
   

 
 

Quantitative Assessment of Tropical Cylcone Simulation Sensitivity in the Community 

Atmosphere Model 

 

by 

Fei He 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Atmospheric, Oceanic and Space Sciences) 

in the University of Michigan 

2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doctoral Committee: 

 

Associate Professor Derek J. Posselt, Chair 

Associate Professor Christiane Jablonowski  

Professor Vijay Nair  

Professor Richard B. Rood  



   

 
 

 

 

 

 

 

 

 

 

 

 

©     Fei He     2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

ii 
 

 

 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to thank my thesis advisor and committee chair, Derek J. Posselt, 

for his superb mentorship. He has offered help to me since I first arrived at University of 

Michigan. In 2012, He recruited me as his Phd graduate student and offered me a research 

assistant (RA) postion at the time when I really needed one. This offer gave me a critical 

opportunity to grow into an independent researcher. During the RA experience, I have plenty of 

flexibility to explore my own research ideas. Meanwhile, he is always there for discussion and 

feedback on research topics, directions, methodology, results, and manuscripts. He also offers 

assistance in resolving technique problems. He has been very generous to send me to scientific 

conferences, workshops, and summer schools. He also actively introduced me to scientists from 

other universities and national laboratories and helped me to establish cooperation with them.  

He is an extremely responsible and supportive PhD advisor. The four years study and research 

experience under his mentorship will be profoundly important for my whole career life. I look 

forward to further collaboration with him and members of his group in my future career path. I 

also would like to thank the rest of my committee: Christiane Jablonowski, Richard Rood and 

Vijay Nair. Their advice and support greatly improve the quality of this thesis.  

Special thanks to Colin M. Zarzycki and Naveen N. Narisetty. Colin set up the Reed-

Jablonowski tropical cyclone (TC) test case in Flux, the high performance computing platform at 

University of Michigan. He also provided tremendous help for me to learn the RJ TC test case, 

the NCAR Community Atmosphere Model, the existing studies on tropical cyclones and do 

preliminary analysis of model simulation data. His help saved tons of time in the beginning stage 

and allowed me to quickly get into the work. Naveen set up the R code of Expanded Multivariate 

Adaptive Regression Splines (EMARS) emulator. He also spent a lot of time in explaining the 

statistical concepts and results. In addition, I would like to thank Kevin A. Reed for providing 

the TC test case code and detailed explanation on the test case. I also thank Zach Zhanyang 



   

iii 
 

Zhang, Andrew Gentleman, Julio T. Bacmeister, M. Zhao, Sangsu Park, Verronica Berrocal and 

Erika Roesler for their advice and help.  

Thank you Sandra Pytlinski, Margaret Reid, Tonya Thomas, Kristi Hanse, Faye Ogasawara, 

Bryan K. White and Darren B. Bozzone for your superb administrative and IT support. I also 

would like to thank Brock Palen and all other Advanced Research Computing staff for their great 

support. I also would like to thank my group members: David Wright, Greg Tierney, Juan 

Crespo, Annareli Morales and Sam Tushaus. At last, I would like to thank my parents Longlong 

He and Fudi Zeng, my husband John Xun Yang and all other family members for their never-

ending love and support.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

iv 
 

 

 

 

PREFACE 

 

This thesis documented the research work conducted while the author was a member of Dr. 

Derek J. Posselt’s research group. Chapter II was published in Monthly Weather Review (He et 

al., 2015). Kevin Reed provided the FORTRAN codes for the original tropical cyclone test case. 

Colin Zarzycki set up the model run in Flux, the High Performance Computing Platform of 

College of Engineering at University of Michigan. Chapter III is in preparation for submission to 

Monthly Weather Review. Naveen N. Narisetty provided the R codes for the statistical 

calculation of EMARS. The first part of Chapter IV was published in J. Climate (He and Posselt, 

2015). The remaining part of Chapter IV will be submitted to a yet to be determined journal 

following the acceptance of this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 



   

v 
 

 

 

 

 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ......................................................................................................... ii 

PREFACE ..................................................................................................................................... iv 

LIST OF FIGURES ................................................................................................................... viii 

LIST OF TABLES ..................................................................................................................... xiv 

LIST OF APPENDICES ............................................................................................................ xv 

ABSTRACT ................................................................................................................................ xvi 

CHAPTER  .................................................................................................................................... 1 

1. Introduction ............................................................................................................................... 1 

1.1. Tropical Cyclones ............................................................................................................... 1 

1.1.1. The Importance of Tropical Cyclones ....................................................................... 1 

1.2.2. The Structure of Tropical Cyclones ........................................................................... 2 

1.2. Numerical Simulations of Tropical Cyclones .................................................................. 4 

1.2.1. Limited Area Models (LAMs) .................................................................................... 5 

1.2.2. Atmospheric General Circulation Models (AGCMs)............................................... 6 

1.3. The Current State of Simulating and Predicting Tropical Cyclones in AGCMs ......... 8 

1.3.1. Detecting Tropical Cyclones in AGCMs ................................................................... 8 

1.3.2. Modeling Tropical Cyclones in Present Climate State............................................. 9 

1.3.3. Future Changes of Tropical Cyclones Under Climate Warming and Their 

Uncertainty ........................................................................................................................... 10 

1.4. Progress in Improving the Performance of AGCMs to Simulate Tropical Cyclones 11 

1.4.1. Numerical Enhancement ........................................................................................... 12 

1.4.2. Idealized Tropical Cyclone Simulation for Model Evaluation .............................. 13 

1.5. Uncertainty Quantification and Sensitivity Analysis .................................................... 14 

1.5.1. Latin Hypercube Sampling and Other Techniques for Uncertainty and 

Sensitivity Analysis .............................................................................................................. 15 



   

vi 
 

1.5.2. Multiple Predictor Smoothing Methods for Sensitivity Analysis .......................... 16 

1.6. Thesis Overview................................................................................................................ 17 

2. A Balanced Tropical Cyclone Test Case for AGCMs with Background Vertical Wind 

Shear............................................................................................................................................. 21 

2.1. Introduction ...................................................................................................................... 21 

2.2. Model and methodology .................................................................................................. 25 

2.2.1. Prescribed wind profile ............................................................................................. 25 

2.2.2. Idealized initial conditions with background vertical wind shear ........................ 29 

2.2.3. Description of the CAM 5.1.1 in Aqua-Planet Mode.............................................. 31 

2.2.4. Simulation design ....................................................................................................... 33 

2.3. Results ............................................................................................................................... 34 

2.3.1. Unidirectional westerly shear ................................................................................... 34 

2.3.2. Unidirectional easterly shear and non-unidirectional shear ................................. 41 

2.4. Summary ........................................................................................................................... 51 

3. Uncertainty Quantification Framework for Multivariate Sensitivity Analysis of 

Atmospheric Dynamical Systems: Evaluating the Sensitivities of AGCM-Simulated 

Tropical Cyclones to Model Initial Conditions ........................................................................ 54 

3.1. Introduction ...................................................................................................................... 54 

3.2. Schematic Summary ........................................................................................................ 57 

3.3. Data and Methodology ..................................................................................................... 60 

3.3.1. Idealized tropical cyclone simulation ....................................................................... 60 

3.3.2. Uncertainty quantification framework .................................................................... 64 

3.4. Results from 0.5 0.5  ensemble runs ........................................................................... 66 

3.4.1 Performance of three surrogate models ................................................................... 66 

3.4.2 Input-output relationships ......................................................................................... 67 

3.4.3 Output-output relationship: among the TC-relevant characteristics .................... 78 

3.5. Marginal sensitivity of intensity to five initial conditions in three horizontal 

resolutions ................................................................................................................................ 82 

3.6. Discussion and limitation ................................................................................................. 86 

3.7. Summary ........................................................................................................................... 86 

4. Impact of Parameterized Physical Processes on Simulated Tropical Cyclone 

Characteristics in the Community Atmosphere Model ........................................................... 88 



   

vii 
 

4.1. Introduction ...................................................................................................................... 88 

4.2. Reed-Jablonowski Tropical Cyclone Test Case ............................................................ 92 

4.3. Simulation Design ............................................................................................................. 94 

4.3.1. One-at-a-time sensitivity analysis............................................................................. 97 

4.3.2. Latin Hypercube Sampling ....................................................................................... 97 

4.3.3. Six tropical cyclone characteristics .......................................................................... 98 

4.4. Results ............................................................................................................................. 100 

4.4.1. Linear perturbation (One-at-a-time) analysis ...................................................... 100 

4.4.2 Response function analysis ...................................................................................... 103 

4.4.2. Linear versus nonlinear .......................................................................................... 110 

4.4.3. Intrinsic uncertainty versus extrinsic uncertainty ............................................... 114 

4.4.4. Exploration of GaSP ................................................................................................ 117 

4.5. Discussion and Conclusions ........................................................................................... 118 

5. Conclusions ............................................................................................................................ 121 

5.1 Summary .......................................................................................................................... 121 

5.2 Accomplishments ............................................................................................................. 125 

5.2.1 Originality ................................................................................................................. 125 

5.2.2 Significance and Contributions ............................................................................... 125 

5.2.3 Interdisciplinary research ........................................................................................ 126 

5.3 Future Work .................................................................................................................... 126 

APPENDICIES ......................................................................................................................... 129 

BIBLIOGRAPHY ..................................................................................................................... 150 

 

 

 

 

 

 

 

 



   

viii 
 

 

 

 

LIST OF FIGURES 

 

Figure 1.1: Hurricane Isabel (2003) as seen from orbit during Expedition 7 of the International 

Space Station. Credit given to: Mike Trenchard, Earth Sciences & Image Analysis Laboratory, 

Johnson Space Center ..................................................................................................................... 3 

Figure 1.2: Diagram of a northern hemisphere hurricane. Credit given to: the COMET program. 4 

Figure 1.3: Outgoing Longwave Radiation (OLR). Hurricane Katrina (2005) simulated in 

Geophysical Fluid Dynamics Laboratory global atmospheric cubed-sphere (C360) with 25 km 

resolution......................................................................................................................................... 9 

Figure 1.4: Schematic diagram of the sensitivity analysis in this thesis. ...................................... 19 

Figure 2.1: (a) Wind profile of unidirectional westerly shear with various magnitudes:
11 m s ,

15 m s ,
110 m s ,

115 m s and 
120 m s . (b) Example wind profiles for four different shear cases 

but same magnitude of 
15 m s . Case 1: Unidirectional (Uni.) westerly shear; Case 2: 

Unidirectional (Uni.) easterly shear; Case 3: Non-unidirectional (Non-uni.) westerly shear; and 

Case 4: Non-unidirectional (Non-uni.) easterly shear. Note, unidirectional and non-unidirectional 

actually describe whether the wind profile that produces the shear changes direction with height 

or not. ............................................................................................................................................ 27 

Figure 2.2: Initial conditions for the tropical cyclone test case with 
110 m s unidirectional 

westerly shear: (a) Longitude-height cross section of the zonal wind through the center latitude 

of the vortex at 10 N , (b) Latitude-height cross section of the zonal wind through the center 

longitude of the vortex at 180 E , (c) Longitude-height cross section of the tangential wind 

centered at (10 N,180 E ) (radius denotes the distance to the center), (d) horizontal cross section 

of the 500 hPa  temperature, (e) horizontal cross section of surface geopotential, and (f) the same 

as (c) but for no shear case. ........................................................................................................... 31 

Figure 2.3: Time evolution of the intensity (maximum wind speed at 100 m above the surface) 

and track (position of the minimum surface pressure) for tropical cyclone-like vortex under 

various magnitudes of unidirectional westerly shear.  (a) Ensemble mean of intensity, (b) 

Ensemble mean of track, (c) Standard deviation of intensity, and (d) Standard deviation of 

displacement distance of the storm center. ................................................................................... 36 



   

ix 
 

Figure 2.4: Longitude-height cross sections of the tropical cyclone-like vortex averaged over 

days 9-10 for unidirectional westerly shear: (a). 0 1m s  , (b). 1 1m s  , (c). 5 1m s  , (d). 10 1m s  , 

(e). 15 1m s  , and (f). 20 1m s  . The radius denotes the distance to the center of the vortex. Each 

cross section shown is the mean value of the nine ensemble runs. The solid black line marks the 

contour of wind speed with value of 20 1m s  , 40 1m s  , and 60 1m s  . .................................... 38 

Figure 2.5: Total precipitation rate (convective precipitation rate + large scale precipitation rate) 

of the tropical cyclone averaged over days 9-10 for unidirectional westerly shear: (a). 0 1m s  , 

(b). 1 1m s  , (c). 5 1m s  , (d). 10 1m s  , and (e). 15 1m s  . (f) shows the four quadrants relative 

to shear direction. USL: up-shear left, USR: up-shear right, DSL: down-shear left, DSR: down-

shear right. Shear direction is indicated by the red arrow and black arrow denotes the storm 

moving direction. Each plot is the mean of the nine ensemble members. The left bottom corner 

shows the area-weighted last 48-hours accumulated precipitation accounting for precipitation 

rate greater than 2 1mm hr , circled by the black solid line. ........................................................ 39 

Figure 2.6: Longitude-height cross sections of vertical velocity (ensemble mean) averaged over 

days 9-10 for unidirectional westerly shear: (a). 0 1m s  , (b). 1 1m s  , (c). 5 1m s  , and (d). 10 
1m s  .  The radius denotes the distance to the vortex center. The solid black line marks the 

velocity of 1.0  
1Pa s , and 2.8  

1Pa s . Red arrow indicates shear direction. ....................... 41 

Figure 2.7: Time evolution of the intensity (maximum wind speed at 100 m above the surface) 

and track (position of the minimum surface pressure) for tropical cyclone-like vortex for four 

shear cases with shear magnitude of 5 1m s  , compared to control run. (a) Ensemble mean of 

intensity, (b) Ensemble mean of track, (c) Standard deviation of intensity, and (d) Standard 

deviation of displacement distance of the storm center. ............................................................... 43 

Figure 2.8: As Figure 2.4 but for four shear cases with magnitude of 
15 m s . ........................... 45 

Figure 2.9: Total precipitation rates (convective precipitation rate + large scale precipitation rate) 

averaged over days 9-10 for (a) unidirectional westerly shear, (b) unidirectional easterly shear, (c) 

non-unidirectional westerly shear, and (d) non-unidirectional easterly shear. The wind shear is 5 
1m s  for all four cases. Each plot shows the ensemble mean. Shear direction is indicated by red 

arrow and black arrow denotes the storm moving direction. The left bottom corner shows the 

area-weighted last 48-hours accumulated precipitation for precipitation rate greater than 2 
1mm hr  as circled by the black solid line. Note, unidirectional and non-unidirectional actually 

describe whether the wind profile that produces the shear changes direction with height or not. 47 

Figure 2.10: The same as Figure 2.6 but for the four shear cases with magnitude of 
15 m s . (a). 

unidirectional westerly, (b). unidirectional easterly, (c). non-unidirectional westerly, (d). non-

unidirectional easterly, and (e). no shear. Red arrow indicates shear direction. Note, 

unidirectional and non-unidirectional actually describe whether the wind profile that produces 

the shear changes direction with height or not.............................................................................. 49 



   

x 
 

Figure 2.11: The same as Figure 2.7, however for wind shear of 15 1m s  . Case 3 and 4 are not 

shown in (b) (d) as no tropical cyclone is developed in these two cases. ..................................... 51 

Figure 3.1: The schematic flow chart of implementing the proposed UQF on dynamical system 

in a step-by-step way. ................................................................................................................... 58 

Figure 3.2: The flowchart of idealized tropical cyclone simulation in NCAR Community 

Atmospheric Model. (a) –(d): snapshots shows the evolution of tropical cyclone like vortex at 

days (a. b) 0, and (c. d) 10 at the resolution0.5°, L30. (a) and (c): Horizontal cross section of the 

wind speed at a height of 100 m. (b) and (d) Longitude-height cross section of the wind speed 

through the center of the vortex. (For details, the reader is referred to Figure 7, Reed and 

Jablonowski 2011a). ..................................................................................................................... 62 

Figure 3.3: Example of the shortwave cloud radiative forcing (left) before applying the TC 

identification algorithm, and (right) after. .................................................................................... 64 

Figure 3.4: The sensitivity index (unitless) of the six final simulated output variables to the five 

initial parameters: (a). Intensity ( 1m s ), (b). Precipitation rate ( 1mm hr ), (c). LWCF ( 2W m ), 

(d). SWCF ( 2W m ), (e). LWP ( 2g m ) and (f). IWP ( 2g m ). Sensitivity index is the 

proportion of the increase in the residual sum of squares if the variable is fixed. It is a measure of 

importance of the variable. Higher values imply higher sensitivity of the variable. .................... 69 

Figure 3.5:The relationship between final simulated TC intensity ( 1m s ) and (a) the initial 

atmospheric lapse rate (Gamma; 1K km ), (b) the initial sea surface temperature (SST; C ). 

Note, the blue solid line shows the relationship fitted by EMARS emulator. Other four perturbed 

parameters are fixed to median value when the relationship is quantified. The red points show the 

simulated TC intensity from the 300 samples. To interpret the red dot points, one may need to 

bear in mind that other four parameters are also changed. The relationship describes the final 

simulated TC intensity change to (c) simultaneous change of Gamma and SST, (d) simultaneous 

change of RMW and MWS........................................................................................................... 71 

Figure 3.6: The relationship between final simulated TC SWCF ( 2W m ) and (a) the intensity of 

initial vortex seed (MWS; 1m s ), (b) the initial atmospheric lapse rate (Gamma; 1K km ), (c) 

the initial sea surface temperature (SST; C ). Note, the blue solid line shows the relationship 

fitted by EMARS emulator. Other four perturbed parameters are fixed to median value when this 

relationship is quantified. The red points show the simulated TC intensity from the 300 samples. 

To interpret the red dot points, one may need to bear in mind that other four parameters are also 

changed. (d) the relationship describes the final simulated TC SWCF change to simultaneous 

changes of Gamma and SST. ........................................................................................................ 73 

Figure 3.7: The same as Figure 3.5, however, for final simulated LWCF ( 2W m ). .................. 75 

Figure 3.8: The relationship between final simulated TC IWP ( 2g m ) and (a) the size of initial 

vortex seed (RMW; km ), (b) the size of initial vortex seed (MWS; 1m s ), (c) the initial 



   

xi 
 

atmospheric lapse rate (Gamma; 1K km ), (d) the initial sea surface temperature (SST; C ). 

Note, the blue solid line shows the relationship fitted by EMARS emulator. Other four perturbed 

parameters are fixed to median value when this relationship is quantified. The red points show 

the simulated TC intensity from the 300 samples. To interpret the red dot points, one may need 

to bear in mind that other four parameters are also changed. (e) the relationship describes the 

final simulated TC IWP change to simultaneous changes of RMW and MWS. (f) the relationship 

describes the final simulated TC IWP change to simultaneous changes of Gamma and SST. .... 76 

Figure 3.9: The same as Figure 3.5, however, for final simulated LWP ( 2g m ). ...................... 77 

Figure 3.10: The same as Figure 3.5, however, for final simulated PRECT ( 1mm hr ). ............ 78 

Figure 3.11: Univariate probability density function (PDF) of TC intensity and (a) LWCF, 
2W m  (b) SWCF, 2W m  (c) PRECT, 1mm hr . The colored contours contains the probability 

mass: red = 25%, orange + red = 50%, yellow + orange + red = 75%. The TC intensity, LWCF, 

SWCF and PRECT are final simulated output over days 9-10. .................................................... 80 

Figure 3.12: Univariate probability density function (PDF) of PRECT ( 1mm hr  ) and (a) LWP 

( 2g m ) (b) SWCF ( 2W m ). The colored contours contains the probability mass: red = 25%, 

orange + red = 50%, yellow + orange + red = 75%. The PRECT, LWP and SWCF are final 

simulated output over days 9-10. .................................................................................................. 81 

Figure 3.13: Univariate probability density function (PDF) of (a) SWCF ( 2W m ) and LWP 

( 2g m ) (b) SWCF ( 2W m ) and IWP ( 2g m ) (c) LWCF ( 2W m ) and IWP ( 2g m ) (d) 

LWP ( 2g m ) and IWP ( 2g m ). The colored contours contains the probability mass: red = 25%, 

orange + red = 50%, yellow + orange + red = 75%. The SWCF, LWP, IWP and LWP are final 

simulated output over days 9-10. .................................................................................................. 82 

Figure 3.14: Marginal relationship between final simulated TC intensity (MWS; 1m s ) and the 

five input parameters for the three model resolutions. (a.) RMW ( km ): initial size of vortex seed, 

(b). MWS ( 1m s ): initial intensity of vortex seed, (c.) Gamma ( 1K km ): vertical lapse rate, (d.) 

SST ( C ) : sea surface temperature, and (e.) RH-500: mid-level relative humidity. Black line 

denotes the results computed from ensemble run with model resolution of 1.0 1.0 . Blue line 

denotes the results computed from ensemble run with model resolution of 0.5 0.5 . Red line 

denotes the results computed from ensemble run with model resolution of 0.25 0.25 . .......... 85 

Figure 4.1: Schematic plots of the Reed-Jablonowski TC tese case illustrated with CAM 5.1.1. at 

days (left) 0, (middle) 5, and (right) 10 at the resolution 0.5  L30. (a) – (c) Latitude-longitude 

cross section of the wind speed at 100 m above surface. (d) – (f) Longitude-height cross section 

of the wind speed through the center latitude of the vortex. Radius denotes the distance from the 

vortex center. Similar plots has been produced in Figure 7 (Reed and Jablonowski 2011a). ...... 93 



   

xii 
 

Figure 4.2: Example plots of the six selected characteristics of the control tropical cyclone 

simulation: (a) wind field, (b) total precipitation rate, (c) longwave cloud radiative forcing 

(LWCF), (d) shortwave cloud radiative forcing (SWCF), (e) cloud liquid water path (LWP), and 

(f) cloud ice water path (IWP). Note, Fig. 1d shows the magnitude of SWCF. ........................... 99 

Figure 4.3: Changes in simulated tropical cyclone (a) intensity, (b) precipitation rate, (c) 

longwave cloud radiative forcing (LWCF), (d) shortwave cloud radiative forcing (SWCF), (e) 

liquid water path (LWP), and (f) ice water path (IWP) caused by perturbation of each of the 24 

physical parameters spanning its range. The solid blue line shows the value of the control run to 

allow the reader to assess the relative change. Background color is applied to distinguish the 

physical schemes. Light blue denotes ZM deep convection scheme; light pink denotes UW 

shallow convection scheme; light gray denotes MG two moment cloud microphysical schemes; 

light purple denotes the UW moist turbulent scheme and light yellow denotes the cloud 

macrophysics scheme.................................................................................................................. 101 

Figure 4.4: Response of TC characteristics: (a) Intensity, (b) Precipitation rate, (c) LWCF, (d) 

SWCF, (e) LWP, and (f) IWP to changes in each variable’s most sensitive physical parameter. 

The red dotted line represents the response function computed from the control run. The black 

dotted lines represent the results from the four member perturbation runs, which are produced by 

slightly change the location of vortex center in the initial condition. The blue solid line represents 

the mean from the five-member ensemble runs. Red star marks the control value. Green star 

marks the extreme value that has larger contrast with the control value. ................................... 105 

Figure 4.5: The output fields of extreme runs that are marked out by green star in Figure 4.4. (a) 

wind field, (b) precipitation rate field, (c) LWCF,  (d) SWCF, (e) LWP, and (f) IWP. ............. 106 

Figure 4.6: The comparison of the uncertainty ratio among simulated TC intensity, precipitation 

rate, LWCF, SWCF, LWP and IWP for three parameter cases (a) C0_ocn, (b) dmpdz, and (c) tau. 

The uncertainty ratio is defined as the uncertainty range (Figure 3) divided by the control value. 

The control value is calculated from the simulation with all the physical parameters set to default 

value.  The red bars are marked out for the cases when the TC characteristics have the largest 

uncertainty range, of which the response functions are shown in Figure 4. Note the scale in Y-

axis is different in (a), (b) and (c). .............................................................................................. 109 

Figure 4.7: Comparison of the caused uncertainty range by linear (OAT) and nonlinear (LHS) 

perturbation of physical parameters on simulated TC characteristics: (a) intensity, (b) 

precipitation rate, (c) LWCF, (d) SWCF, (e) LWP, and (f) IWP. OAT: one-at-a-time, LHS: latin 

hypercube sampling. The uncertainty range are quantified by the difference between maximum 

and minimum values. 8 key physical parameters are perturbed for LHS: dmpdz, tau, C0_ocn, 

rkm, Dcs, ai, a2l, c._rhminl.  480 simulations are run for LHS. ................................................. 112 

Figure 4.8: Kernel Density Estimate (KDE) of (a). Intensity, (b). Total precipitation rate, (c). 

LWCF, (d). SWCF, (e). LWP, and (f). IWP from the 480 simulated samplings. ...................... 114 



   

xiii 
 

Figure 4.9:  (a.) The histogram of the simulated TC intensity from 480 simulation runs that 

perturb the physical parameters simultaneously using LHS method. (b.) The histogram of the 

simulated TC intensity from 300 simulation runs that perturb five initial conditions 

simultaneously using LHS method. The horizontal resolution for (a) and (b) is 0.5 degree. (c.) 

The histogram of simulated TC intensity difference while horizontal resolution is changed from 1 

degree to 0.5 degree. (d.) The histogram of simulated TC intensity difference while horizontal 

resolution is changed from 0.5 degree to 0.25 degree. ............................................................... 116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

xiv 
 

 

 

 

LIST OF TABLES 

 

Table 2.1: Summary of the numerical experiments and the values of 0u , 1u  and  (background 

basic vertical lapse rate) for each simulation. 0u controls the direction and magnitude of wind 

shear. 1u  represents the direction and magnitude of vertically-constant mean flow, and thereby 

controls the vertical inflection point of the wind profile.   is tuned to adjust the environmental 

lapse rate at the center of the initial vortex seed (10 N,180 E ) to be consistent with control run. 

Several decimal numbers are retained for the sake of accuracy. .................................................. 29 

Table 3.1: List of names for the TC-relevant output variables used in this paper (Vortex center is 

defined by the minimum surface pressure). .................................................................................. 63 

Table 3.2: Short Names, Minimum and Maximum Values, and Descriptions of the Five input 

parameters in the ensemble simulation with 0.5 0.5 grid spacing. .......................................... 65 

Table 3.3: NRMSE calculated from the three surrogate model (GaSP, MARS, EMARS) for (a). 

Intensity, (b). Total precipitation rate, (c).LWCF, (d). SWCF, (e) LWP and (f) IWP. For 300 

samplings, a subset of the first 280 points are used to build the surrogate model and the last 20 

points is used for training. The NRMSE is calculated from the 20 predicted points with their 

associated simulated points. GaSP: Gaussian Process Model, MARS: Multivariate Adaptive 

Regression Splines (MARS) , EMARS: Expanded Multivaraite Adaptive Regression Splines. . 67 

Table 4.1: Lists of the tunable physical parameters, their physical meaning, uncertain range, units, 

default value and test value. Those parameters are selected from Zhang-McFarlane (ZM) deep 

convection, University of Washington (UW) shallow convection, UW moist turbulence, 

Morrison-Gettelman (MG) two moment cloud microphysics and Cloud macrophysics schemes. 

Each parameter has four sampling points: minimum value, maximum value, default value and a 

different fourth test value randomly selected from its range. The first parameter is chosen to have 

two test values as its default value is equivalent to maximum value. CAPE: convective available 

potential energy. ............................................................................................................................ 96 

Table 4.2: NRMSE calculated from the GaSP for (a). Intensity, (b). Total precipitation rate, 

(c).LWCF, (d). SWCF, (e) LWP and (f) IWP. The NRMSE is calculated from the cross 

validation method. GaSP: Gaussian Process Model, MARS:..................................................... 118 

 



   

xv 
 

 

 

 

 

LIST OF APPENDICES 

 

Appendix 

A.   Derivation of the analytic initial conditions………………………………………………130 

B.   Validation of EMARS…………………………………………………………………......136 

C.   Physical explanation of the 24 selected parameters in CAM 5.1.1………………………..142  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

xvi 
 

 

 

 

ABSTRACT 

Quantitative Assessment of Tropical Cylcone Simulation Sensitivity in the Community 

Atmosphere Model 

by  

Fei He 

 

Chair: Derek J. Posselt  

 

This work conducted nearly two thousand idealized AGCM simulations to systematically assess 

the sensitivities of simulated Tropical cyclone (TC) characteristics to changes in model input and 

evaluate the performance of three surrogate models for approximating the behavior of numerical 

models. The TC characteristics are intensity, precipitation rate, longwave cloud radiative forcing 

(LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice 

water path (IWP). The National Center for Atmospheric Research (NCAR)/Department of 

Energy (DOE) Community Atmosphere Model (CAM) version 5.1.1 is adopted. First, the Reed-

Jablonowski TC test case was upgraded to a version with background vertical wind shear, in 

which the well-known shear-induced intensity change and structural asymmetry in tropical 

cyclones are well captured. Then, a statistical framework, consisting of a combination of Latin 

Hypercube Sampling (LHS) and surrogate models, is used to investigate the sensitivities of the 

six simulated TC characteristics to five model initial conditions: initial size and intensity of 

vortex seed, sea surface temperature, vertical lapse rate and mid-level relative humidity. The 

surrogate models are shown to successfully reproduce the response of CAM to changes in input 

conditions, and serve as powerful tools for quantifying numerous model input-output 

relationships with reduced computational burden. Finally, we examined the impact of 

parameterized physical processes on TC simulation and quantified the relative importance of 24 
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physical parameters on the six TC characteristics, respectively. The response function between 

TC characteristics and the associated most sensitive parameters are characterized. A group of 

ensemble simulations showed that the interactive effect among physical parameters greatly 

enlarges the uncertainty of simulated TC precipitation, LWCF, SWCF and IWP. Parameter 

uncertainty in simulated TC intensity is comparable to uncertainty resulting from changes in 

model initial conditions and model resolution. The Gaussian Spatial Process Model (GaSP) 

produced robust fits to CAM model responses in TC intensity, LWCF and SWCF, but 

experienced some difficulty reproducing TC precipitation rate, LWP and IWP.   
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CHAPTER 1 

Introduction 

 

1.1. Tropical Cyclones 

1.1.1. The Importance of Tropical Cyclones 

Tropical cyclones, also commonly known as hurricanes (Western Hemisphere) or typhoons 

(West Pacific), are intense atmospheric vortices that develop over a warm ocean surface with 

SST generally greater than 26.5 C , though it should be noted that Mctaggart-Cowan et al. (2013, 

2015) found that the presence of a baroclinic precursor can alter the SST threshold to as low as 

24.3 C . Tropical cyclones draw energy from the underlying warm water, and transfer and 

accumulate it to gigantic kinetic energy during their growth. This energy can make them become 

destructive if landfall was made. A single storm in Bangladesh in 1970 killed nearly half a 

million people (Emanuel 2003). During the 2004 and 2005 hurricane seasons, United States 

sufferred a financial loss of over $150 billion (Pielke et al. 2008).  About 90 tropical cyclones 

(TCs) develop each year around the globe (Zhao et al. 2012), and it is currently estimated that 

this number of TCs causes worldwide annual damage of 19,000 fatalities and $26 billion 

(Mendelsohn et al., 2012). TCs are one of the most lethal, destructive and expensive natural 

disasters. 
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Tropical cyclones also bear profound scientific interest. A tropical cyclone is composed of 

various interesting processes including: vortical hot towers, individual convective updrafts, cloud 

microphysics, cloud electrification, precipitation, turbulent mixing, surface momentum transfer, 

etc. They also play multiple roles in the Earth’s climate system. Recent prior studies have 

suggested that TCs could stabilize the environment in the area along the TC track (Schenkel and 

Hart 2011) and even across entire ocean basins (Sobel and Camargo 2005). Moreover, TCs have 

been found to alter the meridional oceanic heat transport (e.g., Emanuel 2001), modulate the 

atmospheric mid-latitude Rossby wave pattern (Riemer et al. 2008), and greatly reduce the 

hemispheric zonal available potential energy gradient through the poleward transport of heat and 

moisture (Cordeira 2010).  

1.2.2. The Structure of Tropical Cyclones 

A tropical cyclone is a low pressure and rapidly rotating system characterized by strong winds, 

spiral cloud shields and rain bands (Figure 1.1). At its center is the eye, characterized by 

descending air that may be cloud free and calm in mature storms. The environment in the eye is 

warmer than its surroundings during the lifetime of a TC. Thus, tropical cyclones are also 

referred to as warm core systems. The edge of the eye is called the “eyewall”, and is composed 

of thick and rapidly rotating deep clouds. The eyewall leans outward away from the center of 

rotation with height, resembling an arena football stadium. Extreme weather conditions occur in 

the eyewall. Here, the wind speed is greatest, the upward vertical motion of air is largest, clouds 

reach to their highest altitude, and precipitation is heaviest. The greatest wind damage occurs 

when the eyewall passes over the land. However, in the developing stage of a tropical cyclone, 

there may not be a well-defined eye wall, and many TCs do not exhibit a cloud-free eye at any 

time during their evolution.  
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Figure 1.1: Hurricane Isabel (2003) as seen from orbit during Expedition 7 of the International 

Space Station. Credit given to: Mike Trenchard, Earth Sciences & Image Analysis Laboratory, 

Johnson Space Center 

The eye, eyewall, and surrounding rainbands, characteristics of a mature tropical cyclone, 

are clearly visible in the view from space shown in Figure 1.1. The winds decrease gradually 

with increasing distance outward from the eyewall, and the outer edge of the eyewall defines the 

size of a tropical cyclone. Several rain bands circulate around the eyewall, and air rises in those 

deep clouds with sinking air between the rings of deep clouds. The vertical structure of a tropical 

cyclone is shown in Figure 1.2.  
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Figure 1.2: Diagram of a northern hemisphere hurricane. Credit given to: the COMET program.  

  

As shown in Figure 1.2, the wind motion can be divided into two parts: primary circulation and a 

secondary circulation. The primary circulation is the rotational part of the flow. The secondary 

circulation is the radial-vertical overturning part of the flow. Air rises from the eyewall, spreads 

outward through the outflow cirrus shield, descends downward and spirals inwards toward the 

eye near the surface. The primary circulation has the strongest winds and is responsible for the 

majority of the damage a storm causes, while the secondary circulation is slower but governs the 

energetics of the storm.  

1.2. Numerical Simulations of Tropical Cyclones 

Reconnaissance aircraft, meteorological radar and satellites are powerful observation 

techniques to reveal the essence of a hurricane’s structure and inner workings (Emanuel 2003). 

Mathematical models provide another potential source of information about hurricanes. They can 
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be effective at filling in details that are difficult to observe. For example, it is very difficult for 

aircraft to measure the air’s vertical motions, upward and downward, in a tropical cyclone. An 

airplane may be able to sample a few updrafts and downdrafts on its way across a storm, but 

such measurements are unlikely to reflect the full range of motions in a storm. Computer models 

have the advantage of being able to simulate enough points to cover the complete vertical 

movement of air in a tropical cyclone. In addition, numerical models are effective in testing 

assumptions and hypotheses, conducting short term forecasting, and performing long term future 

prediction of tropical cyclones.   

1.2.1. Limited Area Models (LAMs) 

Limited Area Models (LAMs) have been the primary tools used to simulate and forecast 

TCs over the past half century, because they are able to ultilize small horizontal grid spacings 

(e.g. 2 km; Gentry and Lackmann 2010) and thus capture very fine structures in TCs such as 

mesoscale eddies, vortical hot towers, etc. The domain boundaries of LAMs are forced by 

external sources such as larger domain models, observational data or idealized conditions. One 

of the most frequently used LAMs is the Weather Research and Forecasting Model (WRF, 

Skamarock et al. (2008)).  

LAMs are often used for short-term, deterministic forecasting such as predicting the 

intensity of developing tropical cyclones during Atlantic hurricane seasons and investigating the 

characteristics (e.g. strength, development, track) of individual cyclones. The model is usually 

initialized with a “bogus” vortex (an idealized balanced circulation; e.g., Kwon and Cheong 2010) 

and horizontal grid spacing can be as fine as 1-10km. The model results are typically compared 

to observations to assess realism and skill (Nolan et al. 2009, Wang and Xu 2010, Abarca and 



   

6 
 

Corbosiero 2011). Idealized simulations are often designed in LAMs to isolate the effect of 

dynamical features, explore environmental impacts, and test changes in model structure (e.g. 

physical parameterization, grid resolution and dynamics-physics coupling; Nolan 2007, Nolan et 

al. 2007, Hill and Lackmann 2009).  

Despite these strengths, LAMs have major limitations in simulating TCs due to their 

inherent model designs. They cannot simulate the impact of large scale variability such as El 

Nino Southern Oscillation (ENSO) on TC evolution, and cannot represent the two-way 

interaction between TCs and large scale environmental flows. LAMs are also sensitive to several 

issues, such as the domain size, location of lateral boundaries, waves reflected from boundaries, 

etc, all of which will induce additional errors in TC simulation and forecasting. These are not 

issues with global climate models. 

1.2.2. Atmospheric General Circulation Models (AGCMs) 

Manabe et al. (1970) was the first to identify a tropical cyclone-like disturbance in an 

AGCM with model resolution of 417 km. Their simulated TCs were much larger and weaker 

than observed. Following that work, several more studies (Broccoli and Manabe 1990; Haarsma 

et al. 1992; Bengtsson et al. 1995) simulated more realistic storm structure with higher resolution 

AGCMs. Nevertheless, the model resolution was still coarse and the use of AGCMs for TC 

simulation was questioned by Henderson-Sellers et al. (1998).  

As the model resolution become 100 km or higher, AGCMs showed improved 

representation of tropical cyclone activity in frequency and distribution (Kobayashi and Sugi 

2004; Bengtsson et al. 2007a). LaRow et al. (2008) and Zhao et al. (2009) were also able to 

capture observed interannual variability with correlations of 0.78 and over 0.8, respectively for 
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North Atlantic hurricanes. Several recent studies suggest that AGCMs with resolutions in the 

range of 20-100 km are adequate for studying many aspects of tropical cyclone (TC) genesis and 

frequency distributions (e.g., Bengtsson et al. 2007a,b; Oouchi et al. 2006; LaRow et al. 2008; 

Zhao et al. 2009; Vitart 2006; Gualdi et al. 2008).  The current suite AGCMs are able to achieve 

fine resolution of 20-km (Oouchi et al. 2006) or even 10 km (Manganello et al. 2012). Some 

AGCMs even run these fine resolutions for multidecade simulations. Two examples are the 

Meteorological Research Institute-Japan Meteorological Agency (JMA) GCM (Murakami and 

Wang 2010), and the European Centre for Medium Range Weather Forecasts (ECMWF) 

Integrated Forecasting System (IFS) model (Manganello et al. 2012).   

In general, using AGCMs to simulate tropical cyclones has for some time been limited by 

horizontal and vertical resolution and computational demand. Improvements of computer 

architectures and high-resolution AGCMs over the past decade have eased the restrictions on 

model resolution. The recent advancement in computational resources and parallel computing 

has stimulated new interest in simulating TCs in AGCMs, which are now capable of being run 

with as fine as 12.5 km grid resolution. The increasing interest in TCs global distribution, 

climatological evolution, and future changes under climate warming scenarios further ensures 

that simulating TCs with AGCMs is inevitable. While global models are commonly used for TC 

prediction, there is also a recent growing trend that AGCMs are being tested for short term 

forecasting and compared with weather prediction models. For example, Zarzycki and 

Jablonowski (2015) successfully forecast the recurvature of Hurricane Sandy. Xiang et al. (2015) 

also studied the prediction of Hurricane Sandy and Super Typhoon Haiyan in the Geophysical 

Fluid Dynamics Laboratory (GFDL) coupled model. As numerical algorithms and computational 
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resources advance, and considering the advantage of allowing two-way interaction in global 

climate models, this trend may grow quickly in the next few decades. 

1.3. The Current State of Simulating and Predicting Tropical Cyclones in AGCMs 

1.3.1. Detecting Tropical Cyclones in AGCMs 

An essential first step in any analysis of tropical cyclones in AGCMs is to detect and track 

the storms in the model output. Considering the complexity of model output and the small size of 

tropical cyclones relative to the Earth, it is a challenging task and may result in extra uncertainty 

in tropical cyclone studies using AGCMs. Figure 1.3 shows a simulation of hurricane Katrina 

(2005) in a global model output from the GFDL global climate model. The hurricane is small in 

size relative to the global scale circulation, and its detection could easily be affected by the 

presence of other deep convective systems in the global model. A number of schemes for TC 

detection have been developed over the years. They share many common characteristics but also 

have some important differences. They were summarized into five categories in Walsh et al. 

(2015): (1) structure-based threshold schemes (Walsh et al. 2007); (2) variable threshold 

schemes (Murakami et al. 2011); (3) schemes in which model output is first interpolated onto a 

common grid before tracking (Hodges 1995; Bengtsson et al. 2007a; Strachan et al. 2013); (4) 

model-threshold-dependent schemes (Camargo and Zebiak 2002); and (5) circulation-based 

schemes (Tory et al. 2013). It is clear that simulated tropical cyclone results should not be 

dependent on the tracking schemes; however, some studies show dependence (Camargo 2013; 

Tory et al. 2013b; Murakami et al. 2014). Tracking TCs can become additional source of 

uncertainty in full model runs.    
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Figure 1.3: Outgoing Longwave Radiation (OLR). Hurricane Katrina (2005) simulated in 

Geophysical Fluid Dynamics Laboratory global atmospheric cubed-sphere (C360) with 25 km 

resolution.  

  

1.3.2. Modeling Tropical Cyclones in Present Climate State 

Nowadays, AGCMs have been widely used for studies of tropical cyclones. They are used 

for the tropical cyclone statistics of genesis, track, intensity, frequency, and precipitation in 

either global or basin wide spatial scale. They are also used for 1-5 day operational hurricane 

forecasting, seasonal to decadal hurricane prediction, multi-decadal climate variability, and 

examining changes to hurricanes under climate change. A starting point is the ability of climate 

models to simulate the climatology of TCs in current-climate simulations. Studies show that the 

simulated global TC numbers range from small values to numbers similar to those observed 

(Shaevitz et al. 2014). Better results can be obtained from higher-resolution versions CAM5 

(finer than 50-km horizontal resolution as shown by Wehner et al. 2014). Their simulation was 

capable of generating intense tropical cyclones. The annual cycle of formation is reasonably well 
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simulated in many regions, although there is a tendency for the amplitude of the simulated 

annual cycle to be less than observed. The performance at simulating Atlantic tropical cyclone 

formation is poorer than for other basins. Studies show that use of higher resolution AGCMs 

could improve the performance (Mei et al. 2014). Strachan et al. (2013) found that the observed 

interhemispheric asymmetry in tropical cyclone formation between Northern Hemisphere and 

Southern Hemisphere was not well captured by a high resolution AGCM. The fact that 

increasing resolution solves some problems, while not addressing others, indicates increasing 

resolution alone is not sufficient to produce a realistic cyclone climatology.  

1.3.3. Future Changes of Tropical Cyclones Under Climate Warming and Their 

Uncertainty   

One important contribution of AGCMs is that they could be used to predict future changes 

of tropical cyclones under various climate change scenarios. There are substantial studies on this 

topic. Oouchi et al. (2006) found that tropical cyclone frequency in a warmer climate experiment 

was globally reduced by about 30%. Bengtsson et al. (2007b) found considerable reduction in the 

number of TCs by approximately 20% in the 21st century, while the number of storms with 

maximum wind speeds greater than 50 1m s  increased by a third. Bender (2010) found that the 

frequency of intense storms (category 4 and 5) may double by the end of the 21st century; 

however, the overall frequency of tropical cyclones may decrease. Other phenomena associated 

with hurricanes are also found to change in response to climate change. For example, Chauvin et 

al. (2006) found that mean hurricane dynamical characteristics are slightly changed by the 

warming but precipitation core and latent heat flux are enhanced. 
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Projections of the potential impacts of global warming on regional tropical cyclone (TC) 

activity vary considerably, especially at the ocean-basin scale. Quantifying its possible range is 

important for estimations of potential future social and economic loss.  Studies found a number 

of factors that could lead to such inconsistencies: (1) assumed spatial patterns of future changes 

in sea surface temperature (SST; Sugi et al. 2009; Zhao et al. 2009); (2) model physical 

parameterizations (Walsh et al. 2010); (3) the chosen global warming scenario (Stowasser et al. 

2007); and (4) the methods used to detect TCs (Walsh et al. 2007). Some studies have addressed 

uncertainties due to variations in assumed future changes in SST (Emanuel 2008; Sugi et al. 

2009; Zhao et al. 2009), some other studies have addressed the uncertainties that arise from 

differences in model physics (e.g., Yokoi et al. 2009; Yokoi and Takayabu 2009; Walsh et al. 

2010).  Murakami et al. (2012) conducted multi-physics and multi-SST ensemble experiments 

using the 60-km-mesh MRI-AGCM to assess the uncertainties of the future changes in tropical 

cyclone activity and found that all ensemble experiments consistently project significant 

reductions in global and hemispheric TC genesis numbers.  

1.4. Progress in Improving the Performance of AGCMs to Simulate Tropical Cyclones  

While much progress has been made over the last two decades in the modeling of tropical 

cyclones in AGCMs, there are still large deficiencies. Numerous efforts have taken various 

pathways to improve the representation of tropical cyclones in AGCMs. The efforts can be 

summarized in two categories: one is to improve the computing architecture and numerical 

algorithms, and the other is to design test cases for better model evaluation. The former includes 

the application of parallel computing, supercomputers, high-resolution, variable resolution, non-

hydrostatic dynamical cores, scalable quasi-uniform meshes, and scale-aware physical 

parameterizations. The latter includes building simpler and more idealized tropical cyclones for 
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model testing to better understand the impact of model construction on tropical cyclone 

simulations and thus to instruct the analysis of full GCMs.  

1.4.1. Numerical Enhancement  

As the method that holds perhaps the most promise for future simulation of tropical 

cyclones in AGCMs, the majority of efforts to improve TC representation have been placed on 

improving the computing architecture and numerical algorithms. In this paradigm, parallel 

computing and supercomputers are implemented so as to run AGCMs with fine resolution. As 

model resolution refines to 10 km or finer, AGCMs need to utilize the non-hydrostatic equations, 

as the hydrostatic approximation is no longer valid. Non-hydrostatic dynamical cores have been 

developed (Simarro et al. 2013; Ullrich and Jablonowski 2012) for AGCMs to better represent 

tropical cyclone processes. Scalable quasi-uniform meshes that replace the typical latitude-

longitude mesh based on icosahedral (Williamson, 1968) or cubed-sphere grids (Sadourny 1972) 

represent another solution that enables very fine resolution in AGCMs. These methods were 

originally designed to eliminate the computational inefficiency due to small physical grid 

spacing in the pole regions. The Non-hydrostatic Icosahedral Atmospheric Model (NICAM) 

model that utilizes a geodesic mesh has shown the ability to simulate tropical cyclones (Tomita 

and Satoh 2004). The GFDL finite-volume cubed-sphere model (Putman and Lin 2007, 2009) 

has been used to conduct tropical cyclone climate change experiments (Zhao et al., 2009). In 

addition to advances in computational resources, non-hydrostatic dynamical cores and quasi-

uniform meshes, progress has also been made in the area of mesh refinement within AGCMs. 

Mesh refinement techniques allow for finer resolution in limited area of the global domain and 

offer an attractive approach to simulating tropical cyclones in AGCMs. They allow for 

implementation of very fine resolution in active hurricane regions and at the mean time reduce 
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the computational burden, as other areas are covered with coarse resolution. This enables to the 

simulation of fine scale structures of hurricanes in AGCMs. The mesh refinement could be either 

static or adaptive. Recently, mesh refinement techniques have shown great success in simulating 

and forecasting tropical cyclones (Zarzycki et al. 2014a,b; Zarzycki and Jablonowski 2014, 

2015). As the model resolution and dynamical cores advance in AGCMs to better represent 

tropical cyclones, development of scale-aware physical parameterization is another important 

direction, as many key processes in tropical cyclones reply on physical parameterization. The 

development of scale-aware parameterizations is a new and developing research field, and only a 

small amount of work has been performed (Chen et al., 2011). 

1.4.2. Idealized Tropical Cyclone Simulation for Model Evaluation   

While computing architecture and numerical algorithms are advancing, another necessary 

research part is to ensure the model construction can represent tropical cyclones in a manner that 

is consistent with fundamental scientific understanding. Reed and Jablonowski have designed a 

tropical cyclone test case and evaluated the physical and dynamical components of CAM to 

assess their reliability for tropical cyclone studies during a series of experiments (Reed and 

Jablonowski 2011a, b, c; 2012). They first developed an idealized tropical cyclone test case for 

high-resolution GCMs and implemented it in aqua-planet mode with constant sea surface 

temperatures (Reed and Jablonowski 2011a). Their initial conditions are based on an analytic 

initial vortex seed in gradient-wind and hydrostatic balance, which intensifies over a 10-day 

period. Second, they assessed the influence of changes in the model parameterization package on 

the development of the tropical cyclones (Reed and Jablonowski 2011b). They found that the 

choice of the CAM physics suite has a significant impact on the evolution of the idealized vortex 

into a tropical cyclone. Third, they also explored the impact of initial-data, parameter and 
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structural model uncertainty on the simulation of a tropical cyclone like vortex in the CAM 

(Reed and Jablonowski 2011c). In addition, a test case of intermediate complexity was 

introduced. The impact of the four CAM dynamical cores (the resolved fluid flow component) 

on the tropical cyclone intensity and size was evaluated (Reed and Jablonowski 2012). Reed and 

Jablonowski (2011a, 2011b, 2011c and 2012) have successfully used this test case to reveal the 

impact of grid resolution, dynamical cores and physical parameterization packages on the 

development of tropical cyclones. Building on this foundation, we extend the evaluation to a 

more systematic assessment using uncertainty quantification techniques.   

1.5. Uncertainty Quantification and Sensitivity Analysis     

The uncertainty quantification (UQ) framework has come to refer to a set of techniques now 

widely used to examine uncertainties in numerical models associated with initial conditions, 

model physics parameters, and construction (Stensrud et al. 2000; Murphy et al., 2004; van den 

Heever and Cotton 2004; Posselt and Vukicevic 2010; Collins et al., 2011; Berner et al. 2011; 

Posselt and Bishop 2012; Posselt 2016; Posselt et al. 2016). Calculations with numerical models 

are often referred to as numerical experiments, by analogy to classical laboratory experiments. 

Usually, many numerical experiments are carried out to determine the response of a numerical 

model to variations of internal or external parameters over some range of interest. If individual 

experiments are computationally inexpensive, and if the number of independent parameters is 

small, it may be possible to search the entire parameter space of the model. This is difficult, 

however, if the dimension of parameters space is even moderately large or the codes are 

expensive to run. Numerous methods are developed for the design and analysis of numerical 

experiments that are especially useful and efficient in multidimensional parameter spaces. This 
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includes space filling design methods (e.g. Latin Hypercube Sampling method) and surrogate 

models, which fit a statistical model to the output of the numerical model.     

1.5.1. Latin Hypercube Sampling and Other Techniques for Uncertainty and Sensitivity 

Analysis  

The assessment and presentation of the effects of uncertainty are now widely recognized as 

important parts of analyses for complex systems. The Latin Hypercube Sampling (LHS) method 

is a component in the UQ process that generates a space-filling ensemble of samples (McKay, et 

al. 1979; Iman and Shortencarier 1984; and Helton and Davis 2000). The use of LHS constitutes 

part of what is often called a Monte Carlo procedure for the propagation of uncertainty. It seeks 

to accurately extract as much trend data from a parameter space as possible using a limited 

number of sample points. While the input parameter range is divided into equi-probable non-

overlapping intervals, LHS requires that every row and column in the hypercube of partitions has 

exactly one sample, which ensures full coverage of the range of the input variables.  

In addition to LHS, there exist a number of other procedures that are also used for the 

propagation of uncertainty, including differential analysis, response surface methodology (RSM), 

the Fourier amplitude sensitivity test (FAST) and the closely related Sobol’s variance 

decomposition, and fast probability integration (FPI). All techniques have positive and negative 

features, and no single technique is optimum for all situations. Monte Carlo techniques (Ma and 

Ackerman 1993; Ma et al. 1993; Gwo et al. 1996) are based on the use of a probabilistic 

procedure to select model input and result in a mapping between analysis inputs and outcome. 

The major drawback is computational cost. This is especially the case if long-running models are 

under consideration or probabilities very close to zero or one must be estimated. Differential 
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analysis (Eberhard and Bischof 1999; Griewank 2000) is based on developing a Taylor series 

approximation to the model under consideration. But it is inherently local and can be difficult to 

implement sometimes and require large amounts of human or computational time. Response 

surface methodology (RSM) (Draper and Pukeisheim 1996) is based on using an experimental 

design to select model input and then developing a response surface replacement for the original 

model. The FAST approach (Cukier et al. 1973; 1978) and Sobol’ variance decomposition 

(Sobol’ IM 1993) are based on a direct decomposition of variance into the parts contributed by 

individual variables. Fast probability integration (FPI) (Wu Y-T. 1987; Haskin et al. 1996) is 

based on the use of analytic procedures to evaluate distribution functions.   

1.5.2. Multiple Predictor Smoothing Methods for Sensitivity Analysis  

Latin hypercube sampling is widely used in Monte Carlo (i.e., sampling-based) approaches, 

analyses of this type, especially when computationally intensive models are involved. 

Meanwhile, sensitivity analysis also requires the use of regression-based techniques that are 

based on multiple predictor smoothing methods. Detailed descriptions of these techniques can be 

found in Storlie and Helton (2008). These techniques include the traditional parametric 

regression model, nonparametric approaches based on local data smoothing, and stepwise 

implementation for regression.  

Parametric regression models establish a continuous mathematical function between 

predictor x (
1 2( , ,..., )nx x x x ) and targeted variables y . The basic mathematical functions that 

form such regression models can be linear, logarithmic, square root, quadratic, and nonlinear. 

For example,
0 1 2 3exp( )y x x        , where the relationships between y and the only 

predictor x are nonlinear. Once the candidate form for the parametric regression model has been 
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determined, the j  s can be estimated with techniques based on least squares, which is the 

maximum likelihood estimate when the   s are normally distributed.  

Nonparametric regression can be more effective at representing nonlinear relationships. It is 

often called smoothing and is a form of surface approximation that is based on assumed 

relationships of the form 
1 2( ) , [ , ,...]y f x x x x   , where ( ) 0.E    Usually, very few 

restrictions or assumptions are made about the properties of f . In particular, f is not assumed to 

take a particular parametric form, such as a multivariate polynomial function. Sometimes f is 

assumed to be “smooth” in the sense that certain continuity restrictions are imposed on f and 

possibly its derivatives. Running means, locally weighted means (kernel smoothers), locally 

weighted regression, smoothing splines, generalized additive models, and recursive partitioning 

regression are typical methods to build the nonparametric regression models. Sometimes, the 

nonparametric regression models are built in a stepwise way instead of continuously.  

These different techniques lead to different statistical surrogate models such as Gaussian 

spatial process model (GaSP; Sacks et al., 1989; Craig et al., 2001), Multivariate Adaptive 

Regression Splines (MARS; Friedman et al., 1995), Multiple Additive Regression Trees (MART; 

Friedman, 1999; Friedman and Meulman, 2003) and so on.   

1.6. Thesis Overview  

The goal of this thesis is to systematically assess the sensitivity of simulated tropical 

cyclone characteristics to varying model configurations in the NCAR/DOE Community 

Atmosphere Model using UQ techniques. UQ techniques have been widely applied to the CAM 

model to optimize global climate sensitivity (Covey et al. 2013), reduce model error and improve 
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climate prediction (Jackson et al. 2008), improve the influence of convection on the global 

circulation (Yang et al. 2013), and examine other global features of CAM like radiation flux at 

the top of the atmosphere. Our study uses UQ to assess the performance of CAM for simulations 

of an individual/local dynamical system: a tropical cyclone. We start with the Reed-Jablonowski 

tropical cyclone test case, a specially designed idealized simulation, to overcome the challenge 

brought by the extremely complicated architecture of an AGCM, which makes identifying the 

causes of sensitivity difficult and computationally intractable. The idealized simulation only 

contains one single tropical cyclone in its initial condition, and we refer it as a TC test case. It 

mimics the process of developing a preexisting vortex seed into a storm-like vortex in an AGCM 

over 10 days by retaining the complete construction of the AGCM. It can efficiently reflect the 

impact of model construction and quickly identify the causes of TC variation.  

After the modeling tool is chosen, the second challenge lies in designing a statistical 

framework. Grid searching methods account for all possible combinations of the parameters in 

full space, but are extremely computationally expensive. 10 parameters require a minimum of 210 

simulations. Our single simulation at horizontal resolution of 25 km takes 24 hours to complete 

using 50 CPUs. To tackle these constraints, we proposed a framework that consists of a 

combination of Latin Hypercube Sampling (LHS) and a statistical surrogate model. GaSP, 

MARS and EMARS are evaluated. LHS has been shown to simulate uncertainty as accurately as 

a Monte Carlo sampling method while using far fewer samples. EMARS improves on 

conventional emulators by allowing quadratic or higher order components in the model building 

process, which in turn allows for higher accuracy.  

In summary, a robust uncertainty quantification framework applied a set of specially 

designed idealized simulations enables us to systematically assess the sensitivities of AGCM-
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simulated TCs to various model components, quantify the response functions and explore the 

nonlinear interactive effects among model components. Sensitivity analysis, in general, refers to 

measurement of how model output responds to the changes of model input. The goal of 

sensitivity analysis could be interpreted as figuring out the relationships between model output 

( 1,2,3,..., )jy j m  and model input ( 1,2,3,..., )ix i n . The sensitivity analysis for a tropical 

cyclone in the CAM within our work can be summarized by Figure 1.4.  

 

Figure 1.4: Schematic diagram of the sensitivity analysis in this thesis.  

 

We are mainly interested in model output of six TC characteristics: intensity, total 

(convective + grid scale) precipitation rate (PRECT), longwave cloud radiative forcing (LWCF), 

shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and cloud ice water 

path (IWP). In addition to the fact that these six characteristics govern important properties of a 

TC during its evolution, the last five variables are rarely studied in TC simulations from AGCMs. 

Moreover, the last five characteristics present a challenge for statistical surrogate models. 

Surrogate models are designed to approximate the behavior of a numerical model and to replace 

it in sensitivity analysis to lessen the computational burden of running the full numerical model. 

They have been shown to have great success in fitting model input-output relationships in many 
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other fields. However, it is unclear to what extent or complexity level the surrogate models can 

mimic the performance of numerical models of complex atmospheric systems. The TC 

precipitation, LWCF, SWCF, LWP and IWP result from very complicated dynamical and 

physical processes in AGCMs, and as such provide an opportunity to evaluate the performance 

of surrogate models.  

The thesis is organized as follows. Chapter II describes an upgraded version of the Reed-

Jablonowski TC test case with environmental vertical wind shear so that the simulation is more 

realistic and relevant to TC development. Chapter III demonstrates the utility of uncertainty 

quantification framework in assessing the sensitivity of simulated TC characteristics to multiple 

parameters. The specific case verifies the ability of AGCMs to capture the essential dynamical 

mechanisms and sensitivity of tropical cyclones to factors long believed to be important of TC 

development, such as sea surface temperature, vertical lapse rate, mid-level relative humidity, 

initial vortex size and strength. The results show that the evolution and development of simulated 

TCs in CAM can respond to the change in these factors in a way consistent with previous 

literature. Chapter IV explores the impact of numerous parameterized physical process on 

simulated tropical cyclones characteristics and quantify the relative importance of 24 physical 

processes. Chapter V gives the summary of the results and discusses the possible future work. 

Though Chapter II has developed a version of RJ TC test case with vertical wind shear, we need 

to note here that the RJ TC test case used in Chapter III and IV are still the original TC test case 

without vertical wind shear and with full physical parameterization package in CAM.  
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CHAPTER 2 

A Balanced Tropical Cyclone Test Case for AGCMs with Background Vertical Wind Shear 

 

2.1. Introduction  

Improving the ability of Atmospheric General Circulation Models (AGCMs) to model various 

weather systems is crucial as they are increasingly used to understand the current climate state 

and predict its future change. The use of observations to evaluate AGCM components (e.g., 

physical parameterizations) and model intercomparisons are important steps in this direction, but 

are not straightforward due to the inherent complexity of AGCMs. A series of test cases (e.g. 

Jablonowski and Williamson 2006a; Reed and Jablonowski 2011a, 2012) have been designed for 

the purpose of testing new model components and configurations in a reduced complexity 

system. They are analytic in form and based on four principles: deterministic, easy-to-use, 

relevant to typical atmospheric phenomena, and applicable to a wide variety of model 

formulations and grids (Jablonowski and Williamson 2006a).    

Modeling tropical cyclones in a global climate model is a challenging task. Whether GCMs 

with current resolutions are appropriate tools to investigate tropical cyclone activity, and to what 

extent they are capable of simulating aspects of observed TC activity, is still debated even 

though they have demonstrated a continuously improving skill in generating realistic TC 

characteristics (Walsh et al. 2015). A horizontal grid spacing of 2 km or less has been suggested 
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to explicitly resolve the important physical processes within TCs, and hence better represent the 

storm intensity (Gentry and Lackmann 2010). Rotunno et al. (2009) also show that simulations 

with grid spacing less than 100 m capture more realistic turbulent eddies consistent with 

observational results (Bell and Montgomery 2008). Use of 2 km grid spacing or finer is not 

computationally feasible for current GCMs. Though model development focuses on grid spacing 

of 0.25 degrees or approximately 28 km (Bacmeister et al., 2014), production runs typically use 

horizontal grid lengths of 50 km or larger (Stocker et al. 2013). Simulations run at relatively 

coarse resolution generally underestimate storm intensity (Randall et al. 2007; Strachan et al. 

2013) and cannot accurately reproduce the track density (Zarzycki and Jablonowski 2014).  

A GCM-based tropical cyclone (TC) test case was designed by Reed and Jablonowski (2011a; 

hereafter RJ2011), aiming to improve the representation and simulation of TCs in AGCMs. It 

consists of a single balanced warm-core vortex seed embedded in a quiescent tropical 

environment on an aqua-planet. After 10 simulated days, the initial vortex seed grows into a 

mature tropical cyclone-like vortex. By replacing the model initial condition with an idealized 

setup and retaining the full three dimensional model configuration (e.g. model resolution, 

physical parameterizations, dynamical core), the analytic TC test case has been demonstrated to 

successfully reveal the influences of model design on TC structure and evolution (Reed and 

Jablonowski 2011a, 2011b, 2011c) and aid in understanding differences in simulated TCs among 

different climate models. For example, Reed and Jablonowski (2011b) found that inclusion of a 

new dilute entraining plume assumption in Convective Available Potential Energy (CAPE) 

calculation is responsible for stronger and larger TCs in the Community Atmosphere Model 

(CAM) version 4 compared to CAM version 3.  
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Despite these successes, an important limitation of RJ2011’s test case is that the initial vortex 

seed is placed into an environment completely free of background vertical wind shear (VWS). 

VWS, commonly expressed as the difference of the horizontal wind between 200 hPa and 850 

hPa, is known to be a key environmental variable that affects the genesis and intensification of 

TCs (Gray 1968; DeMaria 1996; Frank and Ritchie 1999, 2001; Riemer et al. 2013; Rogers et al. 

2013). It also provides a possible dynamical connection between Atlantic major hurricane 

activity and remote atmospheric patterns such as the El Niño Southern Oscillation (Goldenberg 

and Shapiro 1996). Furthermore, Zhang and Tao (2013) showed the vertical wind shear affects 

the predictability of tropical cyclones, and larger shear magnitude leads to larger uncertainty of 

prediction. Moreover, very few observed TCs develop in a zero wind shear environment; 

therefore, incorporating VWS can provide more realistic and relevant TC simulations and enable 

tests of how the large scale environmental flow affects the development of TC structure in 

climate models. The goal of this study is to present a technique for adding background vertical 

wind shear to the TC test case that successfully simulates wind shear effects on TC development.  

Vertical Wind Shear and Tropical Cyclones  

The effect of VWS on TC genesis and development is dependent on its magnitude and direction. 

Large wind shear (e.g., 15 1m s ) inhibits tropical cyclone genesis (e.g., Goldenberg et al. 2001; 

Emanuel and Nolan 2004) and is detrimental to the intensification of developed TCs (e.g. Gray 

1968, 1975; Zehr 1992; DeMaria et al. 2001; Zehr 2003). Small or moderate shear is believed to 

either have little impact, or perhaps even be beneficial to TC intensification (Gray 1975; Tuleya 

and Kurihara 1981; Wong and Chan 2004; Paterson et al. 2005; Nolan and McGauley 2012), 

although other studies have shown contradictory results (e.g., Zeng et al. 2010; Ge et al. 2013). 

Westerly shear tends to reduce TC intensity more than easterly shear does for a given shear 
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magnitude (Tuleya and Kurihara 1981; Bender 1997; Black et al. 2002; Ritchie and Frank 2007, 

hereafter RF2007; Zeng et al. 2010).  RF2007 proposed a beta shear theory to explain this 

difference. Their study showed that a northwestward beta shear will be induced with variable 

Coriolis parameter ( f ), which can either partially offset the environmental easterly shear or 

reinforce the westerly shear.  

 The impact of VWS on TC genesis and intensification is commonly explained by the 

venting theory (Simpson and Riehl 1958; Gray 1968; Jones 1995; Smith et al. 2000; Frank and 

Ritchie 2001; Schecter et al. 2002; Reasor et al. 2004; Tang and Emanuel 2010). Simpson and 

Riehl (1958) and Gray (1968) hypothesized that storm development is inhibited by the shear-

induced loss of heat and moisture in the upper-level warm core. Frank and Ritchie (2001) 

showed that ventilation at the upper levels of the eye reduced the storm pressure anomaly in 3-

dimensional numerical simulations. The ventilation theory first addresses the kinetics of the 

interaction between vortex and environmental VWS, specifically the vertical resilience of storms 

in shear. It mainly involves two explanations, namely the tilt of the potential vorticity column by 

differential vertical background flow (Jones 1995; Smith et al. 2000), and the generation of low-

wavenumber asymmetries (Schecter et al. 2002; Reasor et al. 2004).  The theory then explains 

how ambient air of low entropy interferes the energetics of tropical cyclones and thus weakens 

the storms from a thermodynamic perspective. Tang and Emanuel (2010) identified two possible 

pathways for it: inward dry air through the radial inflow and midlevel intrusion of low entropy 

air into the eyewall.  

In addition to the ventilation theory, DeMaria (1996) hypothesized a midlevel warming 

theory.  A third explanation suggests that shear-induced persistent asymmetries in the TC core 

weaken the mean secondary radial circulation through eddy momentum fluxes (Wu and Braun 
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2004).  In recent years, Riemer and coauthors (Riemer et al. 2010, 2011, 2013) developed a new 

framework and showed that the inflow layer of the storm is persistently intruded upon by shear 

induced downdrafts, which are composed of relatively cool and dry air.   

Independent of the mechanism, the aforementioned studies suggest that incorporating vertical 

wind shear is important if idealized TC simulations are to be used in GCM diagnosis and 

development. The objective of this chapter is to present an extension of the approach of RJ2011 

that includes the effects of background vertical wind shear. Note that the intent of such a test 

case is primarily for a more accurate model evaluation and intercomparison rather than the 

development of tropical cyclone theory. Our work is organized as follows. Section 2.2 describes 

the prescribed wind profile, the analytic technique used to add background wind shear, the 

National Center for Atmospheric Research (NCAR)/Department of Energy (DOE) CAM and the 

simulation design. Section 2.3 presents the results of idealized TC simulations with different 

shear profiles. Section 2.4 draws conclusions and discusses the implications.  

2.2. Model and methodology 

2.2.1. Prescribed wind profile 

The wind profile is constructed to be similar to that shown in Fig. 4 of Frank and Ritchie (1999), 

and its mathematical formula is: 

 
0 1( , ) cos (1+tanh ) cos        (2.1)

( , ) 0

vu u u

v

    

 

 


  

v  is the meridional wind, and is set to zero. ( , )u    is the zonal wind, a function of the latitude 

 and vertical location  with / sp p  . v is defined as 6(1 ) 3.0v    , p is pressure and the 
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surface pressure sp is initially set to the reference pressure 0 1000 hPap  . An additional factor 

of cos  is introduced in Eq. (2.1) to taper the background zonal wind to zero at the poles. The 

wind speeds 0u and 1u  both are tunable constants. 0u  controls the amplitude and direction of the 

vertical wind shear. When 0u  is positive, it represents westerly shear; when 0u  is negative, it 

represents easterly shear. A larger magnitude of 0u leads to larger vertical shear. 1u controls the 

magnitude and direction of the mean background flow: positive 1u denotes westerly mean flow 

and negative 1u denotes easterly mean flow.  The term 1 cosu   does not vary with height and 

thus does not produce vertical shear itself. It affects the shear by changing the shape of the wind 

profile ( , )u   . When 1u is zero or has the same sign as 0u , the direction of the zonal wind is the 

same across all vertical levels. The shear produced by such a wind profile is called 

Unidirectional Shear in this chapter. When 1u is non-zero and has the opposite sign of 0u , the 

direction of the zonal wind changes with height; either from low level westerly to upper level 

easterly, or from low level easterly to upper level westerly, depending on the sign of 0u . The 

shear produced by such a wind profile is called Non-unidirectional Shear, also referred to as 

counter-aligned orientation of surface mean wind and shear in Rappin and Nolan (2012). For 

example, let 1 0 0( 0)u u u   , and 0 cos tanh vu u   . The result is a wind profile with low level 

easterly and upper level westerly flow, which we refer to as Non-unidirectional Westerly Shear. 

The zonal wind is zero at 500 hPa in this case. With predetermined 0u , one can control the 

vertical position of the zero point in the zonal wind profile by controlling the value of 1u  via the 

relationship 0 1cos (1+tanh ) cos 0vu u    . The position at which the zonal wind goes to 

zero is referred to the vertical inflection point in this chapter. The magnitude of the vertical wind 
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shear is typically measured as the difference of the zonal wind at 850 hPa and 200 hPa averaged 

at a given radius (e.g. 500 km radius) from the TC center or in an annular region around the 

vortex center (Emanuel 2000; Zehr 2003; Zeng et al. 2008, Nolan and Rappin 2008). Here, we 

follow the procedure used by Zeng et al. (2008), and define the shear as an annular average 

within 5 latitude around the TC center, which is defined by the location of surface minimum 

pressure.   

 

Figure 2.1: (a) Wind profile of unidirectional westerly shear with various magnitudes:
11 m s ,

15 m s ,
110 m s ,

115 m s and 
120 m s . (b) Example wind profiles for four different shear cases 

but same magnitude of 
15 m s . Case 1: Unidirectional (Uni.) westerly shear; Case 2: 

Unidirectional (Uni.) easterly shear; Case 3: Non-unidirectional (Non-uni.) westerly shear; and 

Case 4: Non-unidirectional (Non-uni.) easterly shear. Note, unidirectional and non-unidirectional 

actually describe whether the wind profile that produces the shear changes direction with height 

or not. 

 

Figure 2.1a shows wind profiles for unidirectional westerly shear with various magnitudes:

11  m s ,
15  m s , 

110  m s , 
115  m s and 

120  m s , Here, 
11  m s denotes weak wind shear, 
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15  m s corresponds to moderate wind shear and 
110  m s , 

115  m s and 
120  m s can be 

considered as large wind shear. Figure 2.1b shows four different wind profiles, each of which has 

a bulk shear of 
15  m s . They are numbered as: (1) Unidirectional Westerly (2) Unidirectional 

Easterly (3) Non-unidrectional Westerly (4) Non-unidirectional Easterly.  The additional zonal 

mean flow in cases (3) and (4) can act as a translational flow that influences the movement of the 

vortex.  The parameters for these examples are listed in Table 2.1.  

Shear Direction Shear 

Magnitude 

(
1m s ) 

0u

(
1m s ) 

1u

(
1m s ) 

 ( 1K km ) 

Control Run 0.0 0.0 0.0 7.0 

Assessment of unidirectional westerly shear 

Unidirectional Westerly  1.0 0.5303 0.0 7.0013 

Unidirectional Westerly  5.0 2.6515 0.0 7.0275 

Unidirectional Westerly    10.0 5.3030 0.0 7.0630 

Unidirectional Westerly 15.0 7.9545 0.0 7.1012 

Unidirectional Westerly 20.0 10.606 0.0 7.1430 

Assessment of unidirectional easterly shear 

Unidirectional Easterly   5.0 -2.6515 0.0 6.96493 

Unidirectional Easterly   15.0 -7.9545 0.0 6.9116 

Assessment of non-unidirectional westerly shear 

Non-unidirectional Westerly  5.0 2.6515 -2.6515 7.0273 

Non-unidirectional Westerly  15.0 7.9545 -7.9545 7.0992 
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Assessment of non-unidirectional easterly shear 

Non-unidirectional Easterly  5.0 -2.6515 2.6515 6.9649 

Non-unidirectional Easterly  15.0 -7.9545 7.9545 6.9104 

Table 2.1: Summary of the numerical experiments and the values of 0u , 1u  and  (background 

basic vertical lapse rate) for each simulation. 0u controls the direction and magnitude of wind 

shear. 1u  represents the direction and magnitude of vertically-constant mean flow, and thereby 

controls the vertical inflection point of the wind profile.   is tuned to adjust the environmental 

lapse rate at the center of the initial vortex seed (10 N,180 E ) to be consistent with control run. 

Several decimal numbers are retained for the sake of accuracy. 

 

2.2.2. Idealized initial conditions with background vertical wind shear   

With the exception of the inclusion of vertical wind shear and its effect (via thermal wind 

balance) on the meridional temperature gradient, the methodology used to construct the TC 

initial conditions is identical to that described by RJ2011. Modifications to the RJ 2011 method 

which are required by the introduction of VWS are presented here. Given a pre-specified wind 

shear profile (Eq. (2.1)), the goal is to derive an analytic, balanced set of initial conditions that 

satisfies the steady-state hydrostatic primitive equations (the full derivation is presented in 

Appendix A). The total virtual temperature field T is represented as:  

0( , , ) ( ) ( , , ),    (2.2)T T z T           

where  is the longitude, T0 is the sea surface temperature (set equal to 302.15  K in our 

simulations) and  is the user-adjustable virtual temperature lapse rate with units of 1K m . The 

height ( )z   is derived from the hydrostatic relationship and is represented as 

/

0( ) (1 ) /dR g
z T  

   , where dR = 287.04 
1 1J kg  K 

 is the gas constant for dry air, and g  is the 

gravity with a value of 9.80616 2m s .  Recall that / sp p   with 0sp p initially. Given a 
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specified shear profile, the thermal gradient wind balance requirements lead to the virtual 

temperature perturbation T*:  

2

0 0 1

12 1 1
( , , ) ( cos2 )(1 tanh )( (tanh 1.0) ),   (2.3)

4 12
v v

d

T u a u u
R


             

where a  is the radius of the earth with a value of 66.37122 10  m  and  = 5 17.292115 10  s 

is the rotational speed of the Earth.   

The surface geopotential in balance with the virtual temperature distribution in Eq. (2.2) is 

given by:  

2

0 1 0 1

1 1
( , ) ( cos(2 ) )(2 (tanh( 3.0) 1.0) 2 ( (tanh( 3.0) 1.0) ) )

4 12
s u a u a u u              (2.4) 

Appendix A explains the details of the derivation. The methodology was first used in the 

derivation of a baroclinic test case (Jablonowski and Williamson, 2006b).  

Figure 2.2 shows the wind and temperature fields from the extended test case using the 

unidirectional westerly 110 m s  shear case. Figure 2.2a is the longitude-height cross section of 

the zonal wind at 10 N (the latitudinal center of the vortex seed). Figure 2.2b shows the latitude-

height cross section of the zonal wind at 180 E (the longitudinal center of the vortex).  The 

asymmetric structure, especially at high levels, reflects the effects of the superposition of the 

environmental flow onto the vortex seed. Figure 2.2c shows the longitude-height cross section of 

wind speed at 10 N . The radius measures the longitudinal distance to the storm center. It 

represents the overall vortex structure overlaid with sheared environmental flow. Figure 2.2d 

shows the temperature at 500 hPa. The horizontal environmental temperature gradient can be 

clearly seen, as well as the TC warm core. Figure 2.2e depicts the surface geopotential. Its 
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horizontal gradient is in balance with the environmental wind. To compare with the initial 

condition without wind shear, Figure 2.2f shows the longitudinal-height cross section of the 

initial vortex seed without a background flow so that the impact of the background flow (Fig. 

2.2c) is highlighted. For descriptions of other initial conditions with zero wind shear, we refer the 

readers to RJ2011.  

 

Figure 2.2: Initial conditions for the tropical cyclone test case with 
110 m s unidirectional 

westerly shear: (a) Longitude-height cross section of the zonal wind through the center latitude 

of the vortex at 10 N , (b) Latitude-height cross section of the zonal wind through the center 

longitude of the vortex at 180 E , (c) Longitude-height cross section of the tangential wind 

centered at (10 N,180 E ) (radius denotes the distance to the center), (d) horizontal cross section 

of the 500 hPa  temperature, (e) horizontal cross section of surface geopotential, and (f) the same 

as (c) but for no shear case.   

 

2.2.3. Description of the CAM 5.1.1 in Aqua-Planet Mode  

The model chosen for our test experiment is the National Center for Atmospheric Research 

(NCAR)/Department of Energy (DOE) CAM version 5.1.1 (Neale et al. 2010). All simulations 
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use the Finite Volume (FV) dynamical core and default CAM 5.1.1 physical parameterizations: 

the Zhang and McFarlane (1995) deep convective scheme, University of Washington (UW) 

shallow convection scheme (Park and Bretherton 2009), and Bretherton and Park (2009) moist 

boundary layer turbulence scheme. Each simulation is run for 10 days with identical longitudinal 

and latitudinal grid spacing of 0.5 .      This horizontal grid spacing is equivalent to 

approximately 55 km in the equatorial region. It has been used to simulate tropical cyclones in a 

similar version of CAM5 without VWS (Reed and Jablonowski 2011c), and is equal to, or finer 

than, the resolution of the models used in the recent Intergovernmental Panel on Climate Change 

5th assessment report (IPCC, 2013). It should be noted that there is in theory no limit to the 

horizontal resolution in our initial conditions.  

The model is run with 30 vertical levels, with the model top located at approximately 2 hPa. 

The time step for the dynamical core is 90 s and 900 s (15 minutes) for physical 

parameterizations. The initial background surface pressure sp  is set to 1000 hPa and the specific 

humidity at the surface 0q is adjusted to 21.3 
1g kg
 to ensure that the surface relative humidity 

is consistent with the control run proposed in RJ2011. With the exception of the background 

temperature, wind and surface geopotential field, the model and vortex seed parameters are 

identical to the simulation described in RJ2011. The model is run on an aqua-planet with 

constant sea surface temperature of 302.15 K. The equinox solar constant is set equal to 1365 

2W m
. Atmospheric constituents (e.g., ozone, carbon dioxide, methane, etc.) are prescribed and 

distributed symmetrically about the equator. The geophysical constants (e.g., Earth’s rotation 

rate) are prescribed in the aqua-planet experiment and set to default values. These settings are 

described in the Appendix of Blackburn and Hoskins (2013).  
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2.2.4. Simulation design  

The effects of changes in shear magnitude, direction and inflection point on TC development are 

examined using simulations initialized from 12 different wind profiles (Table 1). Six simulations 

are run with unidirectional westerly shear with magnitude of 0 1m s , 1 1m s , 5 1m s , 10 

1m s , 15 1m s and 20 1m s ; two are run with unidirectional easterly shear with magnitude of 

5 1m s and 15 1m s ; two are run with non-unidirectional westerly shear with magnitude of 5 

1m s and 15 1m s ; and two are run with non-unidirectional easterly shear with magnitude of 5 

1m s and 15 1m s . Recall that Unidirectional shear refers to cases in which the horizontal 

direction of the wind does not change throughout the depth of the atmosphere, and the shear is 

caused only by the change of wind magnitude. Non-unidirectional shear means that the 

horizontal direction of the wind changes from low to high levels in the troposphere, and the shear 

is caused by changes in both wind magnitude and direction. 

Note that the introduction of shear leads to a meridional temperature gradient via the thermal 

wind balance, and as such the virtual temperature lapse rate varies with latitude. For consistency 

and to facilitate comparison of the results, all simulations are standardized by adjusting the 

constant background vertical lapse rate ( ) so that the total lapse rate is identical at the center of 

the initial vortex seed, which is at (10 N , 180 E ). This leads to a slight change of   for 

different shear cases. The ( , , )T   
 in Eq. (2.2) is retained and computed using Eq. (2.3). Table 

1 gives the values of 0 1,   and u u  for all simulations. Except for wind shear and changes 

mentioned above (
1

01000 hPa and 21.3 g kgsp q   ), all other parameters that define the 

vortex seed are the same as those used in the control run in RJ2011.  
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Each of the 12 simulations in Table 2.1 is supplemented with 8 additional perturbation runs 

(96 total perturbation runs), making the total number of simulations in this study 108. Use of 

nine-member ensembles gives insight into the robustness of the model simulations for each 

profile. Each perturbed simulation is created by imposing a small initial perturbation on the 

position of the vortex seed (10 N,180 E ) using the method described by Zarzycki et al. (2014). 

Specifically, for the perturbation runs, the center of the vortex seed is placed at ( 9.5 N,179.5 E ), 

( 9.5 N,180.0 E ), ( 9.5 N,180.5 E ), ( 10 N,179.5 E ), ( 10 N,180.5 E ), ( 10.5 N,179.5 E ), 

(10.5 N,180.0 E ), and (10.5 N,180.5 E ), respectively. Note that the intensity, track, vertical 

structure, precipitation rate and vertical velocity fields in later section are all ensemble means.    

2.3. Results 

2.3.1. Unidirectional westerly shear  

The model is first run with unidirectional westerly shear of various magnitudes to examine its 

impact on simulated TC intensity, track, vertical structure, precipitation distribution and 

convective activity.  

The simulated intensity evolution (left) and the vortex track (right) over 10 days are shown in 

Figure 2.3. The intensity is calculated as the maximum wind speed at 100 m above the surface 

and the vortex center is defined to be the location of the minimum surface pressure. The intensity 

calculation is consistent with the method used by RJ2011. From Fig. 2.3a, weak (1 1m s ) wind 

shear stimulates earlier intensification and produces comparable intensity at days 8 -10 compared 

to a simulation run without shear. Moderate (5 1m s ) shear also stimulates earlier intensification 

but produces weaker mature tropical storm (days 7 - 10) compared to the no shear case. Strong 
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shear of 10 1m s  inhibits the storm development and greatly reduces the simulated intensity. 

Very strong wind shear of 15 1m s and 20 1m s completely prevents the vortex seed from 

intensifying. The intensity in these two cases, which should not be interpreted as storm intensity, 

is calculated as the maximum wind speed in a square region enclosing the remnants of the vortex. 

The changes of TC development under various shear magnitudes are consistent with both 

previous simulation and observational studies (Gray 1975; Wong and Chan 2004; Paterson et al. 

2005; Nolan and McGauley 2012), which found that weak and moderate wind shear does not 

have a strong detrimental effect on tropical cyclone genesis and intensification, while strong 

shear greatly inhibits TC development.  
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Figure 2.3: Time evolution of the intensity (maximum wind speed at 100 m above the surface) 

and track (position of the minimum surface pressure) for tropical cyclone-like vortex under 

various magnitudes of unidirectional westerly shear.  (a) Ensemble mean of intensity, (b) 

Ensemble mean of track, (c) Standard deviation of intensity, and (d) Standard deviation of 

displacement distance of the storm center.   

 

The track of the simulated tropical cyclone-like vortex (Fig. 2.3b) is also modulated by wind 

shear. The westerly background wind advects the vortex seed eastward. Without shear and the 

associated background steering flow, the beta effect (Holland 1983) will move the vortex 

northwestward in the Northern Hemisphere. In the presence of westerly wind shear, the eastward 

movement caused by vortex advection in the background zonal wind, tends to offset the 

westward movement due to the beta effect. As shear reaches 5 1m s , advection and beta drift 

cancel, and the cyclone moves directly north (Fig. 2.3b). In the high shear cases, the beta drift is 

completely overwhelmed because the vortex is too weak to have any appreciable beta drift; 

therefore, the vortex center is advected along with the background flow (towards the east) in 

these cases. Note, no track is shown for wind shear of 15 1m s and 20 1m s as the vortex seed 

breaks in response to the strong shear. The translational speed of the vortex changes as the track 

changes. Vertical wind shear and translation speed are widely believed to be key factors 

affecting tropical cyclone intensity (Chen et al. 2006; Zeng et al. 2008); however, these are 

commonly treated separately when discussing their impact. Our work suggests that vertical wind 

shear works in concert with the translation speed. It is difficult to decouple the effect of the two 

when shear is present.  

Figure 2.3c shows that the standard deviation of the vortex intensity ensemble for each shear 

case is within 5 1m s . This validates that the results are robust to small changes in the numerical 

integration. Of the cases with non-zero shear, strong shear of 10 1m s is generally associated 
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with larger ensemble spread (as represented in the standard deviation; Figs. 2.3c and Fig. 2.3d) 

than weaker shear at days 6 -10. This is especially true for TC intensity. Also in Fig. 2.3c, the 

ensemble spread of the 1 1m s and 5 1m s shear is relatively large in early stage. Together with 

early intensification of those two shear cases seen in Fig. 2.3a, it implies that weak or moderate 

shears can have more impacts on early TC development. Interestingly, the simulations without 

shear tend to have relatively larger spread than sheared cases in both intensity and track.  

Noticeable shear impact on TC development can be further confirmed in the mean vertical 

structure (Fig. 2.4) averaged over the mature stage (days 9-10), among vortices that develop in a 

sheared environment. Compared to the no shear case (Fig. 2.4a), the vertical extent (indicated by 

the 20 1m s isotach) is comparable for shear cases 1 1m s , 5 1m s and 10 1m s . In contrast, 

the vertical extent of the inner core is suppressed in sheared cases. This can be seen by the 

shrinking of the regions encompassed by the 40 
1m s and 60 

1m s  isotachs. For very strong 

shear of 15 
1m s and 20 

1m s , the vortex seed is broken apart and no storm develops. Thus, we 

only see the sheared environmental flow in Fig. 2.4e and Fig. 2.4f. The structural change here is 

consistent with the intensity change in Fig. 2.3. The reasonably realistic vertical characteristics of 

the sheared cases demonstrate that the shear technique is congruent with the original TC test case 

throughout the model integration. The storm develops in a similar manner with changes 

consistent with the expected influence of vertical wind shear. 
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Figure 2.4: Longitude-height cross sections of the tropical cyclone-like vortex averaged over 

days 9-10 for unidirectional westerly shear: (a). 0 1m s  , (b). 1 1m s  , (c). 5 1m s  , (d). 10 1m s  , 

(e). 15 1m s  , and (f). 20 1m s  . The radius denotes the distance to the center of the vortex. Each 

cross section shown is the mean value of the nine ensemble runs. The solid black line marks the 

contour of wind speed with value of 20 1m s  , 40 1m s  , and 60 1m s  .  

 

In addition to the cyclone track and intensity, we also examine the effect of shear on the 

precipitation distribution and convective activity during the mature stage. The shear induced 

asymmetric precipitation distribution is well captured (Fig. 2.5). In the no-shear case, the 

maximum rainfall occurs in the right side relative to the direction of movement (black arrow). 

The maximum rainfall occurs in the down-shear left (DSL) quadrant in 1 
1m s  (Fig. 2.5b), 5 

1m s  (Fig. 2.5c) and 10 
1m s  (Fig. 2.5d) cases. The maximum in the 10 

1m s shear case (Fig. 

2.5d) is not as clearly evident; however, close inspection reveals more rainfall to be concentrated 

in the DSL quadrant. These results are consistent with observational studies, which show that the 

maximum rainfall rate varies with storms and often occurs in the down-shear left quadrant (Cline 

1926; Marks 1985; Burpee and Black 1989; Chen et al. 2006). Ueno (2007) also shows that the 

shear-induced rainfall asymmetry is related to the vortex strength in both observational analysis 
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and numerical modeling studies. The total precipitation is calculated as accumulated rainfall 

(where the precipitation rate exceeds 2 1mm hr  ) over the last 48 hours integrated over the 

tropical cyclone-like vortex region as circled by the black solid line in each plot. It is tabulated in 

the lower left corner of each plot in Fig. 2.5. In general, the total rainfall is correlated to TC 

strength. The three storms with no/weak/moderate shear exhibit substantially higher precipitation 

than the 10 
1m s case. The 15 

1m s and 20 
1m s cases exhibit little precipitation as the initial 

vortex seed does not develop. For this reason, the precipitation distribution for the 20 
1m s case 

is not shown.  

 

Figure 2.5: Total precipitation rate (convective precipitation rate + large scale precipitation rate) 

of the tropical cyclone averaged over days 9-10 for unidirectional westerly shear: (a). 0 1m s  , 

(b). 1 1m s  , (c). 5 1m s  , (d). 10 1m s  , and (e). 15 1m s  . (f) shows the four quadrants relative 

to shear direction. USL: up-shear left, USR: up-shear right, DSL: down-shear left, DSR: down-
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shear right. Shear direction is indicated by the red arrow and black arrow denotes the storm 

moving direction. Each plot is the mean of the nine ensemble members. The left bottom corner 

shows the area-weighted last 48-hours accumulated precipitation accounting for precipitation 

rate greater than 2 1mm hr , circled by the black solid line.  

 

Figure 2.6 shows the longitude-height cross section of vertical velocity along the direction of 

shear through the vortex center averaged over days 9-10. Compared to the 0 
1m s  case (Fig. 

2.6a), convective activity is increased along the shear direction in the 1 
1m s  (Fig. 2.6b) and 5 

1m s  (Fig. 2.6c) cases, and reduced in the upshear portion, as indicated by the -1.0 1Pa s  

isotach. It has also been shown that wind shear induces asymmetric structure changes with 

respect to the eye center (Frank and Ritchie 1999). Shear tends to initiate stronger convection 

activity along the shear direction and suppresses the convection in the upshear direction (Reasor 

et al. 2013) as seen here. For strong shear (10 
1m s ), the convection in both upshear and 

downshear directions is greatly inhibited, which is consistent with the changes in intensity, 

vertical structure and precipitation distribution noted earlier.  
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Figure 2.6: Longitude-height cross sections of vertical velocity (ensemble mean) averaged over 

days 9-10 for unidirectional westerly shear: (a). 0 1m s  , (b). 1 1m s  , (c). 5 1m s  , and (d). 10 
1m s  .  The radius denotes the distance to the vortex center. The solid black line marks the 

velocity of 1.0  
1Pa s , and 2.8  

1Pa s . Red arrow indicates shear direction. 

 

 

2.3.2. Unidirectional easterly shear and non-unidirectional shear   

The results presented in the previous section show that the effect of unidirectional westerly shear 

on tropical cyclones can be reasonably represented in our idealized simulations. We now 

examine the effect of differing shear direction and vertical inflection point of the wind profile. 

Specifically, we compare four types of shear cases: (1) unidirectional westerly shear; (2) 

unidirectional easterly shear; (3) non-unidirectional westerly shear (equivalent to unidirectional 

westerly shear plus background easterly mean flow); and (4) non-unidirectional easterly shear 
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(equivalent to unidirectional easterly shear plus background westerly mean flow). Recall that the 

wind profiles of these four shear cases are presented in Fig. 2.1b.  

It has been shown that westerly shear has a different effect on TC development than easterly 

shear with the same magnitude (RF2007; Zeng et al. 2010), with the former being more 

frequently seen in observation (Zeng et al. 2010). A few studies have also examined non-

unidirectional shear (e.g. low level easterly to high level westerly; Riehl and Shafter 1994; 

Aiyyer and Thorncroft 2006). Previous studies suggest that in considering vertical shear effects 

on TC intensity change, it is important not only to examine the shear between two standard 

pressure levels, but also the vertical profile of the shear (Zeng et al. 2010; Wingo and Cecil 2010, 

hereafter WC2010). Following these studies, this section compares the impact of unidirectional 

shear and non-unidirectional shear in two opposite directions (westerly shear and easterly shear) 

on simulated intensity, track, vertical structure, precipitation distribution and convective activity. 

The goal of our analysis is to show that the technique is robust to changes in shear direction and 

profile, and users may flexibly specify any realistic vertical wind profile. To the authors’ 

knowledge, there are no comprehensive statistical observational analyses regarding which ocean 

basin typically exhibits a given type of wind shear. However, based on Hadley cell theory, we 

may surmise that westerly shear (both unidirectional and non-unidirectional) should be more 

commonly observed in all basins, while easterly shear (both unidirectional and non-

unidirectional) occurs primarily during the Monsoon season over the Pacific and Indian Oceans.  
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Figure 2.7: Time evolution of the intensity (maximum wind speed at 100 m above the surface) 

and track (position of the minimum surface pressure) for tropical cyclone-like vortex for four 

shear cases with shear magnitude of 5 1m s  , compared to control run. (a) Ensemble mean of 

intensity, (b) Ensemble mean of track, (c) Standard deviation of intensity, and (d) Standard 

deviation of displacement distance of the storm center.    

Figure 2.7 shows the corresponding ensemble mean intensity evolution and track for the four 

profiles with moderate shear of 5 m s-1. In all cases, the application of shear stimulates earlier TC 

intensification. Storms with easterly shear intensify more rapidly than westerly shear case 

following initialization (days 1-3, Fig. 2.7a). At the mature stage (days 6-9), easterly shear (case 

2 and 4 in Fig. 2.7a) of 5 
1m s  is less detrimental for TC intensification than westerly shear 
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(case 1 and 3 in Fig. 2.7a). This is consistent with previous studies (Tuleya and Kurihara 1981; 

Bender 1997; Black et al. 2002; RF2007; Zeng et al. 2010). This is well explained by the beta-

shear theory (RF2007), which predicts that easterly shear should have a weaker effect than 

westerly shear when the tropical cyclone moves in the northwestward direction because the 

induced southeastward beta shear will partially cancel the easterly shear and partially strengthen 

the westerly shear. In our later results, we will show that strong easterly shear (15 
1m s ) is less 

detrimental than strong westerly shear, as strong shear inhibits TC development.  

A weak extra mean flow has minor impact on TC intensity (comparing case 1 with case 3, 

and comparing case 2 with case 4 in Fig. 2.7a). In contrast, the track changes significantly with 

wind shear and extra mean flow. Easterly mean flow shifts the vortex westward, while westerly 

mean flow shifts it eastward. Westerly (easterly) shear somewhat compensates the effect of 

easterly (westerly) mean flow on the change in track. A different wind profile with the same 

magnitude of shear also leads to different ensemble spread of intensity and track (Figs. 2.7c and 

2.7d). Easterly shear results in larger spread in intensity during the intensification stage phase 

(days 6-7). It also causes larger spread than westerly shear does on track (days 3-10, Fig. 2.7d). 

Nevertheless, all the spread is small. Intensity spread is within 5 
1m s and track spread is within 

1  distance (about 110 km). This provides additional evidence of the numerical robustness of the 

shear introduction technique.  

Figure 2.8 shows the vertical extent of tangential wind for the four shear cases with 5 
1m s  

averaged over days 9-10. Compared to the no shear case (Fig. 2.4a), the extent of the outflow is 

similar (indicated by the 20 
1m s isotach), but the inner core is weakened as shown by the 

reduced extent of the 60 
1m s  isotach. This result is consistent with the intensity change shown 
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in Fig. 2.7a. All four moderate shear cases produce a slightly weaker storm at the mature stage, 

the vertical structure is generally preserved and the horizontal wind distribution is retained. This 

again confirms that the technique of adding shear works appropriately throughout the model 

integration when combined with the original TC test case.  

 

Figure 2.8: As Figure 2.4 but for four shear cases with magnitude of 
15 m s .  

Figure 2.9 shows the precipitation distribution for the four shear cases. Again, the maximum 

rainfall rate and greatest areal rainfall extent lie in the down-shear left quadrant for both 

unidirectional westerly shear (Fig. 2.9a) and non-unidirectional westerly shear (Fig. 2.9c). Using 

satellite data, WC2010 showed that westerly shear formed slightly more asymmetric patterns 

than easterly shear. This can be seen in the slight differences in rainfall distribution between Figs. 

2.9c and 2.9d. Easterly shear has a different impact on the rainfall distribution than westerly 
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shear. The maximum rainfall in the easterly shear case (Fig. 2.9b) occurs in the right front 

quadrant (relative to the direction of movement) rather than in the down-shear left quadrant. This 

result seems to stand in contrast to previous studies which found that the rainfall maximum tends 

to occur in the down-shear left quadrant (e.g., Franklin et al. 1993; Bender 1997). However, 

WC2010 also found two easterly shear samples that tended to have more precipitation occurring 

in the up-shear side, which is the case here. We suggest the following explanation for our 

easterly shear cases. It has been shown that the translational speed and vertical wind shear both 

affect the precipitation asymmetry. According to Chen et al. (2006), when shear is < 5 
1m s , TC 

translation speed is more dominant than shear in determining the position of maximum 

precipitation. Even though the prescribed shear here is 5 
1m s , the overall shear might be 

smaller than 5 
1m s when the beta shear effect is included. The position of the maximum rainfall 

with respect to the storm direction for westerly shear (Fig. 2.9a) and easterly shear (Fig. 2.9b) is 

consistent with the results of Bender (1997; Fig.15), who found that the vertical profile of the 

asymmetric wind is one of the key factors in determining the structure of quasi-steady 

asymmetries in the interior region of tropical cyclones. The integrated precipitation over regions 

where the rain rate exceeds 2 1mm hr  (as circled by the black solid line) for the last 48-hours is 

depicted in the lower left corner of Figs. 2.9a – 2.9d. Interestingly, while TC intensity under 

easterly shear is slightly stronger than that of westerly shear, the total precipitation in 

unidirectional easterly shear is significantly smaller than that of westerly shear (comparing Fig. 

2.9b to Fig. 2.9a). This may arise from the reduction of convective activity inside the storm in 

the easterly shear cases, which will be shown later. The total precipitation is reduced in the non-

unidirectional westerly shear case (Fig. 2.9c) compared to unidirectional westerly shear (Fig. 

2.9a) due to an extra easterly mean flow.  In contrast, for unidirectional easterly shear (Fig. 2.9b), 
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an extra westerly flow increases the total precipitation (Fig. 2.9d). This suggests that the 

background mean flow has significant influence on TC precipitation changes even though it has 

a relatively minor effect on intensity (Fig. 2.7a). 

 

Figure 2.9: Total precipitation rates (convective precipitation rate + large scale precipitation rate) 

averaged over days 9-10 for (a) unidirectional westerly shear, (b) unidirectional easterly shear, (c) 

non-unidirectional westerly shear, and (d) non-unidirectional easterly shear. The wind shear is 5 
1m s  for all four cases. Each plot shows the ensemble mean. Shear direction is indicated by red 

arrow and black arrow denotes the storm moving direction. The left bottom corner shows the 

area-weighted last 48-hours accumulated precipitation for precipitation rate greater than 2 
1mm hr  as circled by the black solid line. Note, unidirectional and non-unidirectional actually 

describe whether the wind profile that produces the shear changes direction with height or not. 
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Figure 2.10 shows the longitude-height cross section of convective activity (vertical velocity) 

inside the storm for the four shear cases.  We have compared the unidirectional westerly shear 

(Fig. 2.10a) to no shear cases in the earlier section. For both easterly shear cases (Fig. 2.10b and 

Fig. 2.10d), the convection along the shear direction (the left convection branch with respect to 

vortex center) is increased (as indicated by the -2.0 1Pa s ) and shear induces weaker upward 

motion in the upshear direction (indicated by the -2.0 1Pa s and -3.4 1Pa s ), compared to no 

shear case (Fig. 2.10 e). The shear induced asymmetric convective activity is not significant in 

the non-unidirectional westerly shear case (Fig. 2.10c). Generally, the shear induced asymmetry 

in convection is consistent with previous studies. This plot also explains the precipitation 

difference seen in Fig. 2.9. The two westerly shear cases tend to have more precipitation than the 

two easterly shear cases (Fig. 2.9) because convection in the former situation is generally 

stronger than that in the latter cases. This is due to the shear-induced asymmetric convection. 

Also, non-unidirectional westerly shear has slightly weaker convection than that of unidirectional 

westerly shear. This is why the rainfall is slightly smaller in the former case. The same 

explanation holds for the rainfall difference between unidirectional easterly shear case and non-

unidirectional easterly shear case.  
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Figure 2.10: The same as Figure 2.6 but for the four shear cases with magnitude of 
15 m s . (a). 

unidirectional westerly, (b). unidirectional easterly, (c). non-unidirectional westerly, (d). non-

unidirectional easterly, and (e). no shear. Red arrow indicates shear direction. Note, 

unidirectional and non-unidirectional actually describe whether the wind profile that produces 

the shear changes direction with height or not. 

 

Figure 2.11 depicts intensity and track ensemble mean and standard deviation for the strong 

shear cases (15 
1m s ). Easterly shear (case 2, 4 in Fig. 2.10a) has a considerably weaker effect 

on inhibiting TC development than westerly shear (case 1, 3 in Fig. 2.10b). This finding is 
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consistent with previous idealized numerical modelling studies (Tuleya and Kurihara 1981; 

RF2007). An extra westerly mean flow (comparing case 4 with case 2 in Fig. 2.10a) reduces the 

TC intensity slightly. This is consistent with results obtained by Tuleya and Kurihara (1981), 

who found that under uniform westerly environmental flow, the initial perturbation developed 

more. Wind shear and mean flow both modulate the track. The vortex moves further to the south 

(north) under the influence of weak easterly (westerly) vertical shear than it does with no shear 

(Fig. 2.3 and Fig. 2.7), which is to the left side of the track observed in the presence of vertical 

shear. Wu and Emanuel (1993) and Flatau et al. (1994) also present results that demonstrate 

cyclone motion to the left of the vertical shear.  Combined with Fig. 2.7, we see that easterly 

shear has a weaker effect than the westerly shear, and larger mean flow is more detrimental to 

TC intensification. The numerical spread for two easterly shear cases is within 5 
1m s for 

intensity and 1  distance for track, which is reasonable.  
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Figure 2.11: The same as Figure 2.7, however for wind shear of 15 1m s  . Case 3 and 4 are not 

shown in (b) (d) as no tropical cyclone is developed in these two cases.    

 

2.4. Summary   

Vertical wind shear (VWS) is a key factor in Tropical Cyclone (TC) genesis and intensification. 

Furthermore, it provides a possible dynamical connection between Atlantic major hurricane 

activity and three remote atmospheric patterns: the El Niño Southern Oscillation, eastern Pacific 

sea surface temperature, and West African precipitation (Goldenberg and Shapiro 1996). 

Moreover, very few observed TCs develop in a zero shear environment and previous studies 

suggest that incorporation of VWS is very important in numerical TC simulations. In this study, 

we extend a pre-existing analytical TC test case to include vertical wind shear in idealized 
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AGCM TC simulations, and apply it to the NCAR/DOE CAM model. While we use this 

particular model, the framework developed here is extendable to other AGCMs as well.  

We evaluate the effect of idealized shear on simulated TC intensity, track, vertical structure, 

precipitation and storm convective activity. The results are reasonable and self-coherent. 

Realistic characteristics of vertical structure, precipitation and storm convective activity in 

sheared cases further confirm that the added background shear works acts appropriately on the 

original test case during the 10 day numerical integration. The small ensemble spread of intensity 

and track also validates that the simulations with shear are robust to numerical perturbations. 

Additionally, the shear-induced intensity change and structural asymmetry is reasonably well 

captured in this idealized framework.  

Consistent with findings from observations and high resolution process studies, weak and 

moderate unidirectional westerly shear stimulates earlier intensification and produces TCs with 

comparable intensity to those that develop in the no shear case. Strong shear of 10 1m s greatly 

inhibits the development of simulated TCs, while very strong shear of 15 
1m s  and 20 

1m s

completely prevents TC formation. Easterly shear has considerably weaker detrimental effects 

than westerly shear in modulating TC intensity. Beyond that, the asymmetric features of the TC 

precipitation distribution and convection induced by vertical wind shear are captured in our 

idealized framework. The TC track is strongly influenced by background vertical wind shear in a 

way that depends on which direction the shear is oriented. With non-unidirectional shear, the 

additional vertically-constant mean flow across all the vertical levels has a slightly detrimental 

effect on intensity and more significant impact on precipitation change.  
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A detailed diagnosis of the shear effects on precipitation and cyclone structure is beyond the 

scope of this chapter. Our results agree well with the diagnosis from observations and idealized 

simulations; however, due to the coarse horizontal resolution, idealized set up of the vortex seed, 

and the fact that all physical processes are parameterized in the global climate models, the details 

of our results are not expected to be identical to previous findings, especially with respect to 

intensity change, vertical structure and precipitation distribution. The results suggest that the 

extended technique realistically represents the wind shear effect on TC simulation, provides a 

robust tool for simulating the interaction between TC intensification and VWS in AGCMs, and 

thus provides a more realistic and relevant model development tool. It is an extension to the 

current TC test case of RJ2011, which can be used to evaluate the effect of numerical algorithms, 

physical parameterizations, and model resolution on the representation of TC development in 

AGCMs (Reed and Jablonowski 2012). It can also be used as a tool for intercomparison among 

different AGCMs by imposing identical initial conditions to evaluate their performance on 

simulating TCs.  
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CHAPTER 3 

Uncertainty Quantification Framework for Multivariate Sensitivity Analysis of 

Atmospheric Dynamical Systems: Evaluating the Sensitivities of AGCM-Simulated 

Tropical Cyclones to Model Initial Conditions 

 

3.1. Introduction  

Atmospheric dynamical systems such as tropical cyclones, extratropical cyclones, frontal 

systems, etc. can cause significant economic loss and human mortality. The growth and decay of 

these systems are strongly influenced by the atmospheric dynamic and thermodynamic 

conditions, such as pre-existing atmospheric disturbances, sea surface temperature, atmospheric 

stability, relative humidity, etc. It has long been of interest to study how various atmospheric 

conditions affect the evolution of dynamical systems, and how the characteristics (e.g. intensity, 

convection, precipitation, scale) of the dynamic systems interact with each other. For example, 

Hill and Lackmann (2009) studied the influence of environmental humidity on tropical cyclone 

size. Jiang (2012) examined the relationship between tropical cyclone intensity change and 

precipitation.  

Numerical models with different levels of complexity are the primary tools used to 

understand the influence of environmental factors on weather systems, and the relationships 

among different characteristics. Sensitivity analysis is essentially a process of characterizing two 

types of relationships: (1) model input – output relationships, and (2) model output – output 
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relationships. Here, we propose to use an uncertainty quantification framework (UQF) to 

examine the sensitivity of model output to input for multivariate input parameters that allows the 

interactive effect among different input parameters. With a large number of ensemble runs, it 

allows us to examine the model output – output relationships in a robust way. Specifically, our 

UQF refers to a Latin Hypercube Sampling (LHS) method and a surrogate model, which 

produces statistically robust results when quantifying relationships. LHS has been shown to 

simulate uncertainty as accurately as a Monte Carlo sampling method while using far fewer 

samples (McKay et al., 1979; Iman and Conover, 1980; Loh 1996), and has been widely used for 

model uncertainty assessment in environmental, biostatistical and space sciences (Isukapalli and 

Georgopoulos 1999; Hossain, Anagnostou and Bagtzoglou 2005). The surrogate model mimics 

the behavior the simulation model as closely as possible, and is much more computationally 

efficient than the unapproximated simulation model. Typical surrogate models include 

Multivariate Adaptive Regression Splines (MARS; Friedman et al., 1995), Multiple Additive 

Regression Trees (MART; Friedman, 1999; Friedman and Meulman, 2003), and Gaussian 

Spatial Process models (GaSP; Sacks et al, 1989; Craig et al., 2001). 

We illustrate the idea with a case study focused on evaluating the sensitivities of 

Atmospheric General Circulation Model (AGCM)-simulated tropical cyclones to atmospheric 

environmental factors, including: size and strength of the initial perturbation, sea surface 

temperature (SST), atmospheric instability, and mid-level relative humidity. These are widely 

believed to exert the primary influence on the dynamical evolution of TCs (Gray 1968, 1979; 

MaCaul 1991; Emanuel et al. 2004; Emanuel 2007; Zeng et al. 2007, 2008; Davis et al. 2012). 

Nowadays, extensive attention has been paid to simulating TCs and predicting their future 

changes using AGCMs (Manganello et al. 2012; Murakami 2012; Camargo 2013; Emanuel 2013; 
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Knutson et al. 2013; Tory et al. 2013).  Characterizing sensitivities of AGCM-simulated tropical 

cyclones to atmospheric environmental factors reveal the skill with which an AGCM 

configuration can simulate and represent TCs.  

An idealized TC test case designed specifically for the purpose of model evaluation (Reed 

and Jablonowski 2011a) is utilized in our study. It provides a single initial weak warm-core 

vortex seed to the AGCM in an aqua-planet configuration with constant sea surface temperature. 

It retains the complete construction of the AGCM, and can realistically represent the process of 

TC development. Such design yields a TC test case with highly reduced computational cost, 

freely tunable initial conditions and easy-to-extract TC features.  This test case has been shown 

to successfully reveal the impact of physical parameterizations on TC simulations (Reed and 

Jablonowski 2011b) and in assessing modelled TC uncertainty (Reed and Jablonowski 2011c).  

Overall, this chapter proposes an UQF for the study of dynamical systems that is capable of 

retrieving relationships of traditional interest. We validate the idea with a case study that assesses 

the sensitivities of simulated TC-relevant characteristics to initial vortex properties and 

atmospheric conditions. The TC-relevant characteristics are TC intensity, precipitation rate 

(PRECT), shortwave cloud radiative forcing (SWCF), longwave cloud radiative (LWCF), cloud 

ice water path (IWP) and cloud liquid water path (LWP). The initial vortex characteristics 

mainly refer to the radius of maximum wind speed (RMW), and the maximum wind speed 

(MWS) of the initial vortex seed. The atmospheric conditions include the temperature lapse rate 

(GAMMA), sea surface temperature (SST) and 500-hPa relative humidity (500-hPa RH). 

Vertical wind shear is an important factor to tropical cyclone development; however, we do not 

include it as a perturbation factor because it is coupled with temperature lapse rate (through 

thermal wind balance) and as such cannot be freely tuned. Consequently, no vertical wind shear 
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is present in the numerical simulations for this chapter. The work starts with the marginal and 

joint relationships between TC intensity and the five initial factors (RMW, MWS, SST, 

GAMMA, and 500-hPa RH). It then examines the interrelationships between TC relevant 

characteristics, for example, the intensity-precipitation relationship.   

The remainder of this chapter is organized as follows. Section 3.2 introduces a schematic 

summary of the proposed idea. Section 3.3 describes the hurricane simulation using CAM, the 

algorithm used to extract physical fields from each tropical cyclone, the Latin Hypercube 

Sampling approach, the input parameters and their ranges, and the Expanded Multivariate 

Adaptive Regression Splines (EMARS) emulator approach. Section 3.4 analyzes the sensitivities 

of the final simulated characteristics of TCs to initial conditions, and assesses the 

interrelationship among the simulated TC characteristics. Section 3.5 compares the sensitivity of 

simulated TC intensity to the five initial factors in three typically used model resolutions. Section 

3.6 gives discussion and limitation. Section 3.7 summarizes the main conclusions. 

3.2. Schematic Summary 

 Essentially, the uncertainty quantification framework can be treated as a design for conducting 

numerical experiments so as to retrieve detailed information of interest to the community. For a 

given dynamical system, the user first selects a numerical model that can be used to realistically 

simulate the particular system. Then, the user chooses the atmospheric factors of interest as 

model inputs, and the targeted characteristics of the dynamical system as model output, and 

identifies the range of input factors. Figure 3.1 provides a schematic summary of how the 

methodology works. The first step is to apply the Latin hypercube sampling method to model 

input and obtain N number of samples. Typically, N should be larger than 50 m , where m  is 
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the number of model inputs. The numerical model is then run N times with the N sets of model 

inputs. In this way, we will obtain N model output vectors.  

 

 

Figure 3.1: The schematic flow chart of implementing the proposed UQF on dynamical system 

in a step-by-step way.  
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Let 1 2( , ,..., )mx x x x  denote the m  model inputs. These could be sea surface temperature, 

relative humidity, wind speed, translational speed, atmospheric stability, etc, anything of interest 

to the targeted dynamical system. Then, let 1 2( , ,..., )ny y y y  denote the characteristics of the 

dynamical system as model output. These could be size, intensity, precipitation, location and so 

on. Implementing these steps in practice requires us to first identify the range of x , then use LHS 

to generate N samples of x , which means x  becomes 
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. If we set the 

model input to the vector 11 21 31 1( , , ,..., )mx x x x , and run the model, we will obtain the 

corresponding model output vector 1 11 21 1( , ,..., )ny y y y . Each row of the matrix x  is a set of 

model inputs used to run the model, and will produce the corresponding vector of model output. 

N rows of matrix x  correspond to N runs of the numerical model run, yielding N vectors of 

model output y . That is to say, y also becomes a matrix 

11 21 31 1

12 22 32 2

13 23 33 3

1 2 3

...

...

...

... ... ... ... ...

...

n

n

n

N N N nN

y y y y

y y y y

y y y y

y y y y

 
 
 
 
 
 
 
 

.  

The next step is to construct a statistical emulator from the matrices x and y . The statistical 

emulator is also referred to as a surrogate model, among which are Multivariate Adaptive 

Regression Splines (MARS; Friedman et al., 1995), Multiple Additive Regression Trees (MART; 

Friedman, 1999; Friedman and Meulman, 2003), and Gaussian Spatial Process models (GaSP; 

Sacks et al, 1989; Craig et al., 2001). They are designed to fill the void between model output 

and input via curve fitting with splines (e.g., MARS and MART), or by interpolation (e.g., 
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GaSP). The statistical emulator is used to establish a functional relationship between y and x . 

This is, we use the samples in matrices x  and y  to construct: 1 1 1 2( , ,..., )my f x x x ,

2 2 1 2( , ,..., )my f x x x ,…, 1 2( , ,..., )n n my f x x x .  

Having defined a functional relationship that emulates the model input-output response, one 

can input other values of 1 2( , ,..., )new new new

mx x x  to the emulator and obtain corresponding model 

output variables 1 2( , ,..., )new new new

ny y y . As the statistical emulator is much more efficient than 

the numerical models, it allows us to compute numerous input-output pairs in a computationally 

affordable fashion. The following section provides documentation of how to apply the 

framework, and describes its utility for model evaluation.  

3.3. Data and Methodology  

3.3.1. Idealized tropical cyclone simulation 

3.3.1.1 Model configuration 

The idealized tropical cyclone test case was originally produced using the National Center for 

Atmospheric Research (NCAR)/Department of Energy (DOE) Community Atmosphere Model 

(CAM). Here, all our simulations are conducted using a newer version of the same model with 

horizontal resolution of1.0 1.0 , 0.5 0.5 , and 0.25 0.25 . A 1.0 , 0.5 ,and 0.25 latitudinal 

and longitudinal horizontal grid corresponds to a grid spacing of approximately 110 km, 55 km 

and 28 km in the equatorial region. The set of resolutions is chosen so as to match the typically 

used horizontal resolutions in the Coupled Model Intercomparison Project Phase 5 (CMIP5; 

Taylor et al., 2012) archive.  

The CAM model is composed of two fundamental parts: the dynamical core and the physical 

parameterization packages. The finite volume dynamical core is the default in CAM 5.1.1, and 
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has been extensively evaluated alongside the CAM version 5.1.1 physical packages. We are 

aware that the spectral element (SE) is the new default dynamical core in the recently released 

CAM 5.3; however, unlike the FV option, the SE dynamical core has yet to be comprehensively 

scientifically validated with the CAM 5 physics packages. Figure 3.2 shows the flowchart of the 

tropical cyclone simulation. The model is fed with an idealized initial condition, which consists 

of a 3-dimensional (3D) weak vortex seed overlaid on horizontally homogeneous large-scale 

tropical environmental conditions. The background wind is set equal to zero. Based on 

predetermined pressure and specific humidity, the temperature and wind field of the initial vortex 

seed are derived from hydrostatic and gradient wind balance. The model surface is covered with 

a global ocean, and SST is set constant everywhere; this set up is commonly referred to as an 

aqua-planet. After the model integrates the initial data for 10 days, it produces a TC that ranges 

from a weak circulation to a well-developed storm (Reed and Jablonowski 2011a, b; 2012). For a 

detailed description of the idealized tropical cyclone simulation in CAM, the reader is referred to 

Reed and Jablonowski 2011a. In essence, this model configuration is constructed deliberately to 

favor TC development. All of the necessary ingredients are in place: organized vortex seed, high 

SST, no shear and favorable lapse rate. As we will show, this leads to the production of, on 

average, stronger TCs than are typically observed in the real world; however, the idealized 

environment is useful in that it allows a detailed examination of TC development that is 

unclouded by the influence of external sources of variability.  

 



   

62 
 

 

Figure 3.2: The flowchart of idealized tropical cyclone simulation in NCAR Community 

Atmospheric Model. (a) –(d): snapshots shows the evolution of tropical cyclone like vortex at 

days (a. b) 0, and (c. d) 10 at the resolution0.5°, L30. (a) and (c): Horizontal cross section of the 

wind speed at a height of 100 m. (b) and (d) Longitude-height cross section of the wind speed 

through the center of the vortex. (For details, the reader is referred to Figure 7, Reed and 

Jablonowski 2011a). 

 

 

3.3.1.2. Algorithm used to extract physical fields from simulated tropical cyclones   

The sensitivities of six TC-relevant output variables to the initial conditions are investigated. 

They are shown in Table 3.1: maximum wind speed (MWS; intensity; Vmax), total precipitation 

rate (PRECT), shortwave cloud radiative forcing (SWCF), longwave cloud radiative forcing 

(LWCF), cloud ice water path (IWP) and cloud liquid water path (LWP). The five physical 

variables are averaged over the tropical cyclone in the following manner: (1) Find the minimum 

surface pressure, which is defined to be the storm center; (2) search the tropical cyclone in a 

latitude/longitude region within plus and minus 20 degrees of the storm center; and (3) select the 

points that satisfy each of the following criteria: (a) wind speed at 100-m height above surface 

greater than 6 1m s , and (b) outgoing longwave radiation (OLR) less than 230 2W m . Figure 

3.3 shows an example of the shortwave cloud radiative forcing before and after applying the TC 
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identification algorithm. The purpose of the algorithm is to filter out small grid-scale convection 

that is irrelevant to the tropical cyclone structure and development while preserving the TC-

relevant fields. The first two thresholds locate the TC and its surrounding region, circumscribed 

in a square subdomain. The third threshold refines the specific shape of the TC, and ensures that 

the resulting fields accurately represent the TC. The threshold value used for wind speed and 

OLR is not absolute and other slightly higher or lower values could also be used to isolate the 

TC. We have tested a range of values and have determined that the conclusions derived from the 

analysis do not change. After selecting those points that span the TC, area-weighting for each 

variable calculation is conducted.   

Variables Description Units 

Intensity 

(MWS/Vmax) 

Maximum wind speed of 100-m height above surface    1m s  

PRECT Total precipitation rate (large scale precipitation rate 

+ convective precipitation rate)   

1mm hr  

SWCF Shortwave cloud radiative forcing   2W m  

LWCF Longwave cloud radiative forcing   2W m  

LWP Cloud liquid water path 2g m  

IWP Cloud ice water path 2g m  

 

Table 3.1: List of names for the TC-relevant output variables used in this paper (Vortex center is 

defined by the minimum surface pressure). 
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Figure 3.3: Example of the shortwave cloud radiative forcing (left) before applying the TC 

identification algorithm, and (right) after.   

 

3.3.2. Uncertainty quantification framework 

The term uncertainty quantification (UQ) has come to refer to a set of techniques now widely 

used to examine uncertainties in numerical models associated with initial conditions, model 

physics parameters, and construction (Stensrud et al. 2000; Murphy et al., 2004; van den Heever 

and Cotton 2004; Posselt and Vukicevic 2010; Collins et al., 2011; Berner et al. 2011; Posselt 

and Bishop 2012). In this chapter, it specifically indicates a combination of Latin Hypercube 

Sampling (LHS) with a surface response emulator. LHS is used to sample the points for the 

initial parameters, and the surface response emulator used in this chapter is the Expanded 

Multivariate Adaptive Regression Splines (EMARS).  

3.3.2.1 Latin Hypercube Sampling 

The Latin Hypercube Sampling (LHS) method is a component in the UQ process that generates a 

space-filling ensemble of samples. It is typically followed by the use of a response surface 
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emulator, e.g., MARS, MART, GaSP, polynomial chaos, etc, and works together with EMARS 

in our study. The LHS method seeks to accurately extract as much trend data from a parameter 

space as possible using a limited number of sample points. While the input parameter range is 

divided into equi-probable non-overlapping intervals, LHS requires that every row and column 

in the hypercube of partitions has exactly one sample, which provides improved coverage of the 

range of input variables, relative to traditional Monte Carlo sampling. For more information on 

the method, one is referred to the work of McKay, et al. (1979), Iman and Shortencarier (1984), 

and Helton and Davis (2000). We choose five input parameters for study and divide their range 

into 300 segments (Table 3.2). Note that while we perturb the 500 hPa relative humidity, the 

surface relative humidity is set to the same constant 83.6% for each individual simulation.  

Parameter Minimum  Maximum  Description (Units) 

RMW 175 300  Radius of Maximum wind speed (km) 

MWS 12.5 25 Maximum wind speed (m/s) 

Gamma 5.5 7.5 Environmental temperature lapse rate (K/km) 

SST 22.5 34.0 Sea surface temperature ( C ) 

500-hPa RH 0.4 0.7 500-hPa Relative Humidity (unitless) 

Table 3.2: Short Names, Minimum and Maximum Values, and Descriptions of the Five input 

parameters in the ensemble simulation with 0.5 0.5 grid spacing.  

 

3.3.2.2 Surrogate models: GaSP, MARS, EMARS  

In the Gaussian spatial process (GaSP) surrogate model, the output is treated as a realiziation of a 

Gaussian stochastic process with mean functions and covariance matrix (Sacks et al 1989). 

Several unknowns are to be solved including the weight and parameterization of covariance 

matrix. The unknowns can be solved with the maximum likelihood estimate (MLE), where 

iterative algorithms are often used to solve MLE. In addition, the Bayesian version of GaSP is 

often used in surrogate model. In the Bayesian method, a group of prior parameters are set for 

the mean functions and covariance matrix. The Markov Chain Monte Carlro (MCMC) method 

can be used to estimate posterior parameters. 
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Multivariate adaptive regression splines (MARS) is a nonparametric regression method 

introduced by Friedman (1991). Unlike parametric linear regression methods, the MARS model 

can emulate non-linear regression surfaces by combining products of spline basis 

functions.  However, the flexibility of the MARS model is limited as it does not allow quadratic 

or higher order components in the model building process. Expanded MARS (EMARS) is a 

flexible extension of the MARS method which allows higher order terms as required. The 

algorithm for Expanded MARS (EMARS) is: 

1. For a multi-dimensional problem with n  predictors ( 1,..., nx x ), expand the predictor space 

from n  to L n  by augmenting the original predictors with 
2 2

1 1 1( ,..., ; ,....., ;...; ... )L L

n n nx x x x x x x .                                                  

2. Fit the ordinary MARS model based on the expanded predictor space x . The ordinary MARS 

builds a model of the following form using n  predictors ( 1,..., nx x ):  

1 0 1( ,... ) ( ,... )n j j n

j

f x x B x x    

Each jB is either a hinge function [ ]ix u  or [ ]iu x  , or the product of hinge functions such as 

[ ] [ ] [ ]i j kx u x v x w     . The coefficients  are estimated using a least square criterion. The 

knots (the position of the hinge function: , ,u v w ) are determined with a greedy search algorithm 

using a least-squares update technique. In other words, EMARS uses the same building 

algorithms as MARS but with extended L n  predictors 
2 2

1 1 1( ,..., ; ,....., ;...; ... )L L

n n nx x x x x x  while 

MARS utilizes only with n  predictors ( 1,..., nx x ). The validation of EMARS for this paper is 

illustrated in Appendix B.  

3.4. Results from 0.5 0.5  ensemble runs 

3.4.1 Performance of three surrogate models 
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Variables GaSP MARS EMARS 

Intensity  0.05 0.04 0.04 

PRECT 0.11 0.10 0.08 

LWCF 0.03 0.02 0.03 

SWCF 0.04 0.04 0.04 

LWP 0.17 0.19 0.24 

IWP  0.09 0.09 0.10 

Table 3.3: NRMSE calculated from the three surrogate model (GaSP, MARS, EMARS) for (a). 

Intensity, (b). Total precipitation rate, (c).LWCF, (d). SWCF, (e) LWP and (f) IWP. For 300 

samplings, a subset of the first 280 points are used to build the surrogate model and the last 20 

points is used for training. The NRMSE is calculated from the 20 predicted points with their 

associated simulated points. GaSP: Gaussian Process Model, MARS: Multivariate Adaptive 

Regression Splines (MARS) , EMARS: Expanded Multivaraite Adaptive Regression Splines. 

 

Table 3.3 compares how well the three surrogate models fit these six characteristics. GaSP, 

MARS and EMARS fit TC intensity, LWCF and SWCF well. The three surrogate models could 

fit TC PRECT and IWP, but have poor performance in fitting LWP. One reason might be that the 

surrogate model is a global fit, but if there are interactions that are small scale or very local they 

may not be fit well.  

 

3.4.2 Input-output relationships 

The sensitivity index is defined as the proportion of the increase in the residual sum of squares if 

the variable is fixed. Let 2ˆ1 ( )i i

i

S y y  , 2ˆ2 ( )i i

i

S y y  , then the sensitivity index SI  is: 

( 1 2) / 2SI S S S  , where, y  is the sampled output simulated from numerical models, y is the 

surrogate model fitted output when one selected input variable is fixed to constant, and y  is the 

surrogate model fitted output with the original input variables from LHS. Sensitivity index is 
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used to quantify the relative importance of the five initial parameters to the six TC characteristics. 

The larger the sensitivity index, the more important the parameter is to the relevant TC 

characteristic. From each subplot, it is easy to distinguish the dominant factors (Figure 3.4). Fig. 

3.4a shows that simulated TC intensity is most sensitive to the lapse rate and secondary to SST. 

The initial size and intensity of the vortex seed and RH 500 have only a minor influence on TC 

intensity. Precipitation rate is most sensitive to SST while LWCF is mainly affected by lapse rate 

and SST. The three dominant factors for SWCF are SST, MWS and lapse rate. LWP is most 

sensitive to lapse rate and IWP is most sensitive to SST.  
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Figure 3.4: The sensitivity index (unitless) of the six final simulated output variables to the five 

initial parameters: (a). Intensity ( 1m s ), (b). Precipitation rate ( 1mm hr ), (c). LWCF ( 2W m ), 

(d). SWCF ( 2W m ), (e). LWP ( 2g m ) and (f). IWP ( 2g m ). Sensitivity index is the 

proportion of the increase in the residual sum of squares if the variable is fixed. It is a measure of 

importance of the variable. Higher values imply higher sensitivity of the variable.  
 

3.4.2.1 Intensity 
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The effect of atmospheric conditions on tropical cyclone intensity change has been extensively 

studied using observational data and high resolution regional models. Even so, few studies have 

attempted to quantify the effect of an isolated factor on TC intensity with statistical robustness. It 

is difficult to isolate a single factor from observational analysis as our atmosphere changes its 

various conditions simultaneously. In addition, high resolution regional models are limited by 

computational constraints. With 300 simulations sampled by a statistical method such as LHS 

and the help of statistical emulator, we are able to statistically assess the relationship between TC 

intensity and a single factor, quantify its associated uncertainty and assess the changed TC 

intensity due to two simultaneously changing factors. Figure 3.5 illustrates this point using TC 

intensity. Fig. 3.5a assesses the relationship when TC intensity is affected only by the 

atmospheric lapse rate (Gamma), which means other four perturbed parameters (RMW, MWS, 

SST, 500-hPa RH) are fixed to median values. Fig. 3.5b is the same as Fig. 3.5a, but for the 

relationship between TC intensity and sea surface temperature. While it is well known that high 

atmospheric lapse rates (more unstable atmosphere) and high sea surface temperatures produce 

larger TC intensity, the specific relationship has not been quantified. Our results show that the 

TC intensity is linearly affected by atmospheric instability and sea surface temperature. Fig. 3.5c 

further shows that if these two factors vary simultaneously, they still have a linear influence on 

TC intensity change. Those results match the theory of Emanuel (1986) and high resolution 

simulations from Shen et al. (2000).  
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Figure 3.5:The relationship between final simulated TC intensity ( 1m s ) and (a) the initial 

atmospheric lapse rate (Gamma; 1K km ), (b) the initial sea surface temperature (SST; C ). 

Note, the blue solid line shows the relationship fitted by EMARS emulator. Other four perturbed 

parameters are fixed to median value when the relationship is quantified. The red points show the 

simulated TC intensity from the 300 samples. To interpret the red dot points, one may need to 

bear in mind that other four parameters are also changed. The relationship describes the final 

simulated TC intensity change to (c) simultaneous change of Gamma and SST, (d) simultaneous 

change of RMW and MWS.   

 

It is worthwhile to note that the mid-level RH shows no effect on TC intensity change due to lack 

of vertical wind shear (Ge et al. 2013) and the aqua-planet set up (results not shown). The size 

and intensity of initial vortex seed (RMW and MWS) cause weak changes in TC intensity 
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throughout their pre-determined ranges. The TC intensity uncertainty is 5 1m s  when RMW 

changes from 175 km  to 300 km . It is 8 1m s when MWS changes from 12.5 1m s to 25.0 

1m s . Those results are not shown. While the isolating effect of RMW and MWS causes small 

changes in TC intensity, the interaction between RMW and MWS causes a much larger response. 

The latter is shown in Fig. 3.5d, in which it may be seen that the TC intensity changes from 20 

1m s to 55 1m s . The uncertainty range is 35 1m s , which is much larger than the 5 1m s

and 8 1m s seen in individual perturbation experiments. This suggests that the combined effect 

of initial RMW and MWS is a very important “factor” for TC development and may lead to 

destructive TCs, even though the individual effect of changes to one or the other of them is small. 

This is not a result that has been well documented in the current literature. It is widely assumed 

that factors favoring TC genesis can be considered separately and are additive or multiplicative 

(Nolan and Rappin 2008). This assumption is fundamental to the genesis parameters of Gray 

(1968), DeMaria et al. (2001), and Emanuel and Nolan (2004), as well as statistical hurricane 

intensity forecast models such as SHIPS (DeMaria and Kaplan 1999).  Genesis parameters and 

statistical predictions do not include the initial vortex characteristics. However, our results show 

that the combined effect is not negligible.  

3.4.2.2 Shortwave cloud radiative forcing  

Figure 3.6 quantifies the same types of relationship as Figure 3.5, however, for SWCF. Only the 

factors that have significant effect on TC-relevant SWCF are shown. As shown in Fig. 3.6a, 3.6b 

and 3.6c, the magnitude of SWCF is linearly affected by three factors: intensity of initial vortex 

seed (MWS), atmospheric lapse rate (Gamma) and sea surface temperature (SST). Larger 

magnitudes of SWCF (absolute value of SWCF) are associated with smaller initial MWS, a more 

stable atmosphere and larger SST. Compared to MWS and Gamma, SWCF tends to be more 
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sensitive to SST. The uncertainties of TC SWCF caused by the isolating the effect of three 

factors is 20 ~ 30 2W m  for MWS, Gamma and SST. This uncertainty is boosted by the 

combined effect of Gamma and SST as shown in Fig. 3.6d. The range is from -90 2W m to 145 

2W m and the uncertainty is 55 2W m .  It is worthwhile to note that changes in Gamma and 

SST on SWCF have the opposite effect on the SWCF change. This indicates that they can 

modulate the TC radiation effect, even when they produce the same TC intensity.    

 

Figure 3.6: The relationship between final simulated TC SWCF ( 2W m ) and (a) the intensity of 

initial vortex seed (MWS; 1m s ), (b) the initial atmospheric lapse rate (Gamma; 1K km ), (c) 

the initial sea surface temperature (SST; C ). Note, the blue solid line shows the relationship 

fitted by EMARS emulator. Other four perturbed parameters are fixed to median value when this 

relationship is quantified. The red points show the simulated TC intensity from the 300 samples. 
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To interpret the red dot points, one may need to bear in mind that other four parameters are also 

changed. (d) the relationship describes the final simulated TC SWCF change to simultaneous 

changes of Gamma and SST.    

 

3.4.2.3 Longwave cloud radiative forcing 

In contrast to SWCF, the TC LWCF is mainly dependent on SST (Fig. 3.7b). The dependence is 

linear and can be quantified as ~2 2 1W m K   . Higher SST produces stronger storms and also 

larger vapor content in the atmosphere, both of which could increase high cloud and thus lead to 

higher LWCF.  LWCF is weakly dependent on Gamma (Fig. 3.7a) and not sensitive to RMW, 

MWS and 500-hPa RH (not shown). The changes in LWCF caused by isolating the effect of 

Gamma and SST is 8 2W m  and 25 2W m , respectively. This response is also boosted to 40 

2W m by the combined effect of Gamma and SST as shown in Fig. 3.7c. The change of LWCF 

is from 65 2W m to 105 2W m while Gamma and SST simultaneously change throughout their 

predetermined ranges.  
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Figure 3.7: The same as Figure 3.5, however, for final simulated LWCF ( 2W m ). 

 

3.4.2.4 Cloud ice water path   

The cloud ice water path is sensitive to the initial vortex characteristics and atmospheric 

thermodynamic conditions. IWP decreases linearly with increasing size (Fig. 3.8a) and intensity 

(Fig. 3.8b) of the initial vortex seed. It increases with increasing atmospheric lapse rate (Fig. 3.8c) 

and sea surface temperature (Fig. 3.8d). IWP is the only TC-relevant variable that shows strong 

sensitive to four initial parameters (RMW, MWS, Gamma, and SST). The uncertainties of IWP 

caused by RMW and MWS are both ~ 10 
2g m . This is in contrast to the ~ 25 

2g m produced 

by the combined effect of changes to both of these two factors (Fig. 3.8e). The uncertainty 



   

76 
 

caused by Gamma is ~ 10 
2g m and ~ 20 

2g m by SST. The combined effect of Gamma and 

SST causes uncertainty of ~ 35 
2g m for IWP (Fig. 3.8f).  

 

Figure 3.8: The relationship between final simulated TC IWP ( 2g m ) and (a) the size of initial 

vortex seed (RMW; km ), (b) the size of initial vortex seed (MWS; 1m s ), (c) the initial 

atmospheric lapse rate (Gamma; 1K km ), (d) the initial sea surface temperature (SST; C ). 

Note, the blue solid line shows the relationship fitted by EMARS emulator. Other four perturbed 

parameters are fixed to median value when this relationship is quantified. The red points show 

the simulated TC intensity from the 300 samples. To interpret the red dot points, one may need 

to bear in mind that other four parameters are also changed. (e) the relationship describes the 

final simulated TC IWP change to simultaneous changes of RMW and MWS. (f) the relationship 

describes the final simulated TC IWP change to simultaneous changes of Gamma and SST. 

 

3.4.2.5 Cloud liquid water path 

LWP bears an inverse relationship with atmospheric lapse rate (Fig. 3.9a). LWP decreases if 

Gamma increases. In contrast, LWP increases with increasing SST (Fig. 3.9b). LWP is more 

sensitive to atmospheric lapse rate than SST. The corresponding uncertainty caused by Gamma is 

~ 60 
2g m while it is ~ 30 

2g m for SST. This uncertainty is also augmented by the combined 
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effect of these two (Fig. 3.9c). It is ~ 85 
2g m when the Gamma and SST change 

simultaneously.     

 

Figure 3.9: The same as Figure 3.5, however, for final simulated LWP ( 2g m ). 

 

3.4.2.6 Total precipitation rate 

The relationships between TC total precipitation rate and the isolated effect of Gamma and SST 

is complicated. For Gamma in the range between 5.5 1K km  and 6.5 1K km , the total 

precipitation rate decreases with increasing Gamma (Fig. 3.10a). After the atmosphere reaches 

approximate moist instability (6.5 1K km ), the cyclone mean precipitation does not change. 
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The precipitation rate is more sensitive to SST than Gamma (Fig. 3.10b). Precipitation 

dependence on SST can be divided into three phases: for SST smaller than 25 C , rain rate 

quickly rises with increasing SST; at SST values between 25 C  and 32 C , precipitation rate 

slowly increases with SST; and after the SST reaches 32 C , precipitation increases strongly with 

SST once again. Because of the contrary effect of Gamma and SST on total precipitation rate, 

there are two regions with the highest precipitation rate: moderate SST with low lapse rate, and 

highest SST with highest lapse rate (Fig. 3.10c). 

 

Figure 3.10: The same as Figure 3.5, however, for final simulated PRECT ( 1mm hr ).  

 

3.4.3 Output-output relationship: among the TC-relevant characteristics  

3.4.3.1 Relationship between intensity and other five TC-relevant characteristics  
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TC cloud IWP and LWP are independent of TC intensity (not shown), while LWCF exhibits a 

linear relationship with TC intensity (Fig. 3.11a). Larger TC intensity tends to follow larger TC 

LWCF. In contrast, TC SWCF is independent with TC intensity (Fig. 3.11b). When TC intensity 

increases, the TC SWCF shows little change. It is well known that LWCF causes a warming 

effect while SWCF causes a cooling effect at the Earth’s surface. The TC SWCF tends to 

dominate the TC LWCF and causes net negative cloud radiative forcing as shown in Fig. 3.11a 

and Fig. 3.11b, which suggest that more intense TCs tend to reduce the cooling effect (more 

warming effect contributed by LWCF while SWCF stays similar). Studies (Bengtsson et al. 

2007b) show that more intense TCs will occur under climate warming using global climate 

models. Combined with the findings presented here, it may suggest a positive feedback between 

TC change and global surface temperature change represented in the AGCM simulations. The 

relationship between TC intensity and precipitation rate is interesting (Fig. 3.11c). For TC 

intensity below 50 1m s , the TC precipitation rate is independent on TC intensity. For TC 

intensity larger than 50 1m s , it shows a linear relationship between TC intensity: larger 

precipitation rate occurs with larger TC intensity.  
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Figure 3.11: Univariate probability density function (PDF) of TC intensity and (a) LWCF, 
2W m  (b) SWCF, 2W m  (c) PRECT, 1mm hr . The colored contours contains the probability 

mass: red = 25%, orange + red = 50%, yellow + orange + red = 75%. The TC intensity, LWCF, 

SWCF and PRECT are final simulated output over days 9-10.  

 

3.4.3.2 Relationships on TC precipitation rate  

The relationship between TC precipitation rate and intensity is quantified in previous section 

(Fig. 3.11c). The precipitation rate is independent with IWP and LWCF (not shown). The 

precipitation rate is strongly correlated with LWP. Fig. 3.12b shows a linear relationship between 

the two. TC precipitation rate increases with TC LWP. This indicates that the initiation 



   

81 
 

mechanism of rain from droplet growth by collision and coalescence works efficiently in 

AGCMs. The magnitude of SWCF linearly increases with increasing precipitation rate (Fig. 

3.12b). This may be due to the fact that high precipitation rates are associated with deep clouds, 

which have a larger cloud albedo.    

 

 

Figure 3.12: Univariate probability density function (PDF) of PRECT ( 1mm hr  ) and (a) LWP (
2g m ) (b) SWCF ( 2W m ). The colored contours contains the probability mass: red = 25%, 

orange + red = 50%, yellow + orange + red = 75%. The PRECT, LWP and SWCF are final 

simulated output over days 9-10.  

 

3.4.3.3 Relationships on SWCF, LWCF, LWP and IWP 

TC SWCF and LWCF are nearly independent of each other (not shown). SWCF is linearly 

correlated with LWP (Fig. 3.13a). Larger magnitude SWCF follows from larger LWP. SWCF is 

also positively correlated with IWP (Fig. 3.13b). Larger IWP is associated with larger 

magnitudes of SWCF. LWCF is independent with LWP (not shown), but it maintains a positive 

linear relationship with IWP (Fig. 3.13c). Larger IWP is associated with larger LWCF, while 

LWP is independent of IWP (Fig. 3.13d).  
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Figure 3.13: Univariate probability density function (PDF) of (a) SWCF ( 2W m ) and LWP (
2g m ) (b) SWCF ( 2W m ) and IWP ( 2g m ) (c) LWCF ( 2W m ) and IWP ( 2g m ) (d) LWP 

( 2g m ) and IWP ( 2g m ). The colored contours contains the probability mass: red = 25%, 

orange + red = 50%, yellow + orange + red = 75%. The SWCF, LWP, IWP and LWP are final 

simulated output over days 9-10.  
 

3.5. Marginal sensitivity of intensity to five initial conditions in three horizontal resolutions 

The sensitivity of simulated TC characteristics to changes in atmospheric environmental factors 

in the Community Atmosphere Model enables us to see how well the design of global climate 

models captures dynamical mechanisms in tropical cyclones. In the previous section, we have 
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shown how to use a UQF to characterize relationships between simulated TC characteristics and 

atmospheric control factors, which allowed us to interpret the representation of TC dynamical 

mechanisms in CAM when run at a resolution 0.5 0.5 . Here, we will compare the sensitivity 

of simulated TC intensity to the specified five initial conditions for different model resolutions: 

1.0 1.0 , 0.5 0.5 , and 0.25 0.25 , which are the three horizontal resolutions most 

commonly used in full AGCMs for TC simulations.  

Figure 3.14 shows that the simulated TC intensity to the five initial conditions are different in 

the three model resolutions. In simulations run on a 1.0 1.0 grid, the simulated TC intensity 

shows considerable sensitivity to the initial size of the vortex seed; however, this sensitivity is 

very weak for model resolutions of 0.5 0.5 and 0.25 0.25 (Fig. 3.14a). The initial intensity 

of the vortex seed also tends to have a larger influence on the final TC intensity in coarser 

resolution runs (Fig. 3.14b). At 1.0 1.0  resolution, the final TC intensity shows a much 

weaker dependence on SST and Gamma than in resolution of 0.5 0.5 and 0.25 0.25 . Note 

that the sensitivities in the two finer resolutions are quite similar. This indicates that the ability of 

0.5 0.5 and 0.25 0.25 to capture the basic dynamics for the development of TCs in CAM is 

similar. The improved performance of CAM with model resolution 0.25 0.25 to simulate TC 

statistics is mainly coming from the improved performance of physical processes in finer 

resolution. In all the three resolutions, the simulated TC intensity shows little sensitivity to mid-

level relative humidity (Fig. 3.14e). Fig. 3.14 clearly shows that model resolution of 1.0 1.0

tends to have strong dependence on the initial size and intensity of the vortex seed, and it is far 

less sensitive to changes in SST and Gamma. The NCAR CAM 5.0 model with resolution of 

1.0 1.0  was only able to capture 9 tropical cyclones globally (Walsh et al. 2015) and could not 

capture strong tropical cyclones like Cat 4 or 5 on the Saffir-Simpson hurricane scale. But 
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Wehner et al. (2014) shown the high-resolution ( 0.25 0.25 ) configuration of NCAR CAM 

version 5.1 simulates much more realistic global number of tropical cyclones and can produce 

tropical cyclones up to Cat-5. Bacmeister et al. (2014) also showed that the high resolution 

( 0.23 0.31 ) of CAM 5 could simulate realistic tropical cyclone distributions and reproduce 

the interannual variability in TC statistics. Our results suggest that, when run with relatively 

coarse resolution of 1.0 1.0 , the NCAR CAM cannot simulate TCs well, and that this may be 

due to the fact that it could not simulate the response to the SST and Gamma in a reasonable way.  
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Figure 3.14: Marginal relationship between final simulated TC intensity (MWS; 1m s ) and the 

five input parameters for the three model resolutions. (a.) RMW ( km ): initial size of vortex seed, 

(b). MWS ( 1m s ): initial intensity of vortex seed, (c.) Gamma ( 1K km ): vertical lapse rate, 

(d.) SST ( C ) : sea surface temperature, and (e.) RH-500: mid-level relative humidity. Black line 

denotes the results computed from ensemble run with model resolution of 1.0 1.0 . Blue line 

denotes the results computed from ensemble run with model resolution of 0.5 0.5 . Red line 

denotes the results computed from ensemble run with model resolution of 0.25 0.25 .  
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3.6. Discussion and limitation 

This work proposes a UQF designed to study the response of individual dynamical systems to 

changes in multivariate parameters. It provides a specific example of the use of LHS and an 

EMARS emulator for sensitivity assessment in AGCM-simulated TCs. The UQF could easily be 

extended to other dynamical systems, such as extratropical cyclones, non-TC tropical convective 

systems and so on. It also has the potential to quantify uncertainties associated with variability in 

model internal parameters in physical parameterization schemes, such as cloud, precipitation, 

and turbulence, which are key components in climate model representation of small scale 

processes.  

It is worthwhile to note that the examined sensitivities of AGCM-simulated TC 

characteristics to the five chosen initial conditions are not intended to map to reality. While our 

results provide a realistic depiction of the known sensitivity of TCs to changes in SST and lapse 

rate, our goal is not primarily to understand how TCs function. Such a study requires a 

simulation framework that accounts for additional known factors that influence the development 

of TCs (e.g., vertical wind shear, characteristics of individual convective updrafts, ocean mixing, 

etc). Rather, we use the idealized model setup to obtain insight into sensitivities of TCs 

simulated in AGCMs, which include a multitude of interrelated and complex factors. Indeed, the 

lack of vertical wind shear in our idealized configuration enables us to focus on the response of 

the dynamical system to environmental factors like SST, Gamma and so on. Incorporation of 

vertical wind shear into the framework will require the adjustment of vertical temperature and 

thus lapse rate based on thermal wind balance. This is not an insurmountable challenge, but is 

one that we leave for future work.  

3.7. Summary 
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In the case study based sensitivity analysis, we find that: (1) environmental lapse rate and sea 

surface temperature linearly affect the growth of TCs. (2) The TC total precipitation rate, cloud 

radiative forcing and cloud water content are all sensitive to the size and intensity of the initial 

vortex seed, the environmental lapse rate, and sea surface temperature, but have weak or no 

sensitivity to the initial 500-hPa relative humidity. (3) Changes in TC initial conditions interact 

nonlinearly to affect the final simulated characteristics of the TCs, in addition to from the linear 

relationships mentioned in (1). (4) Inter-relationships among TC relevant characteristics exist; 

specifically stronger TCs tend to be associated with larger LWCF and larger total precipitation 

rate tends to be associated with larger values of SWCF and larger cloud LWP.  (5) The 

sensitivities of simulated TC intensity to the five initial conditions will change for different 

model resolutions.  

We have shown that the UQF can be applied to the study of a particular dynamical system 

and yields tremendous information on the sensitivity of the system and its interaction with 

environmental factors. It allows the model input to vary simultaneously and thus can be used to 

examine the interactive effect among different parameters on simulated model output. Latin 

Hypercube Sampling is used to generate an ensemble of model simulations, and allows for 

simultaneous perturbation of the input parameters. Surrogate models could be used for 

approximating the numerical simulations and much more computationally efficient.  
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CHAPTER 4 

Impact of Parameterized Physical Processes on Simulated Tropical Cyclone 

Characteristics in the Community Atmosphere Model 

 

4.1. Introduction  

Since Manabe et al. (1970) first identified a tropical cyclone like vortex in a global climate 

model, Atmospheric General Circulation Models (AGCMs) have been increasingly used to 

simulate tropical cyclones (TCs) in the current climate state, and predict their changes under 

future climate scenarios (Bengtsson et al. 1982; Krishnamurti et al. 1989; Broccoli and Manabe 

1990; Wu and Lau 1992; Haarsma et al. 1992; Bengtsson 1995; Bengtsson et al. 2007b; Zhao et 

al. 2009; Zhao and Held 2010, 2012; Murakami et al. 2013; Zarzycki et al. 2014; Walsh et al. 

2015). While most previous studies focus on the statistics of simulated TCs such as global (or 

basin wide) genesis density, track distribution, frequency, interannual variability and so on, 

attention in recent decades has been placed on simulating and forecasting the properties (e.g., 

track, life cycle, intensity) of specific tropical cyclones in global climate models. For example, 

Shen et al. (2006) used a global mesoscale-resolving model to study simulations of Hurricane 

Katrina (2005). Zarzycki and Jablonowski (2015) successfully forecast the recurvature of 

Hurricane Sandy into the northeastern United States 60 hours earlier than the Global Forecast 

System (GFS) model. Xiang et al. (2015) also studied the prediction of Hurricane Sandy and 

Super Typhoon Haiyan in the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, 
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and they indicated the potential for extended-range predictions of TCs. These results, and the 

rapid advancement of computational resources and numerical algorithms, suggest a possible 

growing trend in the use of global climate models for simulating and forecasting specific 

hurricanes in the next few decades, like what extratropical cyclone is today (Jung et al. 2006; 

Zheng et al. 2013).  

A detailed understanding of how the choice of model components (e.g. grid resolution, 

physical parameterization, dynamical core, etc.) of AGCMs affect simulated tropical cyclone 

characteristics would foster the advancement of such realistic TC simulation and prediction. 

However, systematic examination of model sensitivity to changes in model components would 

require thousands of simulations. Due to the inherent complexity of model construction and the 

coexistence of various climate and weather systems in model output, using a full model to 

compute sensitivity is not feasible. Moreover, the compensating and interactive effect among 

various components in global climate models makes it difficult to study the effect of an isolated 

factor on targeted objects. The Reed-Jablonowski TC test case (Reed and Jablonowski 2011a) is 

specifically designed for this purpose and has the advantage of quickly identifying the key 

factors from the model constructions and ruling out those factors that exert little influence on 

simulated TCs. Moreover, use of a system in which there exists only a single TC allows us to 

isolate storm sensitivity to parameters from changes in the environment or the influence of the 

surface or other dynamical systems. Reed and Jablonowski (2011a, 2011b, 2011c and 2012) have 

successfully used this case to reveal the impact of grid resolution, dynamical cores and physical 

parameterization packages on the development of tropical cyclones. However, the impact of 

detailed parameterized physical processes within the physical schemes on simulated TC 

characteristics remains unclear.   
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The inherently multi-scale nature of TCs, and the necessity to parameterize most key TC 

processes (e.g. convection, cloud formation and precipitation), indicate that the development of 

TCs in AGCMs is likely sensitive to the details of the physical parameterizations that govern 

clouds, convection, turbulence, etc. TCs are inherently multiscale systems, with key processes 

that range from microscale to synoptic, including individual convective updrafts, cloud 

microphysics, precipitation, turbulent mixing, surface momentum transfer, etc. (Emanuel 1986; 

Rotunno and Emanuel 1987; Houze 2014). The representation of these processes in numerical 

models plays an important role in accurately simulating the various aspects of tropical cyclones 

including cyclogenesis, intensification, track, structure, intensity, rainfall, cloud distribution, etc. 

(Chan 1984; Lord et al. 1984; McFarqauhar and Black 2004; Fovell et al. 2009; Torn and Davis 

2012; Bassill 2014; Goswami and Mohapatra 2014; Sanger et al. 2014; Sun et al. 2014; Wang 

2014). Computational considerations (e.g., global domain and long integration times) require 

AGCMs to be run on grids that are too coarse to explicitly represent moist convective processes 

that govern TC evolution. The effects of subgrid-scale processes on the grid box-mean state are 

represented via parameterization (Jakob and Miller 2003; Stensrud 2007), which relates the 

aggregate effects of small scale processes to grid-scale model state variables. It means that that 

only simplified physical processes are retained in AGCMs.  

Furthermore, recent studies that mainly focus on the simulated or predicted statistics of TCs 

(Murakami et al. 2012; Zhao et al. 2012; Kim et al. 2012; Zadra et al. 2014; Lim et al. 2015) in a 

global climate model confirm the importance of the individual parameterized physical process on 

TC simulation in global climate models. For example, Zhao et al. (2012) shows that the 

simulated global number of TCs exhibits nonintuitive response to incremental changes of the 

horizontal cumulus mixing rate. The inherent nature of TCs, the parameterization technique and 
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previous literatures all suggest the necessity to study the impact of numerous parameterized 

physical process on the development of a single tropical cyclone-like vortex in global climate 

models, which is the goal of this study.  

 In addition to the TC intensity, we are also interested in the impact of numerous 

parameterized physical processes on simulated TC precipitation rate, longwave cloud radiative 

forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and 

ice water path (IWP). The additional five physical characteristics are selected for two reasons: (1) 

they directly govern the properties of clouds and precipitation that are not explicitly resolved and 

rely on parameterization techniques; (2) cloud and precipitation are essential components in a 

single TC system. The full set of Community Atmosphere Model (CAM) physical 

parameterizations are used so that the results are applicable to the Community Earth System 

Model (CESM) model. We will examine the impact of various parameterized processes across 

the majority of physical parameterization schemes in an AGCM, including representations of 

shallow convection, deep convection, moist turbulence, cloud microphysics, cloud macrophysics 

and aerosol effect on TC simulations.      

In summary, our goal is to examine the impact of various parameterized physical processes 

on the simulated TC characteristics during the evolution from an initial vortex seed to a mature 

tropical cyclone like vortex in AGCMs. Specifically, we would like to (1) identify the key 

physical parameters to the six different TC characteristics and rule out the minor parameters; (2) 

assess the functional form of the parameter-state dependence; (3) investigate the interactive 

effect among the key physical parameters on simulated tropical cyclones; and (4) compare the 

parameter uncertainty with other sources of model uncertainty, such as model initial conditions 

and changes in model structure. This study contributes to a better understanding of how the 
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design of the physical parameterization affects a specific dynamical system. It could help to 

instruct the simulation and short term prediction of a particular TC in AGCMs. Beyond that, our 

results will have implications for the study of TC statistics in global climate models. Recent 

studies have confirmed the importance of physical parameters on the simulation and prediction 

of TC statistics in AGCMs, however, they only examined one or two parameters. They do not 

extend similar examination to other parameters. Thus, our study could serve as a reference to 

such future studies. This chapter is organized as follows. Section 4.2 describes the TC test case. 

Section 4.3 introduces the simulation design. Section 4.4 presents the results. Section 4.5 

summarizes the conclusions and discusses future work.  

4.2. Reed-Jablonowski Tropical Cyclone Test Case 

The Reed-Jablonowski tropical cyclone test case (Reed and Jablonowski 2011a) is illustrated in 

the National Center for Atmospheric Research (NCAR)/ Department of Energy (DOE) CAM 

version 5.1.1 in our study. It is a well-tested tool that has been used to evaluate how the choice of 

model configuration (e.g., model resolution, dynamical core, physical parameterizations) affects 

the simulation and representation of tropical cyclones in AGCMs. Figure 4.1 gives a depiction of 

how it works. It is a special type of idealized initial condition defined in analytic form and 

consists of a warm-core vortex seed embedded in a quiescent global environment. Fig. 4.1a and 

Fig. 4.1d show the structure of the vortex seed. Both the vortex seed and environment are 3-

dimensional with the former constructed to adhere to gradient wind balance and hydrostatic 

balance. The setup utilizes an aqua-planet with a sea surface temperature set to a constant 29 C

everywhere. When initialized with this balanced state and integrated for 10 days, the model 

produces a tropical cyclone-like vortex. Fig. 4.1b and Fig. 4.1e show the intensification stage 

after 5 days integration of the initial vortex seed in CAM 5.1.1. Fig. 4.1c and Fig. 4.1f show the 
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vortex at day 10. It mimics the process of developing a preexisting vortex seed into a storm-like 

vortex in an AGCM over a short time period. The TC test case, and others like it, can reveal how 

realistically a particular model configuration simulates a single type of weather system. In 

practice, this is typically done by varying a part of the model (e.g., vertical resolution) and 

comparing the output with a control run. Our control run utilizes the configuration defined in 

Reed and Jablonowski (2011a).  

 

Figure 4.1: Schematic plots of the Reed-Jablonowski TC tese case illustrated with CAM 5.1.1. at 

days (left) 0, (middle) 5, and (right) 10 at the resolution 0.5  L30. (a) – (c) Latitude-longitude 

cross section of the wind speed at 100 m above surface. (d) – (f) Longitude-height cross section 

of the wind speed through the center latitude of the vortex. Radius denotes the distance from the 

vortex center. Similar plots has been produced in Figure 7 (Reed and Jablonowski 2011a). 

 

The test case concept has been demonstrated to be successful in evaluating TC simulations 

(Reed and Jablonowski 2011a, b, c) and has also been applied in tests of other dynamical 

systems (e.g., baroclinic waves; Polvani et al. 2004; Jablonowski and Williamson 2006a). The 

use of test cases for model evaluation and intercomparison has the advantage of being 

computationally efficient. In this study, we use the TC test case to evaluate the effect of 
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parameterized processes on TC development in NCAR/DOE Community Atmosphere Model 

version 5.1.1 (CAM5) (Neale et al. 2010). The model physical parameterization suite is paired 

with the default finite volume (FV) dynamical core. The horizontal model resolution is 0.5  and 

there are 30 vertical levels. The dynamical and physical time steps are 90s and 900s, respectively.     

4.3. Simulation Design  

While parameterized physical processes often refer to a specific suite of schemes such as deep 

convection and cloud formation, here we use this term to represent processes inside of a 

parameterization scheme. For example, the process of mass exchange between the convective 

plume and environmental air occurring in the convection scheme is referred to as an individual 

physical process here. Each of the parameterized physical processes discussed in this paper is 

associated with a single physical parameter. Each parameter is set to a particular default value 

based on observations or the experience of model developers, but most times lies within a range 

of realistic values. The specific parameter values control the relative strength of the 

parameterized processes and the process of adjusting parameters to produce a realistic simulation 

is referred to as tuning.  

The set of physical processes selected for analysis are chosen from the default 

parameterizations in CAM 5.1.1, including the Zhang-McFarlane (ZM) deep convection scheme 

(Zhang and McFarlane 1995; Ritcher and Rasch 2008), the University of Washington (UW) 

shallow convection scheme (Bretherton et al. 2004; Park and Bretherton 2009), the UW moist 

turbulence scheme (Bretherton and Park 2009), the Morrison-Gettelman (MG) two moment 

cloud microphysics (Morrison and Gettelman 2008; Gettelman et al. 2010) and the cloud 

macrophysics (Park et al. 2014). Table 4.1 lists the chosen parameters, which characterize the 
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parameterized processes. A more detailed description is provided in Appendix C. Parameters are 

selected based on two considerations: (1) they have potential influence on TC development 

based on observations and high resolution regional climate models (Chan 1984; Lord et al. 1984; 

McFarqauhar and Black 2004; Bassill 2014; Goswami and Mohapatra 2014; Sanger et al. 2014; 

Sun et al. 2014; Wang 2014), and (2) they constitute a list of candidate parameters as defined by 

model developers (A. Gettelman and J. Bacmeister, 2014; pers. comm).  

 S
ch

em
e
 Parame
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Physical Meaning Range 

(units) 

Default 

Value 

Test 

Value 
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C0_ocn Precipitation coefficient 

over ocean 

[0.001    0.045] 

( 1m ) 

0.045 {0.015, 

0.030} 

       ke Tunable evaporation 

efficiency in ZM deep 

convection scheme 

[0.5E-06    10E-06] 

(
2 1 1/2 1( )kg m s s      ) 

1.0E-06 5.0E-06 

alfa Initial cloud downdraft 

mass flux 

[0.05     0.6] 

(unitless) 

0.1 0.3 

dmpdz Parcel fractional mass 

entrainment rate 

[-2.0E-03     0] 

( 1m ) 

-1.0E-03 -0.2E-03 

tau Time scale for 

consumption rate of 

CAPE for deep 

convection 

[1800     28,800] 

( 1s ) 

3600 10000 

capelmt Threshold value for CAPE 

for deep convection 

[20.0    200.0] 

( 2 2m s ) 

70.0 120 

Cu Controls the updraft 

convective momentum 

transport 

[0.0    1.0] 

(unitless) 

0.4 0.7 

Cd Controls the downdraft 

convective momentum 

transport 

[0.0    1.0] 

(unitless) 

0.4 0.7 
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W
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rpen Penetrative entrainment 

efficiency  

[1.0   10.0] 

(unitless) 

5.0 7.0 

criqc Maximum updraft 

condensate 

[0.5E-03  1.5E-03] 

(
1kg kg ) 

0.7E-03 1.2E-03 

kevp Evaporative efficiency  [1.0E-06   20.0E-06] 

(
2 1 1/2 1( )kg m s s      ) 

2.0E-06 10.0E-06 

rkm Updraft lateral mixing [4.0   8.0] 7.0 5.0 
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Table 4.1: Lists of the tunable physical parameters, their physical meaning, uncertain range, 

units, default value and test value. Those parameters are selected from Zhang-McFarlane (ZM) 

deep convection, University of Washington (UW) shallow convection, UW moist turbulence, 

Morrison-Gettelman (MG) two moment cloud microphysics and Cloud macrophysics schemes. 

Each parameter has four sampling points: minimum value, maximum value, default value and a 

different fourth test value randomly selected from its range. The first parameter is chosen to have 

two test values as its default value is equivalent to maximum value. CAPE: convective available 

potential energy. 

 

 

efficiency (unitless) 

aumax Maximum core updraft 

fractional area 

[0.05    0.15] 

(unitless) 

0.1 0.08 
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Dcs The threshold size 

separating cloud ice from 

snow 

[100.0   500.0] 

( m ) 

400.0 300.0 

ai Fall-speed parameter for 

cloud ice 

[350.0  1400.0] 

( 1s ) 

700.0 1000.0 

as Fall-speed parameter for 

snow 

[5.86     23.44] 

( 0.59 1m s ) 

11.72 15.0 

cdnl Cloud droplet number 

limiter 

[0   1.0E07] 

( 3# m ) 

0.5E06 0.5E07 

eii Collection efficiency 

aggregation ice 

[0.001   1.0] 

(unitless) 

0.1 0.5 

qcvar Inverse relative variance 

of sub-grid cloud water 

[0.5  5.0] 

(unitless) 

2.0 4.0 

wsubim

ax 

Maximum subgrid vertical 

velocity for ice nucleation 

[0.1  1.0] 

( 1m s ) 

0.2 0.5 

wsublmi

n 

Minimum subgrid vertical 

velocity for liquid 

nucleation 

[0.0   1.0] 

( 1m s ) 

0.2 0.5 

U
W
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t 
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u
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u
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a2l 

 

 

 

Moist entrainment 

enhancement parameter 

 

 

 

[10.0  30.0] 

(unitless) 

 

 

 

30.0 

 

 

 

20.0 

C
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M
a
cr
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cs
 cldfrc_ 

rhminh 

Minimum relative 

humidity for high stable 

clouds 

[0.65    0.85] 

(unitless) 

0.8 0.7 

cldfrc_r

hminl 

Minimum relative 

humidity for low stable 

clouds 

[0.80   0.99] 

(unitless) 

0.90 0.86 
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4.3.1. One-at-a-time sensitivity analysis  

Each parameterized process and its corresponding physical parameter, is evaluated at four values: 

default, minimum value, maximum value, and a fourth value randomly selected from the 

parameter range (Table 4.1). In the case of C0_ocn, the default value matches the maximum 

value and therefore an additional test value is used. Minimum and maximum values were 

obtained from model developers based on either experience or observation, while the default 

values are those used in version 5.1 of the CAM. C0_ocn is the precipitation conversion 

efficiency in ZM deep convection scheme. It determines the conversion from cloud liquid water 

to rainwater. Larger C0_ocn means more cloud liquid water converted into rainwater and 

subsequent precipitation. Each simulation examines (perturbs) one physical parameter, with all 

other parameters set to their default values. The control run is defined by setting all 24 physical 

parameters to their default values. The initial condition that defines the tropical cyclone test case 

is the same in all simulations, and is consistent with the case represented by Reed and 

Jablonowski (2011a). One-at-a-time parameter perturbation design results in 24 3 1 73    

simulations in total. An additional 19 simulations were carried out to better sample the model 

response functions to key physical parameters. To evaluate the effect of internal model 

variability, additional four member perturbations runs are added to each case with slightly 

different initial conditions. Specifically, the location of initial vortex center is moved to the 

following four positions: (9.5 ,179.5 ), (9.5 ,180.5 ), (10.5 ,179.5 ), and (10.5 ,180.5 ).  

4.3.2. Latin Hypercube Sampling 

Following the results from one-at-a-time analysis, we then used a Latin Hypercube Sampling 

(LHS) method to perturb eight key physical parameters across different physical schemes and 
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investigate the interactive effect among them. The eight selected physical parameters are the 

parcel fractional mass entrainment rate in the ZM deep convection scheme (dmpdz), the time 

scale for consumption rate of CAPE for ZM deep convection (tau), the precipitation coefficient 

over ocean in the ZM deep convection scheme (C0_ocn), the updraft lateral mixing efficiency 

(rkm) in the shallow convection scheme, the threshold size separating cloud ice from snow in 

cloud microphysics (Dcs), the fall-speed parameter for cloud ice in the cloud microphysics 

scheme (ai), the moist entrainment enhancement parameter (a2l) in the turbulence scheme, and 

the minimum relative humidity for low stable clouds (c._rhminl) in the cloud macrophysics 

scheme.  

4.3.3. Six tropical cyclone characteristics  

The impact of parameterized physical processes is examined for six tropical cyclone 

characteristics at the mature stage of TC development. These are the day 9-10 time mean: storm 

intensity (m s-1), precipitation rate (mm hr-1), shortwave cloud radiative forcing (SWCF; W m-2 ), 

longwave cloud radiative forcing (LWCF; W m-2 ), cloud liquid water path (LWP; g m-2 ) and 

cloud ice water path (IWP; W m-2 ).  The TC intensity is defined as the maximum wind speed at 

100 m height above the surface (Reed and Jablonowski 2011a). The other five TC characteristics 

are directly output by the model and spatially distributed. To facilitate the comparison of the 

impact of parameterized processes, we measured them by computing area-weighted means over 

the tropical cyclone region. Detection of the tropical cyclone in the global field is straightforward 

in our case, as the output only contains one storm-like vortex. This is an additional advantage of 

an idealized test case framework.  
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We detect the tropical cyclone-like vortex via three simple steps: (1) find the minimum 

surface pressure, which is defined to be the storm center; (2) search the output field (e.g.  

 

Figure 4.2: Example plots of the six selected characteristics of the control tropical cyclone 

simulation: (a) wind field, (b) total precipitation rate, (c) longwave cloud radiative forcing 

(LWCF), (d) shortwave cloud radiative forcing (SWCF), (e) cloud liquid water path (LWP), and 

(f) cloud ice water path (IWP). Note, Fig. 1d shows the magnitude of SWCF.  

 

precipitation rate) in a square latitude/longitude region that spans +/- 20 degrees from the 

storm center; (3) select those points that satisfy both of the two following criteria: (a) wind speed 

at 100-m height above surface greater than 6 m s-1 , and (b) outgoing longwave radiation (OLR) 

less than 230 W m-2.  Application of steps (1) – (3) result in a well-defined tropical cyclone, as 
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illustrated in Figure 4.2, which shows the simulated tropical cyclone characteristics in the control 

case. The wind, precipitation, LWCF, SWCF and IWP fields all show the calm eye and spiral 

band features. The area-weighted mean value of each quantity is computed from the +/- 20 

degree region around the cyclone center.   

4.4. Results  

4.4.1. Linear perturbation (One-at-a-time) analysis  

4.4.1.1 Impact of parameterized physical processes on simulated tropical cyclone  

Parameterized physical processes, especially those associated with deep convection, contribute 

significantly to the simulation of TC characteristics in CAM 5.1.1 (Figure 4.3).  The specific 

parameterized process that has the greatest effect differs for the output metric of interest.  

Perturbation of one parameter at a time reveals the simulation of TC intensity (Fig. 4.3a) is 

most sensitive to the parcel fractional mass entrainment rate (dmpdz), which denotes the strength 

of mass exchange between convective plume and environmental air. The range of TC intensities 

caused by the modification of this single process can be as large as 47.2 1m s , producing a 

change from tropical depression to category-4 tropical cyclone on the Saffir-Simpson scale. In 

contrast, perturbation of all other parameterized processes leads to a change of simulated TC 

intensity within 10.0 1m s , which is quantified as the absolute difference between maximum 

and minimum simulated TC intensity while perturbing the selected physical parameter 

throughout its range. The two parameters (Cu and Cd) that control the upward and downward 

convective momentum transport have a small effect on the TC intensity. Reed and Jablonowski 

(2011b) show that the inclusion of the convective momentum transport process in CAM does not 

affect TC intensity much. Hogan and Pauley (2007) find that it can influence TC track.   
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Figure 4.3: Changes in simulated tropical cyclone (a) intensity, (b) precipitation rate, (c) 

longwave cloud radiative forcing (LWCF), (d) shortwave cloud radiative forcing (SWCF), (e) 

liquid water path (LWP), and (f) ice water path (IWP) caused by perturbation of each of the 24 

physical parameters spanning its range. The solid blue line shows the value of the control run to 

allow the reader to assess the relative change. Background color is applied to distinguish the 

physical schemes. Light blue denotes ZM deep convection scheme; light pink denotes UW 

shallow convection scheme; light gray denotes MG two moment cloud microphysical schemes; 

light purple denotes the UW moist turbulent scheme and light yellow denotes the cloud 

macrophysics scheme.  

 

The TC precipitation rate (Fig. 4.3b) is most sensitive to the time scale for consumption of 

the convective available potential energy (tau), second most sensitive to parcel fractional mass 

entrainment rate (dmpdz) and third most sensitive to precipitation conversion efficiency 

(C0_ocn). Yang et al. (2013) examined the tropical precipitation to several physical parameters 



   

102 
 

in ZM deep convection scheme using CAM 5, they found that the simulated convective 

precipitation is most sensitive to tau, dmpdz and alfa (initial cloud downdraft mass flux). Alfa 

plays a relatively less important role in TC precipitation, instead, C0_ocn plays a relatively more 

important role in TC precipitation compared to tropical convective precipitation. Interestingly, 

the TC intensity is weakly influenced by changes in tau and C0_ocn. This shows that one can 

change the tau and C0_ocn to tune the TC precipitation while leaving TC intensity unperturbed.  

Generally, LWCF is not strongly affected by changes in the selected physical parameters (Fig. 

4.3c). It is most sensitive to the precipitation conversion efficiency (C0_ocn). The parameterized 

processes in cloud microphysics also play a considerable role in affecting TC LWCF simulation. 

For example, the threshold size separating cloud ice from snow (Dcs). This parameter controls 

the fraction of cloud ice that remains suspended vs. falling to the surface. A larger threshold 

leaves more ice particles in upper tropospheric clouds, which leads to larger LWCF.  The 

empirical fall speed parameter for ice (ai) and snow (as) also determines the value of simulated 

TC LWCF. Larger parameters indicate larger fall speeds and hence greater ice and snow 

particles settling and lower value of LWCF. The remaining physical parameters have minimal 

impact on LWCF. Yang et al. (2013) shows that tropical mean ( 0 360 ,30 30E S N  ) LWCF 

is most sensitive to tau, dmpdz and has very minor sensitive to C0_ocn.  

The TC SWCF (Fig. 4.3d) is most sensitive to the parcel fractional mass entrainment rate 

(dmpdz), which is also the parameter that most influences TC intensity. In addition to dmpdz, the 

simulated TC SWCF is sensitive to changes in C0_ocn and tau, and to lesser extent 

cldfrac_rhminl in the cloud macrophysics scheme. Changes in all other parameters cause minor 

changes in simulated TC SWCF. Yang et al. (2013) shows the tropical mean SWCF is most 

sensitive to C0_ocn and tau while it has minor sensitive to dmpdz among the parameters in ZM 
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scheme. In addition, Zhao (2014) revealed that both cumulus entrainment rate and convective 

microphysics can strongly affect SWCF, and through this impact cloud feedback and climate 

sensitivity.  

While changes in deep convective precipitation efficiency (C0_ocn) have a minor influence 

on TC intensity, they cause significant uncertainty in TC LWP (Fig. 3e). The change can be as 

much as 10 times the control value. Perturbation of most parameters causes TC LWP to change 

considerably great. Only 6 physical parameters produce a weak impact on simulated TC LWP: 

Cu, Cd, rpen, as, wsubimax and cldfrc_rhminh. Yang et al. (2013) shows that tropical mean 

LWP is most sensitive to C0_ocn and dmpdz.  

The TC IWP (Fig. 4.3f) is also most sensitive to changes in the precipitation conversion 

efficiency over ocean (C0_ocn).  The three most important physical parameters to IWP is 

C0_ocn, Dcs and tau. In total, 12 physical parameters show considerable impact: C0_ocn, ke, 

dmpdz, tau, Cu, criqc, kevp, Dcs, as, cdnl, eii, and wsublmin. The remaining 12 physical 

parameters show little impact on simulated TC IWP: alfa, capelmt, Cd, rpen, rkm, aumax, ai, 

qcvar, wsubimax, a2l, and cldfrc_rhminh, and cldfrc_rhminl. Yang et al. (2013) shows that 

tropical mean IWP is most sensitive to C0_ocn and tau. While we see cldfrc_rhminl plays minor 

role in cloud properties (LWCF, SWCF, LWP and IWP) of tropical cyclone, Zhang et al. (2012) 

shows that smaller cldfrc_rhminl can lead to better simulation of both low clouds and high 

clouds in CAM 4. Their study also shows that smaller alfa result in a better simulation of high 

clouds.  

4.4.2 Response function analysis 
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The above section has shown the relative influence of changes to a set of pre-defined physical 

parameters on TC simulation. We now quantify the response function of six simulated TC 

characteristics to changes in their most sensitive parameters by adding more sampling points. 

The resulting relationships are shown in Figure 4.4. The five-member ensemble simulations are 

conducted to quantify the internal noise of models. Solid blue lines show the mean values, and 

the dotted lines show the response function from each member. Overall, we see that internal 

variability is small for the cases of intensity (Fig. 4.4a), SWCF (Fig. 4.4d), LWP (Fig. 4.4e) and 

IWP (Fig. 4.4f). It is relatively large for the cases of precipitation rate (Fig. 4.4b) and LWCF (Fig. 

4.4c). However, we can see the response function is consistent among different dotted lines in 

both cases. This shows that the relationship revealed by the ensemble mean values are robust. 

The control value is marked with a red star. The extreme value that has the largest difference 

from the control value is marked with a green star. Example spatial patterns of all the fields in 

the extreme parameter value cases are shown in Figure 4.5.    
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Figure 4.4: Response of TC characteristics: (a) Intensity, (b) Precipitation rate, (c) LWCF, (d) 

SWCF, (e) LWP, and (f) IWP to changes in each variable’s most sensitive physical parameter. 

The red dotted line represents the response function computed from the control run. The black 

dotted lines represent the results from the four member perturbation runs, which are produced by 

slightly change the location of vortex center in the initial condition. The blue solid line represents 

the mean from the five-member ensemble runs. Red star marks the control value. Green star 

marks the extreme value that has larger contrast with the control value.  
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Figure 4.5: The output fields of extreme runs that are marked out by green star in Figure 4.4. (a) 

wind field, (b) precipitation rate field, (c) LWCF,  (d) SWCF, (e) LWP, and (f) IWP.  

 

Fig. 4.4a depicts changes in TC intensity resulting from changes in parcel fractional mass 

entrainment rate as it is varied between its minimum and maximum value. As the magnitude of 

dmpdz decreases, the TC intensity decreases from a Cat-4 tropical cyclone to a tropical 

depression. The parcel fractional mass entrainment rate (dmpdz) controls the exchange of mass 

between the convective plume and environmental air. Smaller dmpdz magnitudes indicate 

smaller rates of mixing of relatively cool and dry air parcel into convective plumes. This leads to 

stronger upward convective mass flux, which in turn stabilizes the atmosphere. Increased 

atmospheric stability leads to a weaker storm. The mechanism is demonstrated by Lim et al. 

(2015). Note that the response function is non-linear: changes in dmpdz have little effect until 

dmpdz increases to -3-0.5x10 1m , at which point the sensitivity changes significantly. A value of 

0 represents no entrainment and leads to the tropical depression. Equivalent to that, shutting off 
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the dilute plume calculation coincides with a significant weakening of the TC (Reed and 

Jablonowski 2011b). Also, Zhao et al. (2012) found a non-monotonic behavior in TC frequency 

response to cumulus entrainment rate. Our result provides further evidence of the importance of 

entrainment on modeled TC intensity. The response function shows that the uncertainty in 

simulated TC intensity from the internal model configuration can be large, and that tuning the 

physical parameters by perturbing them in small increments may yield misleading results.  

 Fig. 4.4b quantifies the relationship between simulated TC precipitation rate and time scale 

of the consumption rate of CAPE (tau). As tau increases, the precipitation rate increases as well; 

however, the response function is non-monotonic, exhibiting minor change beyond tau of ~ 

41.4x10 1s and a subsequent increase above approximately 42.8x10 1s . Qian et al. (2015) shows 

that global mean precipitation does not respond linearly and monotonically to parameter change. 

Tau is the prescribed time scale that determines the rate of CAPE consumption, once moist 

convection has been initiated. Larger values of tau lead to longer prescribed time scales for 

CAPE consumption. This leads to weaker upward mass flux from the subcloud layer into the 

cloud (eq. 4 in Appendix C). This indicates smaller entrainment from the environment and thus 

less dry air mix into the convective plume, which implies less moisture loss inside the cloud. 

Less moisture loss allows for a larger precipitation rate.     

Fig. 4.4c shows that the simulated TC LWCF decreases with larger precipitation conversion 

efficiency (C0_ocn), consistent with the fact that increased precipitation should result in less 

water arriving in the upper troposphere and consequently less cirrus cloud. Fig. 4.4d shows that 

the magnitude of SWCF decreases with increasing parcel fractional mass entrainment rate 

(dmpdz). This is consistent with the change of TC intensity. Increasing dmpdz leads to a more 

stable atmosphere, limiting the growth of deep convective clouds, and leading to smaller 
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magnitude SWCF. The LWP (Fig. 4.4e) and IWP (Fig. 4.4f) decrease with increasing 

precipitation conversion efficiency (C0_ocn). When C0_ocn is in the range from 0.001 1m  to 

0.01 1m , the LWP and IWP drop exponentially. C0_ocn determines the conversion from cloud 

liquid water to rainwater in the updraft. Larger C0_ocn means more cloud liquid water converted 

into rainwater and subsequent precipitation. This leads to smaller cloud LWP and IWP. Yamada 

and Satoh (2013) examined the response of TC associated LWP and LWP to global warming and 

show that tropical averaged LWP (IWP) is reduced by approximately 0.86% (2.76%). The 

significant sensitivity of TC LWP and IWP to C0_ocn suggests that parameterized physical 

process would exert great uncertainty on such problems.    

4.4.2.1 Further exploration   

Figure 4.3 clearly identifies the important physical parameters to the six different TC 

characteristics and rules out the minor ones. Figure 4.4 characterizes the response function 

between the six TC characteristics and their most sensitive parameters. Building upon these 

results, it is worthwhile to highlight two additional points.  

First, one single physical parameter can have a different impact on the six TC characteristics. 

Figure 4.6 shows the uncertainty ratio, which is defined as the uncertainty range (the range of 

model output values) produced by changes in the same physical parameter divided by the control 

value for each of the six TC characteristics. For example, Fig. 4.6(a) shows that while C0_ocn 

causes large uncertainty on LWP (~1000%), and IWP (~400%), it causes much smaller 

uncertainty on TC intensity, precipitation rate and SWCF. This implies that it may be useful in 

modifying the LWP and IWP fields, while it is not as important to other fields, especially to TC 

intensity. The difference in sensitivity from one parameter can be further supported by parcel 
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fractional mass entrainment rate (dmpdz) (Fig. 4.6b). It completely controls the TC intensity, but 

has negligible effect on TC LWCF. Fig. 4.6c also demonstrates that an individual physical 

parameter can have different impacts on different characteristics of simulated TCs.  

 

Figure 4.6: The comparison of the uncertainty ratio among simulated TC intensity, precipitation 

rate, LWCF, SWCF, LWP and IWP for three parameter cases (a) C0_ocn, (b) dmpdz, and (c) 

tau. The uncertainty ratio is defined as the uncertainty range (Figure 3) divided by the control 

value. The control value is calculated from the simulation with all the physical parameters set to 

default value.  The red bars are marked out for the cases when the TC characteristics have the 

largest uncertainty range, of which the response functions are shown in Figure 4. Note the scale 

in Y-axis is different in (a), (b) and (c).   
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Second, the maximum uncertainty ratio of the six TC characteristics is significantly different. 

The red bar in Figure 4.6 marks out the largest uncertainty ratio for each characteristic. This ratio 

for LWCF is as small as 20% (Fig. 4.6a). The uncertainty ratio is significantly larger for TC 

LWP and IWP. It is 40% ~ 100% for TC intensity, precipitation rate, LWCF and SWCF, and can 

be as large as 1000% for TC LWP and 500% for TC IWP (Fig. 4.6a). This shows that TC LWP 

and IWP are most affected by changes in the physical parameters while LWCF is relatively less 

sensitive. The results also suggest that parameterizing the conversion from cloud liquid water to 

rainwater in the updraft of deep convection may be a cause of the well-known uncertainty in 

cloud liquid and ice content in AGCMs.  

4.4.2. Linear versus nonlinear  

The one-at-a-time experiments enable us to quantity the relative importance of each physical 

parameter on the six simulated characteristics, however, whether the interactive effect among 

physical parameters across different schemes will exert an additional influence on the simulated 

fields remains unknown. This part of the work uses LHS to simultaneously perturb eight key 

physical parameters from the five physical schemes and generate 480 samples, which leads to 

480 numerical simulations in total. It aims to reveal whether an interactive effect among the 

various physical parameters exists, and whether it may have an important influence on simulated 

TC features. Figure 4.7 shows the comparison of uncertainty range caused by an individual 

physical parameter (OAT) and eight simultaneously perturbed physical parameters (LHS). The 

uncertainty range is defined as the maximum value minus the minimum value of the simulated 

output variable, while the input physical parameters are perturbed in an OAT or LHS way. The 

difference between OAT and LHS is that LHS changes the selected eight physical parameters 

simultaneously and allows the existence of an interactive effect among them, while OAT only 
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perturbs one physical parameter with all other parameters fixed to their default value. Similar 

uncertainty range between OAT and LHS experiments indicates that the interactive effect among 

physical parameters does not play additional role in affecting the simulated output. Greatly 

enlarged uncertainty range between OAT and LHS experiments indicates that the interactive 

effect amplifies the sensitivity and contributes to a broader uncertainty range. From Fig. 4.7, we 

see that the interactive effect among physical parameters play a significant role in simulated 

precipitation rate and LWCF. It affects the SWCF and IWP moderately. It does not contribute 

any extra uncertainty for intensity and LWP. This indicates that the uncertainty caused by 

changes in dmpdz and C0_ocn could represent the uncertainty associated with all parameterized 

physical process for intensity and LWP, respectively. In other words, the uncertainty in the 

parameterized physical processes affecting TC intensity is mainly caused by changes in dmpdz. 

It is the same case for LWP.  
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Figure 4.7: Comparison of the caused uncertainty range by linear (OAT) and nonlinear (LHS) 

perturbation of physical parameters on simulated TC characteristics: (a) intensity, (b) 

precipitation rate, (c) LWCF, (d) SWCF, (e) LWP, and (f) IWP. OAT: one-at-a-time, LHS: latin 

hypercube sampling. The uncertainty range are quantified by the difference between maximum 

and minimum values. 8 key physical parameters are perturbed for LHS: dmpdz, tau, C0_ocn, 

rkm, Dcs, ai, a2l, c._rhminl.  480 simulations are run for LHS.  
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While the interactive effect among physical parameters can be seen to greatly enlarge the 

uncertainty range for precipitation rate, LWCF, SWCF and IWP, it is also informative to 

consider the effects on the shape of the probability distribution of the simulated outputs. Figure 

4.8 shows the distribution of simulated output for the 480 samples generated by LHS. It is the 

kernel density estimate, a non-parametric way to estimate the probability density function of a 

random variable. With the exception of precipitation rate, distributions of MWS, LWCF, SWCF, 

LWP and IWP all have long tails, indicating that there are a range of values that occur with very 

low probability density. The distribution of LWCF (Fig. 4.8c) shows that ranges of [60 75] 

2W m  and [105 130] 2W m do occur, however, they are relatively rare. Most of the values of 

LWCF occur between 75 2W m and 100 2W m . Values of TC intensity, SWCF, LWP and 

IWP are similarly concentrated near the mid-point of their ranges. TCs with maximum wind 

speeds between 10 1m s  and 50 1m s  are rare cases. Most TCs have an intensity between 50 

1m s  and 65 1m s .  SWCF mainly lies from -140 2W m  to -80 2W m . LWP mainly lies 

between 50 
2g m  to 250 

2g m  and IWP ranges from 0 
2g m to 150 

2g m . In contrast to 

these variables, the distribution of mean precipitation rate does not have long tails. It generally 

ranges between [0.5 3.0] 1mm hr with a band of relatively high density between 1.0 1mm hr  

and 2.2 1mm hr . These results show that the interactive effect among physical parameters 

contributes to broadening the entire shape of precipitation distribution and it greatly enlarges the 

uncertainty of LWCF, SWCF, and IWP by producing more extreme cases.  
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Figure 4.8: Kernel Density Estimate (KDE) of (a). Intensity, (b). Total precipitation rate, (c). 

LWCF, (d). SWCF, (e). LWP, and (f). IWP from the 480 simulated samplings.  

 

4.4.3. Intrinsic uncertainty versus extrinsic uncertainty  

Numerical simulations of weather and climate are inherently uncertain, and quantifying the 

various types of uncertainties is a key aspect to measuring the ability of AGCMs to simulate 

tropical cyclones. Intensity is an important feature for tropical cyclones; hence, we compare the 

parameter uncertainty, model initial condition uncertainty, and model structural uncertainty for 

simulated tropical cyclone intensity (Figure 4.9). Examples of structural uncertainty include 

simulated model change due to different spatial resoltuions, different dynamical cores or 

physical parameterizations. Here, model structural uncertainty is represented by the uncertainty 
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caused by horizontal resolution change. Fig. 4.9a shows the histogram of simulated tropical 

cyclone intensity from the 480-member ensemble run generated by perturbing the eight key 

physical parameters simultaneously with the LHS method. Fig. 4.9b shows the histogram of 

simulated tropical cyclone intensity from 300 samples generated by perturbing the five initial 

conditions. This histogram is constructed using the EMARS emulator, which is described in 

Chapter 3. The five initial conditions are perturbed in a small range around their control values. 

The perturbed range for initial size (RMW) is [175 225] km and [18.0 22.0] 1m s for initial 

intensity (MWS). Temperature lapse rate (GAMMA) ranges from [6.75 7.25] 1K km , sea 

surface temperature (SST) spans [28 30] C , and the 500 hPa relative humidity is set to values 

between [0.4 0.6]. Note that the range of model initial conditions tested here is a subset of the IC 

ranges used in Chapter 3, as we are concerned primarily with examining the model initial 

condition uncertainty around the control case.  Fig. 4.9c shows the histogram of intensity 

difference rather than intensity itself, when the model resolution is changed from 1.0 1.0 to 

0.5 0.5 for each of the 300 samples. The data used to generate these samples are described in 

Chapter 3. Recall that three groups of ensemble simulations are conducted. Each group has 300-

members and the five initial conditions are perturbed with a LHS method, while all model 

parameters are set to their default value. The only difference among these three groups is the 

horizontal resolution. One is run with 1.0 1.0 , the second is 0.5 0.5 , and the third is 

0.25 0.25 . Alternatively, each set of 300-member LHS initial conditions is run with three 

different model resolutions:1.0 1.0 , 0.5 0.5 and 0.25 0.25 . Thus, the intensity difference 

is calculated for each case with different model resolution, but identical model initial conditions 

and physical parameters. Use of the 300 ensemble members ensures the TC intensity spread 

across the full range from tropical depression to Cat-5 TC in Saffir-Sampson Hurricane scale. In 
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this way, Fig. 4.9c provides information about the model structural effect on simulated TC 

intensity in a more robust way. Fig. 4.9d shows a similar result to Fig. 4.9c, but for the case in 

which the model resolution is changed from 0.5 0.5 to 0.25 0.25 .  

 

Figure 4.9:  (a.) The histogram of the simulated TC intensity from 480 simulation runs that 

perturb the physical parameters simultaneously using LHS method. (b.) The histogram of the 

simulated TC intensity from 300 simulation runs that perturb five initial conditions 

simultaneously using LHS method. The horizontal resolution for (a) and (b) is 0.5 degree. (c.) 

The histogram of simulated TC intensity difference while horizontal resolution is changed from 1 



   

117 
 

degree to 0.5 degree. (d.) The histogram of simulated TC intensity difference while horizontal 

resolution is changed from 0.5 degree to 0.25 degree.   
 

Fig. 4.9a shows that changes in model parameters causes a spread from about 15 1m s  to about 

62 1m s . Fig. 4.9b shows that changes in model initial conditions cause uncertainty of about 20 

1m s  in simulated TC intensity, (spread from about 45 1m s  to 65 1m s ). Figs. 4.9c and 

4.9d show that the peak uncertainty caused by model resolution lies about 20 1m s  and 6 

1m s , respectively. These results indicate that parameter uncertainty is comparable to initial 

condition uncertainty and structural uncertainty (due to change of model resolution) in its effects 

on simulated TC intensity.  

4.4.4. Exploration of GaSP  

A surrogate model is a type of statistical model built to mimic the behaviors of numerical 

simulations and replace them for computational efficiency purpose. While they have been 

broadly applied in many fields, the question is whether a surrogate model enables one to capture 

the behavior of complicated atmospheric weather or climate models for simulations of individual 

dynamical systems. In Chapter 3, we have seen that the three surrogate models are generally 

quite capable of approximating the relationships between simulated TC output and the five 

chosen initial conditions. In examining the effects of parameter variability, the number of 

perturbed parameters is increased from 5 to 8, implying a higher dimension, and greater 

complexity. In addition, the physical processes that control the relationships between physical 

parameters and simulated TC characteristics is more complicated. In this part, we would like to 

explore whether the commonly used surrogate model, GaSP, is capable of mimicking the 

behaviors of complicated physical processes in AGCMs. The set of 480 ensemble runs generated 
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from perturbation of eight physical parameters provides an effective resource with which to 

answer this question.  

In Appendix B, we introduce three methods to evaluate fitted results from surrogate model in 

detail. Here, we use the “cross validation method” to justify the performance of surrogate model 

in fitting the model output and input relationships. The model output remains the six TC 

characteristics: Intensity (MWS), precipitation (PRECT), LWCF, SWCF, LWP and IWP. The 

model input refers to the eight perturbed physical parameters: dmpdz, tau, C0_ocn, rkm, Dcs, ai, 

a2l, and c._rhminl.  

Variables Intensity Precipitation LWCF SWCF LWP IWP 

GaSP 0.05 0.11 0.04 0.06 0.13 0.31 

Table 4.2: NRMSE calculated from the GaSP for (a). Intensity, (b). Total precipitation rate, 

(c).LWCF, (d). SWCF, (e) LWP and (f) IWP. The NRMSE is calculated from the cross 

validation method. GaSP: Gaussian Process Model, MARS:  

 

Table 4.2 justifies how well GaSP fit these six characteristics. GaSP fit TC intensity, LWCF, and 

SWCF well. It can not fit TC precipitation, LWP and IWP reliably well, especially for IWP. This 

results suggest that the surrogate model has more difficulty in fitting hydrological variables in 

CAM.  

4.5. Discussion and Conclusions  

This study shows how the parameterized physical processes in cloud formation, convective 

development and moist turbulence impact the simulation of TC intensity, precipitation rate, 

LWCF, SWCF, LWP and IWP during the evolution from an initial vortex seed to an established 

tropical cyclone-like vortex in the Community Atmosphere Model 5.1.1 using the Reed-

Jablonowski TC test case. Different aspects of simulated TCs are most sensitive to different 
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physical processes. The TC intensity and SWCF are most sensitive to the parcel fractional mass 

entrainment rate in deep convection. The TC precipitation rate is most sensitive to the time scale 

of consumption rate of CAPE. The LWCF, LWP and IWP are most sensitive to the precipitation 

efficiency. The response of simulated TC variables to changes in the most sensitive parameters 

are quantified, and it is notable that none of the model output variables exhibits a linear response 

to changes in parameter values. Many appear to be exponential, and one (the CAPE consumption 

rate vs. precipitation rate) is non-monotonic. Interactive effect among physical parameters plays 

a significant role in simulated TC precipitation and could enlarge the entire shape of distribution. 

It is also important to LWCF, SWCF and IWP, but mainly to contribute more extreme values. It 

does not affect the simulated TC intensity and LWP, which indicates that TC intensity is mainly 

controlled by dmpdz and LWP by C0_ocn. It further shows the parameter uncertainty on 

simulated TC intensity is comparable to the model initial condition uncertainty and model 

structural uncertainty. It is also showed that GaSP could not well fit the PRECT, LWP and IWP.  

As the test case mimics the process of developing a pre-existing vortex seed into a tropical-

cyclone like vortex in AGCMs, it is not possible to compare the simulated output with 

observations and thus we cannot directly determine which set of parameters leads to an improved 

simulation. For this reason, we do not conduct parameter optimization in this study. The 10 day 

integration time is long enough for parameterized physical processes to exert an influence on the 

evolution of the TC, however, it is not long enough for the climate state to respond to the change 

of physical parameters, which may alter the simulation of TCs. Nevertheless, the results 

presented here can help to instruct the configuration of full AGCMs when they are used to study 

either the statistics of global TCs or the properties of a single TC as in recent studies. It improves 

our understanding of how the model design of physical parameterizations affects the TC 
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evolution. Note that all of the results presented here were produced using grid spacing of

0.5 0.5 . We have tested the sensitivity of simulated output to changes in the most sensitive 

parameters using simulations with a grid spacing of 0.25 0.25  and confirmed that the large 

uncertainty of simulated TCs due to parameter uncertainty is retained at finer resolution.   

While we only explore the importance of parameterized processes on a TC simulation using a 

one-at-a-time sensitivity analysis method, our results show that improving TC simulation and 

prediction via parameter adjustment in AGCMs is promising. Even so, a given physical 

parameter that affects a particular aspect of a simulated TC may also exert a strong effect on 

another aspect. For example, the change of C0_ocn has a considerable effect on TC precipitation, 

SWCF, LWP and IWP, but to varying degree. This indicates that if a change of C0_ocn 

improves the representation of TC precipitation, it may worsen the representation of LWP. 

Changes in some parameterized processes have little impact on all characteristics of simulated 

TC such as a2l (moist entrainment enhancement parameter). Whether this should naturally be the 

case, or whether it is simply a result of parameterization design, is not clear due to insufficient 

understanding of the impact of physical processes on TC evolution from observations or high 

resolution modeling. Nevertheless, the current study sheds light on the following: (1) 

uncertainties in the set of sensitive parameters may be an important source of uncertainty in 

current simulation and future projections of simulated TCs in AGCMs, (2) it may be possible to 

improve the representation and forecasting of an individual TC in AGCMs using parameter 

estimation, and (3) nonlinear relationships between parameters and model output indicate that 

parameter estimation that employs linear perturbation methodologies may yield results that are 

incomplete and/or misleading.   
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CHAPTER 5 

Conclusions 

 

Numerical models built upon geophysical fluid equations are crucial tools in operational weather 

forecasting, climate research, and theory development of weather and climate systems. 

Sensitivity analysis/uncertainty quantification, which aims to assess various relationships 

between model input and output, is an important step for improving model performance, 

developing physical theory, simulating weather hazards, predicting climate extremes, etc. 

Atmospheric General Circulation Models (AGCMs) are one of the most complicated numerical 

tools. They include components with high levels of complexity such as a dynamical core that 

solves a set of geophysical fluid equations and thermodynamic equations, physical 

parameterization packages that approximate a wide variety of intricate physical processes (e.g. 

cloud, precipitation, turbulence, etc.), and radiative models that solve radiation transfer for 

hundreds of frequency spectra. AGCMs recently have played a paramount role in simulating 

tropical cyclones, and in predicting their future changes. Sensitivity analysis of simulated 

tropical cyclone characteristics to various model components in AGCMs can be very challenging, 

as both sensitivity analysis and AGCMs place a significant demand on computational resources. 

Isolating sources of model sensitivity impact for a particular dynamical system (e.g., tropical 

cyclone) in AGCMs is not straightforward either.  

5.1 Summary  
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This dissertation explores the use of an idealized test case and surrogate models for a systematic 

sensitivity assessment of simulated tropical cyclone characteristics to changes in various model 

components in an AGCM.  An idealized test case framework allows a focus on one particular 

dynamical system, and eliminates possible interactive effects or compensating error from other 

components of the model. It is computationally efficient, and detection of tropical cyclone 

feature is straightforward. Surrogate models are statistical models designed to approximate the 

numerical models with a much reduced computational burden. They are designed to replace the 

computationally expensive numerical model in assessing the relationships between model input 

and output. As such, the surrogate model enables a much more thorough exploration of model 

input-output relationships.  

Chapter II presents a balanced tropical cyclone (TC) test case designed to improve current 

understanding of how Atmospheric General Circulation Model (AGCM) configurations affect 

simulated TC development and behavior. It consists of an analytic initial condition comprised of 

two independently balanced components. The first provides a vortical TC seed, while the second 

adds a planetary-scale zonal flow with height-dependent velocity and imposes background 

vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state 

hydrostatic primitive equations in spherical coordinates and is in balance with other background 

field variables (e.g. temperature, surface geopotential). The evolution of idealized TCs in the test 

case framework is illustrated in 10-day simulations performed with the Community Atmosphere 

Model version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, 

directions, and vertical inflection points are applied to ensure that the technique is robust to 

changes in the VWS characteristics. The well-known shear-induced intensity change and 

structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small 
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perturbations in the initial vortex is also quantitatively addressed to validate the numerical 

robustness of the technique. It is concluded that the enhanced TC test case can be used to 

evaluate the impact of model choice (e.g. resolution, physical parameterizations) on the 

simulation and representation of TC-like vortices in AGCMs.   

Chapter III This work proposes a strategy to use an uncertainty quantification framework to 

examine the multivariate sensitivities of an individual dynamical system to various atmospheric 

factors. It has the advantage of exploring multiple directions in the input space, and allowing 

nonlinear interactive effects among multiple parameters in a computationally affordable way. 

The idea is illustrated via exploration of the sensitivities of Atmospheric General Circulation 

Model (AGCM)-simulated tropical cyclones to model initial conditions. Specifically, a Latin 

Hypercube Sampling (LHS) method and an Extended Multivariate Adaptive Regression Splines 

(EMARS) algorithm are used to examine the response of cloud radiative forcing, cloud content, 

and precipitation rate in idealized AGCM-simulated tropical cyclones (TCs) to changes in TC 

initial conditions, including: initial vortex size, intensity, sea surface temperature, vertical lapse 

rate and mid-level relative humidity. Consistent with previous studies of TCs, the EMARS 

algorithm yields increases in TC intensity with increasing sea surface temperature and 

atmospheric temperature lapse rates. Nonlinearities and multi-variate relationships are further 

quantified and implications are discussed. The combined effect of RMW and MWS can play an 

extra role in affecting the TC intensity. Stronger TCs tend to be associated with larger LWCF 

and larger total precipitation rate tends to be associated with larger values of SWCF and larger 

cloud IWP.  

Chapter IV advances the understanding of how parameterized physical processes affect the 

development of tropical cyclones (TCs) in the Community Atmosphere Model (CAM) using the 



   

124 
 

Reed-Jablonowski TC test case. It examines the impact of changes in 24 parameters across 

multiple physical parameterization schemes that represent convection, turbulence, precipitation 

and cloud processes. The one-at-a-time (OAT) sensitivity analysis method quantifies the relative 

influence of each parameter on TC simulations and identifies which parameters affect six 

different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), 

shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path 

(IWP). It is shown that TC intensity is mainly sensitive to the parcel fractional mass entrainment 

rate (dmpdz) in deep convection. A decrease in this parameter can lead to a change in simulated 

intensity from a tropical depression to a Category-4 storm. Precipitation and SWCF are strongly 

affected by three parameters in deep convection: tau (time scale for consumption rate of 

convective available potential energy), dmpdz and C0_ocn (precipitation coefficient). Changes in 

physical parameters generally do not affect LWCF much. In contrast, LWP and IWP are very 

sensitive to changes in C0_ocn. The changes can be as large as 10 (5) times the control mean 

value for LWP (IWP). Further examination of the response functions for the subset of most 

sensitive parameters reveals nonlinear relationships between parameters and most output 

variables, which suggest linear perturbation analysis may produce misleading results when 

applied to strongly nonlinear systems. Interactive effects among physical parameters plays a 

significant role in simulated TC precipitation and could enlarge the entire shape of the 

distribution. It is also important to LWCF, SWCF and IWP, but mainly contributes to the 

production of more extreme values. It does not affect the simulated TC intensity and LWP, 

which indicates that TC intensity is mainly controlled by dmpdz and LWP by C0_ocn. It further 

shows the parameter uncertainty on simulated TC intensity is comparable to the model initial 

condition uncertainty and model structural uncertainty due to change of horizontal resolution. It 
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is also showed that the popularly used surrogate model, GaSP, could not well fit the PRECT, 

LWP and IWP.  

 

5.2 Accomplishments 

5.2.1 Originality  

The thesis works on a new field that will potentially shape the direction of future research and 

forecast of tropical cyclones. It proposed an innovative strategy to instruct the improvement of 

TC simulations in comprehensive AGCMs with specially designed idealized simulations and a 

robust statistical framework. It resulted in the first study of its kind, examining the sensitivities 

of an atmospheric dynamical system to environmental factors with an uncertainty quantification 

framework. In the process, the idealized tool was improved, resulting in a tropical cyclone test 

case that allows the existence of background vertical wind shear and simulation of its impact on 

tropical cyclone development in AGCMs. The implementation of the UQ strategy resulted in the 

first study that comprehensively examines the effect of changes in numerous parameterized 

physical processes on various characteristics of simulated TCs, including intensity, precipitation, 

and cloud content.  

5.2.2 Significance and Contributions  

The work provides a systematic evaluation of how model construction affects the simulation of 

TCs, including the initial conditions, large scale flow, physical parameterizations, and horizontal 

resolution. It contributes information to guide the development of next generation models. These 

results will shed light on the possibility of trending operational TC forecasting towards high 

resolution AGCMs.  
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The work also provides a successful example of a methodology that may be used to assess and 

improve the simulations of other dynamical systems (e.g. extratropical cyclones, jets, fronts, etc) 

in AGCMs, which will ultimately feedback to improvements in the overall performance of 

AGCMs. Finally, the statistical framework used in this study can be applied to general sensitivity 

problems not limited to AGCMs.  

5.2.3 Interdisciplinary research  

The techniques and ideas presented in this project were developed from the fields of atmospheric 

science, statistics and computer sciences. It combines the study of atmospheric modeling with 

high performance computing architecture and statistical learning techniques. The author joined 

several conferences and workshops from Statistical Methods for Atmospheric and Oceanic 

Sciences (STATMOS).  

5.3 Future Work  

We have assessed the sensitivity of simulated tropical cyclone characteristics to model initial 

conditions and physical parameters respectively. A natural extension of this work is exploration 

of whether interactive effects between changes in model initial conditions and changes in 

physical parameters play an important role in modifying simulated TC characteristics, and 

assessment of how surrogate models perform in figuring out such model input-output 

relationships. Whether an interaction between external uncertainty and internal uncertainty exists 

is an important question for real-world simulations, but has yet to be explored in any study that 

we are aware of. The results that either eliminate this possibility or confirm their interactive 

effect would bear scientific interest to the community. Using an idealized TC test case and LHS 

methods, we could investigate this problem. In the model design, we could select five parameters 
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in total, two from the model initial conditions: sea surface temperature and vertical lapse rate; the 

other three from the model physical parameters: for example dmpdz, tau, rkm. Using the LHS, 

these five parameters could be simultaneously perturbed to generate 300 or more numerical 

simulations. The output could then be compared with the distribution of output presented in 

Chapters 3 and 4. In the process, we could also evaluate the performance of GaSP, MARS and 

EMARS in fitting such relationships.  

In addition, it would be interesting to explore the questions of when and which surrogate models 

could perform well in fitting the relationships from our ensemble simulations. In Chapter 3 and 4, 

we have evaluated the performance of GaSP for fitting TC intensity, PRECT, LWCF, SWCF, 

LWP and IWP from the LHS ensemble run that perturbs the five initial condition or eight 

physical parameters. We found it fails to reliably predict the response of PRECT, LWP and IWP 

in both cases. It would be interesting to explore the reasons behind this: why GaSP is not capable 

of fitting these three particular TC characteristics. There are also other surrogate models like 

Multiple Additive Regression Trees (MART; Friedman, 1999; Friedman and Meulman, 2003), 

and it would be interesting to test alternate surrogate models and assess whether any are able to 

successfully fit these three output variables. Such work will be beneficial for the development of 

statistical surrogate model, and their applications in model evaluation and development.  

We have conducted all of our experiments paired with the Finite Volume (FV) dynamical core, 

which was the default dynamical core in the CAM when we started our project. Since that time, 

the developers of the NCAR CAM have chosen the Spectral Element (SE) as the model’s default 

dynamical core. One benefit of the SE dynamical core is that it allows the use of adaptive mesh 

refinement and variable resolution in CAM, leading to very fine resolution in a portion of the full 

model grid. This is especially beneficial for hurricane simulations (Zarzycki et al. 2014a,b; 
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Zarzycki and Jablonowski 2014; Zarzycki and Jablonowski 2015). Thus, it would be interesting 

to examine the impact of parameterized physical processes on simulated TC characteristics 

paired with the SE dynamical core. The experiment design could be similar to what we have 

done in Chapter 4.  

As all of our work is done in an idealized setup, these type of research bears its own scientific 

significance. Still, the final goal is to produce improved simulations of tropical cyclones in fully 

realistic coupled models. These idealized results can be used to instruct the tuning or setting of 

the full model simulations. Thus, another important future research activity will be to optimize a 

full model simulation that captures TC characteristics in concert with the full range of dynamical 

systems and Earth system interactions, and which could be compared with real observations. In 

this way, the results can be more effectively transferred from theory to real-world application.  
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Appendix A 

Derivation of the analytic initial conditions 

 

Implementation of the vertical wind shear in the current TC test case consists of adding an extra 

zonal wind term, as shown in Eq. (2.1), and then modifying the temperature field to maintain a 

gradient thermal wind balance. In essence, we impose an additional wind field in thermal wind 

balance on top of the initial conditions derived by Reed and Jablonowski (2011a), who assumed 

a zero base state wind field. Given a specified vertical profile, we seek the corresponding 

temperature distribution associated with the value of the vertical wind shear. In this case, vertical 

wind shear is essentially induced by the application of a horizontal temperature gradient. The 

derivation follows the methodology used by Jablonowski and Williamson (2006b) in their 

development of a baroclinic wave test case. The derivation uses pressure-based hybrid   vertical 

coordinate (Simmons and Burridge 1981), and starts from the adiabatic and frictionless primitive 

equations in spherical ( , )   coordinates. Note that if the surface pressure is constant and equal 

to the hybrid reference pressure 0 sp p , then / sp p   resembles the   coordinate which is 

the case here.  

The u   and v momentum equations, as well as the hydrostatic equation in ( , ,   ) 

coordinates are given by: 
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tan 1 ln
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                                                                                   (A.3) 

The Coriolis parameter is defined as 2 sinf   , and a  is the radius of the earth. Note that T

denotes the virtual temperature in this section as the air is moist. This is the same for the T  in all 

following equations. The equation of state is: 

dp R T                                                                                              (A.4) 

where   denotes the air density. In addition, the substantial derivative /d dt is defined as  
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with sp p , the associated form of the hydrostatic equation is: 

 
dR T

 


 


 ,                                                                                (A.5) 

where  and T  indicate the deviations from the horizontal mean geopotential and temperature 

fields that correspond to the added zonal wind.  
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The goal is to derive an analytic, steady-state balanced initial background T distribution 

( ( ) ( , , )T T T     ). Four steps are needed.  

(1) Choose a nondivergent wind field u  and v  and a constant sp . 

0 1cos (tanh 1.0) cos

0

1000 hPa

v

s

u u u

v

p

    





(A.6) 

v is defined as 6*(1 ) 3.0v    . Thus, 6v
v







   


.  

0u  determines the amplitude and direction of the wind profile.  

(2) Choose the horizontally averaged temperature profile ( )T  . This is  done in height ( z ) 

coordinates using:  

  0T T z                                                                       (A.7) 

Thus, the total temperature profile is:  

  0( , , ) ( , , ) ( , , )T T T T z T                (A.8) 

Where 
/

0(1 ) /dR g
z T  
   . 0T is the sea surface temperature in our case. The task now is 

to derive ( , , )T    , which we obtain from ( , , )    based on (A.5). 

(3) Derive ( , , )   . 

The derivation starts from the v momentum equation (A.2). A steady-state solution 

with / 0dv dt  is sought. In case of a constant sp  field ln /p    vanishes on constant 

   surfaces. Simplifying Eq. A.2, we get:  

1
(2 sin tan )

u
u

a a
 




   


                                        (A.9) 
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Insert the wind profile 0 1cos (tanh 1.0) cosvu u u      into (A.9), and then integrate 

analytically over  . Let 0 1(1 tanh )vu u    , then cosu   . The integration leads 

to:  

2

0

1
( , , ) (2 )cos(2 ) ( )

4
a         (A.10) 

           Recall that: 6(1 ) 3.0v    and 0 1(1 tanh )vu u    .  

          0 ( ) is a level-dependent integration constant.  

           Use the condition that the area-mean of  vanishes:  

           
2

2

0
2

1
( , , )cos 0

4
d d




      





     (A.11) 

            This results in the expression  

            
2

0

1
( ) (2 )

12
a        (A.12) 

             Thus, we obtain:  

             
21 1

( , , ) ( cos(2 ) )(2 )
4 12

a         (A.13) 

(4) Finally, the temperature deviations ( , , )T     are analytically derived using the 

hydrostatic equation (Eq.A.5) and the newly derived expression for  : 
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Inserting 0 1(1 tanh )vu u    and 
2

06 (1 tanh )v
v

v

u



  

 
   

  
 into A.14 results 

in ( , , )T    : 

2

0 0 1

12 1 1
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d
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            (A.15) 

            Thus, the temperature is:  

            
*

0( , , ) ( , , ), where 
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p
T T z T

p
           , and 

0 (1 )
dR

gT
z 



 


 (A.16) 

All derived fields describe the background flow in which a vortex seed is embedded. The 

corresponding , , ,  and u v T p q  of the initial vortex seed remain the same as those in Reed and 

Jablonowski (2011a). The tangential velocity of the vortex seed is consistent with Eq.(17) in 

RJ2011a and the way to compute  and u v is the same as that shown in Eq.(22) and Eq.(23) of 

RJ2011a. The temperature field defining the vortex seed is in Eq.(15), the pressure field is in 

Eq.(7), and the specific humidity q is specified in Eq.(1) of RJ2011a. Consider a unidirectional 

westerly vertical profile as an example (note: 1 0u   for this type of wind profile), the 

background , , ,  and u v T p q fields are: 

(1) 0 cos (tanh 1.0),  0,  6(1 ) 3.0;v vu u v where                                                                                                              
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(2)
2 2

0 0 0

12 1 1
( , ) ( cos 2 )(1 tanh )( (tanh 1.0))

4 12
v v

d

T T z u a u
R


           ;  

Where 0T SST , and the sea surface temperature ( SST ) is set to a constant 302.15 K 

everywhere (zero horizontal temperature gradient at surface). The horizontal temperature 

gradient increases with height, and reaches its maximum in the mid-troposphere where the wind 

shear is greatest. When the wind shear approaches zero in the upper troposphere, the horizontal 

temperature gradient diminishes to zero; 

(3) 2

0 0

1 1
( , ) ( cos(2 ) )(2 (tanh( 3.0) 1.0) ( (tanh( 3.0) 1.0)) )

4 12
s u a u           

(4) sp p , where sp is surface temperature; 

(5) q  is the same as (Eq.(1)) in Reed and Jablonowski (2011a);  

(6) Tropopause height remains 15 km everywhere.      
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Appendix B 

Validation of EMARS 

 

We used three methods to evaluate EMARS. The root mean square error (RMSE) is used to 

measure how well EMARS fits the CAM model in simulating the relationships between tropical 

cyclone characteristics and model initial conditions. Let y denote the output from simulated the 

CAM model and let ŷ be the output calculated from the EMARS model. The RMSE can then be 

defined as,  

   21 1
ˆ( ) / ( )i i i

i i

RMSE y y y
n n

    

RMSE in this case is the proportion of mean square error to the mean value over the ensemble of 

CAM simulations. In the first method, we used all 300 model intergrations to build EMARS 

repeatedly for each output variable. That is: 

  1
ˆ ( , , , ,500 )MWSy f RMW MWS GAMMA SST hPa RH   

  2
ˆ ( , , , ,500 )PRECTy f RMW MWS GAMMA SST hPa RH   

  3
ˆ ( , , , ,500 )LWCFy f RMW MWS GAMMA SST hPa RH   

  4
ˆ ( , , , ,500 )SWCFy f RMW MWS GAMMA SST hPa RH   

  5
ˆ ( , , , ,500 )LWPy f RMW MWS GAMMA SST hPa RH   

  6
ˆ ( , , , ,500 )IWPy f RMW MWS GAMMA SST hPa RH   
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After the functions ˆ
MWSf , ˆ

PRECTf , ˆ
LWCFf , ˆ

SWCFf , ˆ
LWPf  and ˆ

IWPf  are built from the 300 CAM 

simulations, the estimated MWS, PRECT, LWCF, SWCF, LWP and IWP are calculated and 

compared to the model simulated MWS, PRECT, LWCF, SWCF, LWP and IWP. Figure B1 

shows the comparisons between the CAM model and the EMARS emulators. Generally speaking, 

EMARS provides a close fit to the CAM output. The root mean square error for MWS is 3% of 

the mean value of the 300 simulated intensity samplings. This variable is also small for  

 

 
Figure B 1: Fitted output variables using EMARS emulator compared with the simulated 

physical fields from ensemble runs. The data shown are time averaged over days 9-10, the 

mature phase of TCs. Each variable is retrieved by weighted area average over the tropical 

cyclone region. 
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PRECT, LWCF, SWCF and IWP. The error from EMARS is larger for LWP (which is 11% of 

the mean value), indicating that EMARS did not capture the relationships between LWP and the 

five model initial conditions as well as it did for MWS, PRECT, LWCF, SWCF and IWP.  

In the second method, we used the first 280 sampling points to build EMARS, then used 

EMARS to predict the remaining 20 points. The predicted values are compared with CAM 

simulated values, and the comparison is shown in Figure B2. The results are consistent with what 

was shown in Figure B1. EMARS does a good job constructing the relationships between MWS, 

PRECT, LWCF, SWCF, IWP and the five input variables. 
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Figure B 2: Predicted 20 subset points from EMARS versus the actual values. 300 samplings are 

run and 280 samplings are used for building the EMARS models. The model is then used to 

predict the last 20 points. These predicted values are compared with the 20 actual values as 

shown.  

 

LWP is again not fit as well as the others. In the third method, we use cross validation analysis. 

Consider TC intensity (MWS) as an example. In each time of several trials, we used 299 

sampling points to construct the EMARS fit, then predicted the remaining one point. We did this 

routinely 300 times starting from sample (simulation) 1 and proceeding through 300. The 300 

predicted values are then compared with the simulated 300 values. The cross validation analysis 

is conducted for all six variables. Figure B3 shows the results. The conclusions from Figure B3 
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are consistent with those shown in Figure B1 and Figure B2. EMARS performs well for MWS, 

PRECT, LWCF, SWCF, IWP but returns a poorer fit for LWP.   

 
Figure B 3: Predicted values from cross-validation analysis versus the actual values of (a). MWS, 

(b). total precipitation rate, (c). LWCF, (d). SWCF, (e). LWP and (f). IWP.  

 

The reason that EMARS does not perform well for LWP might be that the relationship between 

LWP and the five initial conditions is much more complicated. We further compare the 

performance of EMARS with other two popularly used surrogate model: Gaussian Process 

Model and MARS, and fit the relationship between TC intensity and SST (Figure B4). The R 

package for Gaussian Process Model is called “GPfit” from B. MacDonald, H. Chipman, and P. 
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Ranjan. The comparison shows that EMARS generally does a better job than MARS and GaSP, 

primarily at large values of SST.   

 

Figure B 4: Comparison among three surrogate model on fitting the relationship between TC 

intensity and SST. The three surrogate model are Gaussian Process Model (GaSP; B. 

MacDonald, H. Chipman, and P. Ranjan), MARS, and EMARS.   

 

The conclusions from Figure B1, B2, B3 and B4 provide solid confidence that we can construct 

relationships between simulated TC characteristics and model initial conditions using EMARS.  
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Appendix C 

Physical explanation of the 24 selected parameters in CAM 5.1.1 

 

We examined 24 parameterized physical processes in 5 schemes: the Zhang-McFarlane (ZM) 

deep convection scheme (Zhang and McFarlane 1995; Ritcher and Rasch 2008), the University 

of Washington (UW) shallow convection scheme (Bretherton et al. 2004; Park and Bretherton 

2009), the UW moist turbulence scheme (Bretherton and Park 2009), Morrison-Gettelman (MG) 

the two moment cloud microphysics parameterization (Morrison and Gettelman 2008; Gettelman 

et al. 2010) and the cloud macrophysics scheme (Neale et al. 2010). Among them, 8 parameters 

are selected from the deep convection scheme, 5 parameters are from the UW shallow 

convection scheme, 8 parameters are from the MG cloud microphysics scheme, 1 parameter is 

from the UW moist turbulent scheme and 2 are from the cloud macrophysics. In this 

supplemental material, we document each parameter, noting the scheme in which it is contained, 

and explaining the associated physical process (es).  

1. Deep convection scheme  

In CAM5, the deep convection parameterization is based on the work of Zhang and McFarlane 

(1995) and modified with the addition of convective momentum transports by Richter and Rasch 

(2008) and a modified dilute plume calculation following Raymond and Blyth (1986,1992). 8 
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tunable parameters are selected from this scheme. They are C0_ocn, ke, alfa, dmpdz, tau, 

capelmt, momcu and momcd.  

C0_ocean ( 0 _C ocn ): Deep convective precipitation efficiency over ocean  

This is the autoconversion coefficient over ocean in the CAM deep convection scheme, and 

determines the conversion from cloud liquid water to rainwater in the updraft. The conversion 

from cloud liquid water to rain water (Rr) is represented by the empirical formulation of Lord et 

al. (1982),  

0r uR C M l  (eq.1) 

Where Mu is the updraft mass flux, 0C  is the conversion coefficient, and l is the cloud water 

content.  

ke ( eK ): Tunable evaporation efficiency of precipitation.  

An evaporation formula following Sundqvist (1988), has been employed to evaporate some 

precipitation directly to the grid-scale environment as it makes its way to the surface 

(1 )k e k kE K RH R   (eq.2) 

where R is the total precipitation flux at model layer k, RH is the relative humidity of the 

environment, Ke is the evaporation efficiency, and E is the corresponding evaporation in that 

layer.   

alfa ( ): Maximum cloud downdraft mass flux fraction (fraction) 
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Convective scale downdrafts are induced and fueled by the rainwater evaporation when there is 

precipitation produced in the updrafts. The strength of the downdraft flux is controlled by a 

proportionality factor  , which is derived based on the precipitation produced in the updrafts 

(PCP) and the evaporation in downdrafts (EVP), as shown:  

0

PCP

PCP EVP
 


 (eq. 3) 

Such a relationship indicates that there is no downdraft if no precipitation is produced. It also 

ensures that evaporation in the downdraft does not exceed a fraction ( 0 0.1  ) of the total 

precipitation produced within the updrafts.  

dmpdz ( _PE ocn ): Parcel fractional mass entrainment rate over ocean (aqua-planet set up in 

our simulations). It denotes the entrainment rate from environmental air to the convective plume.   

tau ( ): CAPE consumption time scale. In the deep convective scheme, it is assumed that the 

moist convection occurs only when there is CAPE consumption.   

capelmt ( 0CAPE ): Threshold value of CAPE for deep convection.   

The closure condition used in the ZM deep convection scheme is based on the concept that 

cumulus convection consumes the CAPE at a certain time rate. The cloud-base upward mass flux 

( bM ) is calculated as shown by:  

0
b

CAPE CAPE
M

F


 (eq. 4)  
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Where F  is the CAPE  consumption rate per unit updraft mass flux at the cloud base, 0CAPE is 

the threshold for deep convection, and  is a prescribed time scale during which CAPE in excess 

of 0CAPE is consumed by convection.  

momcu( uC ): coefficient controls the updraft convective momentum transport (CMT).  

momcd( dC ): coefficient controls the downdraft convective momentum transport (CMT).  

Richter and Rasch (2008) first incorporate momentum transport in convection scheme and they 

found that convective momentum transport changes the Coriolis torque and thus affect 

tropospheric climate. The convective momentum transport is represented following (Gregory et 

al. 1997) as:  

 
u

G u u

v
P C M

p


 


 (eq. 5) 

d

G d d

v
P C M

p


 


 (eq. 6)  

Where uC  and dC  are tunable parameters. The value of uC  and dC  control the strength of 

updraft and downdraft convective momentum transport respectively. As these coefficients 

increase, so do the pressure gradient terms, and convective momentum transport decreases.  The 

addition of the pressure gradient term reduces the difference between in-cloud and environmental 

velocities, hence reducing the vertical momentum transport.  

2. University of Washington Shallow Convection Scheme  

Uwshcu_rpen( penr ): Penetrative entrainment efficiency.   
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This parameter regulates the ratio of penetrative entrained air mass to the air mass detrained from 

cumulus updrafts in the overshooting zone above the level of neutral buoyancy (LNB). 

The rate of lateral mixing in the overshooting zone is specified as:  

0i penr  (eq. 7)  

0 is the fractional mixing rate. penr =10.0 is an empirical penetrative mixing enhancement factor 

parameter that crudely accounts for differences between penetrative and lateral mixing and is 

chosen to optimize the model simulation of the stratus to trade-cumulus transition.  

criqc( ,maxcq ): Maximum cumulus updraft condensate.   

A crude precipitation sink for the updraft total water, which removes all updraft cloud water in 

excess of an arbitrary critical value 1

,max 1  cq g kg and increases the updraft liquid water 

potential temperature accordingly. If the cloud condensate mixing ratio exceeds 1

,max 1  cq g kg , 

all the excessive condensate is converted into precipitation.  

kevp ( eK ): evaporative efficiency.  

UWShCu treats evaporation of convective precipitation above cloud base, as in ZM deep 

convection scheme, which relates the vertical profile of rain evaporation rate E ( 1s ) to the 

vertical profiles of grid-mean relative humidity RH and the precipitation flux R (
2 1  kg m s 

):  

1/2(1 )eE K RH R   (eq. 8) 

5 2 1 1/2 10.2 10 [(   ) ]eK kg m s s       
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Comparison of vertical profiles of precipitation flux with large eddy simulations (LES) based on 

an ongoing Global Cloud System Study (GCSS) precipitating trade cumulus case suggests that 

the coefficient eK used in the deep convection scheme is also adequate for shallow cumulus.  

rkm( c ): Determine the amount of air that is involved in buoyancy-sorting c =8.0 for which the 

cumulus layer was only 1.5 km deep.  

By decreasing c , one can make UWShCu resemble a deep convection scheme.  To avoid 

competition between UWShCu and a separate deep convection scheme, it is therefore advisable 

not decrease c below 4.  

aumax ( ,maxua ): Maximum core updraft fraction  

In UWShCu, the shallow cumulus core updraft fraction is not allowed to exceed ,max 0.1ua  at 

any level. Since cumulus updraft fractional area is about twice of the core updraft fractional area, 

cumulus updraft fractional area should not exceed 0.2 by this constraint. Range is 0.05-0.15. If 

the cumulus core updraft fraction exceeds 0.15, the convection is arguably better represented as a 

stratocumulus layer and should be handled by the moist turbulence scheme.  

3. Morrison-Gettelman two moment cloud microphysics  

Dcs( csD ): The threshold size separating cloud ice from snow. This parameter works in 

conversion of cloud ice to snow. When the size of cloud ice is greater than Dcs, it is then treated 

as snow.  

ai( ia ): Empirical fall-speed parameter for cloud ice.  It determines the cloud ice particle 

terminal fall speed.  Larger ai leads to larger ice particle terminal fall speed.   
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b

i iV a D  (eq. 9) 

as( sa ): Empirical fall-speed parameter for snow. It determines snow terminal fall speed.  Larger 

ai leads to larger snow terminal fall speed.   

b

s sV a D (eq. 10) 

cdnl: Cloud droplet number limiter. This is the maximum number of cloud droplets allowed in 

the model domain. It is a prognosed variable.    

eii:  Collection efficiency aggregation ice. Snow is accreted from cloud ice particle via 

continuous collection. This is the collection efficiency for collisions between cloud ice and snow. 

Larger eii means that cloud ice particle has larger chance to form snow when they are collided.  

qcvar ( v ): Inverse relative variance of sub-grid cloud water. In the MG two moment cloud 

microphysics, the probability density function (PDF) of in-cloud cloud water follows a gamma 

distribution function. This is the parameter in the PDF function. Larger qcvar typically comes 

with smaller autoconversion rate, immersion freezing and rain accretion.  

wsubimax: Maximum subgrid vertical velocity for ice nucleation. It is a critical vertical velocity 

for ice nucleation.  

wsublmin: Minimum subgrid vertical velocity for liquid nucleation. It is a critical vertical 

velocity for liquid nucleation.  

4.  University of Washington moist turbulence scheme 

Only one parameter is tunable in this scheme.  
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a2l: moist entrainment enhancement parameter. It is relevant to entrainment efficiency, which is 

affected by mixtures of cloud-top and above-inversion air. At the convective layer (CL) top, the 

cooling promotes the sinking of mixtures into the CL, enhancing entrainment. At the base, the 

cooled mixtures tend to sink away from the CL, so entrainment is not enhanced.  In other words, 

if a2l is larger, the entrainment is better enhanced. 

5. Cloud macrophysics 

In cloud macrophysics, stratus cloud fraction is parameterized as a sum of Relative Humidity 

(RH)-based and Stability-based cloud fractions. The RH-based stratus fraction is a quadratic 

function of grid-mean RH.   

cldfrc_rhminh: Minimum relative humidity for high stable clouds 

In CAM5, the liquid stratus fraction is a function of grid-mean RH over water. Only when this 

RH is larger than the critical RH (cldfrc_rhminh), high stable liquid stratus (above 400 hPa) is 

formed. The cldfrc_rhminh is externally specificed and used as a tuning parameter.  

cldfrc_rhminl: Minimum relative humidity for low stable clouds. 

Similar to cldfrc_rhminh, however, it is the critical relative humidity for low stable clouds 

(below 700 hPa).  
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