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Chapter 1

Introduction

Networks have become an increasingly popular abstraction for problems in the physical, life,
social and computing sciences. They are easy to state and flexible representations that can
model a wide range of complex systems. The study of networks–dating back to work in the
1930’s by Jacob Moreno–has matured into its own discipline of network science. Due to the
increased availability of data and computational resources, network science has flourished in
the last two decades. Researchers have developed a multitude of algorithms that can be used
to analyze networks and extract insights from their structure, which in turn provide insights
into the underlying system being represented. Network Analysis, describes the process of
investigating network structures through the use of algorithms.

Networks have been used to model phenomena in many disciplines, ranging from net-
works of people in the social sciences, to networks of genes and animal species in the life
sciences [119]. Network analysis is a powerful tool because once a problem is modeled as a
network, algorithms can be repurposed for solving similar problems in different domains.
For instance, community detection algorithms extract clusters of densely connected nodes.
Depending on the application, clusters can represent a group of friends in an online social
network or research papers pertaining to the same topic in an academic citation network.
Algorithms that measure the importance or centrality of nodes, have been used in applica-
tions ranging from identifying terrorists [28], the importance of websites [124], and even an
empirical analysis of the american revolution [64].

A demonstrative example of how, even simple network analysis, can lead to interesting
empirical insights, is shown in Figure 1.1. Nodes in this network each represent members
of various organizations (e.g. “tea party”, “royal nine”) that formed before the American
Revolution. The edges are weighted by the number of shared group affiliations between each
node. By visualizing this network and ranking the node size by their eigenvector centrality,
we can see that the famous Paul Revere (colored yellow) is ranked the highest out of all of
the nodes. The ability for networks to represent so many different systems and phenomena
while also being relatively simple models is what makes them such an appealing tool to
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many scientific disciplines.
One of the aspects that makes network analysis a challenge for real-world problems is

that a network is not always an observed and complete structure. One understated yet crucial
step in applying network analysis, is the imputation of an existing structure or inference of
the entire network for problems in which there is no inherent structure. Edges in networks
can be missing for a variety of reasons, including: imperfect data collection or temporal
constraints imposed on the network generation process. Missing edges in a network can
cause degradation in the quality of network analysis, as algorithms that are used to analyze
the network are less effective in the presence of missing information.

For certain types of problems that are modeled using networks, the structure of the
network is not inherently expressed in the data. In these cases, networks are inferred by
applying a data transformation on a dense similarity matrix in order to induce a sparser
network representation. While this process can seem contrived, networks are often inferred
for problems in which network analysis can provide better insight into an underlying system
than approaches using similarity matrices [14, 42, 128]. For instance, systems biologists
use network clustering algorithms to identify groups of genes that are highly co-expressed
in microarray experiments. Gene co-expression networks are generated by thresholding the
similarity measurements (e.g Pearson Correlation) based on experimental data [153]. Once
the network structure is inferred, clustering can then be applied to the network to compute
modules of genes that share similar function.

1.1 Network Representation of Data

Here we give a brief and more formal definition of networks. Networks, often referred to
as graphs, are a representation for entities and the relationships between them. A network
G = (V,E), consists of a set of nodes, also known as vertices, V , which represent the entities
to be modeled and the set of edges, also known as links, E, representing the pair-wise
relationships between nodes. Networks are a flexible representation of data, in which V can
be a set of any one or many type(s) of entity, representing people on social network, words
in a corpus of scientific abstracts or even proteins in a protein-interaction network. Figure
1.1 gives an example of a network where nodes represent actors in the american revolution
and weighted edges represent the number of group affiliations shared between the nodes. In
many real-world network problems, nodes can have an associated meta-data consisting of
attributes that describe the various properties of the node. For example, in the web graph (in
which nodes are webpages), nodes have associated meta-data consisting of the HTML for
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Figure 1.1 An example network: nodes represent affiliates of various American revolutionary or-
ganizations and edges represent the number of organizations with a shared affiliation. Data provided
by [70].

the webpage, title, and date of creation.
The edge set E, consists of a set of link vertex pairs, {e = (vi,v j) ∈ E}, where each

element vi,v j is in V . In some cases, networks are directed, making the order for the pair
matter but in other cases the graph is undirected making the order irrelevant. Edges can
encode many types of relationships, such as: friendOf, isA, similarTo. Usually the type of
relationship encoded by the edges determines whether a network is directed or undirected.
Edge types such as friendOf form undirected edges, while edge types such as isA form
directed edges. The set of nodes, Γ(vi) , directly connected to a given node vi are referred to
as the neighbors of vi and the degree of vi is equal to |Γ(vi)|.
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1.2 Incomplete Networks

Networks are simply abstractions for describing data that is generated from an underlying
social, physical, or computing system. No matter the representation, missing data is a
common phenomena that needs to be considered for all types of data analysis. Depending
on the circumstances, missing data can manifest in many ways, leading to networks that
are missing nodes, edges and/or metadata. Missing nodes can occur in situations where the
network is only partially observed, for instance, social networks constructed from survey
data are only partially complete representations of the population they are modeling [2].
Missing nodes can also occur when analyzing cascade processes on networks [143]. In
this case the network being modeled is the network of “infected” nodes, which is usually a
partially observed phenomena. While missing nodes in networks is an important problem
with a few proposed solutions [2, 91, 151], it is often the case that the set of observed nodes
are the quantity one wants to analyze. For instance, even if the observed set of proteins in a
dataset does not represent all proteins in a biological process, the goal of network analysis is
to extract insight about the observed proteins. In this dissertation we investigate network
structures that are missing edge information and when we refer to an incomplete network
we are referring to the case where a network is missing edge information.

The quality of a network algorithm’s output depends on the structure of the input net-
work. Missing edge information, whether in the form missing meta-data associated with
links (i.e weights) or the non-existence of a link, leads to incomplete network structure.
Since the output of a network algorithm is dependent on the observed structure, missing
edges can degenerate the algorithm’s output. Networks can be incomplete in ways that
differ based on the type of problem being modeled and and the intended type of analysis.
For instance, if one wants to use a centrality algorithm to infer topical authorities, then a
network structure containing only binary edges is less useful than weighted edges which
reflect topical similarity between users.

We categorize network incompleteness into three scenarios. The first and simplest, the
missing edge scenario, is one in which an observed network is only partially complete. In
this scenario, the underlying network has edges that are not in the observed set of edges.
The second scenario, missing semantics, involves network structures where the semantics of
the edges are not present in the observed network. For example, the hyperlink edges in a
web graph are not explicitly annotated with semantic information that describes the context
of a link. The last scenario, missing structure is the scenario in which a network has no
inherent structure but rather the structure is inferred from similarity data. In this scenario a
network is “inferred” via a transformation on the similarity matrix.
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Missing Edges

Observed

Figure 1.2 Scenario 1: missing edges

Missing edges represents the most well studied scenario in which networks are incom-
plete. Missing edges in networks can occur because of an incomplete data collection and/or
network generation process. Data collection is prone to missing edges when networks are
constructed from data that is intentionally sampled (i.e. Large Networks) or inadvertently
sampled as is the case with crawled social network data in which some users make their
connections private. Some processes that generate networks are inherently missing links.
For instance, new users on social networks who haven’t completed their connections and two
proteins in protein-interaction networks that have not been analyzed in the same experiment.
The main difference between the missing edge scenario and the other scenarios we discuss
is that an inherent network structure exists and the problem is to infer missing links.

Missing Semantics in an incomplete network occurs when the edges are not annotated
with information that describes the context of the link. In the case of a citation network for
instance, edges can exist for a variety of reasons (e.g “criticism” , “validation”, “applica-
tion”) but a vanilla citation network does differentiate between these edge types. Semantic
information about edges can come in the form of labels that describe the context of an
edge, or edge weights which can measure the degree to which an edge represents a certain
characteristic. Having contextual information about edges can lead to more fine-grained
analysis. For instance, topic categories of webpages have been used to create topic specific
networks that are used to construct an extension of PageRank that is topic centric [69].

Missing Structure in a network constitutes the most drastic scenario of incompleteness
but occurs quiet frequently. In this scenario, a network representation is not inherent to
the data, rather a network structure is inferred from similarity data. Inferred networks
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Missing Semantics

Observed

Figure 1.3 Scenario 2: missing semantics

Missing Edges

Observed

Figure 1.4 Scenario 3: missing structure

can arise from simple transformations such as thresholding similarity matrices to induce
sparser binary networks. Network inference can also be the result of more complicated
transformations, consisting of aggregating similarity information from many different data
sets or using a statistical models to infer structure instead of a fixed threshold. Missing
structure denotes a scenario in which the network structure needs to be inferred from the
data that describes the underlying system being modeled.

While these scenarios each describe different ways that networks can be incomplete,
they are not mutual exclusive. It is possible that a network can be incomplete in two or all of
the scenarios. For instance, a web crawl of Facebook will be missing edges due to privacy
constraints of some users, while also missing semantic information.
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Figure 1.5 Network analysis pipeline

1.3 Dissertation Overview

Applying social network analysis to data science problems, involves the construction of
pipelines. A network analysis pipeline, as pictured in Figure 1.5, at a minimum consists of
only the last three steps in the diagram. The core of network analysis is in the application of
a given network algorithm and then the use of the algorithm’s output in a downstream appli-
cation or analysis. In the case of an analysis, the last module is simply an examination the
algorithm’s output. For many real-world problems, constructing network analysis pipelines
poses a greater challenge then simply applying an algorithm on a given input network. Simi-
lar to how statistical modeling and machine learning pipelines deal with missing values, one
important aspect of building a network analysis pipeline is the imputation and inference of
the network structure. Depending on the problem and scenario, imputation and/or inference
can have a big impact on quality of the overall analysis.

The thesis of this dissertation, is that the efficacy of network analysis can be improved
by incorporating the inference or imputation of the network structure as a component of
the pipeline. As shown in Figure 1.5, the choice of imputation or inference technique is
dependent on the downstream application or network algorithm. For instance, in Chapter 4
we propose a network analysis pipeline for inferring topical communities in a social network.
A critical component of this pipeline is the imputation of missing topical information in the
links between users. By imputing this information we achieve a 15% percent improvement
in community detection performance. We propose four novel systems, each of which,
contains a module that involves the inference or imputation of an incomplete network for
each scenario described in Section 1.2. In addition, the systems we propose solve real data
science challenges, ranging from social feed ranking to community detection. The diagram
in Figure 1.6 gives an overview of this dissertation. Each circle in the venn diagram repre-
sents a scenario of network incompleteness. Our proposed systems, described in Chapters
(3-6) are shown along side the circles (scenarios) that they correspond to.
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Figure 1.6 Visualization of how each of the different components that comprise this dissertation fit
together

1.4 Disseration Organization

The remaining chapters in this dissertation are organized by the scenarios described in
Section 1.2. Each chapter presents a data science problem in which the solution we propose
involves the imputation or inference of an incomplete network as an integral component.
First, In chapter 2 we give an overview of the existing literature on the incomplete networks
and link prediction.

Chapter 3 presents EDGEBOOST, a meta-algorithm and framework that repeatedly
applies a non-deterministic link prediction process to enhance community detection on
incomplete networks with missing edges. EDGEBOOST first uses link prediction algorithms
to construct a probability distribution over candidate inferred edges, then creates a set of
imputed networks by sampling from the constructed distribution. It then applies a commu-
nity detection algorithm to each imputed network, thereby constructing a set of community
partitions. Finally, our technique aggregates the partitions to create a final high-quality
community set. We show the efficacy of EDGEBOOST by testing its performance on both
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randomly generated and real-world networks.
We address the problem of extracting topically cohesive clusters from a online social

network in Chapter 4. We propose a social feed ranking system BUTTERWORTH, in which
the first component is to extract a user’s topic(s) of interest by clustering her ego network.
We propose a technique to re-weight the semantics of the ego-network using the textual
content produced by the nodes in order to aid in the extraction of topically cohesive commu-
nities. BUTTERWORTH then uses these clusters to automatically train ranking models that
rank a user’s social feed by the corresponding topic.

In Chapter 5 we propose a system DOBBY, for building a knowledge graph of user-
defined keyword tags. The knowledge graph consists of a network where the nodes are
keywords and directed edges represent hypernym typeOf relationships. By computing fea-
tures based on various data sources that describe the tags and using a sparse set of hypernym
edges labeled by humans, DOBBY trains a statistical classifier to infer the missing edges of
the network. We evaluated the performance of DOBBY on a real data set of skill tags listed
on the profiles of LinkedIn users.

Chapter 6 presents an application of network inference, in which we construct a network
of bills from a corpus of state legislation. We propose a system, LOBBYBACK that uses
community detection to extract clusters bills that exhibit text re-use. LOBBYBACK then uses
the clusters to construct “prototype” documents that represent the conical representation of
the text shared between the documents. We apply LOBBYBACK to the task of reconstructing
model legislation written by lobbyists that is known to have influenced clusters of documents
in the corpus.

In each of these four systems the imputation or inference module either increases the
performance of the pipeline or is requisite of the problem. The systems EDGEBOOST

and BUTTERWORTH, for instance, are two examples of how by imputing the network, the
efficacy of community detection algorithms can improve. EDGEBOOST shows an average
improvement of 7% on artificial data and 17% on real social network data. Similarly,
BUTTERWORTH shows that by imputing semantic information in a network, the F1-score of
detecting topical communities can be improved by 16%. For certain problems, the network
analysis pipeline requires the imputation or inference of a network to make network analysis
feasible for the given problem. In Chapter 6, the first component of LOBBYBACK is the
inference of a network structure in a corpus of text documents. The lack of network structure
in this problem necessitates an inference module such that a community detection algorithm
can be used to identify groups of documents. While each of the systems presented in
this dissertation solve a specific technical challenge, the methods used for imputation and
inference are more broadly applicable and could be re-purposed for the solution of problems.
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Chapter 2

Literature Review

The imputation and inference of network structures is well studied in the literature. The
work that has been done on imputation is referred to in the literature as link prediction,
which involves the prediction of missing links in a network. Since link prediction can be
done just by analyzing the observed structure of a network, many link prediction algorithms
have been proposed that are agnostic to the domain or specific problem being modeled. The
inference of network structures on the other hand is usually very tied to the problem being
modeled–the features and data sources used to compute a similarity network of proteins
is very different from those of lexical networks. We first give an overview of general link
prediction algorithms many of which we we will use in later chapters. We then provide an
overview of the literature that focuses on using imputation and inference for certain types of
network analysis. Finally we provide a brief overview of community detection, since it is
the main type of network algorithm used in this dissertation.

2.1 Link Prediction

Link prediction has garnered a substantial body of literature, encapsulating a variety of
methods and applications in many domains. Methods for link prediction utilize the topology
and in some instances the meta-data of nodes, to infer missing, or predict future links in
networks. Most of the literature on link prediction has focused on the task of predicting
missing links as the end goal of the analysis. For instance, many of the papers focusing on
predicting the missing links between friends in a social network in an effort to solve the
“cold start” problem.

Methods for link prediction fall into two major categories, supervised and unsupervised,
and within these categories methods rely on the use of node meta-data, neighborhood
information, network topology or a combination to make inferences. Surveys for link pre-
diction on social networks include [67, 176] and more generally, link prediction in complex
networks [106].
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2.1.1 Unsupervised Link Prediction

Similar to unsupervised methods in the machine learning literature, unsupervised link pre-
diction methods do not rely on labeled examples of links. The standard workflow consists
of a link-predictor scoring the likelihood of edges between nodes not connected in the input
network G, and then ranking these edges by score. Once ranked, the quality of the ranking
can be evaluated using metrics such as area under a receiver operating characteristic [65]
as well as Precision/Recall [71]. In order for the ranked list of edges to be useful in real
systems, a threshold must be chosen such that all edges ranked above the chosen threshold
are then added to the network. Most of the unsupervised methods in link prediction fall
under the category of similarity heuristics, in which a similarity function S(vi,v j) is used
to score the likelihood of an edge between nodes vi and v j. Similarity functions over pairs
of nodes can be arbitrary, but most methods fall under the categories of local, path, and
meta-data based functions.

Local Methods — Local link prediction functions compute the likelihood of two nodes
vi,v j having an edge on the similarity of their neighborhood structures, Γ(vi), Γ(v j) respec-
tively. The most basic local method, common neighbors (CN), ranks edges based on the
number of shared neighbors between vi and v j.

CN(vi,v j) = |Γ(vi)∩Γ(v j)| (2.1)

The CN method captures the notion that similar nodes share similar neighbors. Common
neighbors encodes the propensity of two nodes to have an edge based on the number of
triangles they close if connected, in other words two nodes are more likely to be connected
if they have a high degree of triadic closure [36]. Other local methods normalize the the CN
function in order to make the calculation equivalent for nodes of both high and low degrees.
Methods proposed by [79, 98, 140, 145, 154] propose variations on the CN function with
he following form:

|Γ(vi)∩Γ(v j)|
N(vi,v j)

(2.2)

Each method differs in the normalization function N(vi,v j). Among all of the the
normalization methods, the Jaccard performs at least as good as or better then the others
[100, 182].

In addition to normalizing the CN method, other proposed variations re-weight the
contribution of each shared neighbor [3, 182]. The AA measure proposed by Adamic and
Adar, re-weights a common nodes contribution by the inverse of the log, similar to the
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popular TF-IDF metric used in information retrieval [107].

AA(vi,v j) = ∑
z∈Γ(vi)∩Γ(v j)

1
log(Γ(z))

(2.3)

Resource Allocation (RA) is a newer measure proposed by Zhou et al. , re-weight each
common neighbor contribution by just the inverse of the degree. Both of these methods are
competitive, usually outperforming all other local methods in comparative studies [100, 182].
Local method are the most simple similarity functions but are very popular because of their
effectiveness and scalability. Sarkar et al. [147] provide a theoretical justification for local
based methods, showing that most links only exist if nodes are “close” via local similarity.

Path and Random Walk Methods — Path based methods compose of link prediction
functions that compute a similarity score based on the number of paths between the query
nodes. The set of common neighbors comprise of all paths of length two between the query
nodes, therefore path methods are extensions of local methods to arbitrarily long paths. The
Katz method [1] computes a similarity function based on the number of all paths between the
query nodes. The function uses a standard discounted sum such that longer paths contribute
less to the computed score. If we let path`vi,v j

be defined as the number of paths between
vi,v j of length `, then the katz score is defined as follows.

Katz(vi,v j) =
∞

∑
`=1

β
`×|path`vi,v j

| (2.4)

A related method, Local Paths (LP) [105] truncates the summation in the Katz function,
only including paths of size three and below. Their method is much more tractable then the
katz method, and is competitive in performance.

Random walk based methods utilize random walks as a proxy for well connected two
query nodes are. The Hitting Time (HT) and its symmetric variant Commute Time (CT)[50]
computes the expected number of steps a random walker needs to take in order to go from vi

to v j. SimRank [82] computes a score, based on how often two random surfers, one starting
at vi and the other at v j are expected to meet at a common vertex. The rooted PageRank

[100] is an adaptation of the original PageRank algorithm to measure the probability of
reaching node v j from vi with a specified restart parameter. Random walk methods are
computationally more complex then local methods and they do not show any increase in
performance, in many cases showing worse performance in various comparison studies
[100, 182].

Node Methods — In many real-world networks, nodes contain meta-data that could be
leveraged to predict links. For example, profile text of users in a social network, web page
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html in a web network, and publication meta-data in a citation network. The social theory of
Homophily states that people that are more similar to each other are more likely to be friends
and has been observed to be true on social networks in particular [109]. There are many
methods to compute the similarity of unstructured text [59], all of which can be used to
infer a metric of similarity between nodes with associated unstructured text. For nodes that
contain structured attributes, vector based similarity metrics [27] can be used to compute
similarity. Bhattacharyya et al. [11] proposed a tree-based method for computing similarity
between nodes with hierarchal meta-data.

Since node based similarity does not consider the network topology, using node based
methods in isolation can be noisy. Node similarity is better used to compute weights for
existing edges, or incorporating into existing measures that utilize the network topology.
Adamic and Adar [3] proposed a variant of their AA method that extends the concept of
shared neighbors to all shared items which can be anything from node attributes to words
in profile text. This variant of AA is used in Chapter 4 to predict links between users that
discuss similar topics in a social network.

2.1.2 Supervised Link Prediction

Supervised link prediction is the formulation of link prediction as a supervised learning
problem. There are many algorithms for learning a classifier of which ensemble techniques
based on trees usually perform best [46]. The two necessary components for supervised
learning are training data and features. All of the unsupervised similarity functions can
be used as features in a supervised link predictor [67, 166]. The benefit of supervised
link prediction is in the ability to combine many similarity functions into a framework
that automatically learns to weight the relative importance of each function. Topological
features (local, path, and random walk methods) are the most general features, because they
apply to any link prediction problem. Supervised methods can also use features based on
domain specific information, which can be anything from text similarity, node meta-data to
data extracted from external sources. For instance, Hasan et al. [68] propose a feature for
co-authorship link prediction that counts the number of categories that a pair of authors is
associated with in order to ascertain the extent to which two authors are “interdisciplinary”,
and therefore more likely to have co-authors. The creation of high quality is essential for
good performance of a supervised link predictor, but beyond topological features, good
feature design highly depends on the problem domain.

Training data is also an essential component of supervised learning, and one of the major
challenges in the deployment of supervised link predictors. For supervised link prediction,
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training data consists of edges that are labeled as positive (they are true edges) or negative
(they are nonexistent). For an arbitrary network, the positive examples can be taken to be
all links present in a given network. Negative links are not as easy to ascertain since edges
that are not presented in the network are not necessarily negative examples. Due to the the
difficulty in generating quality training data, supervised methods have been mostly applied
in link prediction problems that involve time-evolving networks [68, 101, 164, 165, 178].

Many previous projects have used supervised learning for time-evolving, co-authorship
[68, 178], social [164] and human mobility [165] networks. All of these methods propose
the process of building a training set based on two non-overlapping and consecutive time
intervals. By observing which links occur (or do not) in the second interval, positive and
negative training examples can be generated. Even in scenarios where training data is easier
to generate, the problem of class imbalance is still present since nonexistent links always
significantly out number the positive examples. The method proposed by Yu et al. [178]
addresses the problem of class imbalance using an optimization technique known as chance
constrained programming. Other works such as [101, 165] utilize sampling based-techniques
as a means to balance the training set.

2.2 Link Prediction for Improving the Network Analysis
Pipeline

In addition to the previous work that has focused on building stand-alone imputation and
inference methods, there is also a body of literature that use these methods to improve
network analysis pipelines. This existing work can be classified along two dimensions
based on which scenario(s) the problem is categorized in and the type of network algorithm
applied after the imputation/inference component of the proposed pipeline. Figure 2.1
shows a visual representation of this categorization. We now describe the previous work
on improving the two most common types of network analysis: community detection and
centrality computation.

There has been a number of works that have focused on improving network analy-
sis pipelines for community detection on incomplete networks. The majority of these
works [26, 111, 174, 175] fall into the missing edge scenario and involve the use of link
prediction to enhance community detection. Yan et al. [174] hypothesis different ways a
network can be missing edges (e.g ”incomplete web crawl”, ”random deletion) and show
how the quality of community detection is affected. Papers by Mirshahvalad et al. [111]
and Bowen et al. [175] use the common neighbors link prediction algorithm in two dif-
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Figure 2.1 Table that visually categorizes previous works based on the type of input network and
downstream analysis

ferent ways: Mirshahvalad et al. rank missing edges and imputes the top k, and Bowen et

al. re-weight the existing edges by the score of the link predictor. Chen et al. [26] propose
a method that ranks all missing and existing edges in the network, replacing the k bottom
scoring existing edges with k top scoring missing edges.

Previous work also exists for incomplete networks with missing semantics and missing

structure. Lin et al. [104] propose a new topic model based community detection algorithm
that uses network structure and node attributes of the user. Social networks such as Twitter
have many different link contexts (e.g follower-follow, mentions, hashtag usage) all of which
can be used to contextualize the relationships between users. Work by Darmon et al. [34]
propose link re-weighting schemes based on these different contexts, in order to infer com-
munities that “answer different questions”. One of the more popular pipelines for clustering
gene-co expression, WGCNA [181] use a weighted variant of common neighbors method,
topological overlap, to re-weight edges in networks inferred from gene-co expression data.
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Pipelines that improve centrality measures on incomplete networks have also been
studied. Many studies have explored the extent to which centrality measures are robust
to missing eedges [15, 51, 130]. Borgatti et al. [15] and Platig et al. [130] investigate the
effects of both missing and spurious edges have on the most common centrality measures
(e.g eigenvector and betweenness). The effects of missing edges can differ based on the
topology of the network, Frantz et al. [51] show how missing edges effects certain network
models, such as Erdos-Renyi and preferential attachment networks. Networks that exhibit
missing semantics can also impact centrality computation.

A few works have used link prediction techniques that weight edges based on textual
similarity of nodes. TwitterRank [169] is a system for inferring topical authorities on Twitter.
The system re-weights the network structure by computing the KL divergence of topic distri-
butions (computed using LDA) between users. Another system proposed by Haveliwala et

al. [69] computes weighted variants of PageRank based on topic categories of webpages
distilled from the DMOZ open directory.

2.3 Community Detection Overview

Community detection is a type of network algorithm used extensively throughout this disser-
tation. Certain algorithms–depending on the type of objective function they are trying to
optimize– produce communities with certain properties (i.e granularity) or are more/less
effective depending on the degree to which the given network exhibits community structure.
The downstream application of a network analysis pipeline can also dictate the choice of
algorithm. For instance, in Chapter 6 of this dissertation we describe an application that
requires a finer level of granularity of community, therefore we chose the InfoMap algorithm
because it is known to detect communities at a finer granularity.

There are many variants of the community detection problem: communities can be
disjoint, overlapping, or hierarchical. In this dissertation we use disjoint community de-
tection algorithms. While the other variants, especially overlapping community detection,
are of growing interest, detecting strict partitions is still a hard and relevant problem. In
fact, recent work [134], has shown that disjoint algorithms can perform better than over-
lapping algorithms on networks with overlapping ground truth. The community detection
algorithms we use in range from proven techniques including: Louvain [13], InfoMap [142],
Walk-Trap [131], Label-Propagation [138] and newer state-of-the-art techniques: Signifi-
cance [158] and Surprise [6, 157].

The Louvain algorithm [13] is very popular, mostly due to its balance of speed and
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accuracy. It works by using a multistep technique based on a local optimization of Mod-
ularity [120]. Each iteration of the algorithm merges nodes in the same community into
supernodes, yielding a new network that is used in the subsequent iteration. The algorithm
terminates when modularity (computed on the original graph) reaches a local maximum.
Louvain’s optimization algorithm has been adapted to work with other quality functions.
Many of the other algorithms listed below are the Louvain algorithm paired with a different
quality function.

The InfoMap algorithm [142] is a technique that formulates community detection as the
problem of optimally compressing a random walk in a network. The optimal compression
is achieved using a quality function that is based on the minimum description length of
the random walk. While the original implementation of InfoMap used simulated annealing
for its optimization algorithm, the latest implementation uses the Louvain optimization
algorithm. Similar to the InfoMap algorithm, Walktrap [131] uses random walks on a
network to identify community structure. The algorithm computes distances between nodes
based on the random walks in the network, using a hierarchical agglomerative clustering
algorithm to cluster the computed similarity matrix.

The Label-Propagation algorithm [138], uses the concept of node neighborhood and
simulates the diffusion of information in the network to identify communities. Initially, each
node is labeled with a unique value. Then an iterative process takes place, where each node
takes the label which is the most common in its neighborhood (ties are broken randomly).
This process goes on until convergence. Communities are then obtained by considering
groups of nodes with the same label.

Significance [158] and Surprise [6, 157] are two, more recent, objective functions for
community detection based on a probabilistic interpretation. Significance is a measure
that is based on whether a given partition, will have a certain number of intra-community
edges, as compared to a random graph. The probability is computed in such a way that
it is agnostic to the possible permutations of nodes, since permutations of nodes yield the
same edge structure. Surprise is a statistical approach to assess the quality of a partition into
communities. Surprise is based on the probability of drawing the number of intra-community
edges observed in the network. This distribution follows a hyper-geometric distribution. The
implementation of both Surprise and Significance use the Louvain optimization algorithm.
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Chapter 3

Community Detection on Incomplete
Networks

Many types of complex networks exhibit community structure: groups of highly connected
nodes. Communities or clusters often reflect nodes that share similar characteristics or
functions. For instance, communities in social networks can reveal user’s shared political
ideology [30]. In the case of protein interaction networks, communities can represent groups
of proteins that have similar functionality [86]. As a result, community detection has become
one of the fundamental types of network analysis. The clusters that result from community
detection enable network analysts to distill more abstract and higher order structures which
can be used to reason about the underlying system being model or in downstream applica-
tions (an example of which we show in chapter 4). Despite the profusion of work on both
the creation of community detection algorithms and their applications, very little attention
has been given to how community detection algorithms fair on networks with missing edges.

In this chapter we analyze how missing edges can affect the quality of community
detection algorithms and propose a novel meta-algorithm that uses link prediction to im-
prove the performance of community detection on incomplete networks. Our algorithm,
EDGEBOOST, utilizes existing community detection methods that process networks imputed
by our link prediction based sampling method and merges their multiple partitions into a
final consensus output. In addition, we propose an extension of EDGEBOOST for clustering
inferred networks and apply our extension to an existing system that uses a network analysis
pipeline to generate scientific surveys. The work presented in this chapter is based off of the
algorithm described in our paper [18].

3.1 Problem Overview

Community detection algorithms rely on the topology of the input network to identify
meaningful groups of nodes. Unfortunately, real networks are often incomplete and suffer
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from missing edges. For example, social network users seldom link to their complete set of
friends; authors of academic papers are limited in the number of papers they can cite, and
can clearly only cite already-published papers. Missing edges can also be a result of the data
collection process. For instance, Twitter often limits its data feed to only a 10% “gardenhose”
sample: constructing the mention graph from this data would yield a graph with many
missing edges [114]. Datasets crawled from social networks with privacy constraints can
also lead to missing edges. In the case of protein-protein interaction networks, missing
edges result from the noisy experimental process used to measure pairwise interactions of
proteins [78]. Community detection algorithms rarely consider missing edges and so even a
“perfect” detection algorithm may yield wrong results when it infers communities based on
incomplete network information.

One straightforward approach for improving community detection in incomplete net-
works is to first “repair” the network with link prediction, and then apply a community
detection method to the repaired network [111]. The link prediction task is to infer “missing”
edges that belong to the underlying true graph. A link prediction algorithm examines the
incomplete version of the graph and predicts the missing edges. Although link prediction
is a well-studied area [100, 106], little attention has been given to how it can be used to
enhance community detection. Imputing missing edges using link prediction can result in
the addition of both correct intra-community and incorrect inter-community links. If one
were to simply run a link predictor and cluster the resulting network, the output can only be
improved if the link predictor accurately predicts links that reinforce the true community
structure.

In this chapter we propose the EDGEBOOST method (Figure 3.1), a meta-algorithm
and framework that repeatedly applies a non-deterministic link prediction process, thereby
mitigating the inaccuracies in any single link-predictor run. EDGEBOOST first uses link
prediction algorithms to construct a probability distribution over candidate inferred edges,
then creates a set of imputed networks by sampling from the constructed distribution. It then
applies a community detection algorithm to each imputed network, thereby constructing a
set of community partitions. Finally, our technique aggregates the partitions to create a final
high-quality community set.

An important and desirable quality of our method is that it is a meta-algorithm that
does not dictate the choice of specific link prediction or community detection algorithms.
Moreover, the user does not have to manually specify any parameters for the algorithm. We
propose an easy-to-implement, black-box mechanism that attempts to improve the accuracy
of any user-specified community detection algorithm.
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Figure 3.1 Diagram describing processing steps of EDGEBOOST

3.2 Detecting Communities in Incomplete Networks

To motivate the need for algorithms that are robust to missing edges, we experimented on
existing community detection algorithms. To test these algorithm’s sensitivity to missing
edges on a range of networks, we utilize the LFR benchmark [96]. LFR creates random
networks with planted partitions (i.e., ground-truth community structure), parametrized by:
number of nodes, mixing parameter µ , and exponent of degree and community size distribu-
tions (see [96] for a full description). The mixing parameter is a ratio that ranges from only
intra-community edges (0) to only inter-community edges (1). Previous studies [5, 93] have
compared the quality of community detection algorithms using the benchmarks and used µ

as the variable parameter, roughly capturing how difficult a network is to cluster. As we are
concerned with characterizing the effect of missing edges, we modify the LFR benchmark
by randomly deleting edges from the networks it generates. We denote the parameter δ as
the percentage of removed edges.

The goal of our analysis is to characterize the effect of both µ and δ on two metrics:
Normalized Mutual Information (NMI) and the Relative Error (RE) of the size of the in-
ferred partitions. NMI is a standard information theoretic measure for comparing the planted
partition provided by the benchmark to the inferred partition produced by the algorithm.
There are various metrics classified as normalized mutual information; the metric we use
throughout this chapter is the normalization of mutual information (I) based on maximum
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entropy (H) of the two partitions.

NMI(U,V ) =
I(U,V )

max(H(U),H(V ))
(3.1)

We define RE as the relative error of the number of communities inferred by the algorithm
C compared to the number of communities C∗ in the planted partition:

RE :=
C−C∗

C∗
(3.2)

Since NMI can decrease for a variety of reasons (shifted nodes, shattered or merged
communities), we include RE as a means to determine the more specific effects that missing
edges can have on community detection. Each point in Figs. 3.2 and 3.3 are generated by
averaging the corresponding statistic over 50 random networks generated by our modified
LFR benchmark. We set static values for the following benchmark parameters: Number of
nodes (1000), the average degree (10), the maximum degree (50), the exponent of the degree
distribution (-2), exponent of the community size distribution (-1), minimum community
size (10), and maximum community size (50). We varied parameters, such as “number of
nodes” and “average degree”, finding qualitatively similar results for the effect of δ on NMI
and RE. Similar to previous research [111], we select an “average degree,” that results in
the sparse networks that motivate the need for the methods presented in this chapter.

Fig. 3.2 shows how NMI varies with respect to δ and µ for six popular community
detection algorithms. We limit the values of µ to be in the range [0.1,0.5] becauase it has
been shown that LFR networks with µ values of 0.5 and higher do not reflect the expected
properties of real world networks [122]. All of the algorithms behave in a qualitatively
similar manner: as δ increases, the NMI score decreases. Similar to previous studies,
InfoMap scores best with respect to µ and not surprisingly is also the most robust to missing
edges. More interesting are the results in Fig. 3.3 which show how the number of inferred
communities differs with respect to the number of communities in the planted partition. Four
of the six algorithms show a trend of detecting too many communities both as a function of
µ and δ , while only the Louvain and Label-Propagation algorithms detect fewer than the
correct number of communities on average. Modularity is known to suffer from a resolution
limit [49], meaning that the measure tends to favor larger communities. Since Louvain uses
modularity as its objective function, it is not surprising that Louvain, on average, infers
communities that are larger than in the planted partition. Overall, it is more often the case
that missing edges will cause community detection algorithms to “shatter” ground truth
communities, sometimes producing 2-3 times more communities. Both in terms of NMI
and RE, all 6 algorithms show a significant deterioration in community detection quality,
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once again, underscoring the need for algorithms that are robust to missing edges. We have
also included heat map versions of Figures 3.2 and 3.3 in the appendix. They are labeled as
Figures 3.4 and 3.5 respectively .

Figure 3.2 NMI of Baseline Community Detection Methods. NMI of six community detection
algorithms with varying percentages of removed edges δ .

Figure 3.3 RE of Baseline Community Detection Methods. RE of six community detection
algorithms with varying percentages of removed edges δ .
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Figure 3.4 NMI heat map of six community detection algorithms. The parameters µ and δ are
represented on the x and y axis respectively. Each square is labeled with the corresponding NMI
value.

Figure 3.5 RE heat map of six community detection algorithms. The parameters µ and δ are
represented on the x and y axis respectively. Each square is labeled with the corresponding NMI
value.

3.3 Link Prediction for Enhancing Community Detection

The ideal scenario for community detection is one where a network consists of only intra-
community edges and where the detection of communities reduces to the problem of
identifying weakly connected components. The reality is that we rarely find such clean
graphs as edges can be “missing” for anything ranging from sampling to semantics. This
last factor is important as a missing edge between nodes in the same community is not
necessarily incorrect–the semantics of a network does not necessitate an explicit relationship
between users in the same community. In the case of an ego-network on Facebook, for
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example, not all friends in the same community actually know each other as they may
be grouped because they attend the same college as the ego-user. Similarly, a biological
network may have a set of proteins working in concert as part of a functional “community”
but many do not form a clique as the edges represent (up or down)-regulation. In both
scenarios the edges that are missing are implicit edges representing the intra-community
links (e.g., an edge representing the relationship in-the-same-community-as). It is these
intra-community edges, whether they are implicit or explicit, that can a have severe impact
on the detection of communities.

Our hypothesis is that by recovering edges in incomplete networks, community detection
quality can be improved. If link prediction is to be an effective strategy at recovering lost
community structure, it must be accurate at predicting intra-community edges that reinforce
communities. If the link prediction algorithm has too high a false-positive rate, thereby
predicting too many inter-community links, it is likely to degrade community detection per-
formance. Using the modified LFR benchmark, we analyzed the intra-community precision
of various link prediction algorithms over a range of µ and δ values. We do not intend to
exhaustively test all of the link prediction algorithms proposed in the literature, but we select
three computationally efficient techniques that are among the best [100, 106]: Adamic-Adar
(AA), Common-neighbors (CN), and Jaccard.

Each of these algorithms can produce a score for missing edges that complete triangles
in the input network, allowing us to create a partial ordering over the set of missing edges.
Fig. 3.6 shows the results from our experiment. For each plot, the y-axis represents the
intra-edge precision-at-k metric, which is the percentage of intra-edges in the top-k edges
of the ranking. The x-axis represents the edge-percent value, which is the number of top-k
edges as a percentage of the total number of edges in the original network (before random
deletion). For example, if the original network had 2000 edges, then an edge-percent value
of 20% would correspond to selecting the top-400 edges and a intra-edge precision value of
80% would correspond to 320 of those edges being intra-community edges. By varying k

we are able to observe the classification quality inferred by the ranking produced by each
link-predictor.

In Fig. 3.6 we first notice that as with community detection, link prediction performance
decreased as a function of both δ and µ value. For low µ , all link prediction algorithms are
capable of achieving high intra-edge precision even for δ values of 60%, but the quality of
link prediction drops significantly for high levels of µ . For µ above 0.5, any link-predictor
that uses the number of common-neighbors as a signal will do poorly, since the majority of
a node’s neighbors belong to different communities. The Jaccard algorithm maintains the
highest level of precision as a function of the number of edges. While the AA algorithm
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sometimes outperforms Jaccard, AA is only better for low values of k.
The results in Fig. 3.6 show that link prediction can be effective at imputing intra-

community edges, especially for sparse networks that have lower µ values. The results also
show that for networks with high µ and δ values, the top-scoring edges as predicted by all
three link prediction algorithms contain a large percentage of inter-community links. While
this demonstrates the feasibility of using link prediction to recover missing intra-community
edges, we do not know how to set the parameters (e.g., the k value to use for partitioning
the ranked edges) for real-world networks. We will return to this, but first we formalize the
problem.

Figure 3.6 Intra-edge Precision of Link Prediction. Precision plots of three link prediction algo-
rithms: Adamic-Adar (left), Common Neighbors (middle), and Jaccard (Right) for various values of
mixing parameter µ : 0.1 (top), 0.3 (middle), and 0.5 (bottom). The X-axis corresponds to number of
top-k edges as scored by the link prediction algorithm as a percentage of the number of edges in the
network. Intra-edge precision is on the y-axis.

Let G = (V,E) be the input network, and the set Emissing = (V ×V )\E denote the set of
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missing edges in the G. We formally define a link-predictor L as a function that takes any
pair of nodes (x,y) in Emissing and maps them to a real number.

L : Emissing 7→ R (3.3)

A community detection algorithm can be formally described as a function C that takes as
input any network G and produces a disjoint partition of the nodes {C1,C2, ...,Ck}.

The most naı̈ve algorithm for enhancing community detection consists of a few simple
steps. First, score missing edges in G using L . Next, select the top-k missing edges
according to the link-predictor and add these edges to G. Lastly, apply the algorithm C to
the imputed network. However, simply adding links with high scores for networks with
large µ and δ values may be problematic, since many of these links can be inter-community,
thereby having a negative effect on community detection.

An intuition for why this naı̈ve algorithm does not work is illustrated in the top his-
togram of Fig. 3.7. The plot shows the score distribution of both intra- and inter-community
edges predicted by the AA link predictor on a randomly generated benchmark network. The
distributions of the intra-community edges substantially overlaps with the inter-community
distribution, thereby making any choice of a threshold for adding links not helpful for
community detection. In addition, as this plot shows, the top-k edges only comprise of a
small percentage of the total set of intra-community edges. By simply selecting from the
top-k scoring edges, many of intra-community edges that are lower ranked will never be
selected. As demonstrated in Fig. 3.6, the choice of k can have a significant impact on the
quality of the edges, therefore selecting the right k becomes a challenge when the complexity
and sparsity of the network is unknown.

3.4 Link Prediction Enhanced Conensus Clustering

Our core observation is that link prediction in both high-δ and high-µ settings is brittle:
it can carry information, but for a single prediction is likely to be wrong. Therefore, we
propose an improved method for applying link prediction to enhance community detection.

In order to mitigate the potential side effects of imperfect link prediction, we propose a
sampling based algorithm that repeatedly applies link prediction to the input network. The
EDGEBOOST pseudo code is shown in Algorithm 1 and proceeds in four steps. First, it uses
a link prediction function to score missing edges and constructs a probability distribution
over the set of missing edges (lines 2-3). The algorithm repeatedly samples a set of edges
from this probability distribution, adding these sampled edges to the original network, and
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Figure 3.7 Edge Weight Distributions. Histogram of edge weights on a benchmark graph with
µ=0.4 and 20% of the edges removed: scores from AA link predictor (top) and weights of co-
community network (bottom).

runs community detection on the enhanced network (lines 5-7). Each iteration produces
a new set of communities which are added to the set of partitions (lines 8-9). After the
sample-detect-partition sequence is executed many times, we aggregate the overall set of
observed partitions (line 11) to produce a final clustering.

3.4.1 Network Imputation

The network imputation component of EDGEBOOST uses the input network and a link
prediction algorithm to produce a probability distribution over the set of missing edges. The
number of edges sampled during each iteration of the imputation procedure (lines 5-6) is
a uniform random number between 1 and the size of the input network. We experimented
with many values of k and found this to work as well as when k was fixed.

We propose an imputation algorithm that constructs a distribution in which the proba-
bility of drawing an edge corresponds to its score produced by the link predictor. Missing
edges that are scored higher by the link-predictor will have more probability mass than
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Procedure 1 EDGEBOOST Algorithm

Input: A network G= (V,E), link-predictor L , community detection algorithm C , number
of iterations n

Output: A partition P∗ of the vertices in G
1: Emissing = L (G) . score edges in G
2: D = IMPUTATION(Emissing) . create edge distribution
3: P = [] . initialize list of partitions
4: for i← 1,n do
5: k ∼U(1, |E|)
6: {e1,e2, . . . ,ek} ∼D . sample k edges
7: Gi = (V,E ∪{e1, . . . ,ek}) . impute Gi
8: pi = C (Gi) . cluster Gi
9: P = P∪ pi

10: end for
11: P∗ = AGGREGATIONFUNCTION(G,P)
12: return P∗

lower scoring edges. The probability function constructed from this process is:

P(X = x) =
L (x)

∑
y∈Emissing

L (y)
(3.4)

Our imputation algorithm is more likely to pick higher scoring edges, which can result
in a fairly accurate selection of intra-community edges as shown in the Link-Enhanced

Community Detection section. At the same time, even low scoring edges have probability
mass, which is important since for some networks, intra-community edges can also be low
scoring.

3.4.2 Partition Aggregation

Having generated many possible “images” of our original graph via network imputation,
we can apply community detection algorithms to each. Each execution of the algorithm
produces a partition—possibly unique—based on the input graph. After generating many
such partitions, we use partition aggregation to produce a final output. Previous ensemble
clustering techniques [32, 94], construct a n× n consensus matrix that represents the co-
occurrence of nodes within the same community. The goal of such a data structure is to
summarize the information produced by the various partitions. We propose a similar data
structure, a co-community network Gcc, which consists of nodes from the input network
and edges with weights that correspond to the normalized frequency of the number of times
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the two nodes appear in the same community.
The Gcc graph is a transformation of the input network into one that represents the pair-

wise community relationships between nodes, rather than the functional relationships defined
by the semantics of the input network G. Gcc links nodes that appear in the same community,
and weights them based on frequency or co-occurrence (i.e., the edge between two nodes
has a normalized weight equal to number of times the two nodes appear together in the
same community over all partitions). Thus, Gcc exhibits community structure representing
communities that appeared frequently in the input partitions. As shown in the lower plot
of Fig. 3.7, there is a clear distinction between the intra-community and inter-community
edge-weight distributions in Gcc. A simple mechanism for identifying a final “partitioning”
is to remove all edges for which we have low confidence (i.e., inter-community edges)
and study the resulting connected-components (CC). We parameterize the pruning with a
threshold τ and prune edges below that value. The semantics of the resulting graph is that
all pairs of linked nodes have been seen in the same community at least τ percentage of
times and consequently all nodes captured in a CC maintain this guarantee.

Fig. 3.8 shows an example of a co-community network pruned at various thresholds. The
network in this diagram is the famous Zachary’s karate club [179], the colors of the nodes de-
note the ground-truth community assignments of each node. The original network is shown
in the upper left quadrant, and the remaining quadrants show the co-community network
pruned at different thresholds. As we can see in the upper right quadrant, if we threshold at
a small value of τ we are almost certain to obtain a network with one large connected com-
ponent. This is due to the fact that given enough iterations of the link prediction/community
detection loop we are likely to find at least a few cases where nodes that would ordinarily
fall into two communities are placed into the same one. At τ = 0.5 we see the CC’s reflect
the community structure in the original network (the “correct partition”). As we increase
the threshold the two true communities are further shattered into sub-communities, leaving
some nodes completely isolated. One can interpret the connected components at these higher
levels of τ as capturing the core members of the true communities: members who co-occur
with each other a very high percentage of time and do not co-occur often with nodes outside
of their community.

While τ may be set manually—appropriate for some applications when some level
of confidence is desirable—there are other applications where we would prefer that this
threshold be chosen automatically. As the last module of our framework we propose a
way for selecting a τ and constructing a final partitioning given that chosen value. Since
the edge weights in Gcc correspond to the fraction of times two nodes appear in the same
community, they are rational numbers. We can therefore enumerate all the possible values of
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Figure 3.8 Karate Club Co-community Network. Visualization of the co-community network for
“Zachary’s karate club” network. Each panel shows the network pruned at various thresholds τ .

τ , {1
n ,

2
n , ...,

n
n} on the interval [0,1]. At each value of τ we prune all edges with weights less

than τ and compute the partition of Gcc that corresponds to the connected-components. We
then score this partition according to equation 3.6 and select the threshold and corresponding
partition that maximizes this score. Our algorithm for automatically choosing τ does add
computational overhead as compared to simply selecting a τ manually. We evaluate the
selection of a fixed τ threshold for the LFR networks in the experiments section.

In previous work, Monti et al. [113] propose a formula for computing the “consensus”
score of an individual cluster. For a given community Ck, that is of size Nk, their score
sums the co-community weights and divides it by the maximum possible weight. Gcc(i, j)

corresponds to the fraction of times nodes i, j were grouped together in the same community.

mk =
1(Nk
2

) ∑
i, j∈Ck

i< j

Gcc(i, j) (3.5)
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We score a partition pτ parameterized by a threshold τ by taking the weighted sum of
the scores mk for each community in the partition. We use a weighted sum because the score
contribution of each community should be commensurate with its size.

S(pτ) =
1
N ∑

k∈pτ

Nk ∗mk (3.6)

If the final partition has any singleton nodes that do not belong to any community we
connect each stray node to the community to which it has the highest mean edge weight to
in the un-pruned co-community network.

3.5 Evaluation

We have conducted a series of experiments to test EDGEBOOST on the LFR benchmark
networks, standard real-world networks (e.g karate club), and a set of ego networks from
Facebook. First, we present a comparison of EDGEBOOST with different community detec-
tion methods. Subsequent experiments include an analysis of various parameter settings of
EDGEBOOST.

3.5.1 Comparing EDGEBOOST with Different Community Detection
Methods

Similarly to the analysis we performed in the Communities in Incomplete Networks section,
we evaluate our methods against the LFR benchmark over various settings of the mixing
ratio µ and the percentage of missing edges, δ . In Fig. 3.9 we show the performance gain
(striped yellow bars) of EDGEBOOST for six different community detection algorithms:
InfoMap, Louvian, WalkTrap, Label-Propagation, Surprise, and Significance. The number
of imputation iterations is fixed at 50 for both algorithms and the bars are generated by
averaging over 50 randomly generated networks. While not shown in Fig. 3.9, we tested
all 3 link prediction algorithms and did not find a substantial difference. Keeping with
our link prediction analysis in the Link Prediction for Enhancing Community Detection

section, Jaccard slightly outperformed the other methods, so we chose Jaccard as the link
prediction algorithm for EDGEBOOST. We ran a Mann-Whitney U test for each parameter
configuration and found that 90% of the results in Fig. 3.9 have a p-value less than 0.05.

We can see from Fig. 3.9 that our method improves performance for almost all input
community detection algorithms. One exception is that EDGEBOOST shows a decrease in
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Figure 3.9 EDGEBOOST Performance on LFR Networks. Performance of six popular community
detection algorithms on the LFR benchmark networks. Dashed yellow bar shows the improvement of
EdgeBoost over using the baseline community detection method.

performance for the Label-Propagation algorithms at a µ value of 0.5. As in other studies
[94], the Label-Propagation algorithm’s performance becomes erratic at µ values of 0.5
or greater, most likely due to the fact that Label-Propagation assumes that a node’s label
should be chosen based on the labels of its neighbors. While EDGEBOOST is designed to
work on stochastic algorithms, and variations of the input network, if an algorithm has too
much variation, as is the case with Label-Propagation, it can lead to decreased performance.

Fig. 3.24 shows the performance gain of EDGEBOOST on the Louvain algorithm in more
detail. As our previous analysis showed, the baseline Louvain algorithm tends to detect
bigger communities on average than in the planted partition. The bottom row shows that
for moderate values of δ , EDGEBOOST is able to recover the smaller communities in the
planted partition. At very high values of δ (>= 0.4) a network may be so sparse that the
perfect recovery of correct communities is most likely not possible. Even for these high δ

values, EDGEBOOST still shows an improvement in NMI over the baseline method. The
Louvain algorithm shows similar performance gains as a function of the δ parameter but as
seen in Fig. 3.9, other algorithms show more variation with respect to δ . Figures ?? show
analogous plots for the five other algorithms we tested.

The LFR benchmark captures certain network properties, but it is an imperfect model of
real-world networks. To test EDGEBOOST on real network data, we also performed experi-
ments on two additional data sets. The first data set consists of a suite of standard networks
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Figure 3.10 EDGEBOOST Paired With Lovain. Performance of EdgeBoost (solid) and the baseline
Louvain algorithm (dashed) on LFR benchmarks. The purple shaded region shows the improvement
of edge boost for NMI. The bottom row of plots shows the relative error of the partition size.
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Figure 3.11 EDGEBOOST Paired With InfoMap. Performance of EDGEBOOST (solid) and the
baseline InfoMap algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.

for benchmarking community detection. The data set includes: Zachary’s Karate Club

network (Karate) [179], network of political books (Books) [118], blog network (Blogs) [4]
and the American college football network (Football) [58]. All of these networks have a
ground truth partition such that we can use NMI to evaluate the performance of community
detection. Fig. 3.16 shows the results of EDGEBOOST on each of the four networks with
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Figure 3.12 EDGEBOOST Paired With WalkTrap. Performance of EDGEBOOST (solid) and the
baseline WalkTrap algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.
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Figure 3.13 EDGEBOOST Paired With Surprise. Performance of EDGEBOOST (solid) and the
baseline Surprise algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.

the same six input community detection algorithms used in the experiment above. In all but
three of the 24 algorithm/network configurations, EDGEBOOST improves performance by
an average of 14%. On the Football network, EDGEBOOST does worse with the InfoMap,
Label-Propagation, and WalkTrap algorithms, but decreases performance by only an aver-
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Figure 3.14 EDGEBOOST Paired With Significance. Performance of EDGEBOOST (solid) and the
baseline Significance algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.

age of 1.6%. Overall, these datasets give some assurance that EDGEBOOST can improve
performance on real networks.

We also tested EDGEBOOST on a data set of Facebook ego-networks [108] that capture
all neighbors (and their connections) centered on a particular user. The data set described in
the original paper by McAuley et al. , consists of networks from three major social networks:
Facebook, Google+ and Twitter. The Facebook data set is likely the highest quality of the
three; it contains ground-truth which was obtained from a user survey that had the ego users
for each network provide community labels. The ground truth for the ego-networks from
Twitter and Google+ is lower quality since it was obtained by crawling the publicly available
lists created by the ego user. As such, for many of the networks, the ground truth consisted
of only a small fraction of nodes in the network and for many networks the ground truth
consisted of lists with very few members. Since the target of this chapter is non-overlapping
and complete clustering, we chose to not use the Twitter and Google+ networks due to the
sparsity of their ground-truth. The Facebook networks have complete ground-truth labeling,
so we used those for evaluation. Despite the Facebook networks being the highest quality of
the three datasets, it still contained ground-truth communities of 1-2 users. We pre-processed
each network by removing all ground-truth communities with fewer than three nodes. We
have included a plot (Figure 3.17) of the distribution of community sizes for the Facebook
networks in the appendix.
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Figure 3.15 EDGEBOOST Paired With Label-Propagation. Performance of EDGEBOOST (solid)
and the baseline Label-Propagation algorithm (dashed) on LFR benchmarks. The purple shaded
region shows the improvement of EDGEBOOST for NMI. The bottom row shows the relative error of
the partition size.

The ground-truth for the Facebook ego-networks can contain overlapping communi-
ties, therefore we cannot directly use the standard version of NMI for evaluation. To test
EDGEBOOST on overlapping ground-truth data we use the NMI extension proposed by
Lancichinetti et al. [95] that supports comparison of overlapping communities. Fig. 3.18
shows the results of using EDGEBOOST with the same six community detection algorithms
used in the LFR experiments. The solid bars represent the performance of the baseline
community detection algorithm without EDGEBOOST. The diagonal and horizontal striped
bars shows the results from EDGEBOOST paired with the Adamic-Adar and Jaccard respec-
tively. We set the number of iterations for EDGEBOOST at 50. Each bar was generated by
averaging the NMI score over 100 runs of the baseline and EDGEBOOST paired with the
Jaccard and Adamic-Adar link predictors. EDGEBOOST shows an improvement on most
networks for each of the six community detection algorithms; this result is consistent with
our experiments on the LFR benchmark. On the LFR benchmark networks EDGEBOOST

paired with Jaccard link prediction was consistently better than the other link prediction
methods but this is not consistently the case on the Facebook networks. Jaccard outperforms
the Adamic-Adar most of the time, but there are some cases when the opposite is true. While
EDGEBOOST shows improvement for most combinations of algorithms and network, there
are some instances when the performance of EDGEBOOST is lower than baseline. Overall,
in 52 of the 60 total configurations EDGEBOOST improves performance by an average of
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Figure 3.16 Performance of EDGEBOOST on Standard Network Datasets. Comparison of EDGE-
BOOST on set of standard real network benchmarks community detection

21%. In the rare configurations (8 out of 60) when EDGEBOOST performs worse than
baseline, EDGEBOOST performs only 5% worse on average.

3.5.2 Varying the Parameters of EDGEBOOST

In addition to comparing EDGEBOOST using different community detection algorithms we
also analyzed how the performance varies with respect to different parameter settings. For
these experiments, the curves were generated by averaging over 50 networks generated via
the LFR benchmark. Figs. 3.19 and 3.20 show the convergence of the Louvain and InfoMap
algorithms, as a function of the “number of community detection iteratations” (NumItera-

tions). Most of the performance gain from EDGEBOOST can be had with NumIterations

set to 10, and setting the number of iterations beyond 50 does not give much benefit. The
convergence of EDGEBOOST is qualitatively similar for low and high values of µ and the
entire range of δ values.

In the Partition Aggregation section we propose a method for automatically selecting the
co-community threshold τ , which we have used for all of the previous experiments. Since
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Figure 3.17 Distribution of community sizes for Facebook ego networks. Nodes were given
community labels by ego users as part of a user study.

the selection of τ is the most computationally expensive part of the entire EDGEBOOST

pipeline, we present an analysis of how EDGEBOOST performs with a manual selection
of τ . Figs. 3.21 and 3.22 show how EDGEBOOST performs by varying the selection of
τ for EDGEBOOST paired with Louvain and InfoMap respectively. For both algorithms,
EDGEBOOST can achieve good performance for values of τ in the range 0.6-0.9, indicating
that manual τ selection can be an effective way to save computational resources and still
boost performance over baseline. For higher values of µ , the performance of EDGEBOOST

is more dependent on τ , especially for the Louvain algorithm. Since the Louvain algorithms
performs less reliably for higher µ values, the co-community network has noisier edge
weights, therefore making the selection of τ more critical to achieving good performance.

In conclusion, if the user is computationally constrained, simply selecting a manual
threshold (or a few thresholds) can give good results without requiring the costly step of
computing connected components at each threshold. A potential pitfall of manually selecting
a threshold, is that EdgeBoost can give degenerate solutions. Degenerate partitions–those
that put all nodes in one cluster or creating hundreds of small clusters–result from the

38



Figure 3.18 Performance of EDGEBOOST on Facebook Networks. Comparison of EDGEBOOST

on ego-networks from Facebook

threshold value being too small or large respectively. For applications with a user in the
loop, these degenerate solutions are easily detected and fixed by increasing or decreasing the
threshold. The automatic threshold finder is intended for applications where full automation
is required.

3.5.3 Runtime Analysis

The most computationally expensive module of EDGEBOOST is the aggregation algorithm
which requires the computation of connected components at various thresholds. The com-
plexity of computing connected components is worst case O(|E|), where |E| is the number
of edges in the network. The aggregation module computes the connected components on
the co-community network, which can be much denser than the input network. In theory it is
possible for the co-community network to have O(n2) number of edges, therefore making the
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Figure 3.19 Varying NumIterations for EDGEBOOST with Louvain. The parameters are set as
follows: µ = 0.2 (left) and µ = 0.5 (right) over δ values ranging from 0.0 to 0.6.
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Figure 3.20 Varying NumIterations for EDGEBOOST with InfoMap. The parameters are set as
follows: µ = 0.2 (left) and µ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

aggregation module computationally expensive. In order to show that EDGEBOOST scales
well when increasing to large networks we ran it on LFR networks of various sizes, ranging
from 1000 to 128000 nodes. Fig. 3.23 shows the run time of EDGEBOOST with Louvain and
Jaccard link prediction with the number of iterations set to 10. While EDGEBOOST does
have a significant time overhead over Louvain, it still scales in the same manner as Louvain.
There are also many components of EDGEBOOST’s pipeline that can be naively parallelized.
The creation and clustering of the imputed networks are all independent of each other and
can be done in parallel. In addition the process of identifying the τ threshold can also be
sped up by finding the connected components for various threshold values in parallel.
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Figure 3.21 Varying τ for EDGEBOOST with Louvain. Varying the co-community threshold (τ)
for EDGEBOOST with µ = 0.2 (left) and µ = 0.5 (right) over δ values ranging from 0.0 to 0.6.
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Figure 3.22 Varying τ for EDGEBOOST with InfoMap. Varying the co-community threshold (τ)
for EDGEBOOST with µ = 0.2 (left) and µ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

3.6 Applying EDGEBOOST to Survey Generation

Network-based methods for the problem of text summarization have seen great success. In
these methods, networks are used to model sentences as nodes and edges as the similarity
between sentences based on a chosen metric. Clustering sentences — before applying a
ranking algorithm such as LexRank [41] — has been shown to improve the quality of a
summary by increasing the diversity of topics. Graph-based clustering has therefore become
an integral component of many summarization systems [84, 112, 137].

The standard graph clustering pipeline for summarization consists of either clustering the
similarity matrix directly (as a weighted network)[85] or to prune the similarity matrix by
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Figure 3.23 Analysis of Execution Time. Comparison of the runtime between EDGEBOOST and
baseline Louvain algorithm on networks ranging from size 1000 to 128000 nodes. EDGEBOOST has
the NumIterations set to 50.

selecting a threshold and deleting all edges with weights less then that threshold[135]. Both
of these approaches are deficient and can lead to sub-optimal summaries. Since sentence
similarity matrices are usually dense, with O(n2) number of edges, clustering the network
directly even with weights can lead to clusters that are too large. Pruning edges below a
specified threshold, can lead to better clusters but the clustering results are sensitive to the
chosen threshold, which is often chosen heuristically.

In this section we propose an extension of EDGEBOOST as a more robust way of cluster-
ing sentence networks. We replace the link prediction component of EDGEBOOST with a
module that simply enumerates threshold values over a specified range. At each threshold,
we cluster the graph and process the clusters using the same aggregation function used in
the original version of EDGEBOOST. This extension of EDGEBOOST removes the need to
heuristically define a threshold.

For testing this extension, we use the data for scientific topic summarization presented
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in [83]. This dataset consists of summarization data for 7 topics. For each topic, the summa-
rization input consists of introductory sections from 20 relevant papers on the topic. The
input sentences are annotated with factoids extracted from human surveys for each topic,
making it easy to use pyramid evaluation to compare output of different systems [117]. The
seven topics along with input size for each topic are shown in Table 3.1.

3.6.1 Graph-based Summarization Algorithms

We compare the performance of EDGEBOOST to C-LexRank [135] and LexRank [41]. We
now describe each of these models.

LexRank LexRank is a network-based content selection algorithm that serves as a base-
line for our experiments. Given an input set of sentences, it first creates a network using
these sentences where each node represents a sentence and each edge represents the tf-idf
cosine similarity between the sentences. We can treat the sentence similarities as edge
weights and use the adjacency matrix as a transition matrix after normalizing the rows; the
formula for LexRank is thus:

1−d
N

+d ∑
v∈ad j[u]

cos(u,v)
CosSumv

p(v)

Where cos(u,v) gives the tf-idf cosine similarity between sentence u and v and
CosSumv = ∑z∈ad j[v] cos(z,v). The power method [121] can be used to efficiently solve the
above equation to obtain the LexRank value for each sentence.

C-LexRank C-LexRank is a clustering-based summarization system that was proposed by
[135] to summarize different perspectives in citing sentences that reference a paper or a topic.
To create summaries, C-LexRank constructs a fully connected network in which vertices are
sentences, and edges are cosine similarities calculated using the tf-idf vectors of citation
sentences. It then employs graph clustering algorithm to find communities of sentences that
discuss the same scientific contributions. The original implementation of C-LexRank uses a
hierarchical agglomeration clustering algorithm proposed by [29]. We also implemented
C-LexRank with a more current method, the “Louvain” algorithm, proposed by [13]. Once
the graph is clustered and communities are formed, the method extracts sentences from
different clusters to build a summary. It iterates through the clusters from largest to smallest,
choosing the most salient sentence of each cluster, until the summary length limit is reached.
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Topic # Sentences
dependency parsing 487
named entity recognition 383
question answering 452
semantic role labeling 466
sentiment analysis 613
summarization 507
word sense disambiguation 425

Table 3.1 List of seven NLP topics used in our experiments along with input size.

The salience of a sentence in its cluster is defined as its LexRank value in the lexical network
formed by sentences in the cluster.

3.6.2 Combining EDGEBOOST with C-LexRank

Since most sentences have some degree of similarity, the similarity network is dense with
most nodes being connected to each other. These spurious links can lead to the detection
of overly large communities, which don’t necessarily reflect topically cohesive groups of
sentences. By selecting a threshold, and pruning edges below that threshold, many of
the spurious edges can be eliminated, thereby resulting in better clusters. Choosing this
threshold is tricky, since different thresholds can lead to very different clustering results.
Figure 3.24 shows how the number of communities can vary with respect to the specified
threshold. The x-axis represents a pruning threshold and the y-axis shows the number of
clusters that result after applying the Louvain algorithm on the pruned network. Each curve,
represents the results for 7 different networks, one for each topic in our dataset. We modify
EDGEBOOST by removing the link prediction component and instead generate a set of
clusters by varying the pruning threshold. For our experiment we set the threshold between
0.01-0.5 in increments of 0.01.

3.6.3 Survey Generation Experiment

For evaluating our content models, we generated 2,000-character-long summaries using
each of the techniques (LexRank, C-LexRank,EDGEBOOST) for each of the topics. The
summaries are generated by ranking the input sentences using each content model and
picking the top sentences till the budget of 2,000 characters is reached. Each of these
summaries is then given a pyramid score [117] computed using the factoids assigned to each
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Figure 3.24 Number of clusters vs. threshold

Topic LexRank C-LexRank EDGEBOOST
dependency parsing 0.47 0.76* 0.72
named entity recognition 0.80 0.89* 0.84
question answering 0.65 0.67 0.86*
sentiment analysis 0.64 0.62 0.69*
semantic role labeling 0.75* 0.67 0.72
summarization 0.52 0.75* 0.71
word sense disambiguation 0.78 0.66 0.81*
Average 0.66 0.72 0.76*

Table 3.2 Pyramid scores obtained by different content models for each topic along with average
scores for each model across all topics. The best performing method has been annotated with a *
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sentence.
For the pyramid evaluation, the factoids are organized in a pyramid of order n. The

top tier in this pyramid contains the highest weighted factoids, the next tier contains the
second highest weighted factoids, and so on. The score assigned to a summary is the ratio
of the sum of the weights of the factoids it contains to the sum of weights of an optimal
summary with the same number of factoids. Pyramid evaluation allows us to capture how
each content model performs in terms of selecting sentences with the most highly weighted
factoids. Since the factoids have been extracted from human-written surveys and tutorials
on each of the topics, the pyramid score gives us an idea of the survey-worthiness of the
sentences selected by each content model.

Table 3.2 shows the pyramid scores of all the methods for each of the 7 topics. The best
performing method on average is EDGEBOOST with a mean score of 0.76. EDGEBOOST

obtains a dramatically better score on the topics “word sense disambiguation”, “question
answering” while giving good performance on the other topics. Each of the baseline methods
performs the best on at least one of the topics, but EDGEBOOST still outperforms the leading
method C-LexRank by 4% on average.

For some networks, clustering may not be the performance bottlenecks, therefore making
any cluster improvements provided by EDGEBOOST not reflected in the final score. There
are cases when both C-LexRank and EDGEBOOST obtain worse scores then the baseline
LexRank indicating that for some networks, clustering may not be an appropriate choice.
These results suggest that a larger evaluation dataset is needed in order to characterize the
kinds of networks that EDGEBOOST can perform better on. One added benefit of EDGE-
BOOST is that it takes away the need for a user to specify a pruning threshold for a network,
therefore making the implementation of the algorithm easier and more robust for the end
user.

3.7 Discussion and Future Work

As shown in our experiments, EDGEBOOST is able to make bigger improvements for certain
community detection methods than for others. Our hypothesis for why EDGEBOOST works
better for certain algorithms has to do with the type of objective functions used by a given
method. Objective functions such as modularity are less robust to missing edges in a network
because the presence of direct links between nodes in a community are computed directly in
the objective. In contrast, the MAP objective function used by the InfoMap algorithm relies
on evaluating the community structure based on random walks, and is therefore less affected
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by direct links between nodes in a community. Our hypothesis is that objectives such as
the MAP equation are harder to improve with EDGEBOOST because their objectives are
already more robust to missing edges. Despite the differences between objective functions,
EDGEBOOST is still able to show an improvement for most community detection methods
for both LFR benchmark and real-world networks.

Our modified LFR benchmark used random edge deletion to model missing edges in net-
works. While we chose this model because we think that it is the most generally applicable,
there are other possibilities for modeling missing edges. One area of future research is to see
how community detection algorithms are affected using different edge deletion strategies.
Further experiments are necessary to determine if our techniques withstand biased edge
removal, but we believe that repeated link prediction will nonetheless boost performance.
Further, if missing intra-community edges could be modeled more accurately, development
of better link prediction algorithms for enhancing community detection may be possible.

In order to increase the quality of community detection, EDGEBOOST trades off time and
space efficiency. The construction of the co-community network can be memory intensive
because it is likely to be much denser than the input network. In addition, EDGEBOOST

requires many runs of a sometimes costly community detection algorithm. While EDGE-
BOOST can scale to reasonably large networks (see the Runtime Analysis section), we
acknowledge these trade-offs and emphasize that EDGEBOOST is not designed for million
node networks. Instead it was designed for use on small and medium networks (i.e., ego-
networks, citation networks), in which data sparsity problems are common, and communities
reflect meaningful structures in the data.

While we have shown the efficacy of EDGEBOOST in computing better partitions, it
is possible that the approach can also improve other types of community analysis. Given
different thresholds for which we can prune the co-community network (see the Partition

Aggregation section) and the corresponding set of connected components, we can obtain a set
of communities with a specified confidence. Some applications may not require a complete
partitioning of nodes and may even be better suited with an incomplete partition which has
higher quality communities. In future work we would also like to see how EDGEBOOST

can be used in the detection of overlapping and/or hierarchical communities. This extension
would require a different aggregation function as our current method is only capable of
creating strict partitions, via computing connected-components.

The link-predictors tested in this chapter are all based on shared neighbors, and therefore
are only capable of inferring missing connections between nodes that are at maximum 2 hops
from each other. One issue with predicting links that are further apart is the computational
complexity, since most of the metrics that are not neighborhood based are based off the

47



number of shortest paths between pairs of nodes. While not presented in this chapter, we
experimented with the local path index proposed by [105], which predicts links between
nodes that are as far as 3 hops from each other, but did not see any noticeable improvement.
Other link predictors that we did not explore are those that utilize node attributes (e.g.,
school and city) and/or link structure to score missing edges. Since most of the methods in
disjoint community detection do not account for node attributes, in the future EDGEBOOST

could be a robust way to integrate node attributes into existing algorithms.

3.8 Related Work

Though single-technique community detection is by far the most common, a number of
recent projects have proposed ensemble techniques [5, 32, 94]. Aldecoa et al. describe an
ensemble of partitions generated by different community detection algorithms, which differs
from our approach of using the same algorithm and creating the ensemble by creating differ-
ent networks. Both [32] and [94] present techniques for consolidating partitions generated
by repeatedly running the same stochastic community detection algorithm. We implemented
both of their methods but neither was suitable for consolidating clusters in our system;
this is most likely because the partitions generated from our system have more variation
than partitions generated from multiple runs of a stochastic algorithm. At a high-level, our
proposed technique is a type of ensemble. Most ensemble solutions take the network as-is
and assume that a “vote” between algorithms will produce more correct clusters. While this
may work in some situations, bad input will often reduce the performance of all constituent
algorithms (possibly in a systematic way) and therefore the overall ensemble. Our proposed
method is novel in its iterative application of link prediction to increase the efficacy of
community detection algorithms.

In the community detection literature, techniques have been proposed for both evaluating
the significance/robustness of communities, as well as, for detecting significant communities.
Karrer et al. [87] propose a network perturbation algorithm for evaluating the robustness of a
given network partition. Methods have also been developed [77, 97] that measure the statisti-
cal significance of individual communities. Our goal, however, is not to generate confidence
metrics on communities but rather to generate more accurate communities overall. Previous
work has also proposed techniques for finding significant communities using sampling based
techniques [55, 110, 142]. Rosvall et al. and Mirshahvalad et al. propose algorithms for
detecting significant communities by clustering bootstrap sample networks and identifying
communities that occur consistently amongst the sample networks. The method proposed
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by Gfeller et al. attempts to identify significant communities by finding unstable nodes
using a method based on sampling edge weights. Their methods differ from ours in that they
create samples from the existing network topology. Most similar to our work is the paper by
Mirshahvalad et al. [111] which attempts to solve the problem of identifying communities
in sparse networks by adding edges that complete triangles. Their method is simply to add a
fixed percentage of triangle completing edges and cluster the resulting network; in contrast,
our approach involves the repeated application of any link prediction algorithm.

The problem of detecting communities at various levels of granularity is a well studied
and related problem. Work by [49, 172] has analyzed the “resolution limit” of detecting
communities at all granularities. In response to this resolution problem, many meth-
ods [7, 38, 99, 141] have been proposed for community detection at different granularities.
New objective functions that improve the resolution limit [99] as well as tunable objec-
tives [7, 141] that allow community detection at various resolutions have been proposed.
Delvenne et al. propose a method for identifying the stability of communities by using the
Markov time of a random walk on the network. Granularity is a related problem in that
missing edges can lead to communities detected at wrong granularities. However, these
methods do not address the problem of detecting communities on incomplete networks.

The design of EDGEBOOST was partly inspired by ensemble methods in the data clus-
tering space. Ensemble data clustering (for a survey see [56]), first proposed by Strehl et

al. [156], involves the consolidation of multiple partitions of the data into a final, hopefully
higher quality partitioning. While many of the ensemble clustering methods share a similar
work flow to our method, the fact that these techniques were developed for data clustering
and not community detection make them distinct from our work. For instance, Dudoit et

al. use bootstrap samples of the data to generate an ensemble of partitions, which in the case
of network community detection would be difficult since networks have an interdependency
between nodes, and nodes cannot be sampled with replacement like data in euclidean spaces.
Monti et al. [113] propose a consensus clustering technique with the goal of determining
the most stable partition over various parameter settings of the input algorithm. Similar
to our work, many ensemble clustering algorithms [39, 45, 113, 156] use a consensus
matrix as a data structure to aggregate the ensemble of partitions. Unlike previous methods
[39, 156], which use agglomerative clustering to compute the final partition we propose
an aggregation algorithm that uses connected components, which is not possible on data
clustering problems.
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3.9 Conclusions

Networks inferred or collected from real data are often susceptible to missing edges. We
have shown that as the percentage of missing edges in a network grows, the quality of
community detection decreases substantially. To counter this, we proposed EDGEBOOST

as an algorithm to improve community detection on incomplete networks. EDGEBOOST

is capable of improving all the community detection algorithms we tested with its novel
application of repetitive link prediction, on real ego-networks from Facebook. EDGEBOOST

is an easy-to-implement meta-algorithm that can be used to improve any user-specified
community detection algorithm and we anticipate that it will be useful in many applications.

While in this chapter we focused improving community detection algorithms on net-
works with missing links, in the next chapter we look at how to improve community detection
algorithms for detecting topical communities in a social network.
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Chapter 4

Using Topically Coherent Communities
to Rank Social Feeds

When community detection algorithms are applied to binary networks, they group nodes into
clusters based purely on the structure of the network. Groups of highly connected nodes are
usually placed together while nodes that have a high degree of separation are usual grouped
separately. By only leveraging the structure of a network, community detection algorithms
are limited to detecting communities that are reflected in that structure. Depending on the
type of analysis and therefore the intended insight of applying community detection to a
network; the network structure alone may not carry enough information for that analysis to
be successful.

In this chapter, we propose a link re-weighting strategy that uses the network structure
and text data associated with nodes to generate a modified network where the edges carry a
signal about the semantic information shared between nodes. We use this link re-weighting
strategy to aid in the detection of topically coherent communities of users in an online
social network. We present this technique as a component, in an information retrieval
system, that identifies and ranks a user’s social feed by their topic(s) of interest. The system,
BUTTERWORTH, proposed in this chapter is based off work presented in this paper [20].

4.1 Chapter Overview

Over the past few years, online social networks have shifted focus from socialization plat-
forms to information hubs. Users log onto social networks to obtain the latest updates
from their personal friends as well as commentary, links, and news from colleagues and
subject-matter experts. The conventional mechanism for displaying this information is the
social feed, a long (usually) time-ordered list of updates. Active users of social networking
sites like Twitter can follow the updates of hundreds or thousands of other users. This can
produce feeds that contain hundreds of new items per hour, many of which are irrelevant to
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the user. As social networks snowball in popularity and friend networks grow in size, users
become increasingly less able to find relevant content as both context and channels collapse.

Users’ feeds often contain a heterogeneous mixture of information from many sources
and on a variety of topics. This heterogeneity is caused by context collapse, the phenomenon
in which many people, usually situated in different contexts, are suddenly grouped together.
For instance, a user Alice may be primarily interested in data mining, but also interested in
cooking and literature. She follows topic-matter experts on all these subjects, but because
the primary consumption mechanism is a single social feed, all messages will become
intermingled regardless of what they are about.

The converse of the context collapse problem is channel collapse. While context collapse
describes the consumption of information—all the people a user follows push their updates
into one place—channel collapse describes the production of content. A particular user, Jane,
may be followed by others for many reasons: her family for pictures of the grandchildren,
gamer buddies for the latest news on new releases, and work colleagues for Java coding tips.
However, because Jane has only one output mechanism available to her, any content she
creates—be it pictures of her children or Java tips—will be seen by all subscribers to her
feed, whether they are interested in the topic or not. Alice, who follows Jane only because
of their shared interest in games, will be forced to sift through irrelevant Java tips and family
pictures. Conversely, Jane’s father must get through coding and gaming messages before
getting to the pictures.

In response to the problems of context and channel collapse, social networking sites have
implemented features that allow users to group their friends into lists. Lists let users better
organize their feeds by grouping friends who share a similar context; users can then access
sub-feeds that only contain content from friends in that grouping. In many situations these
lists are intended to aid in consumption, but recent trends in interfaces for these systems also
allow lists to be used for targeting produced content. Allowing users to target their posts
based on the topic of the content has the potential to alleviate channel collapse. While such
features can help users better organize their feeds, they require significant human effort, as
well as widespread adoption, in order to be effective.

In this chapter we propose BUTTERWORTH, a system that provides a solution to both
context collapse and channel collapse. We observed in pilot experiments that when users
create lists, they are also implicitly indicating which content produced by members of that
list they are interested in. This is most often the topics discussed in common by all members
of that list. For example, when creating a visualization list, a user includes other users who
post about visualization. Each user in the list may post about whatever other topic she also
finds interesting, but a common topic across all of their posts will likely be visualization. By

52



finding this common core, it becomes easy to train a ranking algorithm to highlight posts
related to visualization. Unfortunately, most users do not create lists.

To address this issue, we designed BUTTERWORTH to leverage manually created lists
when available, but also to automatically identify people who should be placed together in a
list. Unlike topic-modeling approaches, which are highly sensitive to input, computationally
complex, require substantial tuning, and are difficult to present to users, BUTTERWORTH’s
novel approach leverages the inherent homophily of social networks.

One reason a user may choose to follow or friend another user on a social network is
because of their mutual interest in a topic. This type of edge in the social graph has the
semantics of “TopicOfinterest” and is common on social networks like Twitter. Since most
real-world social graphs are going to obtain edges with different semantics, link prediction
can be used to infer missing and re-weight existing links in the network. We use the bag-
of-words generated by each node (user) in conjunction with a link predictor to generate
a weighted network, that infers the topical social graph. Highly weighted edges in this
transformed network, consist of edges corresponding to topical similarity between users.
Highly connected groups of nodes then translate to communities of people that discuss
similar topics.

By detecting communities on the imputed version of a user’s social network, BUTTER-
WORTH can scalable build lists that closely simulate manually created lists, down to picking
human readable list labels. For each of these topics BUTTERWORTH generates a “ranker”
that re-orders the user’s feed by the relevance of the items to the selected topic. BUTTER-
WORTH leverages only a user’s social network and content produced by their friends; it
therefore requires no direct supervision from the user.

We have tested each component of BUTTERWORTH and have shown that it is able
to achieve high levels of precision and recall, on both topic discovery and ranking. We
have designed BUTTERWORTH to be broadly applicable to all mainstream social network
platforms, but have chosen Twitter as our platform due to its popularity and public API.

4.2 User Scenario

Since BUTTERWORTH is focused on an end-user burdened by irrelevant feed content, we
present user scenarios that describe today’s current situation as well as the feed interaction
enabled by BUTTERWORTH.

To see how users struggle with today’s social feeds, recall our example user Alice. Alice
has joined Twitter to find information about data mining, literature, and cooking. She follows
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Figure 4.1 BUTTERWORTH has three components. The list generator groups a user’s social
contacts into topically coherent lists. The list labeler synthesizes labels for those lists. The topic
ranker learns a ranking model for each topic by using each list to heuristically label training data.

many users who generate content on her main interests, but she also follows other users
for various reasons (e.g., they are co-workers, family members, etc..). While sometimes
Alice enjoys browsing her feed to see the latest content from her friends, at other times she
wants to see only content related to her main topics of interest. With the traditional feed
mechanism, Alice suffers from context collapse; if she wants to see only content related to
cooking, she must manually search through her feed to find cooking tweets. Since Alice is
interested in cooking, she could devote some time to using Twitter’s list feature to group
together all of her friends who write about cooking. When Alice clicks on her cooking
list she is shown a sub-feed consisting of only content from the users in the cooking list.
Sadly, this does not help Alice very much, since she realizes that the friends she follows for
cooking information also write about many other topics. Alice’s lists allow her to break up
her feed into contextualized groups, but this is not enough, as channel collapse fills even her
list-specific feeds full of irrelevant content.

Alice’s experience is very different when she uses BUTTERWORTH. Once Alice logs into
Twitter, BUTTERWORTH automatically identifies her topics of interest and presents them to
her. If Alice has already created a list, such as her cooking list, then BUTTERWORTH can
incorporate it into the topics presented (though manual list creation is not required). Alice
is then able to choose a topic that interests her; when she does, messages in her feed are
ranked by their relevance to the topic selected. Alice’s feed is no longer affected by context
collapse, since BUTTERWORTH automatically generates lists that correspond to her interests.
In addition, her feed is no longer affected by channel collapse, since BUTTERWORTH pushes
the relevant content to the top of her feed.

4.3 System Architecture

BUTTERWORTH comprises three main components, as seen in Figure 5.1. The list genera-
tor partitions friends into lists by analyzing their social network. These user lists are then
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fed into the list labeler that generates a concise label representing the list’s (central) topic.
The generated lists are then sent to the topic ranker, which trains ranking models for this
core topic. The models can then be used to rank the user’s feed by the selected topic.

List Generator

The first step in the BUTTERWORTH pipeline is to automatically discover groups of users
that discuss similar topics within a user’s ego network, and to partition the members of
this network into lists. The ego-network is a subset of the social network (in this case, a
modified and weighted follower/followee graph). It is derived from the friends connected to
a core “ego” individual and the links among these friends, excluding any edges to the ego
node. The goal of this module is to generate lists (we call these topical lists) such that each
list corresponds to one of the user’s topics of interest. Even if a user’s main objective on
Twitter is to obtain information on topics of interest, they likely follow users for a variety
of other reasons. For instance, a user may follow their co-workers or family members.
The generated lists for a user may therefore also include these contextual lists that are less
topically coherent (e.g., lists that contain users who all live in the same town or are all family
members). After computing these topical and contextual lists, the list generator filters out
all contextual lists.

For an example we turn back to Alice. The list generator takes as input Alice’s ego
network and partitions all of her friends into lists. Some of these lists will correspond
to her interests like cooking and data mining, and others will contain her college friends,
co-workers, etc.. The list generator then removes the contextual lists, so that only the
topical lists remain.

While generating high-quality lists is an important problem, it is not BUTTERWORTH’s
end goal; we formulate these lists in order to produce high quality topic rankers. While
low-quality lists can have a bad effect on downstream ranking performance, we show ex-
perimentally that perfect lists are not required for high-quality ranking. The ideal output of
the list generator is a set of lists that comes close to the quality of lists that users generate
themselves, which is how we evaluate this component in the experiments.

List Labeler

BUTTERWORTH’s second component is the list labeler. It generates relevant and human-
understandable labels for each of the lists generated in the previous step. These labels are
also attached to the generated rankers and are intended for display to the user in the system
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interface, enabling her to select which topic ranking she wants applied. For example, the list
labeler should name Alice’s cooking list as “cooking” or something similar. While it is, of
course, possible to formulate lists without generating accompanying labels, the resulting
interface would be substantially harder to use—Alice would need to resort to clicking on
all the BUTTERWORTH-given topics and reading sets of tweets to discover the topic behind
each one.

We propose two different labeling algorithms, using network as well as textual features
(including list labels generated by others, content, and user biographies). An ideal output for
the list labeler is a topic string that is semantically close to the label a human would give to
the same list. We evaluate the list labeler’s output by comparing it to some simple synthetic
baselines, as well as asking human judges to rate its relevance.

Topic Ranker

The final component of BUTTERWORTH is generating a ranking model for each identified
topic. The topic ranker takes as input the past tweets from the set of users in each list
that was labeled in the previous step. It proceeds in two steps. First, it generates a label
(“relevant” or “irrelevant”) for a subset of the user’s tweets. Second, it uses this synthetically
generated labeled data to train a naı̈ve Bayes model. Once a ranking model is trained for
each topic, the model can be applied to rank a user’s feed by the corresponding topic. For
example, after Alice selects the cooking topic, her entire feed would be re-ordered such
that the cooking tweets are pushed to the top of the list. Note that we purposely rank the
entire feed to deal with both false-positive and false-negative assignment of users in the list
generation.

In order to train each ranker, we propose various heuristics to automatically generate
“relevant” and “irrelevant” labels for training examples—a form of distant or self-supervised
learning. The main intuition behind these heuristics is that since the users contained in
each list discuss similar topic(s), the most frequently discussed topics are most likely to be
relevant. An ideal output of the ranker would order a user’s feed such that all of the content
relevant to the list appears at the top of their feed. We use standard information retrieval
techniques to evaluate the ranking quality.
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Table 4.1 The top three ranked tweets for automatically generated lists labeled environment, fashion,
and sports (list labels are also automatically generated).

Environment Join us in helping get the 2012 Olympics off plastic bags!...
Heading to Patagonia Santa Monica store to bring... on plastic pollution..
Starbucks Trash: Behind the Scenes :: My Plastic-free Life — Less Plastic...

Fashion Anchors away in this Vintage Yellow Sailor dress! Newly listed...
STUNNING Vintage Paisley Teal Spring Dress!...
Vintage Silk Heart Blouse with a Tie Neck listed...

Sports I posted 12 photos on Facebook... ”Warrior Around the NHL...
LeBron James and Michael Jordan (92): are thus the only...
Denver Nuggets Sign Quincy Miller...

4.4 Algorithms

Here we describe how we implement each of the components above: the list generator, the
labeler, and topic ranker.

4.4.1 List Generation

The goal of list generation is to take a user’s ego-network and partition the friends into
topically coherent lists. Fortunately, partitioning the nodes of a graph into subsets is one of
the topics addressed by graph clustering research. In particular, the algorithm of Pons and
Latapy [132] takes as input an undirected weighted graph, then produces a disjoint set of
node sets. An edge weight in the input network generically describes the strength of the link
between two nodes. In principle, we can take the (unweighted, directed) ego-network to
create a (weighted, undirected) input to the clustering algorithm, and then call each of the
algorithm’s clusters a list.

Of course, the quality of clustering depends largely on the network we formulate as
input. By choosing edge weights differently, we can obtain different kinds of clusterings.
We have found that using weights that take into account shared topics leads to groupings that
emphasize these topics while de-emphasizing contextual relationships (family, childhood
friends, etc..) that are, for our purposes, “spurious.”

Each ego-network consists of a set of nodes, N, and a set of directed edges, E, where
each edge indicates the presence of a follower-followee relationship. For simplicity, we
first convert each directed edge in E to an undirected edge. Then, we use a combination of
network features and textual features to produce E ′, the set of weighted edges.

For each pair of nodes (u,v), where u ∈ N and v ∈ N, we produce a weighted, undirected
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edge eu,v using a modification of the user similarity measure presented in [3]:

sim(u,v) = ∑
x∈sharedneighbors

1
log[degree(x)]

+ ∑
t∈sharedterm

t f id f (ut)∗ t f id f (vt)+E(u,v), (4.1)

where E(u,v) = 1 when eu,v ∈ E, and 0 otherwise. If sim(u,v)> 0, then eu,v is added
to E ′ with weight sim(u,v). To produce the “shared term” weights, we first produce a
TF-IDF-weighted term vector for each node n ∈ N, limiting the per-user vocabulary to
the 10 top-scoring words. In examining the networks produced by our edge weighting
algorithms, we realized that many networks appeared extremely dense. To correct for this,
we discard all edges with weight less than a threshold parameter α .

After we have produced a weighted, undirected graph, we perform graph clustering to
obtain a set of lists. Currently, we apply a common approach based on random walks [132],
as implemented in the iGraph R package. The clustering algorithm uses properties of random
graph walks to produce a disjoint set of communities, and we consider each community
produced as a list.

After identifying the lists, we must decide whether each list and its members are topically
cohesive. To do this, we compute the entropy [149] of the list, in which the list’s probability
distribution is defined as a bag-of-words model over all tweets in the list. Our intuition
behind using entropy is that if a list’s tweets share common topics, then the distribution over
words will be skewed to a small subset of the whole vocabulary and thus have low entropy.
We classify all lists with entropy lower than a empirically learned ε value as topical.

4.4.2 Topic Labeling

When generating a label for a topic list, we use one of two algorithms: the BESTOVERLAP

method, or the USERINFOBIGRAM method.
In the BESTOVERLAP method, we exploit Twitter’s large user base to implicitly “crowd-

source” topic list labeling. For each topical list, we create a set of candidate names by
looking at all previously-created Twitter lists that contain members of our newly generated
list. To label our new list, we simply pick the name of the previously created list that
maximally overlaps with the individuals in our list. For example, if our list contained users
A, B, and C and we find two other previously created lists—“foodies,” which contains A
and B and “cooking,” which contains A, B, C, and D—we label our new list “cooking.” If
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multiple Twitter lists overlap equally, up to three names are concatenated to form the list
label.

For the USERINFOBIGRAM method, we examine the optional text that Twitter users
can enter to describe themselves (e.g. “I love NYC, tech & funk” or “CS PhD student
at the University of Rochester... My research involves real-time crowdsourcing, human
computation, and AI”). For each newly created list we generate a “corpus” of all user
information fields of list members. The list is then labeled with the most frequent bigram in
this synthetic corpus.

We found through experimentation that the BESTOVERLAP method works best when our
generated lists have more members (increasing the chance of overlap and the size of overlap
with previously created lists). After considering various limits, we use a minimum threshold
of 10 list members to decide when to switch from BESTOVERLAP to USERINFOBIGRAM.

4.4.3 Topic Ranking

The last step in the BUTTERWORTH pipeline is to build ranking models for each topic. The
input for each ranking model is the past tweets of each member of the corresponding list,
comprising a set of unlabeled tweets T . Of course, these tweets are not labeled as “relevant”
or “irrelevant.” However, we can exploit the fact that all of the tweets come from users
grouped together in a single list. We propose various heuristics for automatically labeling
a subset of the examples in T . Our learning scenario falls into the category of distant
supervision, in which a heuristic labeling function H is applied over all of the examples
in T to produce a labeled set TL ⊆ T . We only use H to try to infer positive training
examples—obtaining high-quality negative examples is much easier. For each list, we
randomly sample |TL | from the corpus of tweets not produced by users in the list. After
obtaining a labeled training set, we then extract the bag-of-words features from each training
example and train a naı̈ve Bayes model for each list. The final feed ranking is produced by
sorting the tweets by their relevance probability, as scored by the trained model for each list.
Below we propose three different variants of the labeling function H.

Naı̈ve Method

In the naı̈ve method we use all of the tweets produced by the list members as our positive
training set, and sample from out-of-list tweets for our negative training set. More formally,
we let H be a constant function, labeling all of the examples in T as positive, to create
TL = T . While this method is very simple, it achieves surprisingly good results, as our
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experiments show.

Top-K Hashtags and Unigrams

By labeling all of the examples in T as positive, the naı̈ve method creates a noisy training
dataset. Instead, we would like a heuristic that tries to label as positive only the examples
that are surely positive. Here we propose heuristics that try to leverage the observation that
the more prevalent content in T likely corresponds to the more relevant content to the end
user. Instead of labeling all of the examples in T as positive, we label a smaller subset that
contains examples that are the most likely to belong to the positive class. We use a modified
TF-IDF score to find the unigrams and hashtags1 that are most likely to be contained in the
positive class. We score each hashtag or unigram occurring in T using the following TF-IDF
scoring function for a given list l:

T F ∗ IDF(w) = Fl(x)× log
(

N
IDF(x)

)
, (4.2)

where Fl(x) is the number of occurrences of the hashtag or unigram w in the list l, N

is the number of tweets in the corpus and IDF(w) is the number of tweets that contain w.
We define two heuristic functions, one for unigrams and one for hashtags. H labels all of
the examples in T that contain at least one of the top-k unigrams or hashtags, where k is a
chosen parameter.

4.5 Evaluation

Below we describe a set of four experiments to test various aspects of BUTTERWORTH. All
of our experiments use data collected from Twitter which we describe below.

4.5.1 Dataset Description

In order to evaluate BUTTERWORTH, we need a ground-truth dataset containing real users
who have manually created their own lists. If our algorithmic list-generation component
can accurately recreate these lists, and if we can use the resulting lists to formulate accurate

1Hashtags are user-specified single-word descriptions that signal the topic of a tweet and always begin
with a “#”, i.e., #Food or #Climate
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topic labels and rankings, then we can be confident that BUTTERWORTH will be effective in
a general deployment.

Unfortunately, it is not straightforward to find a random sample of users that has created
high quality lists. We obtained such a sample from Twitter as follows:

1. We chose by hand a set of 10 high-quality lists drawn from www.listorius.com. They
cover a range of topics, including computer science, cooking, and others. Each list
has between 300 and 500 users. Together, these users formed a large seed set of users
who are likely to be members of many lists.

2. We then obtained all lists that contained any of the seed users. This formed a large set
of lists likely to be of high quality.

3. We found the creator of each list, yielding a set of nearly 400,000 users. We have now
found a subset of Twitter users who have created high-quality lists — this is exactly
the subset from which we want to draw our test sample.

4. Last, we randomly sampled 100 users from the follower set, and removed users who
were using private accounts or who were non-English speakers. The resulting 80 users
formed the test-user set. These users had created anywhere from 1 to 20 lists (mean
of 7.79 and median of 7 lists). Figure 4.2 shows the final distribution of lists created
by these test users.

Each of the obtained lists, which we call organic lists, has a user-given name (i.e.,
label) and a set of list members. Finally, we created an ego-network for each test user that
comprised all of the test user’s followers/followees, all members of a test user’s organic lists,
and any friend relationships among these users. The average ego-network size is 1383.72
and the median is 805. For our experiments we downloaded up to 1,000 tweets from each
user in the resulting network.

4.5.2 List Generation

To evaluate our list-generation algorithms, we experimented with several alternative edge-
weighting schemes. For each ego user in our dataset, we produced one weighted, undirected
ego-network graph for each weighting scheme. Next, we ran the clustering algorithm on
each graph, producing a set of disjoint lists. Because all users in our dataset had at least one
organic list, we evaluated the sets of lists produced by the community detection algorithm
against the user’s manually created organic lists. We evaluated the following weighting
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Figure 4.2 Distribution of the number of lists created by users in the test set (20 is the maximum
allowed by Twitter)

schemes: network only, in which the edge-weighting function sim(u,v) considers only the
neighbors as features, and three additional schemes in which the edge-weighting function
sim(u,v) considers neighbors and a TFIDF-weighted term vector as features, limiting the
per-user vocabulary to k words, where k ∈ {10,100,1000}.

We also tested the edge-weight parameter α with values that were functions of the
average edge weight and standard deviation for each network: α ∈ {1, average edge weight
- standard deviation, average edge weight, average edge weight + standard deviation}. Fig-
ure 4.3 shows the results of this experiment. We see that taking k = 0 and α = ( average
edge weight−standard deviation) results in the highest value of F-measure, 0.83. Thus, we
chose this algorithm as our edge-weighting scheme.

Our goal in this list-generation experiment was to produce lists that mimicked each
user’s manually created organic lists. However, community finding was performed on each
user’s entire ego-network, which included friends that were not placed on any organic lists.
Therefore, in evaluating the machine produced lists against the manually created organic
lists, we created a confusion matrix for each user as follows: for each pair of friends that
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Figure 4.3 F1 scores for the list-generation module, varying k and α .

was placed in any organic list ( f 1, f 2), the pair is a true positive if the friends were both
placed in the same organic list, and were both placed in the same machine produced list; the
pair is a false positive if they were both placed in the same machine-produced list, but were
not placed in the same organic list, etc. We cannot include users who were not placed on any
organic lists in our evaluation metrics because we do not know why they were not included
in the list — they may belong on the list, but the user lazily left them off, or they truly do
not belong. However, we will show in the next few sections that even with imperfect list
generation, our results are still quite good.

To evaluate our topicality threshold, we performed a 5-fold cross-validation on a set of
100 manually classified lists. Two human evaluators constructed the training and testing set
by manually classifying 100 randomly chosen organic lists as either topical or non-topical.
We then calculated the entropy of the lists, and learned an ε cutoff value by choosing the
cutoff to maximize the F-measure. Our final ε value was then chosen as the average of the 5
runs, yielding ε = 1.374 and F-measure = 0.92.

63



4.5.3 Topic Labeling

We evaluated eight potential labeling algorithms before choosing the BESTOVERLAP and
USERINFOBIGRAM methods. We performed two experiments to evaluate these algorithms.
First, we chose a random sample of 100 organic lists from our dataset. For each list, we
produced 8 labels—one from each labeling algorithm. To evaluate how similar each label
was to the organic list’s original label, we computed the pointwise mutual information (PMI)
score of each label, relative to the original label. To compare all labeling techniques, we
then calculated the root mean squared error (RMSE) of each algorithm’s PMI scores.

The algorithms we evaluated were: (1) the BESTOVERLAP method; (2) the LISTUNI-
GRAM method, in which topic lists are labeled with the most common unigram from the
names of all previously created Twitter lists; (3) the TWEETUNIGRAM method, in which
topic lists are labeled with the most common unigram occurring in the past 1,000 tweets
from all list members; (4) the TWEETBIGRAM method, in which topic lists are labeled
with the most common bigram occurring in the past 1,000 tweets from all list members; (5)
the TWEETWIKI method, in which we compute the top-5 unigrams occurring in the past
1,000 tweets from all list members, search Wikipedia with these unigrams, and label the
topic list with the most common unigram occurring in the parent categories for the top 10
search results; (6) the USERINFOUNIGRAM method, in which topic lists are labeled with
the most common unigram occurring in the user info fields from all list members; (7) the
USERINFOBIGRAM method; and (8) the USERINFOWIKI method, which is identical to the
tweet wiki method, but chooses the top-5 unigrams occurring in the user info fields from all
list members in the first step. Results from this experiment are presented in Table 4.2.

Because the BESTOVERLAP, TWEETBIGRAM, and USERINFOBIGRAM methods all
had similarly low RMSE scores, we conducted a second evaluation, just using these three
algorithms. Our goal in this second evaluation was to evaluate the meaningfulness and
relevance of a label. Two human evaluators manually classified each label for the 100
random organic lists as very relevant (a score of 2), relevant (a score of 1) or irrelevant
(a score of 0) when compared with the organic list’s original label. These results are also
presented in Table 4.2. The BESTOVERLAP method outperforms the TWEETBIGRAM and
USERINFOBIGRAM methods significantly (p < .01). Although the USERINFOBIGRAM

method appears to outperform the TWEETBIGRAM method, the difference is not significant.
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Table 4.2 RMSE and average relevance values for labeling algorithms.

Algorithm RMSE Avg relevance
BESTOVERLAP 6.79 1.72
LISTUNIGRAM 7.38 –
TWEETUNIGRAM 7.54 –
TWEETBIGRAM 6.64 0.91
TWEETWIKI 7.87 –
USERINFOUNIGRAM 7.35 –
USERINFOBIGRAM 6.56 1.14
USERINFOWIKI 7.52 –

4.5.4 Topic Ranking

In order to evaluate the ranking, we needed to obtain ground truth about the relevance of
tweets to the topic name of a list. We randomly sampled 100 organic lists from the test user
set for which we wanted to obtain labels. We used Amazon’s Mechanical Turk to obtain
binary labels of relevant or irrelevant to a prescribed list name. For each of the 100 organic
lists we sampled 100 tweets, and asked three Mechanical Turk workers (“Turkers”) to grade
whether a tweet was relevant to the list name or not. Since the list names were generated for
personal use by Twitter users, some were less informative (e.g., “mac,” “vegas tweeple”),
and as a result the Turkers were not able to give high-quality ratings. Since we only gave the
Turkers two options, for the incoherent list names the vast majority of the answers selected
were “irrelevant,” as the Turkers did not understand the list name. We used for ranking only
those lists for which Turkers unanimously agreed that at least 15% of tweets were relevant.
After filtering out lists with incoherent names, we obtained a set of 55 lists that we used
for testing. From each list, we used only the examples to which the Turkers responded
unanimously, yielding a total of 3,215 labeled examples. The mean percentage of relevant
tweets over the 55 lists was 52%. We evaluated the performance of the ranking models using
standard information retrieval metrics.

Our first set of experiments test the effect of the k parameter for the hashtag and unigram
methods. We then compare the hashtag, unigram, and naı̈ve methods against a baseline. We
show the robustness of each heuristic under various amounts of noise in order to determine
the sensitivity of the ranking module to the output of the list-generation module.

Tuning the k parameter

Figures 4.5 show the Mean Average Precision (MAP) scores for various values of the k

parameter. As the plots show, the MAP scores do not vary much between the different k
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Figure 4.4 Precision and recall of the hashtag, unigram, naı̈ve ranking methods against a baseline.
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Figure 4.5 Varying the k parameter for the hashtag (left) and unigram (right) methods.

values. As long as we choose a k value that is not very small, the performance of the ranker
is consistently good. When k is too small, the naı̈ve Bayes model is not supplied enough
training data and performance suffers. We choose k = 8 (unigram) and k = 100 (hashtag)
for the following experiments, as those values performed slightly better than others.

Comparing Proposed Methods to Baseline

By default Twitter ranks a user’s feed in reverse chronological order, so we compared our
method against this baseline. Ranking the tweets by time is essentially the same as randomly
ordering with respect to their topical relevance. Figure 4.4 shows the precision-recall curves
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Figure 4.6 A comparison of the effects of varying the percentage of noise on precision and recall
for the naı̈ve, hashtag, and unigram methods.

for the naı̈ve, hashtag, and unigram methods as compared to the baseline. As shown in the
figure, our methods significantly outperform the baseline, which quickly converges to a
precision of around 50%, which is the average percentage of relevant topics over all lists.
All three of our proposed methods have a very similar performance, in which the unigram
method slightly outperforms the other two methods. The naı̈ve Bayes classifier is robust to
noise, so it is not surprising that the naı̈ve method performs well.

Robustness to Noise

The previous experiments tested the proposed methods on user-generated lists, which we
assume are high quality. Since part of BUTTERWORTH’s purpose is to automatically generate
lists, we also wanted to see how sensitive each of the methods were to varying levels of
noise. We simulated mistakes in list generation by replacing a varying percentage of tweets
in each test list with random tweets from outside the list. For example, a noise level of 30%
for a given list would correspond to 30% of the tweets in the training set being replaced with
random tweets sampled from users outside the list. Figure 4.6 shows the precision-recall
plots for all three methods with various levels of noise. We can see that the naı̈ve method
is the most robust to increasing levels of noise—it is only truly affected at levels of noise
above 70%. The other methods are more affected by noise, likely because they quickly
begin to only include hashtags/unigrams that correspond to irrelevant topics.

4.5.5 End-to-end Experiment

The previous experiments evaluated each component of BUTTERWORTH in isolation, but
we have yet to test the effectiveness of BUTTERWORTH as a whole. In order to test BUT-
TERWORTH as a complete system, we need to experiment on an end-to-end workflow that
tests the quality of the rankers given generated lists and their labels from the list generator
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Table 4.3 Precision at k.

precision@k unigram (k = 8) baseline
1 0.77 0.52
5 0.76 0.46
7 0.76 0.44

10 0.78 0.45

and list labeler, respectively. We propose an experiment with the following workflow:

1. Randomly select 100 generated topical lists (from our set of test users) that contain at
least 5 members

2. Label each of the 100 generated topical lists using the BESTOVERLAP list-labeling
algorithm

3. Use the unigram (at k=8) topic ranker to rank a random sampling of 100 tweets from
each of the generated lists and output the top 10 ranked results. For a baseline, we
also output 10 randomly ordered tweets.

To evaluate the results of this experiment, we employed three human evaluators to
score the top 10 results from both the baseline and the topic ranker. We present the results
from this experiment in Table 4.3. As we can see, the topic ranker greatly outperforms the
baseline, with 78% precision@k, compared with 45% precision@k achieved by the baseline.
Table 4.1 shows a few examples of BUTTERWORTH’s output.

We can compare the average precision achieved by the baseline, 45%, with the average
rate of relevant tweets found in organic lists—52%. These very similar rates indicate that
the topical lists generated by the list- generation module mimic the quality and topical coher-
ence of human-constructed lists. Because there are many components in BUTTERWORTH’s
pipeline, there is a high potential for error propagation and compounding. However, we
can see that BUTTERWORTH performs quite well, maintaining high-quality ranking despite
potential noise in list generation.

4.6 Discussion

While BUTTERWORTH performs well for the general scenarios we experimented with,
there are some user cases which require adaptation of the strategies we employ. Currently,
BUTTERWORTH places each friend in exactly one cluster (i.e., a hard-clustering). If a friend
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tweets about multiple topics of interest to the user, then the clustering procedure will identify
only one of these interests. We propose two possible solutions to this problem. First, we
could simply modify our clustering algorithm to allow friends to be part of many clusters
(e.g., through soft- or hierarchical-clustering). Figure 4.6 demonstrates that BUTTERWORTH

is capable of ranking well under noisy list generation. Thus, we believe the potentially
noisier clusters produced by a fuzzy clustering algorithm would not drastically affect ranking
quality.

Instead of modifying our clustering algorithm, we could alternatively use the ranker
on all tweets rather than those produced by a specific list. A solution at the interface level
would enable users to choose the set of friends to which the ranker would be applied. For
instance, if BUTTERWORTH detected that the user is interested in cooking, the modified
interface would enable the user to apply the cooking-ranker to just a specific friend, just the
generated list of cooking friends, or to their entire set of friends. To test the feasibility of
this modified interface we re-ran the end-to-end experiment (Table 4.3) using a user’s entire
feed as input to each ranker. We found that BUTTERWORTH performs slightly better, giving
82% precision@10. This slight improvement may be due to the fact that BUTTERWORTH

can find the “best” tweets on a given topic regardless of who produced them. In some cases,
these may be as good or better than those produced by list members.

A second potential issue with BUTTERWORTH is linked to our user interaction model.
Our system explicitly ranks a user’s feed by topics of their interest and therefore loses
temporal ordering. We believe this issue can also be fixed with a modified interface design
that surfaces BUTTERWORTH’s ranking in a different way. Instead of completely reordering
a users feed on a page, we propose an interface that uses the generated rankers to color the
tweets in a user’s temporally-oriented feed. Thus, the salience of a tweet in the feed would
vary based on the score that the ranker produces for each tweet. This interface would allow
a user to view both topically and temporally relevant content.

We have a few ideas about how to improve BUTTERWORTH’s future performance. First,
users who have overlapping interests may also build overlapping lists, write similar text,
retweet related content, and link to similar URLs; the list-generation step should thus in-
corporate information sources beyond network structure. Second, each social networking
site has some particular features — say, privacy settings unavailable in other systems—that
might shed additional light on how to construct better lists, which we should exploit. In
addition, now that we have constructed a robust back-end architecture, we have begun
to consider the design of the UI for BUTTERWORTH. The mechanism by which the user
accesses lists (manually created and automated, topical, and contextual), provides feedback,
controls lists and ranking behavior can, and should, be taken into account to create a usable
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user experience. The interactions of the user with the system can be utilized to further
inform the intelligent components of BUTTERWORTH.

4.7 Previous Work in Social Data Management

There has been a substantial amount of recent research on managing social media data.
However, this work has either emphasized text-only approaches (e.g., better ranking and
topic modeling) or network-only strategies (e.g., community detection). BUTTERWORTH

seeks to leverage both approaches to create a more robust technique that can be readily
integrated into user interfaces in a manner consistent with users’ expectations.

The bulk of work in social media ranking has focused on classifying posts in a user’s
feed [31, 35, 74, 123, 125, 155, 160]. Both Hong et al. [74] and Das Sarma et al. [35]
proposed ranking mechanisms based on collaborative filtering techniques. Hong et al. used
a click-through rate based model while Das Sarma et al. compared various mechanisms
based on different types of user supervision, including having the user provide pair-wise
comparisons of feed items. Paek et al. and Dahimene et al. [31, 123] built ranking and
filtering methods that are personalized for each user and which explicitly model the user
that is producing the tweet. Uysal et al. [160] describe methods to predict the likelihood of
retweets (a user propagating a tweet to friends), and used the likelihood of retweet as the
ranking score. Pal et al. ’s algorithm for finding relevant Twitter users [125] is an unusual
point in the space as it attempts to identify topic experts using a classifier that leverages fea-
tures such as follower counts and retweeted content. These approaches address both content
and context collapse by learning user preferences and hiding irrelevant content. However,
these models do not necessarily aid a user in organizing her information–an explicit goal
of BUTTERWORTH. Additionally, while effective with enough training data, such systems
often require a great deal of training data to be useful. One of the goals for BUTTERWORTH

was not to require direct input from the user, but instead leverage the inherent homophily in
a user’s social network to provide high quality groups, and subsequently, rankings.

A different approach to data management focuses on organizing and classifying rather
than ranking. If content is clustered for a user based on topic, she may identify and select
the information that is relevant to her. Topic modeling based methods (both on users and
content) feature prominently in this space [76, 103, 139, 173]. Inspired by these ideas, an
earlier version of BUTTERWORTH attempted to build Latent Dirichlet Allocation (LDA)
topic models. While useful for describing lists, we encountered many common problems:
they were computationally costly, highly sensitive to noise, and required too much tuning
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to work effectively across a broad spectrum of users. Further, providing interpretable de-
scriptions for topic models is a notoriously difficult problem, and even “optimal” models
may not be consistent with reader preferences [16]. Prior work has demonstrated that unlike
topic models, the names of lists in which a particular Twitter user appears are much better
representations of the expertise of that user [161]. Because of these common problems, we
chose to move away from topic modeling.

In addition to the topic-modeling work for analyzing the individuals a user may follow,
there has been a small amount of work on explicitly managing lists on social networks. Kim
et al. [89] conducted an analysis of lists on Twitter and concluded that topic-centric lists
contain users who tend to publish content on similar topics, reinforcing the motivation for
our distant supervision heuristics. Another analysis by Fang et al. [44] studied sharing
“circles” on Google+, and discovered that circle sharing enabled users with few contacts to
grow their networks more quickly. In this arena, our work is most similar to that of Guc [61],
which describes a filtering mechanism for “list-feeds”; however, that work is framed as a
standard supervised learning problem that also requires explicit training data from the user.

Finally, a number of research systems have focused on creating interfaces that enable
users to more efficiently browse their feed [9, 75, 159]. For example, Eddi [9] displays
a browsable tag cloud of all the topics in a user’s feed, allowing the user to more easily
find tweets related to her interests. FeedWinnower [75] is an interface that allows users to
rank tweets by different tunable parameters such as time and topic. Tseng et al. proposed
a (graph) visualization system called SocFeedViewer [159], that allows users to analyze a
topological view of their social graph. SocFeedViewer implements community detection
algorithms to group similar users; as with BUTTERWORTH’s lists, these community feeds
may contain irrelevant content, a problem that SocFeedViewer does not address. Many
of these systems apply one or more of the ranking and classification techniques described
above. This, unfortunately yields lower precision and recall. The higher quality grouping
and ranking strategy of BUTTERWORTH can be readily integrated into various commercial
and research interfaces and directly improve their function.

4.8 Conclusion

In this chapter we have described BUTTERWORTH, a system for automatically performing
topic-sensitive grouping and ranking of the messages in a user’s social feed. Unlike existing
approaches for message ranking, BUTTERWORTH requires no explicit guidance from the
user and works across a spectrum of users and scales. By breaking apart the simple “fol-
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low” relationship into multiple topical lists, BUTTERWORTH addresses the context collapse
problem. By leveraging each of these lists to generate rankers that can be applied to the
user’s feed, the system alleviates channel collapse. This is achieved through use of a novel
architecture that leverages a user’s ego network structure.

As part of the BUTTERWORTH pipeline we propose a method for detecting topically
cohesive communities by re-weighting network structure. The re-weighting strategy utilizes
the semantic information contained in the text content produced by the nodes. We have
shown the efficacy of this technique for detecting topical communities in ego-networks
but we believe it will be useful in other applications such as, clustering research papers in
citation networks. BUTTERWORTH represents a good example of how the re-orientation
of network structure can enable better downstream analysis in a practical and novel data
mining system.
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Chapter 5

Inferring A Knowledge Graph
Heterogenous Data Sources

In chapters 3 and 4 we proposed methods to impute networks with the goal of improving
community detection algorithms. Chapter 3 proposed a general framework for imputing
missing information in networks with an application to improve community detection per-
formance on networks with missing edges. In chapter 4 we proposed a method to impute
missing semantic information in a network in order to extract topical clusters. The focus of
this chapter is on the problem of inferring missing links in a network using node attributes
and relationships defined in a heterogenous set of data sources.

It is often the case that data describing pairwise relationships between nodes exists
in many different data sources, but inferring edges based on only one data source is not
sufficient. In this chapter, we focus on the problem of inferring subsumption relationships
between keyword tags listed by users in online social platforms. The existing structure of
the subsumption network is a very sparse set of edges that are labeled by human experts.
The structure of the existing network is not dense enough to predict missing edges, and
therefore we compute features based on node attributes from auxiliary data sources. We
propose a supervised learning method that builds a knowledge graph. Our method trains a
model on the existing edges and predicts novel subsumption relationships between nodes.
The work presented in this chapter is based off of work presented in [21].

5.1 Social Tagging on Expertise Driven Platforms

Professional social networks such as LinkedIn and Academia.edu as well as question-answer
sites such as StackExchange and Quora are examples of expertise driven online commu-
nities, which comprise an important niche in the social web landscape. In order for these
expertise driven applications to offer compelling features, they rely on data that describe
user’s interests and skill set. Most often this is achieved by enabling users to list keyword
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tags describing their expertise. For example, LinkedIn has a form of standardized keywords,
called skills, Quora uses topics and Academia.edu has research interests.

Products like LinkedIn Recruiter Search leverage user-listed skills to help fulfill queries
related to finding users based on their skill set. Quora can leverage topics to help ascertain
the expertise of their user base and match questions to the appropriate respondent. The
recommendation of news articles, status updates and advertisements can also be enhanced
by matching the keywords of the suggested item to those keywords listed by the user. While
keyword tags provide descriptive and succinct descriptions of users, they are not comprehen-
sive and do not have any inherent organization or structure. The unstructured nature of tag
creation, enables users to generate large and descriptive tag vocabularies but, at the expense
of a disorganization.

Search and recommendation applications can be improved by having knowledge of
relationships between tags. For example, a recruiter using LinkedIn might like to find
scripting language experts. Unfortunately, due to the proliferation of these languages and
variants, profiles are tagged with a wide array of tags describing specific languages. In
addition, users tend to use language that describes their specific expertise like “Python”,
rather than list more general terms like “scripting” as one of their skills. If a recruiter cares
more about the high level skill, it may not be possible for them to create a query without
enumerating all specific scripting languages in the query. Having a structured representation
of tags would also help with recommending keyword tags to new users and can also be used
to aid in clustering users that share similar skill sets [144].

Due to the diversity of keyword tags that occur in different expert communities, auto-
matically inferring typeOf relationships between keywords poses a challenge. For example,
skills on LinkedIn and topics on Quora can range from the very broad, such as “Manage-
ment” and “Programming”, to the very specific such as “SQL” and “CPLEX” (mathematical
programming software). Since many keyword tags are domain specific acronyms and do not
have any corollary to terms in common language vocabularies, one cannot simple use an
existing ontology such as WordNet. Previous methods proposed for organizing keyword
tags on sites like Flickr rely on brittle rule-based algorithms [73, 90, 102, 152].

5.2 Overview of DOBBY

In this chapter, we propose DOBBY, a system for building a knowledge graph of user-defined
keyword tags. The knowledge graph consists of a network where the nodes are keywords
and directed edges represent hypernym typeOf relationships. Having a knowledge graph
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Figure 5.1 DOBBY consists of two components. The first component classifies parent-child re-
lationships between keyword tags using features described in section 5.3. The second component
prunes edges that participate in reciprocal predictions.

allows for a robust and descriptive representation of tags, which can be leveraged by many
applications. For example, a knowledge graph can be used to automatically expand search
queries on LinkedIn recruiter search or to infer missing tags used to annotate questions on
sites like Quora and StackExchange. We can also use the knowledge graph to measure the
similarity of two tags using various path based metrics, such as semantic relatedness [66].

DOBBY is a technique for constructing a knowledge graph of user tags for expertise-
driven web applications. While many such applications are classified as online social
networks, such as LinkedIn; many applications (e.g Quora.com), do not explicitly contain a
social graph. Our system does not require a social graph, instead only requiring that a target
web application allow users to create profiles that contain keyword tags and user generated
text. More formally we require, a set of user profiles U where each user u ∈U is annotated
with a set of keyword tags Au. Each profile u also contains a document du comprised of the
user generated text, which can be items such as: profile descriptions, status updates, and
blog posts.

DOBBY constructs a knowledge graph for keyword tags in a series of two components.
The first component (described in section Parent-child classifier) of DOBBY predicts parent-
child relationships for pairs of tags in A×A. The parent-child prediction task is formulated
as a supervised learning problem where each pair of tags (ai,a j) ∈ A×A is assigned a real
value p(ai,a j) that represents that probability that ai is a parent of a j. A threshold τ is set
such that the constructed graph contains all edges (ai,a j) where p(ai,a j) > τ . Since the
parent-child classifier makes predictions in an independent manner, reciprocal predictions
can occur. The second component of DOBBY proposes strategies to remove reciprocal
predictions using heuristics based on the classifier output and topology of the inferred
knowledge graph.
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5.3 Parent-Child classifier

The parent child classifier is a supervised model that takes as input a feature vector x corre-
sponding to a pair of attributes (ai,a j) and produces a probability score for the likelihood
that ai is a parent skill of a j. We first describe the features (grouped by type) used in the
model and then our procedure for generating training data. For clarity, we refer to a pair of
potential parent child skills as (p,c), where p is the parent and c is the child attribute.

5.3.1 Co-occurrence Features

Co-occurrence features are all based on the frequency of which attributes are listed in user
profiles. We denote Ua as the set of users explicitly annotated with the attribute a, i.e a user
listing Machine Learning in their interest or expertise section of profile. The set Ûa consists
of users that have the attribute a contained in their document du which we refer to as the set
of users that implicitly list the attribute on their profile. For example, a user that mentions
machine learning in their profile text or a status update would occur in this set. We include
both “implicit” and “explicit” versions of some features because we found that users have
different behavior when choosing attributes then when writing profile text. Users tend to
not list broader attributes explicitly, but many times these broader attributes appear in their
profile text.

Jaccard Similarity:

J(p,c) =
|Up∩Uc|
|Up∪Uc|

, Ĵ(p,c) =
|Ûp∩Ûc|
|Ûp∪Ûc|

(5.1)

The Jaccard score is used as a feature to determine how similar two attributes are based on
how often they co-occur normalized by their individual frequencies. We implemented a
Jaccard similarity score based on both the explicit and implicit counts.

Conditional Probability:

Pp|c(p,c) =
|Up∩Uc|
|Uc|

, P̂p|c(p,c) =
|Ûp∩Ûc|
|Ûc|

(5.2)

The conditional probability measures the degree to which attribute p subsumes c. if the
value is 1 then this means that all of the times a user lists attribute c they also list attribute p

indicating that p is most likely a parent concept. See [146], who were the first to propose us-
ing the conditional probability as a measure of subsumption. We implemented two versions
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of the conditional probability score using both the explicit and implicit counts.

Co-occurrence Count:
CoocCount(p,c) = |Up∩Uc| (5.3)

The number of times p and c are co-listed on user profiles. This feature is included so the
model has knowledge of how sparsely a skill occurs within the data, since all the other count
features depend on co-occurrence, the quality of these features depend on how frequently
the two attributes co-occur.

Co-occurrence Entropy:

P(x|y) =
|Ux∩Uy|
|Uy|

, H̄(x) =−∑
y∈Uy

P(x|y)log(P(x|y)) (5.4)

H(p,c) =

{
1 : H̄(p)≥ H̄(c)

0 : H̄(p)< H̄(c)

The entropy of an attribute’s co-occurrence distribution given by H̄ describes how gen-
eral an attribute is. An attribute that is more narrow and specialized will most likely co-occur
more often with other specialty skills therefore having a more peaked distribution, while
broader skills will have a more uniform co-occurrence distribution and therefore a higher
entropy. We encode the entropy as a binary feature with a value of 1 if the parent has a
higher entropy then the child.

5.3.2 Network Features

Let NA = (A,E) be a similarity network comprised of attributes as nodes and the set of
binary edges comprised of all attribute pairs that have a Jaccard similarity above a threshold
τ . We experimented with various values of τ and did not see a significant change in feature
quality, so we used τ = 0.01. Centrality measures on a network compute the importance
of a node which we use as a proxy for the generality of an attribute. As with the entropy
feature, both centrality features were transformed into binary functions with value 1 if the
parent has a higher centrality and 0 otherwise.

Eigen Centrality: Eigenvector centrality denoted by Ē is a measure of a nodes importance
measured by its corresponding eigenvalue in the adjacency of the network. The measure is
very similar to PageRank [124] except applicable to a network without a stochastic adjacency
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Figure 5.2 ROC curve

matrix. See Newman [119] for a more complete description.

Ē : eigenvector centrality score f unction (5.5)

E(p,c) =

{
1 : Ē(p)≥ Ē(c)

0 : Ē(p)< Ē(c)

Betweenness Centrality: the betweenness centrality of a node v, denoted by B̄, is computed
as the number of shortest paths in the network that include v. See Newman [119] for a more
complete description.

B̄ : betweeness centrality score f unction (5.6)

B(p,c) =

{
1 : B̄(p)≥ B̄(c)

0 : B̄(p)< B̄(c)

5.3.3 Wikipedia Distance

Each article in Wikipedia includes a set of categories tagged by human editors. Category
tags are themselves articles with their own category tags. Given an article, one can extract
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Figure 5.3 Feature importance scores produced by the random forest model

a category hierarchy by crawling the category tags until reaching the root category. Since
Wikipedia spans many concepts and entities over a variety of topics, many keyword tags
have corresponding Wikipedia articles. Our Wikipedia distance feature function Dwiki takes
as input a pair of attributes and outputs their distance in the Wikipedia category hierarchy.
The closer two attributes are in the Wikipedia category hierarchy the more likely they are to
be actual parent child pairs. We infer a direction on category tags because we crawl outward
for each attribute, therefore the distance function is asymmetric.

For each attribute a we denote a set of category tags Ca = {(ti, `i)} where each category
tag ti has a corresponding level `i that represents the number of hops the category is from
the given attribute. for instance, for the attribute Machine Learning, the category Artificial

Intelligence is a direct category so it is level 1, and Computer Science is a level 2 category
because it is direct category of Artificial Intelligence but not Machine Learning. If a category
appears multiple times in Ca we only include the tag with the smallest distance from a. We
define the Wikipedia distance feature Dwiki(p,c) as the minimum level for which p appears
as a category in Cc. For inputs where an attribute doesn’t have any Wikipedia categories we
have the feature output a special value −1 or for the case where the parent attribute does
not appear in the child’s category set we have the feature output 999 to denote a maximum
distance value.
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Figure 5.4 Sample output of DOBBY on two LinkedIn skills, History and Writing. These examples
were generated by expanding out two levels from the root node, choosing the top-3 children for each
parent.

5.4 Evaluating DOBBY on LinkedIn Skills

We evaluated DOBBY using data derived from the LinkedIn social network. LinkedIn is
the largest professional social network with over 300 million users and has a standardized
collection of keyword tags called Skills. Skills cover topics ranging from “cooking” and
“circus arts” to “computer science” and “marketing” and also vary in specificity, ranging
from broad topics like “Mathematics” to the very narrow, such as “support vector machines”.

Skills have been standardized using a system developed by [8] that maps all phrases
which refer to the same concept to their canonical term, i.e “data mining algorithms” maps
to “data mining”. The skill’s dataset used in this chapter contains 118,314 phrases that map
to a total of 39,134 unique skills. In order to compute the wikipedia feature described in
section 5.3.3 we needed to obtain a URL for each skill. We obtained URLs for about 70%
of the skills by using Amazon’s Mechanical Turk system. This process could also be done
automatically by taking the top wikipedia result from a search engine query for the skill,
most likely resulting in a noisier feature. We limit the pairs of skills we feed into the parent
child classifier by requiring that the skills co-occur at least 10 times. Since many of our
features rely on co-occurrence this can remove noise that is generated by pairs of skills that
don’t co-occur often enough.

5.4.1 Training Data Generation

Acquiring a large set of manually labeled samples for training the parent-child classifier
poses a significant challenge. Many skills belong to specific disciplines and can only be
labeled by experts knowledgeable about the discipline. In addition, parent-child relation-
ships are rare amongst random pairs of skills, making it expensive to obtain a large and
balanced training set. We obtained positive examples of parent-child skills using Quora’s
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Figure 5.5 precision recall curves on hold-out test set

human curated topic hierarchy. Topics on Quora are similar in context to skills on LinkedIn,
they are used to tag questions and overlap with many of the skills found on LinkedIn. Quora
provides publicly available topic pages that consist of a topic description as well as user
labeled parent and child topics on each page. We then mapped the scraped Quora topics to
LinkedIn skills via the standardized skills dictionary described in [8].

Negative training examples are not explicitly provided in Quora’s topic hierarchy and
therefore were heuristically generated. We generated negative examples by rewiring the
skills in the positive examples using two rewiring strategies. The first strategy involved
swapping all parent-child pairs in the positive training set, such that if A is a parent of B in
the positive set, then B is a parent of A in the negative set. We generate additional negative
examples by taking all pairs of skills that share a parent, and treating these “sibling” skills as
negative examples. This second strategy can produce false negatives because it is possible
that valid parent-child relationships exist between these automatically generated pairs. We
minimize this noise by proposing a method for eliminating such pairs.

Some LinkedIn profiles contain subsumption statements such as “Programming:
Java,Python,Ruby” which can be used to extract hierarchical relationships. We built a
set of parent-child pairs extracted from these subsumption phrases to filter negative exam-
ples. If any of the negative examples extracted from Quora occur as a parent-child pair in
this set, then we delete the negative example. While the set of examples we extracted from
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the LinkedIn profiles was sufficient for eliminating incorrectly spurious negative pairs, it
had to large of a false positive rate to be used for positively labeled data. The final number
of negative examples total to 29,000 and were sampled to match the number of positive
examples. The final, balanced, training set consists of 8,000 examples.

5.4.2 Cross Validation and Feature Importance

We first analyze the performance of the parent-child classifier using cross validation on the
training set. Due to the fact that our features consist of both categorical and real-values we
chose to use a random forest model, which has been shown to be one of the best classifiers
[47]. We used the Sci-Kit Learn [127] implementation with default hyper parameter settings.
Figure 5.2 shows the ROC curve generated by averaging curves generated from a 10-fold
cross validation on the training set.

Like many machine learning systems, the features we designed are crucial for its success.
Random forest models provide a simple and effective means for measuring relative feature
importance. The depth of a feature indicates how discriminative it is with respect to the
target variable because it determines the number of examples the feature contributes to. By
averaging over the expected number of examples a feature contributes to, we can measure the
relative feature importance for each feature. Figure 5.3 shows the relative feature importance
for each of the features described in section 5.3. As the plot shows, 6 of the 9 features
presented are almost equally important, with both versions of the conditional probability
features and the wikipedia distance feature being the most important. The least important
features are the entropy and centrality features, which is not too surprising as they only
provide a signal about the relative importance and “broadness” of the two skills.

5.4.3 Algorithm Comparison

The models in section 5.4.2 were trained and tested using cross validation on the training
data. Since our training data is heuristically derived, we balanced the positive and negative
examples in the training set because previous research [168] has shown this to be an effec-
tive strategy to counter class imbalance. In reality, we know that parent-child relationships
between skills and other keyword tags to be rare; random pairs of skills are much more
likely to be siblings of each other or not be related at all. Even with heuristic techniques
that don’t nearly capture all of the negative examples, we generated negative examples that
out numbered the positive class 7:1. In order to simulate a more realistic test scenario, we
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Figure 5.6 distribution of precision scores on human evaluated skills

created a test data set that consisted of 10% of both the positive and negative examples,
retaining the class imbalance.

We compare against two previous state-of-the-art methods from the related domain
of hierarchy construction in tagging systems. The first algorithm, heymann-baseline, by
[73], creates an ordering of skills using closeness centrality and then greedily adds parent-
child edges in hierarchy if the similarity score is above a set threshold. In their original
implementation, Heymann et al. propose an algorithm that generated a tree, connecting
each skill to only its most related parent. In order to fairly compare against our proposed
method which builds hierarchies that are not limited to tree structures, we implemented
an extension proposed by Heymann et al. that allows for each skill to be connected to all
parents that have a similarity value above the chosen threshold. The heymann-algorithm
requires two user-specified parameters, the first being the threshold value for the edges
in the skill similarity network and the other being the similarity threshold when building
the hierarchy. The edge threshold of 0.105, was chosen as the mean Jaccard similarity of
the positive training examples in the training set used in the previous section. The second
parameter is the similarity threshold that is used in the hierarchy generation process, which
is left as a free parameter used to generate the precision-recall curve in Figure 5.5. We
implemented the heymann-algorithm using both cosine similarity and Jaccard similarity,
finally choosing Jaccard similarity because it gave better performance.
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The second algorithm we implemented for comparison, klinginsmith-baseline, proposed
in [90] uses the conditional probability to infer hierarchical relationships directly. For each
skill pair p,c they include the edge p→ c if P(p|c)> θ and P(c|p)< P(p|c) where theta
is a user-specified threshold. We evaluate their method by computing the precision-recall
curve for θ values in the range [0,1].

Figure 5.5 shows the precision-recall curves for our random forest model and both base-
line methods. We can first observe that DOBBY substantially outperforms both baselines,
showing that even on an imbalanced dataset the random forest classifier performs well. The
klinginsmith-baseline method does the best of the two previous techniques, achieving better
performance then the heyman-baseline at most recall levels. Most interesting from this
plot is that the random forest model significantly outperforms both the baseline techniques
and the logistic regression model. The poor performance of the heymann-baseline can
be contributed to the fact that parent-child edges in the hierarchy can only be constructed
between nodes where the parent has a higher centrality in the network. We have shown
that centrality is a weak feature in our dataset, and since the heymann-baseline enforces an
ordering of nodes based on centrality, it misses many parent-child pairs.

5.4.4 Human Evaluation

In addition to evaluating our system on the Quora topic hierarchy we also ran a user study
asking participants to evaluate parent-child skills pairs. Since parent-child pairs are rare,
we needed to generate our evaluation set from the output of the random forest classifier. In
order to obtain a knowledge graph that could be evaluated without worry that the evaluation
examples overlap with the training examples, we generated the graph using a variation of
the leave-one-out cross validation strategy. For each skill s, we predict children using the
following process:

1. Remove all training examples that contain s as either a parent or child

2. Train the parent-child classifier

3. Predict children for s

We chose to evaluate the random forest model with a threshold of 0.71 because it
maximized the F1 score on the hold-out set described in the previous section.

Our user evaluation study enrolled 27 volunteer participants, all of whom are gradu-
ate students/Faculty and experts in a variety of disciplines including: history, technology,
business, and sports. For each participant in the study we asked them to give us a list of
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Motif
(size: 3) 

Frequency 6.4% 2.5%15.5%74.2%

Motif
(size: 4)

Frequency 0.9%1.1%3.4%3.9%8.5%22.7%55.1%

Motif
(size: 2) 

Frequency 98.5% 1.5%

Figure 5.7 A table showing motifs that comprise of at least 95% of all motifs of sub-graph size 2,3
and 4

their skills that are related to their domain of expertise and are valid skills in our dataset.
Since we needed to obtain two labels we chose participants that overlapped in expertise and
asked the second evaluator in each domain if they could evaluate the skill chosen by the first
evaluator. For each skill we generated a random sample of 15 child skills predicted by our
random forest classifier above the threshold. We then presented the skills to the participant
who was asked to mark true, false or “I don’t know” for all 15 pairs. If a skill did not have
15 children above the threshold, then we output all of the predicted children of that skill (12
skills had fewer then 15 children). Through our study we were able to collect evaluations on
46 skills with 2 evaluators for a total of 586 parent-child pairs.

The results from the user-study are presented in Figure 5.6, which shows the distribution
of precisions values over the evaluated skills. For this plot, we ignored all examples for
which two users did not give the exact same answer. Since participants were capable of
giving a null answer (option “I don’t know”), we calculated false-positives (FP) in two
different ways. For the first way, labeled “null ignored” in Figure 5.6, all examples where
both participants gave a null answer are ignored, leaving only the examples labeled “False”
by both evaluators as false-positives. The other way, labeled “null as negative” in Figure
5.6, all examples that were labeled null by both evaluators were treated as false-positives
in addition to examples labeled “False”. Skills are domain specific and can often be un-
interpretable by non-experts, we included the more conservative “null as negative” method,
because consensus on negative examples requires that both evaluators be able to detect a
spurious skill that is not part their expertise. Results for both methods are good, with the
most conservative estimate of average precision at 85%.
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Table 5.1 Table that shows the frequency of loops for sub-graph patterns ranging in size from 2-5.
The second column shows the frequency of all loops, and the third column shows the frequency of
patterns that contain loops larger than size 2.

pattern size loop frequency loop (size > 2) frequency
2 1.5% 1.5%
3 1.4% 0.02%
4 1.7% 0.03%
5 2.2% 0.04%

5.5 Knowledge Graph Structure

We have shown that our supervised classifier produces superior parent-child pairs as com-
pared to previous rule-based methods. Despite our superior performance on predicting
parent-child pairs, an advantage of rule-based methods is that they can be easily constrained
to not have loops in their resulting hierarchies. The heymann-algorithm imposes an ordering
over nodes in the hierarchy using centrality scores as a constraint to disallow loops. The
hierarchy constructed using the klinginsmith-algorithm is guaranteed to be loop free since
parent-child pairs (x,y) only exist if P(x|y)> P(y|x) and P(x)> P(y), therefore imposing
an ordering on nodes by the frequency for which nodes appear in the dataset. From our
experimental evaluation thus far, we have only evaluated the quality of parent-child pairs
and have not analyzed the structure of the knowledge graph.

In order to determine the extent to which our constructed knowledge graph exhibits
loops, we used the network motif finding algorithm, FanMod [170]. FanMod enumerates
all sub-graphs of a given size and reports the frequency of each type of sub-graph pattern.
A sub-graph pattern is defined as a group of subgraphs that are isomorphic to each other,
where the frequency of a subgraph pattern is the number of sub-graphs in the isomorphic set.
We generated the knowledge graph by predicting all child pairs for each skill in the LinkedIn
dataset using the random forest classifier with a threshold of 0.71 1. Figure 5.7 shows the
most frequent sub-graph patterns of size 2,3 and 4, that comprise the 95th percentile of all
subgraph patterns detected by FanMod. None of the sub-graph patterns shown in the table
contain loops and are patterns to be expected in a high quality knowledge-graph.

In addition we calculated the total frequency of sub-graph patterns that contained loops
and reported the percentages in column two of table 5.1. The frequency of loops is very
small, ranging from a frequency of 1.5% to 2.2%. We found that our classifier would
sometimes produce inconsistent parent-child-predictions in the form of predicting reciprocal

1The threshold 0.71 maximizes the F1 score of the classifier on the hold-out test set described in the
previous section
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relationships between skills. We calculated the impact of these reciprocal predictions by
also measuring the frequency of patterns with loops greater than size 2, as shown in column
3 of table 5.1. The values in this column show that patterns containing loops of size 2 are
indeed the most predominant, consisting of the majority of all patterns containing cycles.
While the problem of enumerating all cycles in the graph is computationally hard, we can
easily remove reciprocal edges that comprise most of the patterns containing loops. In the
next section we propose two heuristics for removing reciprocal edges.

5.5.1 Pruning Reciprocal Edges

The output of the parent-child classifier gives probability estimates for all pairs in tags
in A×A. The ontology induced by this output, is a directed graph with reciprocal edges
between all pairs. In order to induce an ontology from these estimates one must choose
a suitable threshold and prune all edges below this threshold. The default threshold for a
classifier is 0.5, but this is not necessarily optimal, and depending on ones application the
tradeoff in precision and recall will inform the choice of threshold. We constructed the
knowledge graph used for the sub-graph pattern analysis that optimized the F1 score, which
gives equal weight to both precision and recall. Once a threshold is chosen, there is still
no guarantee that there will not be reciprocating predictions. More formally, a reciprocal
prediction from our parent-child classifier is defined as follows: Let τ be the chosen thresh-
old, a reciprocal prediction is one in which for a pair of tags ai,a j ∈ A, p(ai,a j) > τ and
p(a j,ai)> τ .

We propose two strategies for eliminating reciprocating predictions. Both strategies use
information generated by the classifier to try and decide which attribute in the reciprocating
pair is the true parent. Our first pruning heuristic simply chooses the parent as the attribute
who is the parent in the edge with higher probability estimate. The second heuristic looks at
the number of children that each attribute has above the threshold, and chooses the parent as
the attribute with the higher number of children. For both heuristics, if the value is equal
for both parent and child, we delete both edges. Below we give formal descriptions of each
heuristic.

Confidence Pruner
Let tags (ai,a j) and (ai,a j) be edges that participate in a reciprocating prediction. the
confidence pruner removes edge (ai,a j) if p(ai,a j)< p(ai,a j) else removed (ai,a j).

NumChildren Pruner
Let tags (ai,a j) and (ai,a j) be edges that participate in a reciprocating prediction.
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Figure 5.8 Precision of edge pruning heuristics

Let Nai and Na j be the number of children for ai and a j for a selected threshold. The
NumChildren pruner removes the the edge (ai,a j) if Na j > Nai else removes (a j,ai)

We evaluated the pruning rules on the graph of LinkedIn skills constructed using a
modified leave-one-out training scheme (see section 5.4.4) which allowed us to use the
entire training corpus to test the pruning heuristics. Figure 5.8 shows the performance
of both pruning heuristics for the ontology constructed with a random forest parent-child
classifier. The x-axis shows represents the edge-threshold of the classifier and the y-axis
shows the precision. Both pruning method do about the same for lower threshold values but
diverge at higher values. The NumChildren method works best for most threshold values,
consistently achieving about 80% precision.

5.6 Previous Research in Social Tagging

Here we discuss the relationship of the work in this chapter to tagging systems, analysis of
unstructured text, and related applications.

Tagging Systems — Tagging systems employed by websites such as Delicious and
Flickr, allow users to tag items, e.g. webpages and photos, with keywords that describe their
content. Research on the construction of tag hierarchies [25, 73, 90, 102, 129, 152] is a
well studied and the most related to our problem. The bulk of these related works propose
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rule-based algorithms that rely on heuristics such as similarity metrics and mined association
rules. Many methods [90, 102, 152] have been proposed that use the conditional probability
(calculated from co-occurence) to infer parent-child pairs in addition to auxiliary rules that
prune spurious edges from the constructed hierarchy. Examples of pruning rules include
using similarity scores based on TF-IDF vectors of the tagged items to distinguish “sibling”
relationships [152]; and the use of existing ontologies such as WordNet [102]. [73] uses
the centrality of a tag in a tag-similarity network to determine the direction of edges in
their induced hierarchy. DOBBY incorporates many of the rules presented in these works as
features, including network centrality, Jaccard similarity, and the conditional probability.
Since DOBBY incorporates a supervised learning model, it is more flexible and robust then
algorithms that rely on rules. DOBBY also incorporates a post-processing step to ensure that
simple loop structures are eliminated.

Unstructured Text — Similar to tagging systems, hierarchy construction has also
been applied to entities extracted from natural language text [17, 33, 48, 92, 163, 167, 180]
for a complete survey see [171]. Wei et al. [167] and Dakka et al. [33] both propose
systems for building faceted taxonomies by using relationships found in Wikipedia and
WordNet. Wei et al. ’s use of Wikipedia is different from our own since they extract hyponym
relationships using the link structure of articles and we use Wikipedia categories. Many
approaches have also been proposed that utilize supervision from humans [17, 48, 92],
utilizing crowd sourcing and semi-supervised methods for building concept hierarchies.
Ontology construction from natural language text is similar to our problem in that it is
concerned with mining hierarchical relationships. The natural language domain is different
since text documents have a linguistic structure and and in our domain we are concerned
with organizing unstructured keyword attributes. We utilize natural language text to extract
co-occurence based features as well as keyword tags associated with user profile information.

Applications — In addition to research on constructing concept hierarchies, there is a re-
lated area of research focused on the applications of such hierarchies as well as flat keyword
attributes for applications including search[37, 54, 133], user modeling [12, 52, 148] and
community detection [116, 144]. Schwarzkopf et al. [148] propose a method that used a
tag hierarchy to infer high level information about users on websites such as Delicious.com.
Gauch et al. [54] and Pound et al. [133] both propose search systems that enable users to
browse their search results using faceted based interfaces. Demeo et al. [37] propose a
method that uses tag hierarchies to enhance search by expanding queries. Keyword attributes
have been shown to be useful in the discovery of communities on social networks and tag-
ging systems. The knowledge graph produced by DOBBY can be used to group skills that
share common parent nodes. Such groupings can be leveraged by the community detection

89



algorithms proposed in [116, 144].

5.7 Discussion and Future Work

While DOBBY performs well in most situations, there are exceptions. For example, we
observed some skills such as “R” ( the stats software package), that are listed by users with
many professions and occur frequently throughout the dataset. From the perspective of
classifier “R” seems like a much more general skill then it actually is, therefore having many
more children then it should. One proposed method for dealing with this problem is limit
the scope and build many graphs that represent specific groups of users. Such groups can be
dictated by users professions or communities they belong to. By limiting the tags to a more
restrictive set, skills like “R” won’t be as ubiquitous and the classifier will most likely do a
better job at inferring edges for these types of skills.

Our parent-child classifier builds the knowledge graph in a bottom-up fashion and as a
result there is no global constraint on the topology of the inferred graph. One advantage
of our method making independent edge predictions, is that is can be easily parallelized
to scale to very large tag vocabularies. In Section 5.5 we proposed heuristics for pruning
simple inconsistencies like reciprocal edges but it is possible for our method to infer graphs
that have cycles of arbitrary length. In our analysis of cycles we were able to compute
frequencies of patterns up to size 5 and showed that the frequency of cycles in patterns
was negligibly small, especially after removing reciprocal edges. The number of possible
cycles in a graph is exponential, so even if we had pruning rules for arbitrary configurations,
pruning all inconsistencies is not feasible. While there may be some applications that require
a strict ontology, we anticipate many applications benefiting from our technique, especially
since the occurrence of cycles is so rare.

One distinct advantage of our system compared to previous methods, is the possibility
for the system to be improved from user input. We built the LinkedIn skills graph using
training data derived from Quora, since obtaining labels from unlabeled pairs posed to
expensive of a challenge. Now that we have a model that is capable of accurately predicting
parent-child pairs, we can have users provide labels for edges in graph. These additional
labels could be used to re-train DOBBY and produce a better ontology. This is only possible
because DOBBY used a supervised classifier, rather then a rule-based algorithm.

this chapter focused on a methodology for constructing subsumption hierarchies, but
another outcome of this research is that we constructed an knowledge graph for all skills
on LinkedIn. We anticipate many applications, including news recommendation, search
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engines, and ad placement can all benefit from the flexible and robust user modeling enabled
by our constructed graph. DOBBY can also be used to construct graphs of keyword tags on
other expertise driven social networks, such as Quora.com and StackExchange. These sites
could leverage a knowledge graph for building better mechanisms to help match questions
with experts respondents.

5.8 Conclusion

Keyword tags have become an important and common feature of expertise driven social web
applications. The unstructured nature of tag creation, enables users to generate large and
descriptive tag vocabularies but at a cost. The tag vocabularies that result from these tagging
systems are unstructured, lacking organization that describes relationships between tags. In
this chapter we proposed a system DOBBY, for constructing a knowledge graph of keyword
tags. DOBBY uses a random forest based classifier to predict typeOf relationships between
tags, constructing a knowledge graph of tags from the bottom up. On our test dataset from
the LinkedIn social network, DOBBY performs well, achieving high average precision/recall
and substantially out-performing previous methods.
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Chapter 6

Recovering Hidden Documents from
Observed Text

All networks can be represented as adjacency matrices and all matrices can be represented
as networks. This duality allows for network analysis to be applied to problems which
have associated similarity matrices but, not an inherent network representation. While all
similarity matrices can be represented as a network, this representation is only useful when
the resulting network has properties that are indicative of networks (e.g small diameter,
power-law degree distribution)1. The benefit of representing a similarity matrix as a network
is that network algorithms can be used to analyze the structure and obtain insights into the
underlying data.

Community detection algorithms offer several advantages over clustering algorithms
designed for similarity matrices. Most community detection algorithms work without the
need to specify the number of clusters, and are designed for sparse data. In this chapter
we present an application of network inference for the problem of identifying clusters of
bills that exhibit text reuse in a corpus of state legislation. The network is inferred by first
computing a similarity matrix based on shared n-grams between documents. The resulting
similarity matrix is sparse and therefore we use a community detection algorithm in order
to identify groups of bills that exhibit text reuse. The network inference and community
detection is a component of a system, LOBBYBACK, that we propose for identifying and
summarizing the phenomena of text re-use in state legislation. The work presented in this
chapter is based off of work presented in a paper currently under peer review [19].

1Transformations can be applied to the resulting network in order to obtain a network with the desired
network properties. WGCNA, a gene clustering network analysis pipeline, modifies the edge weights of the
resulting network in order to obtain a network with a power-law degree distribution.
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6.1 Problem Overview

Beginning in 2005, a number of states began passing “Stand Your Ground” laws–legal
protections for the use of deadly force in self-defense. Within a few years, at least two dozen
states implemented a version of the this legislation [53]. Though each state passed its own
variant, there is striking similarity in the text of the legislation. While seemingly “viral”
the expedient adoption of these laws was not the result of an organic diffusion process, but
rather more centralized efforts. An interest group, in particular the American Legislative
Exchange Council (ALEC), drafted model legislation (in this case modeled on Florida’s
law) and lobbied to have the model law enacted in other states. While the influence of the
lobbyists through model laws grows, the hidden nature of their original text (and source)
creates a troubling opacity.

Reconstructing such hidden text through analysis of observed–potentially highly mutated–
copies poses an interesting and challenging NLP problem. We refer to this as the Dark

Corpora problem. Since Legislatures are not required to cite the source of the text that
goes into a drafted bill, the bills that share text are unknown beforehand. The first problem
therein lies in identifying clusters of bills with reused text. Once a cluster is identified, a
second challenge is the reconstruction of the original or prototype bill that corresponds to the
observed text. The usual circumstances under which a model law is adopted by individual
states involves “mutation.” This may be as simple as modifying parameters to the existing
policy (e.g., changing the legal limit allowed of medical marijuana possession to 3.0 ounces
from 2.5) or can be more substantial, with significant additions or deletions of different
conditions of a policy. Interestingly, the need to maintain the objectives of the law creates a
pressure to retain a legally meaningful structure and precise language–thus changes need
to satisfy the existing laws of the state but carry out the intent of the model. Both subtle
changes of this type, and more dramatic ones, are of great interest to political scientists. A
specific application, for example, may be predicting likely spots for future modifications
as additional states adopt the law. Our challenge is to identify and represent “prototype”
sentences that capture the similarity of observed sentences while also capturing the variation.

6.2 Proposed Solution

In this chapter we propose LOBBYBACK, a system that automatically identifies clusters
of documents that exhibit text reuse and generates “prototypes” that represent a canoni-
cal version of text shared between the documents. In order to synthesize the prototypes,
LOBBYBACK first extracts clusters of sentences, where each sentence pertains to the same
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policy but can exhibit variation. LOBBYBACK then uses a greedy multi-sequence alignment
algorithm to identify an approximation of the optimal alignment between the sentences.
Prototype sentences are synthesized by computing a consensus sentence from the multi-
sentence alignment. As sentence variants are critical in understanding the effect of the
model legislation, we can not simply generate a single “common” summary sentence as a
prototype. Rather, LOBBYBACK creates a data structure that captures this variability in text
for display to the end-user.

Policy diffusion is a common phenomenon in state bills [10, 60, 63, 150]. Unlike mem-
bers of the (Federal) Congress, few state legislators have the expertise, time, and staff to
draft legislation. It is far easier for a legislator to adapt existing legislative text than to write
a bill from scratch. As a consequence, state legislatures have an increased willingness to
adopt legislation drafted by interest groups or by legislators in other states [81]. In addition
to states borrowing text from other legislators and lobbyists, another reason why bills can
exhibit text reuse is when a new federal law passes and each state needs to modify its existing
policy to conform with the new federal law.

The result of legislative copying, whether caused by diffusion between states, influence
from a lobby or the passing of a new federal law, is similar: a cluster of bills will share very
similar text, often varying only by implementation details of a given policy. The goal in
constructing a prototype document–a representation of the “original” text–is to synthesize
this document from the modified copies. In the case when the bill cluster was influenced by
one external source, such as lobby or passage of a federal bill, the ideal prototype document
would capture the language that each bill borrowed from the source document. In the case
when their is not one single document that influenced a cluster of bills, the prototype will
still give a summary of a concise description of the diffused text between bills, providing
fast insight into what text was shared and changed within a bill cluster.

With LOBBYBACK end-users can quickly identify clusters of text reuse to better un-
derstand what type of policies are diffused across states. In other applications, sentence
prototypes can be used by journalists and researchers to discover previously unknown
model legislation and the involvement of lobbying organizations. For example, prototype
text can be compared to the language or policy content of interest groups documents and
accompanied with qualitative research it can help discover which lobbyists have drafted this
legislation.

We evaluated LOBBYBACK on the task of reconstructing 122 known model legislation
documents. Our system was able to achieve an average of 0.6 F1 score based on the number
of prototype sentences that had high similarity with sentences from the model legislation.
We have also run LOBBYBACK on the entire corpus of state legislation (571,000 documents)
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Figure 6.1 Diagram describing processing steps of LOBBYBACK

from openstates.org as an open task. The system identified 4,446 clusters for which we
generated prototype documents. LOBBYBACK is novel in fully automating and scaling the
pipeline of model-legislation reconstruction. The output of this pipeline captures both the
likely “source sentences” but also the variations of those sentences.

LOBBYBACK consists of 3 major components. The first component identifies clusters of
bills that have text reuse. Then for each of these bill clusters, LOBBYBACK extracts and
clusters the sentences from all documents. For each of the sentence clusters, LOBBYBACK

synthesizes prototype sentences in order to capture the similarity and variability of the
sentences in the cluster.

6.3 State Legislation Corpus

We obtained the entire openstates.org corpus of state legislation, which includes 550,000
bills and 200,000 resolutions for all 50 states. While for some states this corpus includes
data since 2007, for the majority of states we have data as early as 2010 . We do not include
in our analysis data from Puerto Rico, where the text is in Spanish, and from DC, whose
data includes many idiosyncrasies (e.g. correspondence from city commissions introduced
as bills). On average, each state introduced 10,524 bills, with an average length of 1205
words .

6.4 LOBBYBACK Architecture

LOBBYBACK consists of 2 major components as pictured in Figure 6.1. The first component
identifies clusters of bills that have text reuse. Then for each of these bill clusters, LOB-
BYBACK extracts and clusters the sentences from all documents. For each of the sentence
clusters, LOBBYBACK synthesizes prototype sentences in order to capture the similarity
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and variability of the sentences in the cluster.

6.4.1 Clustering Bills

The first component of LOBBYBACK identifies clusters of bill documents that have text
reuse. These represent candidate bills that have been potentially copied from model legisla-
tion. There are a number of ways one could identify such clusters through text mining. In
our implementation, we have opted to generate a network representation of the bills and then
use a network clustering (i.e., “community-finding”) algorithm to generate the bill clusters.
In our network representation each node represents a state bill and weighted edges represent
the degree to which two bills exhibit substantive text reuse. Since most pairs of bills do not
have text reuse, we chose to use a network model because community finding algorithms
work well on sparse data and don’t require any parameter choice for the number of clusters.
In the context of this work, text reuse occurs when two state bills share:

1. Long passages of text, e.g (sections of bills) that can differ in details.

2. passages which contain text of substantive nature to the topic of the bill (i.e., text that
is not boilerplate).

In addition to text that describe policy, state bills also contain boilerplate text that is
common to all bills from a particular state or to a particular topic. Examples of legislative
boilerplate include: “Read first time 01/29/16. Referred to Committee on Higher Education”
(meta-data describing where the bill is in the legislative process); and “Safety clause. The
general assembly hereby finds, determines, and declares . . . ” (a standard clause included in
nearly all legislation from Colorado, stating the eligibility of a bill to be petitioned with a
referendum).

In order to identify pairs of bills that exhibit text reuse, we created an inverted index
that contained n-grams ranging from size 4-8. We used the open-source search engine
ElasticSearch to implement the inverted index and computed the similarity between bills
using the “More like This” (MLT) query [40]. The MLT query first selects the 50 highest
scoring TF*IDF n-grams from a given document and uses those to form a search query. The
MLT query is able to quickly compute the similarity between documents and since it ranks
the query terms by using TF*IDF the query text is more likely to be substantive rather than
boilerplate. By implementing the similarity search using a TF*IDF cutoff we were able to
scale the similarity computation for all pairs of bills while still maintaining our desire to
identify reuse of substantive text.
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The edges of the bill similarity network are computed by calculating pairwise similarity.
Each bill is submitted as input for an MLT query and scored matches are returned by the
search engine. Since the MLT query extracts n-grams only for the query document, the
similarity function between two documents di and d j is not symmetric. We construct a sym-
metric bill similarity network by taking the average score of each (di,d j) and its reciprocal
(d j,di). A non-existent edge is represented as an edge with score 0. We further reduce the
occurrence of false-positive edges by removing all edges with a score lower than 0.1. The
resulting network is very sparse, consisting of 35,346 bills that have 1 or more neighbors,
125,401 edges, and 3534 connected components that contain an average of 10 bills.

A specific connected component may contain more than one bill cluster. To isolate these
clusters in the bill network we use the InfoMap community detection algorithm [142]. We
use the InfoMap algorithm because it has been to shown to be one of the best community
detection algorithms and it is able to detect clusters at a finer granularity than other methods.
Our corpus contains both bills that have passed and those that have not. Bills can often be
re-introduced in their entirety after failing the previous year. As we do not want to bias the
clusters towards bills that are re-introduced more than others, we filter the clusters such that
they only include the earliest bill from each state .

6.4.2 Prototype Synthesis

Once we have identified a cluster of bills that have likely emerged from a single “source”
we would like to construct a plausible representation of that source. The prototype synthe-
sizer achieves this by constructing a canonical document that captures the similarity and
variability of the content in a given bill cluster. The two main steps in prototype synthesis
consists of clustering bill sentences and generating prototype sentences from the clusters.

Sentence Clustering

Most state bills have a common structure, consisting of an introduction that describes the
intent of the bill followed by sections that contain the law to be implemented. Each section
of a bill is comprised of self-contained policy, usually consisting of a long sentence that de-
scribes the policy and the implementation details of that policy. Each document is segmented
into these policy sentences using the standard Python NLTK sentence extractor. Sentences
are cleaned by removing spurious white space characters, surrounding punctuation and
lower-casing each word. Once we have extracted all of the sentences for a given bill cluster,
we compute the cosine similarity between all pairs of sentences which are represented using
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Figure 6.2 An sample state bill segment from Michigan SB 343 (2011)

a unigram bag-of-words model. We used a simple unweighted bag of words model because
in legal text stop words can be import2 In this case, we are generating a similarity “matrix”
capturing sentence–sentence similarity.

Given the similarity matrix, our next goal is to isolate clusters of variant sentences that
likely came from the same source sentence. We elected to use the DBscan [43] algorithm
to generate these clusters. The DBscan algorithm provides us with tunable parameters that
can isolate better clusters. Specifically, the parameter ε controls the maximum distance
between any two points in the same neighborhood. By varying ε we are able to control
both the number of clusters and the amount of sentence variation within a cluster. A second
reason for selecting DBscan is that the algorithm automatically deals with noisy data points,
placing all points that are not close enough to other points in a separate cluster labeled
“noise.” Since many sentences in a given bill cluster do not contribute to the reused text
between bills, the noise cluster is useful for grouping those sentences together rather than
having them be outsiders in “good” clusters.

2The difference between the words ”shall” and ”may” for instance is important, the former requires that a
specific action be put on a states budget while the later does not while the later does not
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Multi-Sequence Alignment

Once we have sentence clusters we then synthesize a “prototype” sentence from all of the
sentences in a given cluster. An ideal prototype “sentence” is one that simultaneously cap-
tures the similarity between each sentence in the cluster (the common sentence structures)
and the variation between the sentences in a cluster. For a simple pair of (partial) sentences,
“The Department of Motor Vehicles retains the right to . . . ” and “The Department of Trans-
portation retains the right to . . . ”, a prototype might be of the form, “The Department of
{Motor Vehicles, Transportation } retains the rights to . . . ” Our “sentence” is not strictly
a single linear piece of text. Rather, we have a data structure that describes alternative
sub-strings and captures variant text.

To generate this structure we propose an algorithm that first computes an approximation
of the optimal multi-sentence alignment (MSA) in the cluster and then generate a prototype
sentence that represents a consensus between the sentences in the MSA.

We generate an MSA using a modified version of the iterative pairwise alignment
algorithm described in [62]. Gusfield proposes a greedy strategy that builds a multi-
alignment by iteratively applying the NeedlemanWunsch pairwise global alignment al-
gorithm. Needleman-Wunsch is a dynamic-programming algorithm that computes the
optimal pairwise alignment by maximizing the alignment score between two sentences. An
alignment score is calculated based on three parameters: word matches, word mismatches
(when a word appears in one sentence but not the other), and gaps (when the algorithm
inserts a space in one of the sentences).

The algorithm we use to generate an MSA is described involves the following steps:

1. Construct an edit-distance matrix for all pairs of sentences

2. Construct an initial alignment between the two sentences with the smallest edit
distance

3. Repeat this step k times:

(a) Select the sentence that has the smallest average edit distance to the current
MSA.

(b) Add the chosen sentence to the MSA by aligning it to the existing MSA.

The algorithm stops after the alignment has reached a size that is determined as a free
parameter k (decided by the user but can also be chosen to be the total number of sentences
in the cluster). Since the algorithm fallows an order based on the edit distance between the
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Figure 6.3 A visualization of a multi-sentence alignment and the resulting prototype sentence.

current MSA and the next sentence to be added, the larger the MSA the more variation we
are allowing in the prototype sentence.

Synthesizing Prototype Sentences

We synthesize a prototype sentence by finding a consensus sentence from all of the aligned
sentences in the MSA for a given cluster. We achieve this by going through each “column”
of the MSA and using the following rules to decide which token will be used in the prototype.
A token can be either a word in one of the sentences or a “space” that was inserted during
the alignment process.

1. If there is a token that occurs in the majority of alignments (> 50%), that token is
chosen

2. If no token appears in a majority, a special variable token is constructed that displays
all of the possible tokens in each sentence. For example the 1st and 3rd columns of
the example in Figure .

3. If a space is the majority token chosen then it is shown as a variable token with the
second most common token
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Figure 6.4 Precision,Recall, and F1 scores of LOBBYBACK and baselines

6.5 Evaluation

We provide two experiments that evaluate both the sentence clustering and prototype synthe-
sis components of LOBBYBACK.

6.5.1 Model Legislation Corpus

In order to test the effectiveness of LOBBYBACK in recreating a model bill, we first identified
a set of known model bills. Our model legislation corpus consists of 1846 model bills that
we found by searching on Google using the keywords ”model law”, ”model policy” and
”model legislation”. Most of the corpus is comprised of model bills from the conservative
lobby group, American Legislative Exchange Council (ALEC), its liberal counterpart, the
state innovative exchange (SIO) and a non-partisan group the Uniform Law Commission
(ULC). The rest of the documents come from smaller interest groups that focus on specific
issues.

Using the clusters we previously described (Section 6.4.1), we found the most similar
cluster to each model bill. This was done by first computing the set of neighbors for a model
bill using the same procedure used in creating the bill similarity network. We then matched
a bill cluster to the model legislation by finding the bill cluster that had the highest Jaccard
similarity with the neighbor set of a model bill. does this make more sense now? Each test
example in our evaluation data set consists of model bill and its corresponding bill cluster.
The total number of model legislation documents that had matches in the state bill corpus
was 360 documents.

Once we have an evaluation data set comprised of model bill/cluster pairs our goal is to
compare the prototype sentences we infer for a cluster to the model bill that matches that
cluster. Since we don’t have ground truth on which sentences from the model bill match
sentences in the documents that comprise the cluster we need to infer such labels. In order
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to identify which sentences from the model legislation actually get re-used in the bill cluster,
we take the following steps:

1. Extract all sentences from each of the bills in a cluster and the sentences in the
corresponding model legislation.

2. Compute the pairwise cosine similarity between bill sentences and each of the model
bill sentences using the same unigram bag-of-words model described in Section 6.4.2

3. Compute the “oracle” matching M∗ using the Munkres algorithm [115]

The Munkres algorithm gives the best possible one-to-one matching between the sen-
tences in the model legislation and the sentences in the bill clusters. There are some
sentences in the model bill that are never used in actual state legislation (e.g., sentences that
describe the intent of a law or instructions of how to implement a model policy). Therefore
we label model bill sentences in M∗ that match a bill sentence with a score greater then
0.85 as true matches (S∗)3. The final set of 122 evaluation examples consists of all model
legislation/bill cluster pairs where more than 50% of model bill sentences have true matches.

6.5.2 Baselines

While no specific baseline exists for our problem, we implemented two alternatives to test
against. The first, Random-Baseline, was implemented simply to show the performance of
randomly constructing prototype documents. The second, LexRank-Baseline, implements a
popular extractive summarization method.
Random-Baseline – The random-baseline randomly samples sentences from a given bill
cluster. The number of sentences it samples is equal to the number of sentences in the
optimal matching |M∗|
LexRank-Baseline – The LexRank baseline uses the exact same clustering algorithm as LOB-
BYBACK except instead of synthesizing prototype sentences, it uses the LexRank algorithm
[42] to pick the most salient sentence from each of the sentence clusters.

6.5.3 Evaluating Sentence Clusters

We first evaluate the quality of the sentence clusters using the optimal matching M∗ de-
scribed above. For each test example in the evaluation set we generate a prototype document

3A threshold of 0.85 was found effective in prior work [53] and we observed good separation between
matching sentences and non-matches in our data-set.

102



using LOBBYBACK and each of the baselines described above. We then compute a matching
M between the prototype sentences and the model bill sentences (using the same proce-
dure described in 6.5.1), where S is the set of sentences in the prototype and S0.85 is the
set of sentences that match with a score greater then 0.85. We compute precision, P, as
P = |S0.85|/|S|, and recall, R, as R = |S|/|S∗|.

Figure 6.4 shows precision, recall and F1 scores for both baselines and LOBBYBACK.
Each curve is generated by averaging the precision/recall/F1 scores computed for each of
the examples in the test set. The x-axis represents the minimum bill cluster size of the test
examples for which the score is computed. For example, a minimum cluster size would
average over all test examples with at least 2 bills in a cluster. LOBBYBACK relies on the
fact that if text was borrowed from a model bill, then it would have been borrowed by many
of the bills in the cluster. By analyzing how LOBBYBACK performs with respect to the
minimum cluster size, we can determine how much evidence LOBBYBACK needs in order
to construct clusters that correspond to sentences in the model bills. The performance of
LOBBYBACK and the LexRank baseline substantially improves over the random baseline,
while the different between LOBBYBACK and LexRank is negligible. Since our cut-off
similarity is 0.85, all sentences above the threshold are treated as true positives, making
the distinction between the LexRank baseline and system small. LOBBYBACK performs a
little worse then LexRank for large cluster sizes because it is penalized for having space
and variable tokens which don’t occur in model bills. Space and variable tokens occur more
frequently in prototype sentences in larger clusters because there is more variation in the
sentence clusters.

Evaluating Sentence Synthesis

The experiment in the previous section evaluated the quality of the sentence clusters by
treating all matching sentences with a similarity greater then 0.85 as true positives. Here
we provide an evaluation of the synthesized sentences that LOBBYBACK generates and
compare them to the LexRank baseline, which chooses the most salient sentence from each
cluster. We evaluate the quality of the synthesized prototype sentences by computing the
word-based edit-distance between the prototype sentence with its corresponding model bill
sentence in S for each test example.

Since the prototypes contain variable and space tokens which do not occur in the model
bill sentences we modify the standard edit distance algorithm by not penalizing space tokens
and allowing for any of the tokens that comprise a variable to be positive matches. In
addition, we remove punctuation and lowercase all words in all of the sentences, regard-
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Min Cluster Size
Method ε 2 4 6 8
LOBBYBACK 0.1 24.4 20.4 18.2 17.2
LexRank 0.1 25.4 22.5 20.3 19.4
LOBBYBACK 0.15 25.5 21.6 19.4 17.9
LexRank 0.15 27.3 25.6 25.0 24.1

Table 6.1 Mean edit distance scores for LOBBYBACK and LexRank

less of method. We generate the results in Table 6.1 by averaging the edit distance for a
configuration of LOBBYBACK or LexRank over sentence clusters produced for each test
example. LOBBYBACK was configured to run with the number of iterations set to the size
of the sentence cluster.

We compared both the performance of LOBBYBACK and LexRank for DBscan ε values
of 0.1 and 0.15 as well as computing the average edit distance for different minimum sizes
of cluster values. As the table shows, LOBBYBACK obtains a lower edit distance than
LexRank in every configuration and as the size of the clusters increase the gap between
the two increases. The goal of LOBBYBACK is not to be a better summarization algorithm
then LexRank. By comparing to LexRank and showing that the edit distances are smaller
on average, we can conclude that the prototype sentences created by LOBBYBACK are
capturing the text that is “central” or similar within a given cluster. In addition, the prototype
sentences produced by LOBBYBACK are superior because they also capture and describe in
a succinct way, the variability of the sentences within a cluster.

6.6 Discussion

One assumption that we made about the nature of state adoption of model legislation is that
the legislatures make modifications that largely preserve the model language in an effort
to preserve policy. However, we currently do not consider cases in which a legislature
has intentionally obscured the text while still retaining the same meaning. While not as
frequent as common text reuse, Fernandez et al. [72] observed that some legislatures almost
completely changed the text while reusing the concepts. One area of future work would
be to try and extend LOBBYBACK to be more robust to these cases. One potential way of
extending LOBBYBACK would be to allow for a more flexible representation of text, such as
word vector embeddings. The embeddings could be used to allow for more flexibility when
computing similarity between sentences and could even be used to extend the multi-sentence
alignment to include a penalty based on the distance between two words in the embedding
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space.
We have shown that LOBBYBACK performs well on reconstructing model legislation

from automatically generated bill clusters. However, there are a number of improvements
that can refine part of the pipeline. A potential change, but one that is more computationally
costly, would be to use a deeper parsing of the sentences that we extract from the documents.
We used a simple unigram model when computing sentence similarities because we wanted
to ensure that stop words were included–due to their importance in legal text. We suspect
that by using a parser we could weight the similarity of noun-phrases for instance, yielding
a better similarity matrix and potentially higher precision/recall.

6.7 Previous Work

While no specific system or technique has focused on the problem of legislative document re-
construction, we find related work in a number of domains. Multi-document summarization
(MDS), for example, can be used to partially model the underlying problem–generating a
representative document from multiple sources. Extractive MDS, in particular, is promising
in that representative sentences are identified.

Early work in extractive summarization include greedy approaches such as that proposed
by Carbonell et al. The algorithm uses an objective function which trades off between
relevance and redundancy [24]. Global optimization techniques attempt to generate “sum-
maries” (selected sets of sentences or utterances) that maximize an objective based on
informativeness, redundancy and/or length of summary. These have shown superior per-
formance to greedy algorithms [57, 177]. Approaches based on neural networks have
recently been proposed for ranking candidate sentences [23]. Graph based methods, such as
LexRank [42], have also proven effective for MDS. Extensions to this approach combine
sentence ranking with clustering in order to minimize redundancy [22, 136, 162]. The
C-LexRank algorithm [136], in particular, uses this combination and inspired our high level
design.

Though related, it is important to note that the objectives of summarization (informa-
tiveness, reduced redundancy, etc.) are not entirely consistent with our task. For example,
using the ngram co-occurrence based ROUGE score would not be sufficient at evaluating
LOBBYBACK. Our goal is to accurately reconstruct entire sentences of a hidden document
given observed mutations of that document. Additionally, our goal is not simply to find a
representative sentence that may reflect the original document, but to capture the similarity
and variability of the text within a given “sentence cluster.”
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Within the political science and legal studies communities research has focused on
manual approaches to both understanding how model legislation impacts law and how
policy ideas diffuse between bill text. As these studies are time consuming, there is no
large-scale or broad analysis of legislative materials. Rather, researchers have limited their
workload by focusing on a single topic (e.g. abortion [126] and crime [88]) or a single
lobbying group (e.g. ALEC [80]. Similarly, those studying policy diffusion across US states
have also limited their analysis to a few topics (e.g., same-sex marriage [63]).

Recent attempts to automate the analysis of model legislation has had similar problems,
as most researchers have limited their analysis to one interest group or a few relevant topics
[72, 81]. Hertel-Fernandez et al. proposed a supervised model in which they train on hand
labeled examples of state bills that borrow text and/or concepts from ALEC bills. The
problem they focus on is different from ours, the motivation behind LOBBYBACK is that
there exists lots of model legislation which we don’t have access to and the goal is to try and
reconstruct these documents without labeled training data. Jansa et al. propose a technique
for inferring a network of policy diffusion for manually labeled clusters of bills. Both
Jansa et al. and Hertel-Fernandaz et al. propose techniques that only look at the problem of
inferring whether two bills exhibit text reuse but unlike LOBBYBACK they do not attempt to
infer whether specific policies (sentences) in the documents are similar/different.

6.8 Conclusion

In this chapter we present LOBBYBACK, a system to reconstruct the “dark corpora” that
is comprised of model bills which are copied (and modified) by resource constrained state
legislatures. A critical component of LOBBYBACK is the inference of a state bill network in
which the link structure reflects text reuse between bills. A community detection algorithm
is then applied to this network in order to extract clusters of text reuse in a large state
legislation corpus. LOBBYBACK then generates prototype sentences that summarize the
similarity and variation of the copied text for each bill cluster.
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Chapter 7

Conclusion

This dissertation describes the challenges associated with applying social network analysis
on incomplete network structures. Incomplete networks can be described as networks that
have any combination of the following scenarios: missing edges,missing semantics, and
missing structure. Each of the four systems we propose, tackles a problem in which a major
component provides a solution to applying network analysis to an incomplete network that
falls into one or more of these scenarios. In addition, Each of these four systems provides
a novel solution that solves a real world data science problem in disciplines ranging from
information retrieval to computational social science.

7.1 Contributions and Future Directions

EDGEBOOST, proposed in Chapter 3 is a meta-algorithm and framework for improving
community detection on both networks that exhibit missing edges and missing structure.
For networks with missing edges, EDGEBOOST applies a non-deterministic link prediction
process to create many imputed variants of an input network. Each of the variants are then
clustered with a user defined community detection algorithm producing partitions which
are aggregated together in order to form a final higher quality partition. We also extended
EDGEBOOST to handle networks with missing structure by replacing the link prediction
module with a threshold enumeration module. The threshold enumeration module takes
as input a similarity matrix and prunes the matrix at each of the desired threshold values.
The resulting networks are then processed the same way as in the standard EDGEBOOST

pipeline.
We have shown the efficacy of applying the EDGEBOOST framework to the task of

community detection and believe that it can also be extended to boost the performance of
other network algorithms. The framework that we propose in EDGEBOOST can be thought
of in a more general sense as pictured in Figure 7.1. This general framework consists of
three steps:
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Figure 7.1 Extension of EDGEBOOST framework to other types of network algorithms

1. Generation of a set of variant networks based on the input

2. Apply network algorithm to each variant

3. Aggregate output from each variant via an aggregation function

Any instantiation of this framework involves the selection of variant generator and aggrega-
tion function. We have proposed two variant generators: link-prediction based sampling, and
threshold enumeration that can be re-used in other instantiations. The aggregation algorithm
we proposed is specific to community detection but for other types of network algorithms
such as centrality computation, an aggregation function as simple as averaging the scores of
the nodes may be sufficient.

BUTTERWORTH addresses the problem of extracting topically cohesive clusters from
an online social network in Chapter 4. The first component of BUTTERWORTH is to extract
a user’s topic(s) of interest by clustering her ego network. BUTTERWORTH uses link pre-
diction to both impute missing edges and missing semantics in the ego-network. We use
community detection to extract topically cohesive clusters from the imputed network. Once
extracted, these clusters are used to automatically train ranking models that rank a user’s
social feed by the corresponding topic. BUTTERWORTH presents an end-to-end solution to
the problem of ranking social feeds by a user’s topic(s) of interest, all without requiring any
user supervision.

While presented as a component of BUTTERWORTH, the use of link prediction–based
on the textual content of nodes–to improve down stream network analysis (e.g community
detection) can be used in many other applications. Often times, network structure is sparse
and missing semantics but many networks have nodes with associated textual content, such
as: citation, patent and email networks. Link prediction based on the textual content of
nodes can lead to more focused and more accurate analysis.

DOBBY, presented in Chapter 5 is a system for constructing a knowledge graph of user-
defined keyword tags. By computing features based on statistics such as tag co-occurrence
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and wikipedia topic information, and training on a labeled set of subsumption edges. DOBBY

is able to infer novel hypernym relationships between tags. We used DOBBY to construct a
knowledge graph of all skills on the most popular professional social network, LinkedIn.
The resulting knowledge graph has many potential applications such as improving add
targeting and query expansion in search applications. Through DOBBY we have shown
the efficacy of using a supervised model to predict links in a network, based on features
computed from heterogenous data sources describing the nodes in various contexts.

LOBBYBACK, presented in Chapter 6, is a system for extracting and automatically
summarizing the phenomena of text reuse in state legislation. One critical component of
LOBBYBACK is the inference of a network in which the structure represents text reuse
between state bills. Community detection is then applied to this network in order to obtain
clusters of bills that exhibit text reuse. LOBBYBACK then uses the clusters to construct
“prototype” documents that represent the conical representation of the text shared between
the documents. We applied LOBBYBACK to the task of reconstructing model legislation
written by lobbyists that is known to have influenced clusters of documents in the corpus.
One of the main contributions of LOBBYBACK is a novel application of network inference,
in which we show the efficacy of using community detection on a dataset which does not
have an inherent network structure.

The thesis of this dissertation is that the incorporation of imputation and inference
components can improve network analysis pipelines. In proposing each of the four sys-
tems: EDGEBOOST, BUTTERWORTH, DOBBY, and LOBBYBACK we demonstrate that by
integrating imputation and inference into network analysis pipelines, we can improve the
efficacy of the pipelines or enable the application of network analysis to solve new problems.
Each of these systems targets specific technical challenges but the imputation and inference
techniques that are used can be extended and re-purposed for use in other pipelines to solve
new problems.

This dissertation stresses the importance of the network analysis pipeline, instead of just
isolating the network algorithm as the only way to improve network analysis. The systems
in this dissertation use existing network algorithms, but, by incorporating imputation and
inference into the pipelines we were able to improve the quality of the overall analysis. In
proposing better pipelines, we have shown that structure of the network a given algorithm is
can have as much of an effect as to the choice of the algorithm itself. With systems like BUT-
TERWORTH, we have also shown that by imputing missing information, network algorithms
like community detection can be adapted to new problems such as topic extraction.
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7.1.1 Summary

This dissertation has explored the use of network analysis on incomplete structures. We
have proposed a comprehensive way of characterizing the scenarios in which networks can
be incomplete. Each of the four novel systems, proposed in this dissertation, solve a real
data science challenge that involves a network that is incomplete via one of many of our
proposed scenarios. In solving these four challenges we have shown that the imputation of
missing information in incomplete networks is a crucial component for network analysis on
real world data.

110



Bibliography

[1] A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
Mar. 1953.

[2] M. K. 0002 and J. Leskovec. The network completion problem: Inferring missing
nodes and edges in networks. In SDM, pages 47–58. SIAM / Omnipress, 2011.

[3] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks,
25(3):211 – 230, 2003.

[4] L. A. Adamic and N. Glance. The political blogosphere and the 2004 u.s. election: Di-
vided they blog. In Proceedings of the 3rd International Workshop on Link Discovery,
LinkKDD ’05, pages 36–43, New York, NY, USA, 2005. ACM.

[5] R. Aldecoa and I. Marin. Exploring the limits of community detection strategies in
complex networks. Sci. Rep., 2013.

[6] R. Aldecoa and I. Marn. Deciphering network community structure by surprise. PLoS
ONE, 6(9):e24195, 09 2011.

[7] A. Arenas, A. Fernandez, and S. Gomez. Analysis of the structure of complex
networks at different resolution levels. New Journal of Physics, 2008.

[8] M. Bastian, M. Hayes, W. Vaughan, S. Shah, P. Skomoroch, H. Kim, S. Uryasev, and
C. Lloyd. Linkedin skills: Large-scale topic extraction and inference. RecSys ’14,
2014.

[9] M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam, and E. H. Chi. Eddi: interactive
topic-based browsing of social status streams. In UIST’10, pages 303–312, 2010.

[10] F. S. Berry and W. D. Berry. State lottery adoptions as policy innovations: An event
history analysis. The American Political Science Review, pages 395–415, 1990.

[11] P. Bhattacharyya, A. Garg, and S. Wu. Analysis of user keyword similarity in online
social networks. Social Network Analysis and Mining, 1(3):143–158, 2011.

[12] P. Bhattacharyya, A. Garg, and S. F. Wu. Social network model based on keyword
categorization. In Proceedings of the 2009 International Conference on Advances in
Social Network Analysis and Mining, ASONAM ’09, pages 170–175, Washington,
DC, USA, 2009. IEEE Computer Society.

111



[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008.

[14] L. M. S. A. V. B. Borate BR, Chesler EJ. Comparison of threshold selection methods
for microarray gene co-expression matrices. BMC Res Notes, 2009.

[15] S. P. Borgatti, K. M. Carley, and D. Krackhardt. On the robustness of centrality
measures under conditions of imperfect data. Social Networks, 28(2):124 – 136,
2006.

[16] J. Boyd-Graber, J. Chang, S. Gerrish, C. Wang, and D. Blei. Reading tea leaves: How
humans interpret topic models. In NIPS’09, 2009.

[17] J. Bragg, Mausam, and D. S. Weld. Crowdsourcing multi-label classification for
taxonomy creation. In B. Hartman and E. Horvitz, editors, HCOMP. AAAI, 2013.

[18] M. Burgess, E. Adar, and M. Cafarella. Link-prediction enhanced consensus cluster-
ing for complex networks. PLoS ONE, 2016.

[19] M. Burgess, E. Giraudy, and E. Adar. Reconstructing hidden documents from
observed text. Under Review.

[20] M. Burgess, A. Mazzia, E. Adar, and M. Cafarella. Leveraging noisy lists for social
feed ranking. International AAAI Conference on Weblogs and Social Media, 2013.

[21] M. Burgess, P. Skomoroch, and E. Adar. Building a knowledge graph of tags for
expertise driven web applications. Under Review.

[22] X. Cai and W. Li. Ranking through clustering: An integrated approach to multi-
document summarization. IEEE Transactions on Audio, Speech, and Language
Processing, 21(7):1424–1433, July 2013.

[23] Z. Cao, F. Wei, L. Dong, S. Li, and M. Zhou. Ranking with recursive neural networks
and its application to multi-document summarization. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 2153–2159, 2015.

[24] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for re-
ordering documents and producing summaries. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98, pages 335–336, New York, NY, USA, 1998. ACM.

[25] L. D. Caro, K. S. Candan, and M. L. Sapino. Using tagflake for condensing navigable
tag hierarchies from tag clouds. In Y. Li, B. Liu, and S. Sarawagi, editors, KDD,
pages 1069–1072. ACM, 2008.

112



[26] M. Chen, A. Bahulkar, K. Kuzmin, and B. K. Szymanski. Complex Networks VII:
Proceedings of the 7th Workshop on Complex Networks CompleNet 2016, chap-
ter Improving Network Community Structure with Link Prediction Ranking, pages
145–158. Springer International Publishing, Cham, 2016.

[27] S. S. Choi, S. H. Cha, and C. Tappert. A Survey of Binary Similarity and Distance
Measures. Journal on Systemics, Cybernetics and Informatics, 8(1):43–48, 2010.

[28] P. Choudhary and U. Singh. Article: A survey on social network analysis for counter-
terrorism. International Journal of Computer Applications, 112(9):24–29, February
2015. Full text available.

[29] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very
large networks. Phys. Rev. E, 70(6):066111, Dec 2004.

[30] M. D. Conover, J. Ratkiewicz, M. Francisco, B. Goncalves, F. Menczer, and A. Flam-
mini. Political polarization on twitter. ICWSM, 2011.

[31] R. Dahimene, C. Mouza, and M. Scholl. Efficient filtering in micro-blogging sys-
tems: We won’t get flooded again. In A. Ailamaki and S. Bowers, editors, Scientific
and Statistical Database Management, volume 7338 of Lecture Notes in Computer
Science, pages 168–176. Springer Berlin Heidelberg, 2012.

[32] J. Dahlin and P. Svenson. Ensemble approaches for improving community detection
methods. ArXiv e-prints, Sept. 2013.

[33] W. Dakka and P. G. Ipeirotis. Automatic extraction of useful facet hierarchies from
text databases. In Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, ICDE ’08, pages 466–475, Washington, DC, USA, 2008. IEEE
Computer Society.

[34] D. Darmon, E. Omodei, and J. Garland. Followers are not enough: A multifaceted
approach to community detection in online social networks. PLoS ONE, 10(8):1–20,
08 2015.

[35] A. Das Sarma, A. Das Sarma, S. Gollapudi, and R. Panigrahy. Ranking mechanisms
in Twitter-like forums. In WSDM’10, pages 21–30, 2010.

[36] E. David and K. Jon. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York, NY, USA, 2010.

[37] P. De Meo, G. Quattrone, and D. Ursino. A query expansion and user profile enrich-
ment approach to improve the performance of recommender systems operating on a
folksonomy. User Modeling and User-Adapted Interaction, 20(1):41–86, Feb. 2010.

[38] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. Stability of graph communities
across time scales. Proceedings of the National Academy of Sciences, 2010.

113



[39] S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure.
Bioinformatics, 2003.

[40] Elastic. Elasticsearch reference, 2016.

[41] G. Erkan and D. R. Radev. Lexrank: Graph-based centrality as salience in text
summarization. Journal of Artificial Intelligence Research (JAIR), 2004.

[42] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, pages 457–479, 2004.

[43] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proc. of 2nd International
Conference on Knowledge Discovery and, pages 226–231, 1996.

[44] L. Fang, A. Fabrikant, and K. LeFevre. Look who I found: Understanding the effects
of sharing curated friend groups. In WebSci’12, pages 137–146, 2012.

[45] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph
partitioning. In Proceedings of the Twenty-first International Conference on Machine
Learning, ICML ’04, 2004.

[46] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine
Learning Research, 15:3133–3181, 2014.

[47] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine
Learning Research, 15:3133–3181, 2014.

[48] B. Fortuna, M. Grobelnik, and D. Mladenic. Semi-automatic Data-driven Ontol-
ogy Construction System. In Proceedings of the 9th international multi-conference
information society IS-2006, Ljubljana, Slovenia.

[49] S. Fortunato and M. Barthlemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 2007.

[50] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation of
similarities between nodes of a graph with application to collaborative recommen-
dation. Knowledge and Data Engineering, IEEE Transactions on, 19(3):355–369,
March 2007.

[51] T. L. Frantz, M. Cataldo, and K. M. Carley. Robustness of centrality measures
under uncertainty: Examining the role of network topology. Computational and
Mathematical Organization Theory, 15(4):303–328, 2009.

[52] A. Garg, P. Bhattacharyya, C. U. Martel, and S. F. Wu. Information flow and search
in unstructured keyword based social networks. In CSE (4), pages 1074–1081. IEEE
Computer Society, 2009.

114



[53] K. N. Garrett and J. M. Jansa. Interest group influence in policy diffusion networks.
State Politics & Policy Quarterly, 15(3):387–417, 2015.

[54] S. Gauch, J. Chaffee, and A. Pretschner. Ontology-based personalized search and
browsing. Web Intelli. and Agent Sys., 1(3-4):219–234, Dec. 2003.

[55] D. Gfeller, J.-C. Chappelier, and P. De Los Rios. Finding instabilities in the commu-
nity structure of complex networks. Phys. Rev. E, 2005.

[56] R. Ghaemi, M. N. Sulaiman, H. Ibrahim, and N. Mustapha. A survey: Clustering
ensembles techniques, 2009.

[57] D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-Tur. A global optimization
framework for meeting summarization. In Proceedings of the 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP ’09, pages
4769–4772, Washington, DC, USA, 2009. IEEE Computer Society.

[58] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[59] W. H. Gomaa and A. A. Fahmy. Article: A survey of text similarity approaches.
International Journal of Computer Applications, 68(13):13–18, April 2013. Full text
available.

[60] V. Gray. Innovation in the states: A diffusion study. American political science
review, 67(04):1174–1185, 1973.

[61] B. Guc. Information Filtering on Micro-blogging Services. In Master’s Thesis. Swiss
Federal Institute of Technology Zürich, 2010.
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