator learning during the evaluation process. Such task

learning has been shown to significantly affect crowdsourced evaluation Wu & Duffy

(2004).

The analysis involved linear models or, more accurately, assumptions stemming

from linear models. In particular, we used correlation coefficients and hypothesis

tests stemming from Gaussian assumptions on the data. While these assumptions

are limiting, the very low linear correlation amongst assumed independent variables

suggests that it is unlikely that we may be seeing all variation in the data contained

in high-order moments or amongst statistical dependencies involving joint variation

of multiple variables.

Chapter 4 has limitations in that the design space spanned by the parameterization

of geometric variables for the 3D models does not capture the entire set of possible

vehicle face design concepts. While this is in part why we assumed brand recognition

as a linear function of attributes — and attributes as an implicit nonlinear function

of geometric variables— future studies may greatly differ in their parameterizations.

Filtering the data for brand-conscious customers has also some limitations. We

assumed that brand recognition accuracy is a static quantity throughout the survey.

This does not account for familiarity with the brands after consistently seeing the
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same four images throughout the survey. Further, a larger number of data points

would reduce the uncertainty in Figure 4.4, as well as allow filtering on customers

with higher average brand recognition accuracy over current MY2014 vehicles.

Further limitations to Chapter 4 include the following for the crowdsourced func-

tion estimation approach: First, attribute values will change depending on which

cars are involved in the ranking. Second, the formulation assumes that customers

are homogeneous in their perceptions of the design attributes. While this assumption

is certainly not always true, we mitigate the effect of heterogeneity by normalizing

for the relative contribution of a design attribute to either design freedom or brand

recognition as given in Eq. (4.2). Finally, we note that including heterogeneity in

customer responses to design attributes may significantly increase fidelity of the brand

recognition prediction model. Such heterogeneity may be captured using models that

incorporate clustering formulations or formulations that impose deviations from a

common crowd prior distribution Evgeniou et al. (2007b); Abernethy et al. (2008).

Note also that Chapter 4 only considered designs from MY2014, limiting these

static findings from time-series trends. Future work considering design data over a

number of years would provide additional insight as brands and design languages often

undergo dramatic shifts Ma et al. (2014); Tucker & Kim (2011). Furthermore, this

study considered only luxury brands, in part because such brand imagery tends to

be more recognizable. Insights into whether the same findings and methodology are

appropriate for non-luxury brands would be interesting to explore. Further, design

domains besides automotive offer additional opportunities for exploration.

Chapter 5 had a number of limitations as discussed textually and visually in

Section 5.5.

Chapter 6 had limitations primarily on the method of estimating heterogeneity in

the crowd. In particular, we assumed a bilinear model of utility. Although we use

both linear feature learning (low-rank matrix decomposition) and nonlinear feature
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learning (exponential family restricted Boltzmann machine) to transform the original

variables before inputting them into the utility model, this bilinear form to capture

heterogeneity is rather näıve. We discuss this further in future work below.

7.2.2 Future Work

There are three major directions of future work that may prove valuable to design

science, the first and second directions being more theoretical while the third being

more practical. The first major direction of future work is rigorously formalizing

the findings of this dissertation via bounds on when crowdsourcing systems fail for a

given design decision. While we have identified the reason why, and even intuition

on the distribution of expertise or preferences for design tasks, we have not rigor-

ously proved any of these conditions. Rigorous proofs, provided they are useful, may

further advance the practicality of crowdsourcing systems for enterprises engaged in

engineering design.

Much theoretical work has proved bounds on regret within a model class or conver-

gence rates towards optimal models within an assumed class; however, these bounds

are not clearly useful for practical crowdsourcing systems. In other words, since these

bounds often assume infinite data (e.g., Chernoff bound), they may actually give mis-

leading input to actionable design decisions. Recent work however in finite-sample

bounds has shown success for the Dawid-Skene crowd aggregation models Li & Yu

(2014), as introduced in Table 1.1. This area of research likely has the potential to

improve practical crowdsourcing systems.

The second major direction of future work is in better characterization of the

heterogeneous clusters of expertise or preferences. Specifically, cluster properties

such as cluster shape distribution, size distribution, hard boundary vs. distributed

membership, and whether clusters hierarchical vs. non-hierarchical are important to

understand. These cluster properties are necessarily crowd and design decision depen-
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dent, suggesting tools that infer these properties, perhaps in conjunction with expert

designers, may prove valuable. Once such cluster properties are better characterized,

they may be incorporated into crowd aggregation models that build on the models

developed in this dissertation.

The third major direction of future work is in more advanced visual analysis tools

for practicing designers at industrial companies and governmental agencies. After

numerous meetings with practicing designers at both these enterprises, it is readily

apparent that any crowdsourcing system must be user friendly by abstracting away

the underlying appropriate yet unwieldy mathematics.

While we have made a preliminary inroad to to practical and easy-to-use visual

tools more suited to designers—be they industrial designers, marketers, or executive

strategists—we are only scratching the surface of what a production-level crowdsourc-

ing system may require. We imagine any crowdsourcing system must give designers

the opportunity to visually and interactively select expert clusters in the objective

case, or market segments in the subjective case.
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