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Abstract 
 

Despite the careful examination of the developmental changes in overt behavior 

and the underlying muscle activity and joint movement patterns, there is very little 

empirical evidence on how the brain and its link to behavior evolves during the first year 

of life. The dynamic systems approach and theory of neuronal group selection provides a 

framework that hypothesizes the development of the CNS early in life. However, the 

direct examination of the changes in brain activation that underlie the development of 

functional motor control in infants have yet to be determined or tested.  

The goal of my dissertation was to use functional near-infrared spectroscopy 

(fNIRS) to document the changes in brain activation patterns as infants acquired 

functional motor skills. My studies show that fNIRS is a viable and useful tool to 

examine brain activity in the context of infant movements. My findings demonstrate that 

as the behavioral and motor outcomes improve, the underlying neural activation patterns 

emerge. When functional motor skills are unstable and not fully functional, larger areas 

of the broad brain regions are recruited. As the skills become more reliable and functional, 

the brain activation patterns become refined and show an increase in strength of activity. 

The results from the studies in my dissertation take an important first step of 

describing the typical neural patterns that emerge with functional motor skills early in life. 



 xi 

This work will help future studies build the body of empirical evidence that will improve 

our knowledge regarding the developing link between brain development and behavior. 

Finally, these studies provide foundational knowledge to better understand the atypical 

development of the CNS in those with disabilities.  
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Chapter I: Introduction 

1.1 Contemporary theories of Motor Development 

 During the first year of life, an infant acquires many motor skills such as reaching, 

grasping, crawling, scooting, sitting, and stepping. The emergence of these skills are 

some of the most dramatic and impressive changes observed during this period. However, 

despite advances in technology, scientists have yet to discern the neural activation 

patterns that underlie the emergence of such overt behaviors. Current neuroscience 

theories and empirical data demonstrate the bidirectional relationship between 

developmental changes in behavior with changes in brain activation patterns. Moreover, 

balancing behavioral evidence with direct neurological measures is critical to improve 

and develop new avenues to early intervention for those with developmental disabilities.  

 Refined measures of motor behavior afforded by advancements in motion 

tracking and electromyography enabled improved ways to test a series of overlapping 

theories that argue in favor of an experience dependent emergence of motor skills. The 

theories include dynamic systems theory (Thelen & Smith, 1994), developmental systems 

approach (Gottlieb, Wahlsten, & Lickliter, 1998; Spencer et al., 2009), and dynamic field 

theory (Wiebe, Morton, Buss, & Spencer, 2014). These theories all capture the same 

central tenet; new skills (patterns of behavior) emerge with experience as multiple 
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subsystems engaged during performance (e.g. intrinsic and extrinsic dynamics, 

environment, and task) converge to achieve a goal. Support for these theories is derived 

from observations that actions are self-organized and softly assembled rather than hard-

wired and predetermined (Thelen & Smith, 1994). Thelen and colleagues demonstrated 

the plasticity of infant stepping by showing the persistence of similar lower-limb 

kinematics in various postures, such as supine kicking and stepping while supported over 

a treadmill (Thelen & Ulrich, 1991; Thelen, 1985), even when stepping was supposed to 

be inhibited by the proposed maturation of the higher brain centers. Importantly, the 

emergence of stepping like reaching and all other functional skills has been attributed to 

converging improvements in multiple systems (e.g. muscle strength, neural transmission 

speed, and sensory development), exploration and goal-directed practice.  

 First successful reaches emerge around 4 months of age. In the months and weeks 

leading up to the emergence of this behavior, infants make repeated attempts of arm 

movements directed towards the object before them. This is known as prereaching and is 

characterized by increased co-activation of typical agonist/antagonist muscles, increased 

errors or less contact with the target object, and increased variability in the patterns of 

movement as they move their arms toward a toy. Over time, infants gain more experience 

and success in reaching, the muscle activation patterns is refined and the behavior 

becomes more reliable, accurate, and adaptive (Thelen et al., 1993; Thelen, Corbetta, & 

Spencer, 1996). Concurrently, the development of eye, hand, and head control contribute 

to the assembly of subsystems for reaching to emerge (Thelen et al., 1993). As voluntary 
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and purposeful reaching becomes increasingly successful, this behavior enables infants to 

obtain and manipulate objects, and explore their immediate environment, thereby 

accessing new types of information, which has been shown to enhance cognitive 

development (Bourgeois, Khawar, Neal, & Lockman, 2005), perception and memory 

(Needham, Barrett, & Peterman, 2002; Needham, 2001).. 

 The same dynamic systems framework supports the emergent patterns of muscle 

activity as cruising and walking begin to emerge around 10 months. In a series of studies, 

Ulrich and colleagues (Chang, Kubo, & Ulrich, 2009; Teulier et al., 2009) showed that 

infants and toddlers with typical development produce many unstable combinations of 

muscle activation when stepping while supported over a treadmill across the first year of 

life and into the first few months of independent walking. More organized and efficient 

muscle activation patterns emerged which underlie the refinement in control and limbs 

reflected by improvement in kinematic behavior. Interestingly, stepping in this context up 

is not a behavior that they practice in their everyday activities. Thus, the researchers 

argue that each time infants were tested, they responded with context-specific exploratory 

behavior, which reflects a goal to overcome the instability of having their legs moved 

backward. After 6 months of independent walking experience, toddlers with typical 

development showed efficient synergies of muscle activation (Chang et al., 2009).  

 At the core of all the contemporary models of infant motor development discussed 

above is the concept of experience dependent neural plasticity. To date, the dynamic and 

complex development of the nervous system supporting the emergence of reaching and 
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stepping has only been inferred on the basis of movement kinematics, kinetics and overt 

outcomes. Direct measures of the concurrent neural changes that change with the 

emergent behaviors do not exist. Moreover, the hypothesized bidirectional interaction of 

activity on brain organization and the brain’s changes affecting the behavior has been 

tested and hypothesized in adults, but yet to be empirically tested in infants. As a result, 

the hypothesized maps widely accepted in adults, may or may not exist for infants, but 

may emerge dynamically. Thus, the initial step must be to map the typical neural 

activation changes in the developing brain that emerge as infants develop functional 

motor skills Then, future work can test the dependency of the relationship between the 

CNS and the emergence of functional motor skills. For example, directly examining the 

neural contributions to the emergence and production of a functional motor skill in 

infants with typical development will provide a foundation to understanding how this 

differs from infants who exhibit significant motor delays and deficits. Furthermore, such 

findings will allow researchers and clinicians to understand how current interventions and 

therapies are changing the functional activation patterns of the CNS its relationship to the 

motor impairments. Much like how advances in motion capture and electromyography 

provided deeper insights and evidence for the contemporary theories of motor 

development, advances in neuroimaging have the potential to yield the critical empirical 

evidence that will shape future theories  
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1.2 Neuroimaging as a Tool to Study Development 

 Investigation of the neural basis for the emergence of new behaviors during 

infancy has been hampered by the significant constraints posed by traditional 

neuroimaging techniques. Functional magnetic resonance imaging (fMRI) and 

electroencephalography (EEG) are commonly used for studying motor areas in adults but 

both techniques are extremely sensitive to movement related artifacts. Movement 

artifacts are minor inconveniences in adult studies, because participants are able to listen 

to follow instructions and perform tasks without moving their head and uninvolved limbs. 

In infants, extraneous movement is quite problematic given the large number of trials 

required to obtain a small number of usable data. The significant noise and narrow 

confines that exist in the fMRI environment are also prohibitive to functional studies of 

the infant brain because babies cannot tolerate them while awake. In addition, safety 

concerns related to the radio frequency gradients and acoustic noise of an fMRI scan have 

yet to be fully investigated in adults let alone the potentially more susceptible infant 

population. While the environmental and safety concerns are not as prevalent with EEG, 

the time required to prepare recording electrodes and the potential for irritating the scalp 

can cause infants to become fussy before data collection can be completed. Further, 

somatic sensations associated with electro-conducting gels can agitate infants making 

them less cooperative. However, most important with regard to the use of EEG is that the 

summation of neural activity from multiple generators in the brain at a single electrode 
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makes it difficult to localize temporal changes to specific regions of the brain (Michel et 

al., 2004; Pascual-Marqui, 1999). 

 Functional near-infrared spectroscopy (fNIRS) has become an increasingly 

popular choice for a neuroimaging technique among developmental scientists. It has 

greater spatial resolution than EEG and higher temporal resolution than fMRI, thus, 

fNIRS enables researchers to address and identify regional specificity in the developing 

brain. fNIRS uses near-infrared light to measure changes in cerebral oxygenation. 

Additionally, the fNIRS technology utilizes near-infrared light between 690 and 830 nm 

wavelengths. In this range, light is minimally absorbed by water and is mostly absorbed 

by the chromophores, oxygenated and deoxygenated hemoglobin (HbO and HbR, 

respectively). Near-infrared light is delivered via fiber optic cables that terminate into 

customized headgear. With this snug headgear system, fNIRS is more resilient to 

movement-related artifact than fMRI and is not subject to the same rigid head 

stabilization and supine posture requirements. The increased flexibility of fNIRS allows 

participants to assume a naturalistic posture relevant to more functional tasks, while 

tolerating large(r) body movements. The use of light also provides a unique opportunity 

to probe the thinner and developing tissues of the infant head. This allows the 

measurement of the cerebral cortex and cerebellum, which are located at much shallower 

depths than adults. Moreover, fNIRS is silent, safe, and the environment can be altered to 

maintain ecological validity (Lloyd-Fox, Blasi, & Elwell, 2010).  
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For the reasons outlined above, fNIRS is an optimal neuroimaging technique for studying 

early brain development in infants as they acquire and perform motor milestones. This 

thesis sought to exploit the advantages that fNIRS affords to test the contemporary 

theories of motor development and enhance our understanding of neuromotor 

development during the first year of post-birth life.  

1.3 Regions of Interest for Motor Development 

Across my series of studies, I investigated three brain regions of interest that are 

associated with motor learning and development. All these areas have been heavily 

studied in healthy adults (Halsband & Lange, 2006), but minimally in infants (Bell & Fox, 

1996; Corbetta, Friedman, & Bell, 2014).  

The primary motor cortex (M1) provides the primary descending output to the 

motor neurons controlling voluntary limb movements (Halsband & Lange, 2006). 

Researchers using fMRI have found evidence for a hypothesized somatotopic map of 

well learned fine motor tasks, such as finger tapping (Indovina & Sanes, 2001), hand 

clenching (Ehrsson et al., 2000), wrist flexion (Hidler, Hodics, Xu, Dobkin, & Cohen, 

2006), and pointing (Filimon, Nelson, Hagler, & Sereno, 2007), simple flexion and 

extension of the ankle (Dobkin, Firestine, West, Saremi, & Woods, 2004) and elevation 

of the foot at the ankle (Lotze et al., 2000). In addition to motor neuron activity, goal-

directed actions require the planning and online control of limb movements. Thus, 

additional areas of the brain, such as the prefrontal cortex (pFC) and cerebellum (Crbl), 

contribute to the motor outcome.  
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The anterior area of the frontal lobe known as the pFC is widely known for its 

role in attention and short-term memory. When people learn new movements and skills, 

the pFC, specifically their dorsolateral pFC (DLPFC) shows increased activity, 

particularly during the early stages of motor learning when errors are abundant. Goal-

directed actions involve cognitive processes such as attention and decision making, more 

so during the these early stages of motor learning As individuals repeat and learn the task, 

activity in the DLPFC diminishes (Halsband & Lange, 2006; Pochon et al., 2001). As the 

behavior unfolds, it requires the monitoring and online feedback to maintain precision of 

the movement.  

The Crbl contributes to the adaptive control of movements and overall posture. 

The Crbl, like the DLPFC, also shows enhanced activation in the early stages of skill 

acquisition reflecting the early, increased dependence on feedback (Doyon et al., 2002). 

As errors are reduced, Crbl activity decreases because close monitoring of feedback 

becomes less important once skills are mastered (Halsband & Lange, 2006). Recently, 

substantive evidence has accumulated showing that the Crbl plays a role in cognitive 

processes, such as attention and decision-making. Much like the pFC, activity in the Crbl 

is much higher when skills are being learned compared to when the movement is 

“automatic” or well-learned (Koziol et al., 2014).  

Although the roles and contributions of each region have been described 

consistently in adults for the production of simple and well-practiced goal-directed 

movements, these have not been established for infants, for whom the brain is not as well 
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organized and skills are nascent and developing. As infants learn to reach, for example, 

they explore many ways to control their limbs and other body parts in order to obtain 

their goal, the desired toy. Their action contexts are much different those of adults and, in 

particular, from the contexts of adult motor learning studies. For adults, tested new “skills” 

are manipulations or deviations of already well-learned and significantly practiced 

movements (e.g. motor sequence learning and motor adaptation). Infants attempt to reach 

many times before and after initial success and they take many steps with and without 

support over the first year before the skill is stable. All of these actions comprise a 

continued cycle of trial and error and acting and perceiving. Through these cycles, the 

activation patterns and contributions from each of the brain regions should change as 

infants gain goal-directed and self-initiated experience and learn to control and adapt 

their movements. 

1.4 Specific Aims and Hypotheses 

To describe the developmental changes in neural activation patterns as infants 

acquire new functional motor skills, I devised three studies. I began by establishing, using 

fNIRS, reliable measures of the adult M1 for tasks I wished to explore in infants. I 

followed this by examining the developmental changes in M1 activity as infants 

developed functional motor skills. Last, I explored, in addition to the M1, the pFC and 

Crbl to describe the patterns of brain activity across three different regions.  
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Specific Aim 1 (Chapter 2/Study 1): Before examining brain activation patterns of infants, 

there was a critical first step to understand hemodynamic activity, using fNIRS, in adults 

who are skilled performers. Thus, the aim of this study was to describe robust measures 

of hemodynamic activity of the primary motor cortex using fNIRS, as healthy adults 

perform different functional motor skills.  

Hypotheses: During unilateral tasks, adults will show significant increase in oxygenated 

hemoglobin in the contralateral motor cortex. During bilateral tasks, adults will show 

significant increase in oxygenated hemoglobin in the bilateral motor cortex. Finally, the 

location of the sum of the changes in oxygenation during reaching tasks will be 

represented at distinctly different positions on the motor cortex compared to the stepping 

task.  

 

Specific Aim 2 (Chapter 3/Study 2): To describe developmental changes in 

hemodynamic activity of the primary motor cortex as infants with typical development 

perform functional motor skills. 

Hypotheses: During reaching, younger infants (5 to 7 months) will show significant 

increase in oxygenated hemoglobin from a disperse area of the primary motor cortex 

compared to older infants (11 to 13 months old). During stepping, older infants will show 

significant increase in oxygenated hemoglobin from a disperse area of the primary motor 

cortex compared to younger infants.  
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Specific Aim 3 (Chapter 4/Study 3): To describe the hemodynamic activity of the 

prefrontal cortex, primary motor cortex, and cerebellum as infants with typical 

development perform functional motor skills.  

Hypotheses: Reaching - Younger infants will show significant increases in oxygenated 

hemoglobin from more channels covering the prefrontal cortex compared to older infants. 

Similarly, in the primary motor cortex, younger infants will show increases in oxygenated 

hemoglobin from more channels covering the bilateral primary motor cortex compared to 

older infants. In the cerebellum, younger infants will show increases in oxygenated 

hemoglobin from more channels compared to older infants. 

Stepping – Older infants will show increases in oxygenated hemoglobin from fewer 

channels covering the pFC and Crbl. In the M1, however, older infants will show 

increases in oxygenated hemoglobin from more channels across the bilateral motor cortex, 

compared to younger infants.
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Chapter II: Motor Cortex Activity During Functional Motor Skills: an 
fNIRS Study 

(Nishiyori, R., Bisconti, S., & Ulrich, B.D. (2016). Brain Topography, 29(1), 42-55.) 
 

Abstract 

Assessments of brain activity during motor task performance have been limited to 

fine motor movements due to technological constraints presented by traditional 

neuroimaging techniques, such as functional magnetic resonance imaging. Functional 

near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome 

these constraints and investigate motor performance of functional motor tasks. The 

current study used fNIRS to quantify hemodynamic responses within the primary motor 

cortex in twelve healthy adults as they performed unimanual right, unimanual left, and 

bimanual reaching, and stepping in place. Results revealed that during both unimanual 

reaching tasks, the contralateral hemisphere showed significant activation in channels 

located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand 

reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, 

which were located bilaterally across the primary motor cortex. The medial channels, 

surrounding Cz, showed significantly higher activations during stepping when compared 

to bimanual reaching. Our results extend the viability of fNIRS to study motor function 
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and build a foundation for future investigation of motor development in infants during 

nascent functional behaviors and monitor how they may change with age or practice.



 8 

2.1 Introduction 

An emerging area of interest for developmental scientists is the neural basis of 

motor performance and learning of emerging skills. Practical and technological 

constraints have limited the contribution from traditional neuro imaging techniques like 

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). As a 

result, the neural basis of performance and learning in infants and young children has 

been based upon inferences informed by behavioral and muscular measures. The 

emergence of functional near-infrared spectroscopy (fNIRS) offers greater flexibility in 

both the behaviors and the populations that can be studied. Researchers have just begun 

to utilize fNIRS in areas of studies that were not possible before. Similar to fMRI, fNIRS 

measures changes in cortical oxygenation that reflect neural activity (Chance et al., 1998; 

Villringer & Chance, 1997). However, instead of relying on the differential magnetic 

properties of oxygenated (HbO) and deoxygenated (HbR) hemoglobin to infer levels of 

oxygenation, fNIRS exploits the differences in absorption of near-infrared light 

(Villringer & Chance, 1997). The use of near-infrared light rather than strong magnetic 

fields means that fNIRS can be employed in less restricted and more naturalistic 

environments to assess functional brain activation during dynamic motor tasks. Recently, 

researchers using fNIRS have shown the changes in brain oxygenation when participants 

performed a discrete motor skill (Ikegami and Taga 2008), walked on a treadmill 

(Koenraadt et al., 2014; Kurz et al., 2012), and balanced on a tilt board (Ferrari et al., 

2014). These studies have strongly demonstrated the flexibility and adaptability of fNIRS 
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to quantify cortical activity during various movements not possible in other neuroimaging 

techniques. The primary motor cortex (M1) has been an eminent target for investigating 

neuromotor behavior. In adults, it is well known that the M1 drives voluntary movements. 

fMRI studies have shown the blood oxygen level dependent (BOLD) response during 

several motor tasks, primarily with distal joints (e.g. wrist, hand, or finger) to quantify a 

hypothesized somatotopic map and kinetic properties during simple well-learned motor 

tasks such as finger tapping (Indovina and Sanes, 2001), hand clenching (Ehrsson et al., 

2014), wrist flexion (Hidler et al., 2006) and pointing (Filimon et al., 2007). The scanning 

environment, however, places a number of restrictions upon the motor behaviors that can 

be studied and how they can be performed, often limiting the ecological validity of the 

findings. The use of fNIRS continues to extend the boundaries of motor behavior 

research to examine cortical activity and allows researchers to determine spatial 

characteristics of activity during motor tasks. For example, Koenraadt et al. (2012) used 

fNIRS to identify differences in representations between hand and foot movements on the 

contralateral hemisphere of the M1. As hypothesized, hand representations were lateral to 

those of the foot. The tasks, however, were mixed-frequency tapping movements of the 

hand and foot. In addition, fNIRS measurements were only taken from the contralateral 

hemisphere of the M1, precluding findings about the ipsilateral cortex while performing 

the task or any potential bilateral activity associated with the unilateral tasks. Comparing 

hemispheric activity would elucidate the asymmetric cortical activity during unilateral 

tasks and bilateral cortical activity during bimanual tasks involving larger body segments 
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and muscles. To identify the location of activation with multi-channel fNIRS data, the 

center of gravity (CoG) approach has become a useful tool (Koenraadt et al., 2012). The 

use of the CoG approach has been commonly used in transcranial magnetic stimulation 

(TMS) research to identify the CoG of the motor evoked potentials (Boroojerdi et al., 

1999; Wassermann et al., 1992). For fNIRS data, the mean hemodynamic response values 

of all channels and the respective coordinates of the channels are considered to determine 

one location of activity (NIRS–CoG) for each task separately. The objective of the 

present study was to identify reliable measures of sensorimotor cortex activity as healthy 

adults reached for objects and stepped in place using fNIRS. Furthermore, because we 

measured cortical activity of the bilateral sensorimotor cortices, we aimed to identify 

ipsilateral activity and representations. We hypothesized that fNIRS data will reveal 

asymmetric activity in the sensorimotor cortex during unilateral tasks and symmetric 

activity during bilateral tasks. Moreover, we hypothesized that reaching tasks will show 

increased changes in cortical oxygenation in lateral areas compared to stepping in place, 

which is expected to show changes in the most medial areas. 

 

2.2 Methods 
2.2.1 Participants 

The research protocol was approved by the Institutional Review Board at the 

University of Michigan Medical School (IRBMED). We acquired informed consent from 

12 healthy right-handed adults (mean age = 23.41 ± 5.1 years, 8 females) who 

volunteered for our study. 
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2.2.2 Task 

Participants performed unimanual (left and right) and bimanual reaching, and 

stepping in place during their onetime visit. For each type of reach and stepping, 

participants completed a minimum of ten trials, without any prior practice, that consisted 

of a task phase followed by a rest phase. All participants successfully completed all four 

tasks. For the reaching tasks, participants were seated and asked to assume the most 

comfortable posture with their feet touching the floor. The experimenter presented the 

objects within reach at midline and mid-chest level. We used small grip-sized objects (3 x 

3 x 7 cm) for unimanual reaching and a large, but light object (61.5 x 0.6 x 31.5 cm) for 

the bimanual task (Figure 2.1). After participants grasped the object and brought it back 

to their laps, they were asked to release the object, which was followed by a 20-s rest 

interval. During the rest periods, participants remained quiet with their arms resting on 

their laps. The cycle was repeated for a total of ten trials. For the stepping task, 

participants stood upright and faced a monitor that displayed cues to step or to rest. Prior 

to the start of the stepping task, participants were instructed to mimic their natural 

walking style and to step at a comfortable pace (i.e. self-selected pace). Each stepping 

trial started with a 20 s rest, during which participants stood stationary with their arms at 

their side, followed by a 15 s stepping phase. The cycle was repeated for a total of ten 

trials. The participants did not know the duration of the task or rest phases to avoid any 

anticipatory movements. 
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2.2.3 Video Recording 

To accurately identify the onset of a task, rest, and any undesired movements, we 

recorded the entire session using a digital video recorder (Canon, USA) sampling at 60 

Hz. We used an audio signal to synchronize the video with the fNIRS data collection. 

This enabled us to map events onto the fNIRS data to accurately identify changes in 

hemodynamic responses related to the tasks. 

 

2.2.4 fNIRS Data Acquisition 

 Hemodynamic responses during each task were recorded using a continuous wave 

32-channel fNIRS system (CW6; TechEn Inc.) utilizing two different wavelengths (690 

and 830 nm) sampling at 50 Hz. Near-infrared light was delivered via fiber optic cables 

that terminated in a customized plastic headgear. The headgear contained eight sources 

and 12 detectors approximately 3 cm apart, creating an 18-channel array. The headgear 

was positioned on the head following the 10–20 international system (Jasper, 1958) so 

that the center of the headgear was aligned with the vertex (Cz) and lateral channels 

covered the area around the C3 and C4 landmarks, which have been shown to detect 

activity that drives hand movement (Koenraadt et al., 2013). The medial channels 

surrounded the Cz landmark, which have been shown to detect leg activity (Koenraadt et 

al. 2014). Thus, in our configuration, the optodes were positioned over the sensorimotor 

cortex or Brodmann area (BA) 4 (Okamoto et al., 2004) to detect changes in both arm 
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and leg activity as participants performed the respective tasks. Channels 1 through 9 were 

situated over the left, and channels 10 through 18 over the right hemisphere of the 

sensorimotor cortex (Figure 2.2). 

 

2.2.5 fNIRS Data Processing 

To convert the raw signal to optical density (absorption), we used the Homer2 

data pre-processing software (Huppert et al. 2009). We employed a wavelet-based motion 

artifact removal algorithm to extract motion artifacts from the fNIRS signal (Molavi and 

Dumont, 2012). Changes in optical density were converted into changes in HbO and HbR 

using the Modified Beer–Lambert Law (Cope et al., 1988) with a partial pathlength factor 

(ppf) of 6.0. Next, we used a 0.02 Hz high-pass filter and a 0.8 Hz low-pass filter to 

remove any slowly drifting signal components. 

 

2.2.6 Data Analyses 

The heart rate was visually inspected on the raw data to ensure there were no 

differences between the rest and task phases. For each participant within each task, their 

ten trials were averaged to calculate the mean values for the rest and task period for each 

channel. To correct task data for baseline levels during the rest phases, we calculated the 

mean values during the respective rest phase and subtracted them from the mean values 

obtained during the task phase. Both the means for changes in HbO and HbR hemoglobin 

for the rest phase and that of the task phase from each channel were compared using the 
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Student’s t test with the alpha level set at p < 0.05 to identify statistically significant 

changes related to the task. For each task, 18 t tests were performed; for this we 

employed a false discovery rate (FDR) to correct for multiple comparisons (Singh and 

Dan, 2006). The threshold for significance was set at p < 0.05 (FDR-corrected). 

 

2.2.7 Laterality Index 

 To test for symmetry/asymmetry during tasks, we paired channels on opposite 

hemispheres, resulting in nine pairs, to calculate a laterality index (Solodkin et al., 2001; 

Tian et al., 2010) for HbO for each task by using Eq. (1). 

 𝐿 = 𝑜𝑜𝑦𝑙−𝑜𝑜𝑦𝑟
 𝑜𝑜𝑦𝑙+𝑜𝑜𝑦𝑟

  (1) 

In this equation, l represents the channel from the left hemisphere and r indicates the 

channel from the right hemisphere in the pair. The L value will reveal which channel 

between the pair showed a higher change during the task. Negative values indicate left-

hemisphere dominant activations, while positive values indicate a right hemisphere 

dominant activation. Finally, to test for differences between channels that are activated in 

more than one task, we conducted a paired t test, with the alpha level set at p < 0.05. 

 

2.2.8 NIRS-CoG 

To identify one location of activity during a specific task, we used the NIRS–CoG 

approach. This approach was used in Koenraadt (2012), which discriminated the 
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contralateral motor cortex activity of the hand and foot (Koenraadt et al., 2012). For our 

study, we calculated a NIRS–CoG for each task by using the mean responses from all 18 

channels and the coordinates of the channels bilaterally. For both unimanual reaches and 

bimanual reaches, we calculated a NIRS–CoG for the contralateral and ipsilateral 

hemispheres. Moreover, for stepping, a single NIRS–CoG was identified. The NIRS–

CoGs were calculated using Eq. (2).  

𝑋𝐶𝐶𝐶 =  ∑𝑎𝑖 𝑋𝑖/ ∑ 𝑎𝑖 (2) 

The ai represents either the HbO or HbR mean response amplitude at the corresponding 

coordinate, Xi. The Xi represents the x- or y- coordinate of the measurement point (the 

mid-point between the source and detector). For each subject, we averaged the X- and Y-

CoG for HbO and HbR responses separately. The average X- and Y-CoG provided a 

single location of activity for each task. The x-axis represents the mediolateral direction, 

whereas the y-axis represents the anteroposterior direction. Moreover, the Cz location 

was set as the origin, the left hemisphere represented by negative values, and the right 

hemisphere represented by positive values. Positions anterior to Cz were represented by 

positive values, while posterior positions were represented by negative values. To test for 

differences in location across the NIRS–CoGs, we used a paired t test with an alpha level 

set at p\0.05. All statistical analyses were conducted using SPSS 21 (New York, USA). 
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2.3 Results 

2.3.1 Changes in Oxygenation 

First, we were able to detect task-related changes in oxygenation using fNIRS 

while adults performed functional motor skills. Moreover, no differences in heart rate 

were found between the rest and task phases. As shown in Figure 2.3, we identified task-

related increases in HbO accompanied by slight decreases in HbR prior to processing our 

time series data. More importantly, prior to the start of the following trial, we observed 

decreases in HbO precluding any contamination of the activity by the previous trial. We 

found significant increases in HbO from select channels during the task-phase compared 

to the respective rest phase for each task (Figure 2.4), but did not find any significant 

differences in HbR (Figure 2.5). Overall, we found that during unimanual tasks, channels 

on the contralateral hemisphere showed significant activation. Moreover, during stepping 

and bimanual tasks, channels across both hemispheres showed significant activation. 

Specifically, the channels located on the contralateral hemisphere showed 

significant increase during both right and left unimanual reaching. The t tests revealed 

that during unimanual reaching with the right hand, channels 5 (p = 0.04), 6 (p = 0.02), 

and 7 (p = 0.04), located on the left hemisphere, showed significant increase in HbO. 

These channels were approximately 3 cm medial to the C3 landmark. Similarly, during 

unimanual reaching with the left hand, channels 12 (p = 0.04), 13 (p = 0.04), and 14 (p = 

0.04) showed significant increases in HbO. This set of channels was also located 

approximately 3 cm medial to the C4 landmark. During bimanual reaching, we detected 
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significant activity in channels 5 through 14 (ps <0.05). This set of channels covered the 

bilateral sensorimotor cortices, while covering the most medial regions where significant 

activity was not detected during unimanual reaches. During stepping, we detected 

significant activity in channels 6 through 13 (ps <0.05). This set of channels was similar 

to those significant during bimanual reaches. A summary of the t statistics from the 

analyses can be found in Table 2.1 (HbO) and Table 2.2 (HbR). Finally, in Table 2.3, we 

show average traces of the hemodynamic response function (HRF) from each channel 

across all tasks. Here, we verify a robust increase in HbO accompanied by a slight 

decrease in HbR during the task phase followed by a decrease in HbO during the rest 

phase. Paired t tests of HbO in channels 8 through 11, which were activated during 

bimanual reaching and stepping, showed that these channels were significantly different 

t(11) = 2.38, p = 0.04; t(11) = 2.42, p = 0.03; t(11) = 3.02, p = 0.02; t(11) = 2.62, p = 0.03. 

That is, the most medial four channels (e.g. 8 through 11) were significantly higher 

during stepping compared to bimanual reaching. 

 

2.3.2 Laterality Index 

The laterality index values followed in line with our hypotheses regarding 

asymmetric and symmetric activity during unilateral and bilateral tasks, respectively. The 

index revealed that during unimanual tasks, the channels on the contralateral hemisphere 

showed dominant activation. During both bimanual reaching and stepping, the laterality 
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index did not reveal any hemispheric dominance, thus showing bilateral activation 

(Figure 2.6). 

 

2.3.3 NIRS-CoG 

 The NIRS–CoG for each task was identified on each hemisphere for both HbO 

(Figure 2.7) and HbR (Figure 2.8). For unimanual and bimanual reaches, the contralateral 

and ipsilateral NIRS-CoGs were identified on their respective hemispheres. We 

calculated one NIRS–CoG for stepping. We compared the NIRS-CoGs on the same 

hemisphere to identify any differences in representations in either mediolateral or 

anteroposterior directions.  

The NIRS–CoGs for HbO of the left hemisphere showed that the bimanual 

representation was more medial and posterior than the ipsilateral activity during left hand 

reaches (p = 0.01 and p = 0.01, respectively) and the contralateral activity during right 

hand reaches (ps < 0.01). The stepping representation was significantly more medial than 

all three representations in this hemisphere (ps < 0.01). In the right hemisphere for HbO, 

the bimanual representation was more medial and posterior to the contralateral activity 

during left hand reaches (p = 0.03 and p = 0.02, respectively). The stepping location was 

more medial than all three representations in the right hemisphere as well (ps < 0.01). We 

found the contralateral activity during left hand reaches to be more anterior to that of 

stepping (p < 0.01). A summary of the pairwise comparisons is shown in Table 2.4.  
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We were unable to detect any significant differences among the locations of the 

representations based on the HbR data for NIRS–CoG (Table 2.5). As seen in Figure 2.8, 

the left hemisphere showed similar locations of representations as shown in Figure 2.7, 

with the HbO data. In the right hemisphere, however, we found the bimanual 

representation to be most lateral and the contralateral activity during left hand reaches to 

be more medial than the other manual tasks. 

 

2.4 Discussion 
 We were able to determine the symmetric and asymmetric activity of the bilateral 

sensorimotor cortices using fNIRS during functional and dynamic motor tasks. It is well 

known that the neurons in the contralateral M1 drive isolated voluntary movements, 

much of which has been well studied in MRI studies with distal joint movements 

(Alkadhi et al. 2002; Lotze et al. 2000). Moreover, neuroscientists and clinicians continue 

to extend the boundaries of neuroimaging research to enable future investigation in 

clinical and pediatric populations and in behaviors difficult to measure using traditional 

techniques. More recently, researchers have used fNIRS as an effective tool to address 

the neural basis for motor behaviors that are extremely challenging to conduct in the MRI 

scanner. Unlike previous studies, our study measured the bilateral sensorimotor cortices, 

which enabled us to examine ipsilateral cortex activity. 

 The significant activity of HbO in our data supports the current understanding of 

motor control and extends our knowledge of cortical representations during dynamic and 
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functional motor tasks. Our HbR results did not reveal any significant differences during 

the task phase. As observed in our mean responses (Figure 2.5), we generally see a 

decrease in HbR or below-zero mean, which follows the canonical HRF model. This 

pattern, however, was relatively inconsistent compared to the robust increases seen in our 

HbO data. Previous research has shown that a marked increase in HbO after stimulus 

onset is associated with an increase in blood flow accompanying increased neural activity, 

or otherwise known as the BOLD response (Huppert et al. 2013; Steinbrink et al. 2006). 

Although the smaller decrease in HbR accompanies the increase in HbO in these 

canonical models, the reports of HbR from various studies remain inconsistent and 

analyses have focused primarily on HbO data (Cao et al. 2015; Karim et al. 2013; Karim 

et al. 2012). 

 In addition, we were able to demonstrate and verify the canonical hemispheric 

dominance during unimanual reaching, revealed by the laterality index. A specific set of 

channels located just medial to C3 and C4 showed a marked increase in activity, while 

medial channels closer to Cz did not show significant activation. Our results showed that 

slightly more medial channels than those identified in Koenraadt et al. (2013), were 

activated during reaching, which involves proximal joints in combination with more 

muscles than wrist flexion or finger tapping. The selective activation of the channels only 

surrounding the arm representations demonstrates the location of regions responsible for 

reaching. Interestingly, however, we detected significant activity in the medial channels 

during bimanual reaching. In between cortical regions attributed to arm and leg regions 
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controlling the motor neurons, lies the area responsible for the trunk muscles (Murayama 

et al. 2001). Furthermore, the same region of channels also showed significant activation 

during stepping, suggesting that these channels also covered the leg regions of the motor 

homunculus.  

It has been suggested that the principal activity detected from the dynamic 

movement inherent to gait originates from trunk, arm, and upper leg movements 

(Koenraadt et al. 2012). Stepping in place requires the alternation of steps while 

maintaining balance. The offset of balance when one foot is in contact with the ground, 

while the other is off, is counterbalanced by the swinging arm(s). Furthermore, the legs 

must bear the body weight while counteracting against gravity requiring more effort from 

the legs than the arms. Such increased effort is reflected in our data, in which we 

observed the highest activity in the central channels surrounding Cz, and lower but 

significant activity in the lateral channels that were active during the reaching tasks.  

During early development of motor control and recovery of motor function, the 

cortical contributions during a functional motor task are likely to come from different 

areas than those identified in healthy adults, where the skills performed are well learned. 

Thus, the contributions of both hemispheres of the sensorimotor cortices during 

functional motor tasks need to be established. Although the greatest change in cortical 

oxygenation was seen in the contralateral hemisphere, we separately calculated the 

ipsilateral NIRS–CoG to determine the location of the activity in the supporting 

hemisphere. In the present study, the representations of the arm, regardless of when the 
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hemisphere is contralateral or ipsilateral to the reaching hand, were in similar locations, 

thus suggesting that during a right-handed reach, the NIRS–CoG in the right hemisphere 

is in the same location during left-handed reach. Previous research has shown that the 

cortical representations of ipsilateral hand movements are similar in location to that of the 

contralateral hand movements in the motor cortex (Ziemann et al. 1999). This suggests 

that a similar area is activated but perhaps inhibited by the corpus callosum, which has 

been identified to play an inhibiting role between the two hemispheres (Murase et al. 

2004). During a unilateral movement, the ipsilateral hemisphere is inhibited which can be 

explained by hemispheric dominance (Vidal et al. 2014). In line with previous findings 

our results show that the ipsilateral activity, although small and inhibited, seems to 

gravitate towards the arm region.  

The cortical data in the present study reflect established motor control, as the 

tasks in the present study were welllearned basic motor skills that healthy adults can 

perform without fail. The pediatric population may show more varied cortical activity, as 

the motor control is improving and developing over time. Furthermore, studies can now 

focus on more dynamic and functional motor tasks as a paradigm to investigate the 

cortical organization during development instead of simple movements that are 

infrequently used in everyday activities. Our findings identified inhibited cortical activity, 

as a result of established motor control, but open the door to questions regarding how and 

when this inhibition comes on-line. Furthermore, the successful discrimination between 
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the representations provides a foundation for future research investigating the neural 

basis for the emergence and development of functional motor control. 

Although we were able to provide reliable measures, our current study had 

limitations. First, we did not use structural MR images from the participants or an 

average template to localize our headgear. Although this opens the concern regarding the 

precision of our channel locations, our approach was to rely solely on fNIRS technology 

and the international 10–20 measurements. We, like many previous studies that did not 

use other means to localize channel positions, took careful head measurements to 

accurately locate the international 10–20 landmarks for each participant. For these 

reasons, we moved forward by using methods suggested by previous research who have 

established the reliability of the head measurements and landmarks as references for the 

position of our headgear (Okamoto et al. 2004; Tsuzuki et al. 2007). Second, we did not 

utilize any electromyography (EMG) data to ensure the activity or inactivity of muscles 

during the tasks. The use of EMG could have provided an explanation to our findings of 

bimanual reaching.  

Finally, the object size and chair height were not scaled to variations in 

participants’ body size. However, objects used during the reaching tasks were grip-sized 

and all participants easily reached and grasped with one hand successfully. Furthermore, 

all participants sat comfortably in our chair with their feet flat on the ground. With these 

instructions, we believe we reduced the possibility of cortical activations caused by any 

irrelevant movements.  
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Our findings support and extend the motor control literature by demonstrating that 

unilateral arm activity is driven by neuronal activation in the contralateral sensorimotor 

cortex, while bilateral activity (e.g. bimanual reaching and alternate stepping) is driven 

by bilateral sensorimotor cortex activation. Furthermore, the present study has shown the 

viability and sensitivity of fNIRS during dynamic and functional motor tasks. Overall, 

this study reinforces the feasibility of fNIRS in motor research, enabling future 

researchers to investigate the neural bases for motor control, learning, and development.
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Figure 2.1. Objects used during a) unimanual raeaching and b) bimanual reaching. 
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Figure 2.2. Probe configuration covering the bilateral primary motor cortex. In the upper 
left, a) shows a superior view of the orientation of the probe on the head; b) the position 
of the probe relative to the international 10-20 landmarks (the C3-Cz-C4 line); and c) the 

channel numbers. 



 27 

 
Figure 2.3. Exemplar data of active channel; a) preprocessed time series; b) average 

hemodynamic response function. Shaded regions indicate task phase. 
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Figure 2.4. Group mean changes in HbO responses for each task relative to rest. Error 

bars represent SD. (* indicates statistically significant channels, p < 0.05).  
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Figure 2.5. Group mean changes in HbR responses for each task relative to rest. Error 
bars represent SD. 

 



 30 

 
Figure 2.6 .Laterality index of mean oxygenation changes (HbO) for paired channels 

during each task. Negative values indicate the channel on the left hemisphere was higher 
than that of the right hemisphere channel. 
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Figure 2.7. NIRS-CoGs of HbO for unimanual right (UMR), unimanual left (UML), 
bimanual (BM) and stepping (S). Filled markers represent contralateral and opened 

represent ipsilateral NIRS-CoG. Stepping NIRS-CoG was a single location. 
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Figure 2.8. NIRS-CoGs of HbR for unimanual right (UMR), unimanual left (UML), 
bimanual (BM) and stepping (S). Filled markers represent contralateral and opened 

represent ipsilateral NIRS-CoG. Stepping NIRS-CoG was a single location.
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Table 2.1. Summary of t-statistics for each task. * indicates p < .05. 

Changes in HbO 

Channel UMR UML BM S 
1 -0.560 -1.898 -1.648 1.408 
2 -1.366 -1.488 -1.704 1.656 
3 0.054 -1.802 -1.164 1.135 
4 -2.101 -1.492 -2.150 1.154 
5 -2.388* -1.528 -2.334* 1.361 
6 -2.667* -1.740 -3.560* 2.254* 
7 -.2401* -1.887 -2.319* 2.569* 
8 -1.736 -2.138 -2.254* 2.334* 
9 -1.112 -1.971 -2.256* 2.286* 
10 -1.607 -1.822 -2.734* 2.300* 
11 -1.579 -1.952 -3.531* 2.259* 
12 -1.962 -2.307* -3.985* 2.383* 
13 -1.889 -2.380* -4.176* 2.398* 
14 -1.871 -2.270* -3.024* 2.133* 
15 -1.863 -1.768 -1.952 1.643 
16 -1.319 -1.315 -1.799 1.632 
17 -1.536 -1.319 -1.350 1.582 
18 -1.713 -0.971 -0.932 1.118 
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Table 2.2. Summary of t-statistics for each task. * indicates p < .05. 

Changes in HbR 

Channel UMR UML BM S 
1 -0.937 -0.515 -0.085 -0.592 
2 -0.210 -1.535 -1.989 -0.578 
3 -1.326 -1.150 -1.542 1.361 
4 -1.594 -1.524 -1.643 1.757 
5 -0.182 -0.191 -0.522 -0.807 
6 0.280 -0.414 0.802 0.172 
7 -1.520 0.297 -1.756 1.064 
8 -1.908 -1.872 -1.048 1.489 
9 -1.846 -0.231 -1.401 1.049 
10 -0.122 -1.897 -1.392 0.414 
11 -1.593 -0.474 -0.064 1.547 
12 0.207 0.064 -0.958 0.942. 
13 0.526 0.028 -0.497 0.205 
14 -1.930 -0.021 -0.583 -1.395 
15 0.907 -0.008 -0.015 -1.050 
16 -1.335 -1.006 -1.687 -1.087 
17 0.452 -0.563 -0.289 -0.106 
18 -2.057 -0.537 -1.475 -0.735 
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Table 2.3. Mean responses from each channel across all tasks. 
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Table 2.4. Pairwise comparison of NIRS-CoGs for HbO in left (top) and right hemisphere 
(bottom). * indicates statistical significance (p < 0.05). 

Left Hemisphere 

 x-direction  y-direction 

 UMR 
Contra 

UML 
Ipsi 

BM 
R-Arm S  UMR 

Contra 
UML 
Ipsi 

BM  
R-Arm S 

UMR 
Contra - .235 <.01* < .01*  - .392 <.01* <.01* 

UML 
Ipsi .235 - .005* < .01*  .392 - .006* <.01* 

BM 
R-Arm <.01* .005* - < .01*  <.01* .006* - .687 

S < .01* < .01* < .01* -  <.01 * <.01* .687 - 
 

Right Hemisphere 

 x-direction  y-direction 

 UMR 
Ipsi 

UML 
Contra 

BM 
L-Arm S  UMR 

Ipsi 
UML 

Contra 
BM  

L-Arm S 

UMR 
Ipsi - .550 .436 < .01*  - .346 .520 .093 

UML 
Contra .550 - .029* < .01*  .346 - . 021* < .01* 

BM 
L-Arm .436 .029* - < .01*  .520 .021* - .108 

S < .01* . < .01* . < .01* -  .093 < .01* .108 - 
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Table 2.5. Pairwise comparison of NIRS-CoG for HbR in left (top) and right hemisphere 
(bottom). * Indicates statistical significane (p < 0.05). 

Left Hemisphere 

 x-direction  y-direction 

 UMR 
Contra 

UML 
Ipsi 

BM 
R-Arm S  UMR 

Contra 
UML 
Ipsi 

BM  
R-Arm S 

UMR 
Contra - .747 .619 .325  - .276 .674 .907 

UML 
Ipsi .747 - .445 .051  .276 - .178 .132 

BM 
R-Arm .619 .445 - .867  .674 .178 - .691 

S .325 .051 .867 -  .907 .132 .691 - 
 

Right Hemisphere 

 x-direction  y-direction 

 UMR 
Ipsi 

UML 
Contra 

BM 
L-Arm S  UMR 

Ipsi 
UML 

Contra 
BM  

L-Arm S 

UMR 
Ipsi - .772 .567 .325  - .943 .346 .735 

UML 
Contra .772 - .610 .155  .943 - .680 .890 

BM 
L-Arm .567 .610 - .867  .346 .680 - .213 

S .325 .155 .867 -  .735 .890 .213 - 



 38 

 
2.5 References 

Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Golay, X., & Kollias, S. S. (2002). 
Reproducibility of Primary Motor Cortex Somatotopy Under Controlled Conditions. 
American Journal of Neuroradiology, 23, 1524–1532. 

Boroojerdi, B., Foltys, H., Krings, T., Spetzger, U., Thron, A., & To, R. (1999). 
Localization of the motor hand area using transcranial magnetic stimulation and 
functional magnetic resonance imaging, 110, 699–704. 

Cao, J., Khan, B., Hervey, N., Tian, F., Delgado, M., Clegg, N. J., … Alexandrakis, G. 
(2015). Evaluation of cortical plasticity in children with cerebral palsy undergoing 
constraint-induced movement therapy based on functional near-infrared 
spectroscopy. Journal of Biomedical Optics, 20(4), 046009. doi:10.1117/1 

Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., … Thomas, R. (1998). 
A novel method for fast imaging of brain function, non-invasively, with light. Optics 
Express, 2(10), 411–23. 

Cope, M., Delpy, D. T., Reynolds, E. O. ., Wray, S., Wyatt, J., & Van der Zee, P. (1988). 
Methods of quantitating cerebral near infrared spectroscopy data. Advances in 
Experimental Medicine and Biology, 222, 183 – 189. 

Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Roland, S., Forssberg, H., … 
Cattaneo, L. (2014). Cortical Activity in Precision- Versus Power-Grip Tasks : An 
fMRI Study Cortical Activity in Precision-Versus Power-Grip Tasks : An fMRI 
Study, 528–536. 

Ferrari, M., Bisconti, S., Spezialetti, M., Basso Moro, S., Di Palo, C., Placidi, G., & 
Quaresima, V. (2014). Prefrontal cortex activated bilaterally by a tilt board balance 
task: a functional near-infrared spectroscopy study in a semi-immersive virtual 
reality environment. Brain Topography, 27(3), 353–65. doi:10.1007/s10548-013-
0320-z 

Filimon, F., Nelson, J. D., Hagler, D. J., & Sereno, M. I. (2007). Human cortical 
representations for reaching: mirror neurons for execution, observation, and imagery. 
NeuroImage, 37(4), 1315–28. 

Hidler, J., Hodics, T., Xu, B., Dobkin, B. H., & Cohen, L. G. (2006). MR compatible 
force sensing system for real-time monitoring of wrist moments during fMRI testing. 



 39 

Journal of Neuroscience Methods, 155(2), 300–7. 
doi:10.1016/j.jneumeth.2006.01.016 

Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: a 
review of time-series analysis methods for near-infrared spectroscopy of the brain. 
Applied Optics, 48(10), D280–98. 

Huppert, T. J., Schmidt, B., Beluk, N., Furman, J., & Sparto, P. (2013). Measurement of 
brain activation during an upright stepping reaction task using functional near-
infrared spectroscopy. Human Brain Mapping, 34(11), 2817–28. 
doi:10.1002/hbm.22106 

Ikegami, T., & Taga, G. (2008). Decrease in cortical activation during learning of a 
multi-joint discrete motor task. Experimental Brain Research, 191(2), 221–36. 
doi:10.1007/s00221-008-1518-2 

Indovina, I., & Sanes, J. N. (2001). On somatotopic representation centers for finger 
movements in human primary motor cortex and supplementary motor area. 
NeuroImage, 13(6 Pt 1), 1027–34. doi:10.1006/nimg.2001.0776 

Jasper, H. (1958). The ten-twenty electrode system of the international federation. 
Electroencephalography and Clinical Neurophysiology, 10, 371–375. 

Karim, H., Fuhrman, S. I., Sparto, P., Furman, J., & Huppert, T. J. (2013). Functional 
brain imaging of multi-sensory vestibular processing during computerized dynamic 
posturography using near-infrared spectroscopy. NeuroImage, 74, 318–325. 
doi:10.1016/j.neuroimage.2013.02.010 

Karim, H., Schmidt, B., Dart, D., Beluk, N., & Huppert, T. J. (2012). Functional near-
infrared spectroscopy (fNIRS) of brain function during active balancing using a 
video game system. Gait & Posture, 35(3), 367–72. 
doi:10.1016/j.gaitpost.2011.10.007 

Koenraadt, K. L. M., Duysens, J., Meddeler, B., & Keijsers, N. L. W. (2013). Hand 
tapping at mixed frequencies requires more motor cortex activity compared to single 
frequencies: an fNIRS study. Experimental Brain Research, 231(2), 231–7. 
doi:10.1007/s00221-013-3686-y 

Koenraadt, K. L. M., Duysens, J., Smeenk, M., & Keijsers, N. L. W. (2012). Multi-
channel NIRS of the primary motor cortex to discriminate hand from foot activity. 
Journal of Neural Engineering, 9(4), 046010. doi:10.1088/1741-2560/9/4/046010 



 40 

Koenraadt, K. L. M., Roelofsen, E., Duysens, J., & Keijsers, N. L. W. (2014). Cortical 
control of normal gait and precision stepping: An fNIRS study. NeuroImage, 85 Pt 1, 
415–22. doi:10.1016/j.neuroimage.2013.04.070 

Kurz, M. J., Wilson, T. W., & Arpin, D. J. (2012). Stride-time variability and 
sensorimotor cortical activation during walking. NeuroImage, 59(2), 1602–7. 
doi:10.1016/j.neuroimage.2011.08.084 

Lotze, M., Erb, M., Flor, H., Huelsmann, E., Godde, B., & Grodd, W. (2000). fMRI 
evaluation of somatotopic representation in human primary motor cortex. 
NeuroImage, 11(5 Pt 1), 473–81. doi:10.1006/nimg.2000.0556 

Molavi, B., & Dumont, G. a. (2012). Wavelet-based motion artifact removal for 
functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259–70. 
doi:10.1088/0967-3334/33/2/259 

Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of 
interhemispheric interactions on motor function in chronic stroke. Annals of 
Neurology, 55(3), 400–9. doi:10.1002/ana.10848 

Murayama, N., Lin, Y. Y., Salenius, S., & Hari, R. (2001). Oscillatory interaction 
between human motor cortex and trunk muscles during isometric contraction. 
NeuroImage, 14(5), 1206–13. doi:10.1006/nimg.2001.0907 

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., … Dan, I. 
(2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via 
the international 10–20 system oriented for transcranial functional brain mapping. 
NeuroImage, 21(1), 99–111. doi:10.1016/j.neuroimage.2003.08.026 

Singh, A. K., & Dan, I. (2006). Exploring the false discovery rate in multichannel NIRS. 
NeuroImage, 33(2), 542–9. doi:10.1016/j.neuroimage.2006.06.047 

Solodkin, A., Hlustik, P., Noll, D. C., & Small, S. L. (2001). Lateralization of motor 
circuits and handedness during finger movements. European Journal of Neurology, 
8(5), 425–34. 

Steinbrink, J., Villringer, A., Kempf, F., Haux, D., Boden, S., & Obrig, H. (2006). 
Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magnetic Resonance 
Imaging, 24(4), 495–505. doi:10.1016/j.mri.2005.12.034 



 41 

Tian, F., Delgado, M. R., Dhamne, S. C., Khan, B., Alexandrakis, G., Romero, M. I., … 
Liu, H. (2010). Quantification of functional near infrared spectroscopy to assess 
cortical reorganization in children with cerebral palsy. Optics Express, 18(25), 
25973–86. 

Tsuzuki, D., Jurcak, V., Singh, A. K., Okamoto, M., Watanabe, E., & Dan, I. (2007). 
Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage, 
34(4), 1506–18. doi:10.1016/j.neuroimage.2006.10.043 

Vidal, A. C., Banca, P., Pascoal, A. G., Cordeiro, G., Sargento-Freitas, J., & Castelo-
Branco, M. (2014). Modulation of cortical interhemispheric interactions by motor 
facilitation or restraint. Neural Plasticity, 2014, 210396. doi:10.1155/2014/210396 

Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of 
human brain function. Trends in Neurosciences, 20(10), 435–42. 

Wassermann, E. M., Mcshane, L. M., Hallett, M., & Cohen, L. G. (1992). Noninvasive 
mapping of muscle representations in human motor cortex Eric M. Wassermann, 
Lisa M. McShane, Mark Hallett and Leonardo G. Cohen, 85, 1–8. 

Ziemann, U., Ishii, K., Borgheresi, A., Yaseen, Z., Hallett, M., Cincotta, M., … Nuova, 
M. (1999). Dissociation of the pathways mediating ipsilateral and contralateral motor-
evoked potentials in human hand and arm muscles. Journal of Physiology, 895–906. 



 42 

 

Chapter III: Developmental Changes in Motor Cortex as Infants 
Develop Functional Motor Skills 

(Nishiyori, R., Bisconti, S., Meehan, S.K., and Ulrich, B.D. in press. Developmental 
Psychobiology) 
 
Abstract 

Despite extensive research examining overt behavioral changes of motor skills in infants, 

the neural basis underlying the emergence of functional motor control has yet to be 

determined. We used functional near-infrared spectroscopy (fNIRS) to record 

hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-

olds, 11 twelve month-olds) as they reached for an object, and stepped while supported 

over a treadmill. Based on the developmental systems framework, we hypothesized that 

as infants increased goal-directed experience, neural activity shifts from a diffused to 

focal pattern. Results showed that for reaching, younger infants showed diffuse areas of 

M1 activity that became focused by 12 months. For elicited stepping, younger infants 

produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the 

data suggest that as infants gain goal-directed experience, M1 activity emerges, initially 

showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data 

begin to document the cortical activity underlying early functional skill acquisition.
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3.1 Introduction 

Our ability to explore our surroundings by moving through space or reaching and 

manipulating objects allows us to acquire new information about our environment and is 

essential for human development and learning. But how do we develop these adaptive 

and complex skills? How do these skills, like reaching and walking, emerge and become 

stable? 

 Motor development researchers have constructed a body of evidence that 

describes the diversity, variability, and dynamic nature of motor skill acquisition 

particularly during infancy. To explain the bases for these behavioral outcomes, scientists 

have focused on studying the processes of change that drive these behaviors. With this 

goal researchers have investigated the relations among kinematic, kinetic, and overt 

functional changes of both successful and unsuccessful limb movements (Chang, Kubo, 

& Ulrich, 2009; Corbetta & Thelen, 1996; Teulier, Sansom, Muraszko, & Ulrich, 2012; 

Thelen et al., 1993; Thelen & Spencer, 1998). Efforts to interpret these relations based on 

current neuroscience and developmental theories, have led to hypotheses about the 

development of the central nervous system (CNS) and its role in the emergence of 

neuromotor control. Currently, however, we do not have direct evidence, or even 

descriptive evidence, relating brain activity with functional motor skills as they emerge. 

As a result, we have a knowledge gap in efforts to support or revise these hypothesized 

links between the brain and motor behaviors in infants. With the recent development of 
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new infant‐friendly neuroimaging techniques, we can begin to construct a body of 

empirical evidence identifying the neural links to neuromotor control. 

 A set of overlapping theories, commonly referred to as dynamic systems theory 

(Thelen & Smith, 1994), developmental systems approach (Gottlieb, Wahlsten, & 

Lickliter, 1998), dynamic field theory (Wiebe, Morton, Buss, & Spencer, 2014), and 

interactive specialization (Johnson, 2001, 2011) all embrace and argue that new skills 

(patterns of behavior) are emergent, not prescribed. This framework posits that functional 

behaviors are outcomes of the interactions among multiple subsystems such as the 

nervous system, intrinsic body dynamics, environment, and the task or goal. New patterns 

are both discovered through exploration and stabilized through repetition or practice 

(Lewis, 2011; Smith & Thelen, 2003; Thelen & Smith, 1994; Ulrich & Ulrich 1993). 

Here, we will use the term developmental systems framework as the phrase and approach 

to effectively capture the essence of all aforementioned approaches. Infants must achieve 

a sufficient level of development of many components, such as postural control, 

motivation to achieve the goal, capacity to coordinate muscle activations, for new motor 

skills to emerge. But only with repetitions of the goal‐directed pattern, do stability and 

control follow. A growing body of empirical data regarding the changes in behavioral, 

kinetic, and kinematic patterns supports the developmental systems framework that 

explains the ontogeny of many new patterns of behavior such as reaching, stepping, and 

kicking (Corbetta & Thelen, 1996; Jensen, Thelen, Ulrich, Schneider, & Zernicke, 1995; 

Kanemaru, Watanabe, & Taga, 2012; Lockman & Thelen, 1993; Teulier, Lee, & Ulrich, 
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2015; Thelen, 1995; Thelen et al., 1993; Thelen, Corbetta, & Spencer, 1996; Watanabe, 

Homae, & Taga, 2010). Yet, there is very limited empirical evidence regarding neural 

basis that underlies the emergence of new patterns of behavior, specifically with 

functional motor skills. 

 Theories focused on how the brain becomes organized to control functional 

behavior compliment the developmental systems approach; particularly relevant are 

Edelman's theory of neuronal group selection (TNGS, Edelman, 1987; Sporns & 

Edelman, 1993) and dynamic neural field theory led by Gregor Schöner, Kopecz, and 

Erlhagen (1997). Both theories link behavior and the neural dynamics as co-evolving 

over time (Samuelson, Jenkins, & Spencer, 2015; Sporns & Edelman, 1993). Specifically, 

TNGS proposes that early in skill acquisition, there is a particularly high redundancy in 

the nervous system. This redundancy is manifested in the intrinsic overproduction of 

unspecified neurons and synaptic connections and facilitates discovery of ecologically 

meaningful goals (Bertenthal & Campos, 1987; Greenough, Black, & Wallace, 1987). 

Selection drives much of neural organization, that is, as infants identify a goal and 

attempt to achieve it, such as to reach for an object they see or move their bodies through 

space, they activate neural circuits in multiple relevant areas of their brains. For example, 

over time and much practice, as seen in adults, the primary motor cortex becomes 

functionally and topographically specialized, activating efficiently muscles used to 

perform voluntary movements (Halsband & Lange, 2006; Muellbacher et al., 2002; 

Nishiyori, Bisconti,& Ulrich, 2015). Early in skill acquisition, however, large and diverse 
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areas of neurons would be active as movement options are explored. As the movement 

outcomes become more reliable, neural activity in parallel would become more focal and 

efficient, gradually evolving into the topographic organization seen in adults. Thus, we 

must begin to determine the neural activation patterns during early skill acquisition in 

infants.  

Our goal here was to begin to describe the early activation of motor cortex 

neurons as infants acquire skills. We chose two well-studied functional motor skills in 

infants: reaching for a toy with the upper limbs and the production of stepping patterns 

with the legs while supported upright on a treadmill. Reaching is an important functional 

skill that emerges during the first 6 months after birth. For reaching to emerge, theorists 

argue that infants must be able to visually locate the target, control the muscles of the 

arms, and control their posture and head (Clearfield & Thelen, 2001). Moreover, we 

know that young infants show variable patterns of movement as they attempt to obtain a 

toy; and as they gain more experience moving their arms and attempting to reach their 

goals, their movement become smoother, reliable, accurate, and muscle activation 

patterns become more efficient (Thelen et al., 1993, 1996). That multiple subsystems 

converge and patterns of movement become stable as infants gain experience through 

repeated cycles of action and perception has been established by behavioral studies. That 

is, as infants make repeated attempts to reach for objects, they fine-tune their actions with 

the environment as stable patterns of movement form (Corbetta & Bojczyk, 2002; 

Corbetta & Snapp-Childs, 2009; Williams, Corbetta, & Guan, 2015).  
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Later in the first year, infants experience similar cycles, but with their lower limbs 

as they begin to engage in upright leg activity. Functional control over the legs, unlike the 

arms, does not emerge until the second half of the first year. While step-like patterns, 

such as newborn stepping, can be elicited from birth to approximately 6–8 weeks, 

voluntary stepping in the form of cruising (walking with support) and walking 

(independently) emerge between 9 and 12 months. Thelen and colleagues, used a series 

of studies to illustrate the dynamic confluence of many subsystems over time in this 

developmental trajectory of the production of infant stepping patterns. They documented, 

for example, that when newborn stepping “disappeared” in the upright posture, similar 

lower-limb kinematics persisted in other contexts: when supine, infants kicked and when 

legs were submerged in water, they stepped (Thelen, Fisher, & Ridley-Johnson, 1984, 

Thelen, Fisher, & Ridley-Johnson, 2002; Thelen & Fisher, 1982). Furthermore, across the 

first year post-birth, when supported over a treadmill, researchers could elicit from 

infants alternating stepping patterns, though infants also displayed multiple inter-limb 

coordination patterns (Thelen, 1986; Thelen & Ulrich, 1991; Ulrich, Jensen, & Thelen, 

1991). Thus, the adaptive and changing nature of stepping behaviors, like other behaviors, 

demonstrate that the subsystems available to produce body segment trajectories including 

factors external to the infant are softly assembled and can affect the presence or absence 

of any particular overt behaviors across time. Based on the behavioral data amassed thus 

far and theories about the development of the CNS, the next logical step in explaining 

early skill acquisition would then be to examine more directly infants’ brain activation 
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patterns as they begin to improve their control of their limbs during essential basic skills, 

such as reaching and stepping.  

Mapping developmental systems framework principles to real (as opposed to 

modeled) brain activity during the acquisition or performance of functional motor skills 

in infants has been limited to date by the constraints of traditional neuroimaging 

techniques. For example, when using functional magnetic resonance imaging (fMRI) the 

head must be stationary and the machine is loud (Almli, Rivkin, & McKinstry, 2007). 

Event‐related potentials (ERPs) obtained through electroencephalography (EEG) are 

quiet and less head stabilization is required, but still experience high attrition rates due to 

the dynamic nature of the stimuli which causes infants to move (Stets, Stahl, & Reid, 

2012), introducing movement-related artifacts.  

Recently, technological advances in the use of functional near-infrared 

spectroscopy (fNIRS) have enhanced its effectiveness in brain-imaging studies focused 

on developmental questions (Lloyd-Fox, Blasi, & Elwell, 2010; Vanderwert & Nelson, 

2014). fNIRS utilizes source optodes that emit near-infrared light which is projected 

through the scalp, skull and the cerebral cortex, then reflected back out of the brain and 

picked up by detector optodes. Changes in the reflected light intensity occur as 

concentrations of oxygenated (HbO) and deoxygenated (HbR) hemoglobin vary, which 

arise due to activation of the sampled brain tissue (Villringer & Chance, 1997). fNIRS 

technology offers a number of advantages over fMRI and EEG. fNIRS has a greater 

spatial resolution compared to EEG and the temporal resolution of fNIRS is greater than 
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that of fMRI (Huppert, Hoge, Diamond, Franceschini, & Boas, 2006). This system is 

more resilient to movement‐related artifacts than fMRI and EEG and is not subject to 

rigid head stabilization or supine posture of fMRI. Most important for our questions is 

that fNIRS allows participants to assume a naturalistic posture specific to a movement 

task while tolerating larger limb movements. (Lloyd‐Fox et al., 2010; Quaresima, 

Bisconti, & Ferrari, 2012; Vanderwert & Nelson, 2014). 

Brain imaging studies of children and adults show that the primary motor cortex 

activates the muscles to produce voluntary goal-directed movements and plays a role in 

practicing and consolidating new skills (Filimon, Nelson, Hagler, & Sereno, 2007; 

Indovina & Sanes, 2001; Koenraadt, Duysens, Smeenk, & Keijsers, 2012; Koenraadt, 

Duysens, Meddeler, & Keijsers, 2013; Nishiyori et al., 2015). These neural excitation 

patterns have not been tested or observed in human infants, that is, their origins are not 

known. Skills used in motor studies for adults involve learning a new sequence or 

adapting to a new constraint during a repeated goal, such as to manually control a joy‐

stick correcting for a force perturbation; the basic movements themselves, however, have 

been extensively practiced and used for years prior. Thus, we do not have direct 

developmental data to illustrate: (i) how the primary motor cortex becomes organized in 

the way we observe it to be in adults; (ii) the level of activity in the primary motor cortex 

when skills that are truly novel and nascent are attempted; and (iii) how primary motor 

cortex activation patterns change as skills improve over time. The specific goals of our 
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current study were to delineate the developmental changes in brain activity for two 

distinctly different tasks: reaching for a toy with the upper limbs while seated, and 

stepping with the legs while supported upright on a treadmill. Reaching represents a 

functional, voluntary, and self-initiated skill with a clear goal which infants produce 

successfully by about 4 months of age and subsequently practice many times daily. In 

contrast, stepping while supported over a treadmill is an elicited movement pattern with 

recognizable limb patterns. Infants never practiced treadmill stepping; at 6 months they 

have not begun to step voluntarily but by 12 months most have, at least begun to practice 

stepping as they start to cruise. Here, we explored the emergent patterns of motor cortex 

activity associated with infants’ motor patterns, at two developmental time points, 6 and 

12 months. At 6 months of age, infants had 1-2 months of practice reaching for toys, but 

minimal to no experience stepping upright or cruising. By 12 months of age, infants are 

very skillful reachers but are relative novices at voluntary stepping (1-2 months of 

gaining upright posture and cruising or walking). Based on the developmental systems 

framework and previous developmental neuroscience data, we proposed that the motor 

cortex neural activation change as infants discover patterns that fit their self-selected 

goals and then repeat cycles of practice (e.g., creating and enhancing the perception-

action links) to accomplish these goals. More specifically, we hypothesized that with 

increased goal-directed experience, brain activity will shift from diffuse to more refined 

and focal activity. That is, 6 month-old infants will exhibit a dispersed area of motor 

cortex activity (nascent reaching) compared to 12 month-old infants during reaching 
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when the skill is well established. During stepping, 6 month-old infants will exhibit 

reduced areas of cortical activity because it is not voluntary or “goal-directed”, compared 

to 12-month old infants, who will show a dispersed area of motor cortex activity because 

they are nascent “walkers,” similar to the 6 month-old brain activity during reaching. 

 

3.2 Method 

  

3.2.1 Participants 

We consented 34 infants, 14 in the younger and 20 in the older age groups. Of 

these, one of the younger infants and three of the older infants became too fussy during 

preparation for testing to allow us to collect data. In addition, two of the younger infants 

and three of the older infants’ data were unusable due to extensive noise, motion 

artifacts, or too few usable channels. This resulted in 11 of the younger infants and 14 of 

the older infants for whom we had usable data for reaching and/or, stepping. Not all 

infants’ data were usable from both tasks, thus the final numbers, ages, and gender for 

each task and age group were: reaching = 11 younger (M= 26.12weeks, range = 23.2–

29.9 weeks, seven females) and 11 older (M= 52.2 weeks, range = 50–56 weeks, seven 

females); stepping = 11 younger (M= 26.12 weeks, range = 23.3–29.9 weeks, seven 

females) and 11 older (M= 52.1weeks, range = 49.3–56.6 weeks, six females) infants. 

Table 3.1 presents a summary of the participants’ characteristics. 
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3.2.2 Session Overview 

Upon arrival to the lab, we allowed infants to acclimate to our space and interact 

with the research team. During this time, a research team member explained the study to 

parents and answered any questions with the parents, who read and signed the informed 

consent. Next, we removed infant's clothing except their shirt and diaper to allow infants 

to move freely. We measured the infant's head circumference, distance between inion and 

nasion, and left pre-auricular to right pre-auricular point to identify the vertex of the head, 

or Cz according to the 10–20 international system (Jasper, 1958). After we placed the 

infant into the customized infant seat, we secured the headgear on the infant's head. Floor 

to ceiling curtains were approximately 60 cm away from both sides of the table on which 

the infant seat rested, which minimized the amount of distraction due to open space. We 

began testing with the reaching task, followed by a brief break and then tested the 

stepping task. During the break, we re-arranged the lab to prepare for the stepping task. 

After completion of the stepping task, we took photographs of the headgear on the infants 

to ensure the optodes/headgear had not moved from the target areas, as this could affect 

the quality and precision of our fNIRS measurements. We then removed the headgear and 

took basic anthropometric measurements (e.g., weight, total body length, leg length and 

circumference, and thigh and umbilicus skinfold). Finally, we administered the Motor 

Subscale of the Bayley Scales of Infant Development III (BSID-III, Bayley, 2006). 
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3.2.3 Tasks 

3.2.3.1 Reaching 

 For the reaching task, infants were secured in a customized infant seat (seat pan 

was 32 cm above the table top, backrest: 75 cm long, and reclined approximately 10° 

from the vertical) with a chest strap. The infant seat was secured on top of a table [117.4 

(L), 59.5 (W), 79.5 cm (H)], so that infant's head would be at eye level with the video 

monitor. 

We positioned a video monitor (23” LCD, Phillips, Andover, MA, USA) on a cart in 

front of and approximately 80 cm away from the seat. We hung a thick black curtain in 

front of the monitor that could be opened and closed to hide the monitor during reaching 

trials and revealed videos playing during the rest phase (Figure 3.1). For reaching trials, a 

variety of age-appropriate small grip-sized toys [5 (L) × 5 (W) × 5 cm (H), Figure 3.2] 

were presented to elicit reaching and maintain interest. 

 For the task phase, an experimenter presented the toy at the infant's midline 

within reach, followed by a rest phase. The experimenter first retrieved the toy from the 

infant then unveil the monitor playing an infant entertainment video (e.g., Baby Einstein) 

intended to keep the infant calm and still for a minimum of 20 s (rest phase). If after 10 s 

from toy presentation, the infant did not reach for the toy we presented, we began a rest 

phase then started a new trial with a new toy. We repeated the cycle of reaching and rest 

for a minimum of 10 successful trials. 
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3.2.3.2 Stepping 

We placed our custom‐designed treadmill [frame: 93.5 (L) × 43.7 (W) × 21 cm 

(H); belt: 81.5 (L) × 30.6 cm (W)] on top of and near the front edge of the same table 

used for reaching, in the center of the room (Figure 3.3). Each trial consisted of a rest‐

phase followed by a stepping phase. We started with a 30 s rest phase. During the rest 

phase, the experimenter held the infant who rested against the experimenter's chest. From 

pilot sessions, we determined that this was the best position to keep the infant calm and 

minimize movements thus optimizing rest phase status and values. Following the rest 

phase, each stepping phase lasted 30 s. During the stepping phase, an experimenter 

supported the infant under the arms so they were upright with feet touching the belt 

surface. Infants were encouraged to support as much of their weight as they could; 

experimenter provided supplemental weight support and posture control. The treadmill 

belt speed was set at .20 m/s for both younger and older infants based on previous 

research which showed this to be the most effective speed to elicit alternating steps in 

infants across the first year of life (Teulier et al., 2009). If infants did not respond to the 

moving belt with any leg movements during a trial, that is they allowed their legs to drag 

and extend behind them, we lifted the infant up to bring their legs forward and placed 

them on the belt again to encourage a motor response - stepping. We collected a 

minimum of 10 successful stepping trials. 
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3.2.4 fNIRS Data Acquisition 

To record the hemodynamic responses of the primary motor cortex 

(M1) during reaching and stepping tasks, we used a continuous wave fNIRS system 

(CW6; TechEn Inc., Milford, MA) which utilized two wavelengths (690 and 830 nm) and 

sampled at 50 Hz. Near-infrared light was delivered via fiber optic cables that terminated 

into customized headgear (Figure 3.4). The base of the headgear was an adjustable 

headband (Velcro, Manchester, NH, USA) with a panel with extensions, both made of 

blue Dycem. In this panel, we embedded the base for the optodes (grommets, TechEn, 

Inc., Milford, MA, USA). The fNIRS cables/optodes were connected to the panel prior to 

placing the apparatus on the infant's head. Extensions of this panel connected to the 

headband, which allowed us to adjust a snug fit for each infant. The headgear contained 

four source- and six detector-optodes placed approximately 2.5 cm apart creating a 12-

channel array. We positioned the headgear on the infant's head in alignment with Cz as 

defined by the 10–20 International system (Jasper, 1958). Channels covered the area 

around the C3 and C4 landmarks, thus our configuration placed the optodes in position 

over theM1or Brodmann Area (BA) 4 (Figure 3.4). The design of our probe array was 

based on a study we completed previously with adults (Nishiyori et al., 2016). 

 

3.2.5 Video Recording 

 We used a digital camcorder (Canon, Melville, NY, USA) that sampled at 60 Hz 

to record both reaching and stepping tasks. During the reaching trials, the video was 
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mounted on a tripod positioned at a 45° from midline and 100 cm away from the center 

of the infant seat. During stepping trials, the camcorder was repositioned perpendicular to 

the side of the treadmill. In these positions, we were able to identify the activity of all 

four limbs and the trunk. Furthermore, these views allowed us to view any gross 

movements of the headgear and fNIRS cables. The onset of task, rest phases, and any 

undesired behaviors such as crying and head turning were documented. The camcorder 

and fNIRS system were synchronized via an audio signal. At the start of each condition, 

we inserted an audio signal simultaneously to the video and fNIRS data. We then mapped 

the timing of the onset of reaches and steps and the start of the rest phases onto the fNIRS 

data to identify functional movement-related changes in hemodynamic activity of M1. 

 

 

3.2.6 Bayley Scale of Infant Development – Motor Subscale 

At the end of the session, we administered the Motor Subscale of the 

Bayley Scales of Infant Development (BSID‐III). This scale allowed us to characterize 

the status of gross and fine motor skill acquisition between the two groups. 

 

3.2.7 Trial Rejection 

 To determine the usability of trials, all videos were behavior coded offline by two 

different researchers. For reaching, trials were valid if the infant reached for and 

successfully grasped the object. Trials were not considered for further analysis if infants 
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did not reach for the object. For stepping, trials were valid if the infant stepped in 

response to the moving belt. Trials were not considered for further analysis if infants did 

not step in response to the moving belt. For instance, if the infant allowed her legs to drag 

behind them for a majority of the trial, we did not code this as a stepping trial. 

 

3.2.8 fNIRS Data Processing 

 fNIRS data were processed using the Homer2 (Huppert, Diamond, 

Franceschini,&Boas,2009)Matlab toolbox (Mathworks,MA). Data were low-pass filtered 

at .8 Hz and then motion-corrected using a wavelet-based filtering (Molavi & Dumont, 

2012). The optical density signal was then converted into concentration using the 

modified Beer–Lambert Law. Partial path-length factor was set at 6.0 and the known 

coefficients of oxygenated (HbO) and deoxygenated (HbR) hemoglobin (Cope et al., 

1988; Obrig & Villringer, 2003). Concentration data were then time locked to movement 

onset and epoched. For the reaching task the epoch consisted of 3 s prior to and 10 s post 

onset of reach. For the stepping task, the epoch was 1 s prior to and 10 s post onset of 

stepping. Epochs were averaged for each channel, group, and task and baseline corrected 

to pre-movement period. Outlier trials in which task-related change in HbO and HbR 

exceeded two standard deviations were excluded from further analysis. With this criterion, 

16% of the total 440 test trials (11 participants × two groups × two tasks × 10 trials = 440 

test trials) were excluded. Finally, six brain regions of interest (ROIs, Figure 3.4) were 

then defined for analysis by pairing adjacent anterior and posterior channels. 
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3.2.9 Data Analysis 

 Three dependent variables of interest were extracted from the data. First, in order 

to determine the number of functionally active ROIs, the change in HbO values from 

each ROI within the epoch were used. We used an independent samples t-test to detect 

any significant changes between pre- and post-onset of the movement for all trials. This 

test provided the number of ROIs demonstrating task-related activity, which were then 

compared across group for each task using separate independent t-tests. The dependent 

variable of number of active ROIs was quantified as a tally of significant ROIs for each 

infant in each task. The same analysis was performed for HbR. Second, percent signal 

change were calculated based on the change of concentrations for both HbO and HbR 

compared to rest values within an epoch. We then determined group differences in peak 

activity by comparing percent signal change in the ROI demonstrating peak HbO change 

from each participant. Separate independent samples t-tests were performed for reaching 

and stepping. Finally, we summed the percent signal change of the active ROIs to 

calculate the volume of activity during a task. The volume of each HbO (sum of percent 

signal change across active ROIs) across groups was compared for each task using 

separate independent samples t-tests for each task. Volume derived in the manner 

provides an indication of percent signal change across significant ROIs. In conjunction 

with the number of active ROIs and peak signal change, it can provide information about 
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the focality of cortical activity that neither the number nor peak signal change alone can 

provide.  

 

3.3 Results 

 

3.3.1 Motor subscale of the Bayley scales of infant development 

 The Bayley data, revealed that younger infants, as expected, achieved fewer items, 

47, than older infants, 74 items. The scores were tightly clustered for each age group, 

therefore we could not make meaningful comparisons with the fNIRS data. 

 

3.3.2 Reaching 

 An average of 10.4 (SD = 2.1) and 11.0 (SD = 3.0) reaching trials were 

considered valid and included in the data analysis for younger and older groups, 

respectively.  

The independent samples t-test on the number of active ROIs for HbO during 

reaching revealed that younger infants (5.1 ± .25 ROIs) showed significant activity in a 

larger number of ROIs compared to older infants (2.7 ± .38 ROIs, t(10) = 5.221, P < .01). 

There were no differences across groups in the number of ROIs demonstrating significant 

change in HbR (Younger = 1.09 ± .21 ROIs, Older = .64 ± .15 ROIs, t(10) = .65, P = .27). 

Despite differences in the number of ROIs for HbO, the percent signal change in HbO for 

the peak ROI was not different between younger (.72 ± .20 μM) and older infants (.72 
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± .08 μM, t(10) = .21, P = .98). A comparison of the volume of activity revealed that 

younger infants (.32 ± .25 μM) demonstrated lower volumes of activity compared to 

older infants (1.37 ± .24 μM, t(10) = 2.531, P = .03). Overall, while percent signal change 

was similar at the peak ROI, younger infants tended to demonstrate lower levels of 

reaching related activity distributed across a larger number of ROIs compared to older 

infants (Figures 3.5 and 3.6). 

 

3.3.3 Stepping 

An average of 8.8 (SD = 2.6) and 7.2 (SD = 2.7) stepping trials were considered 

valid and included in the data analysis for younger and older groups, respectively. These 

trials consisted of bouts of alternating steps. Trials in which infants dragged their feet or 

did not respond with leg movements, were not included in this analysis. 

In contrast to reaching, during stepping younger infants (2.6 ± .15 ROIs) 

demonstrated fewer ROIs showing significant HbO change compared to older infants (3.5 

± .24 ROIs, t(10) = 3.1, p = .01). There were no differences between groups in the 

number of ROIs demonstrating significant change in HbR (Younger = 1.73 ± .24, 

Older = 2.28 ± .33 ROIs, t(10) = .21, p = .42). While older infants demonstrated a greater 

number of active ROIs during stepping, activity in the peak ROI was significantly lower 

or younger infants (.30 ± .05 μM) compared to older infants (.84 ± .17 μM, t(10) = 2.78,  

= .02). A comparison of the volume of activity across group revealed that younger infants 

(.59 ± .13 μM) demonstrated lower levels of activity across all active ROIs compared to 
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older infants (1.8 ± .45 μM, t(10) = 2.37, P = .04). Overall, motor cortex activity was 

lower across all three measures in younger infants compared to older infants during 

stepping (Figures 3.5 and 3.6). Summary of the number of active ROIs can be found in 

Table 3.2 (HbO) and Table 3.3 (HbR). 

 

3.4 Discussion 

 The goal of our current study was to take the first step in identifying the emergent 

patterns of cortical activation in infants as they produce and practice early motor patterns. 

We hypothesized, based on the developmental systems approach (Gottlieb, Wahlsten, & 

Lickliter, 1998) and TNGS (Edelman, 1987; Sporns & Edelman, 1993) that as infants 

explore and perform repeatedly, goal-directed actions, such as reaching for an object or 

moving their bodies through space, they activate large numbers of redundant neural 

circuits. Therefore, we predicted larger areas of activity in the primary motor cortex 

during early attempts leading to smaller areas of activity as skills improved. Results of 

our present study supported these predictions, particularly true when infants demonstrate 

clear goal-directed efforts. More broadly and consistently, our results demonstrated 

significant changes in activation patterns, that is, the dynamic nature of cortical activation, 

across ages and tasks. Together, these data suggest that neural responses underlying 

motor outcomes are associated with both the specific motor goal and experience pursuing 

it. 
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3.4.1 Motor Cortex Activation During Reaching 

Both younger and older infants showed similar amplitudes in peak activity at their 

respective ROIs with the largest change in concentration. However, younger infants 

demonstrated activity across a wider area of the cortex compared to older infants, as 

indexed by the number of ROIs activated. Further, the broader cortical activity is 

characterized by smaller task-related activity, as indexed by the volume of activity. 

This pattern of results is consistent with less refined neural activity during skilled 

reaching. Reaching is functional but not fully stable by 6 months of age. At this age, there 

is coactivation of muscle activity when infants reach for an object in a similar setup to 

ours (Thelen et al., 1993). This means that younger infants recruit increased resources 

(e.g., area), explained by their necessity for postural control, in addition to coactivating 

more muscles than needed to reach for an object. Interestingly however, younger infants 

had comparable peak activity to older infants. Younger infants are able to drive the target 

muscles to reach but also activate other muscles (coactivation) that they have not learned 

to inhibit or control. As reaching skill develops towards 12 months of age, it appears that 

development is characterized by refined movement patterns rather than increased activity 

of task-relevant motor cortical representations. This is captured by previous reports of 

improved postural control, kinematics and dynamics in 12 month olds (Dusing, Thacker, 

Stergiou, & Galloway, 2013; Konczak, Borutta, Topka, & Dichgans, 1995; Thelen & 

Spencer, 1998) as well as the more focal activity in M1 observed here. 
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3.4.2 Motor Cortex Activation During Stepping 

 During stepping, younger infants activated a smaller area of motor cortex activity 

with both a lower peak and lower volume of activity compared to those of older infants. 

Stepping is an unexplored behavior for infants at 6 months of age, and is only observed 

when we create this unique context of supporting them over a moving belt. They were 

only able to achieve the stepping behavior at this age because we provided them with 

postural and body weight support.  

Findings from animal studies show that higher brain centers, such as the cerebral 

cortex, are vital for the initiation of walking and to balance and support one's weight, but 

the alternative activations of muscles when supported on a treadmill to produce stepping 

patterns is controlled at the spinal level. Cortical contributions also appear to be integral 

for the modulation of gait patterns, for example in obstacle avoidance (Drew, Prentice, & 

Schepens, 2004). Therefore, stepping at this point in development, may not elicit 

significant or unique motor cortex activity during treadmill stepping in the absence of a 

volitional context or at least practice. More specifically, 6 month olds have not yet 

developed the volitional will to walk or step, especially in our context of treadmill 

stepping, in which the goal is not clear. By 12 months of age, our infants when stepping, 

showed the kind of diffused activity in the motor cortex that we observed for 6 month-

olds as they reached. At this age, infants have had 1-2 months of experience being 

upright as well as a practice producing volitional goal-directed behavior like cruising 

along furniture, and many have taken their first independent steps. Thus, compared to 
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younger infants, these older infants understand the requirements to maintain their balance 

when the belt moves their legs from under them, which they accomplish by initiating 

continuous and alternating steps. Older infants activate a diffused area of the M1 to drive 

the activation of muscles to voluntarily step on the treadmill. We hypothesize that, much 

like in reaching, continued experience with walking would result in refinement of the 

motor cortical activity observed at 12 months. There is an alternative explanation that 

must be considered, one that could potentially reflect a maturationist approach to the 

nature of stepping. That is, when younger infants stepped when we supported them on the 

moving belt of the treadmill, the neural drivers are those predesigned neuronal step 

pattern generators located in the spinal cord and not neurons located in the primary motor 

cortex. At this point in time, maturation of the higher brain centers should inhibit this 

spinal reflexive activation (Forssberg, 1985; Lamb & Yang, 2000). However, while this 

strictly maturational approach would argue the brain should inhibit the spinal activity, the 

fact is infants are moving their legs in patterns we categorize as stepping. Perhaps the 

richness of the supported treadmill context (researcher providing postural support and 

balance, movement of the treadmill belt stretching muscles and joints and the gravity 

assisting with swing phase and momentum carrying the leg forward in a step) overcomes 

the inhibitory tendencies of the higher brain centers. Clearly, by the end of the first year, 

both theoretical approaches, maturation and developmental systems with TNGS, expect 

the primary motor cortex to be extensively engaged in controlling stepping and walking. 

What is unclear from the maturational approach is how to explain the initially highly 
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diffuse activation during early walking (stepping on the treadmill in this experiment) that 

is inefficient, showing parallels to early reaching. The practice involved to become 

skillful and efficient with this functional motor skill seems to follow the trajectory 

observed here for reaching, clearly not attributed to an innate pattern generator. 

 

3.5 Conclusion 

To summarize, we have demonstrated the viability of fNIRS technology to 

document the activity of cortical motor neurons activated during the emergence of 

neuromotor control as infants perform functional motor skills. Moreover, we have shown 

that characteristics of cortical activation patterns parallel changes in the skill levels of 

infants across at least two motor skills and goals. Specifically, when self-initiated motor 

patterns occur as skills are nascent and have minimal practice, cortical activity is 

dispersed. Conversely, when infants are highly efficient and the skill is well practiced, as 

in our reaching task, neural activity reduces and is more specific to the production of the 

skill. Finally, when skills are unexplored in a goal-directed manner, activity in the 

primary motor cortex may be undetectable or severely limited. Future research is needed 

to extend the ages of observation and levels of practice to strengthen and confirm these 

arguments. In addition, because our data capture were limited to the primary motor cortex, 

it will be important to expand the regions of interest to include areas deemed critical to 

establishing control of goal-directed movements, especially the prefrontal cortex and 



 66 

cerebellum. The parallel or prescient activity in these areas may help understand the roles 

of volition and adaptation in the early development of neuromotor control.



 67 

Table 3.1. Average (M) and standard deviation (SD) for anthropometric measurements 
and the Motor Scale of the Bayley Scale of Infant Development (MS-BSID-III) for each 
group by task 

  Younger Older 

  Reaching Stepping Reaching Stepping 

  M SD M SD M SD M SD 

Age (weeks) 26.22 2.24 27.12 3.86 52.2 1.63 52.1 1.80 

Weight (kg) 8.24 0.82 8.24 0.85 9.69 1.28 9.93 1.32 

Length (cm) 66.54 2.48 68.12 2.63 76.58 2.66 75.23 2.61 

Head 
Circumference 

(cm) 
43.62 1.40 44.21 1.33 47.12 0.72 47.21 1.08 

Inion-Nasion (cm) 26.02 0.93 25.93 0.91 27.34 1.12 27.83 1.83 

A1 to A2 (cm) 25.89 0.91 25.87 0.99 27.66 1.71 27.48 1.53 

 
BSID-III 

(raw score) 
Fine 20.13 3.00 20.14 3.24 27.75 0.46 27.10 1.29 

Gross 25.13 1.89 25.00 2.00 44.13 4.05 41.50 5.56 

Total 45.25 4.33 45.14 4.63 71.88 4.29 68.60 6.54 
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Figure 3.1. Set up for reaching task.
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Figure 3.2 Exemplar toys used for reaching.
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Figure 3.3. Set up for stepping task.
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Figure 3.4. Layout of headgear from the a) superior view and b) lateral view of on an 
infant’s head. Diagram and superior view of the c) sources and detectors, d) channels, 

and e) ROIs.
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Table 3.2. Sum of active ROIs (HbO) for each group. 

 Reaching Stepping 
Participant ID 

 
Younger Older Younger Older 

1 5 1 3 3 

2 5 2 2 4 

3 5 1 3 4 

4 4 4 3 3 

5 6 3 3 4 

6 6 2 2 3 

7 4 4 3 3 

8 6 3 2 2 

9 4 2 2 4 

10 6 5 3 5 

11 5 3 3 3 

Mean    
(SEM) 

5.09 
(0.25) 

2.73 
(0.38) 

2.64 
(0.15) 

3.46 
(0.25) 
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Table 3.3. Sum of active ROIs (HbR) for each group. 

 Reaching Stepping 
Participant ID 

 
Younger Older Younger Older 

1 1 0 2 1 

2 1 0 0 2 

3 3 1 2 4 

4 1 1 2 1 

5 1 0 2 3 

6 1 1 2 1 

7 1 1 1 2 

8 1 1 2 2 

9 1 1 2 4 

10 0 1 3 3 

11 1 0 1 2 

Mean         
(SEM) 

1.09  
(0.21) 

0.64  
(0.15) 

1.73    
(0.24) 

2.28    
(0.33) 
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Figure 3.5. Change in concentration of HbO for reaching (top) and stepping (bottom) 

comparing younger and older infants in the respective ROIs.
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Figure 3.6. Changes in concentration of HbR for reaching (top) and stepping (bottom) 

comparing younger and older infants in the respective ROIs.
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Chapter IV: Emergence of Cortical Network Activity As Infants 
Develop Functional Motor Skills 

 
Abstract 

In Chapter 3, we examined changes in infant motor cortex activity with age 

during reaching and treadmill stepping. While the motor cortex is an important brain 

region for the execution of voluntary movement, skill development draws upon many 

different subsystems in the brain, each contributing a unique element as skills emerge. 

Therefore, in Chapter 4, we used fNIRS to quantify hemodynamic activity of the 

prefrontal cortex and cerebellum, in addition to the motor cortex, as infants performed 

these same behaviors. Additionally, to explore the emergence of the complex interplay 

among the three brain regions, we conducted a functional connectivity analysis on time 

series data acquired from the same set of participants during an unstructured setting in 

which infants actively reached for, manipulated and explored objects. Twenty-nine 

infants with typical development [14 younger (M = 27.85 ± 1.04 weeks; 9 F) and 15 older 

(M = 49.32 ± 1.41 weeks)] participated in our study. Based on current neuroscience and 

systems theories, we hypothesized the infants with less or minimal experience with a skill 

would exhibit more distributed activity within the prefrontal cortex, primary motor cortex, 

cerebellum compared to infants with more experience with a functional motor skill. 
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Furthermore, we hypothesized higher connectivity between brain regions in infants with 

increased experience reaching. Consistent with Chapter 3, younger infants recruited a 

diffuse area of the motor cortex compared to older infants during reaching. The same 

pattern for more diffuse activation in younger, less skilled infants was observed in both 

frontal cortex and cerebellum. For stepping, younger infants recruited a larger area of the 

prefrontal cortex, a smaller area of the primary motor cortex, and a similar area of the 

cerebellum compared to older infants. The connectivity analysis did not show increased 

correlation across channels spanning the three brain regions with increased age. However, 

within each region, stronger correlations were present in older infants compared to 

younger infants. Our data suggest that as infants increase experience with a skill, a 

refined network of activity emerges. That is, an increase in strength in activity within the 

brain regions as infants improved control of their limbs during goal-directed behaviors. 

Finally, with increased experience, functionally connectivity within local brain areas 

emerge while the between brain region connectivity emerges with extensive experience 

with a skill.
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 4.1 Introduction 

Goal-directed behaviors require both accurate planning and execution to achieve 

success. Motor researchers’ understanding of these processes in adults far exceeds what 

has been documented in infants. Furthermore, it remains unclear how brain activation 

patterns change as skill emerges over time in infants; or if the patterns are the same or 

different as we know it in adults. 

The dynamic systems approach has provided a useful framework regarding 

central nervous system (CNS) development (Byrge, Sporns, & Smith, 2014; Smith & 

Thelen, 2003; Thelen & Smith, 1994). Theories rooted in the dynamic systems approach 

posit that new patterns of behavior emerge through self-organization among relevant 

subsystems, such as the CNS, muscles, and task-specific context. For example, as 

crawling and cruising emerge, infants must be motivated to traverse space, identify a 

target or destination, control their head orientation, posture, and produce leg movements 

to propel themselves forward (Corbetta & Ulrich, 2014; Thelen & Ulrich, 1991). In the 

months leading up to the onset of independent walking, at about 12 months, infants have 

been building the necessary strength, control of body segments, and balance to produce 

alternating leg movements in upright and unsupported posture. As functional motor skills, 

like cruising and walking, emerge in the first year of life, each of the subsystems, as well, 

follows its own developmental trajectory. It is through the bidirectional interactions 

among the CNS, the muscles, repetitions, and context that the system acts as a whole in a 

coordinated manner. This system response evolves and improves over practice time 
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(Adolph et al., 2012; Chang, Kubo, & Ulrich, 2009). Thus far, the development of 

underlying neural activation patterns, one critical subsystem, has been hypothesized 

through complimentary neuroscience data and theories. 

The theory of neuronal group selection (TNGS) is derived from empirical and 

modeling data and proposes that early brain activity and connectivity changes as and in 

concert with effects to produce functional behaviors (Edelman, 1987; Sporns & Edelman, 

1993). TNGS proposes that early in skill acquisition, there is high redundancy in the 

nervous system. In infants, this redundancy is manifested in the intrinsic overproduction 

of unspecified neurons and synaptic connections which facilitates discovery of first many 

“workable solutions” and then ultimately homing in on ecologically meaningful and 

efficient goals (Bertenthal & Campos, 1987; Greenough, Black, & Wallace, 1987). 

Infants activate many different combinations of neurons within local areas (e.g. motor, 

frontal, cerebellum) as they identify a goal and attempt to achieve it; such as to reach for 

an object they see or move their bodies through space. After they discover multiple 

combinations of neural activation that work they select/strengthen connections that are 

more effective. That is, selection drives much of neural organization. The direct 

examination of the emergent neural organization and change in human infants during 

efforts to perform movement patterns has yet to be conducted. 

To date, magnetic resonance imaging (MRI) of the infant brain has been used to 

document the anatomical changes in the brain early in life when infants are at rest or 

sleeping (Almli, Rivkin, & McKinstry, 2007; Choe et al., 2013; Sanchez, Richards, & 
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Almli, 2012). These studies have demonstrated the rapid growth in volume in all different 

brain regions, specifically between the ages of 3 and 13 months post-birth. However, the 

investigation of the functional changes that underlie the emergence of behaviors has been 

hampered by the constraints of traditional neuroimaging methodology. Recently, the use 

of functional near-infrared spectroscopy (fNIRS) has enabled researchers to directly 

examine the functional neural activation patterns early in life (Emberson, Richards, & 

Aslin, 2015; Lloyd-Fox, Wu, Richards, Elwell, & Johnson, 2013; Nishiyori, Bisconti, 

Meehan, & Ulrich, 2016; Southgate, Begus, Lloyd-Fox, di Gangi, & Hamilton, 2014). 

fNIRS takes advantage of the differential light absorption properties of oxygenated and 

deoxygenated hemoglobin (HbO and HbR, respectively) to determine regional neural 

activity (Chance et al., 1998; Obrig & Villringer, 2003; Villringer & Chance, 1997). 

To determine the emerging neural basis in motor regions of the brain, we 

investigated two heavily studied motor behaviors, reaching for a toy and stepping while 

supported over a treadmill. Reaching emerges over the first 6 months of post-birth life 

and allows infants to manually explore objects in their immediate environment. For 

reaching to emerge, infants must be able to visually locate the target, activate the 

necessary muscles of the arms, control their posture and head, and use proprioception to 

control their arm trajectory to the target (Thelen et al., 1993). Furthermore, infants fine-

tune their actions with the environment and stable patterns of movement form, as they 

repeatedly attempt to reach for objects (Corbetta & Bojczyk, 2002; Corbetta, Williams, & 

Snapp-Childs, 2006; Williams, Corbetta, & Guan, 2015). 
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Later in the first year of post-birth life, infants undergo a similar cycle of 

experience but with their lower limbs as they attempt to traverse across a larger space 

through upright locomotion. Voluntary stepping in the form of cruising (walking with 

support) and independent walking emerges between 9 and 12 months. Furthermore, 

researchers can elicit, from infants by supporting them on a motorized treadmill, 

alternating stepping patterns, as well as multiple inter-limb coordination patterns across 

the first year of life (Thelen & Ulrich, 1991; Thelen, 1986; Ulrich, Jensen, & Thelen, 

1991). The treadmill provides a unique and meaningful context in which researchers can 

consistently test the abilities of infants to respond to a particular context with steps and 

other behaviors that could not be elicited or observed in a natural setting (Chang et al., 

2009; Teulier, Sansom, Muraszko, & Ulrich, 2012; Thelen & Ulrich, 1991). By 9 to 12 

months, infants will produce consistent alternating steps on and off the treadmill with 

support. Thus, the adaptive and changing nature of stepping behaviors, like other 

behaviors, demonstrate that the subsystems available to produce body segment 

trajectories including factors external to the infant are softly assembled and can affect the 

presence or absence of any particular overt behaviors across time. 

The present study’s goal was twofold. The first goal was to describe the 

developmental changes of neural activation patterns of three hypothesized-to-be relevant 

brain regions as infants acquired functional motor skills. The second goal was to explore 

activate-state functional connectivity across these same brain regions as infants reached 

in an unstructured setting. We used fNIRS brain imaging technology to address both 



 91 

goals.  

For the first goal, we quantified the hemodynamic response of the prefrontal 

cortex (pFC), primary motor cortex (M1), and cerebellum (Crbl) during reaching and 

treadmill stepping for infants at 6 and 12 months of age. These three brain regions were 

chosen given their known contributions to skill acquisition in adults (Doyon & Benali, 

2005; Halsband & Lange, 2006). We chose 6 and 12 months of age, because by 6 months, 

infants will have had 1 to 2 months of experience with reaching but the behavior is still 

unstable and will not be fully functional. In addition, at the same age, infants will have 

had no experience engaging in upright stepping activity, which presents a completely 

novel task when they are positioned over a motorized treadmill. By 12 months of age, 

infants will have had at least 6 months of experience reaching, and the behavior has 

become stable and quite functional. At the same age, infants will have a month or two of 

cruising practice and just started to take their independent steps. 

 Early in skill acquisition, TNGS posits that increased numbers of neural circuits 

are activated. As infants become skilled with their movements, the number of activated 

neural circuits reduces and the activated circuits and their connections become stronger. 

Based on this framework, we hypothesized that with increased goal-directed practice 

performing a skill; infants will shift from a diffuse to focal brain activity in each of the 

three brain regions. Specifically, during reaching, 6-month old infants will exhibit 

dispersed area of activity of the M1, pFC, and Crbl, but by 12 months, this activation 

pattern will become refined as demonstrated by fewer channels detecting significant 
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changes in oxygenation. During treadmill stepping, we hypothesized that 6-month old 

infants will show a smaller area of activity only in the M1, compared to older infants as 

we have observed previously (Nishiyori et al., 2016). Moreover, we hypothesized that the 

pFC and Crbl will exhibit a wider area of activity in 6 month old infants compared to 12 

month old infants. The treadmill stepping context is a unique and novel context for both 

groups of infants. Six-month-olds have minimal experience being supported upright as 

their legs move out from under them. Thus, infants at this age will be cognitively 

engaged to resolve the issue of their legs moving away from their body and to understand 

the goal of the condition. The increased attention to the task will be seen in the larger area 

of pFC and Crbl activity. Twelve-month-olds will have had 1 to 2 months of experience 

with upright locomotion; thus they will require less attention to the treadmill stepping 

task. Infants at this age understand the goal, when their legs move away from their body; 

thus requiring a smaller area of activity from the pFC. Moreover, because infants at 12-

months have developed, although still improving, lower limb control, significant 

contributions of the Crbl are required in order to control and error-correct lower-limb 

movements.  

For the second goal we quantified the relationship among hemodynamic 

responses of the prefrontal cortex, primary motor cortex, and cerebellum as infants 

actively reached and explored toys in an unstructured playtime. Strong correlations 

between different brain areas are used to infer functional dependency or connectivity 

during behavior. To date, most studies examining functional connectivity have occurred 
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during simple tasks in adults such as wrist flexion and extension (Heitger et al., 2013) 

and visuomotor tasks (Langan et al., 2010). The limited work in infants has occurred 

while they were sleeping (Damaraju et al., 2014; Fransson, Åden, Blennow, & 

Lagercrantz, 2011; Smyser, Snyder, & Neil, 2011). Based upon this work and the 

principles of the dynamic systems approach and TNGS, we hypothesized older infants 

with experience with goal-directed reaching would demonstrate stronger connectivity 

within and across the pFC, M1, and Crbl compared to younger infants. 

4.2 Method 

4.2.1 Participants 

 We consented 40 infants, 20 6-month-olds and 20 12-month-olds. Of these, two 

of the younger infants and three of the older infants became fussy during the preparation 

for testing which did not allow us to collect data. In addition, two of the younger infants 

and two of the older infants’ data were unusable due to extensive noise, motion artifacts, 

or too few usable channels. This resulted in 16 younger and 15 older infants for who we 

had usable data for reaching and/or stepping. Not all infants’ data were usable from both 

tasks, thus the final numbers, ages and gender for each task and age group were: reaching 

= 14 younger (M = 27.85 weeks, range = 25.22 -28.21 weeks, 9 females) and 15 older (M 

= 48.24 weeks, range = 48.75-54.11 weeks, 8 females); stepping = 14 younger (M = 

26.31 weeks, range = 25.02-27.32 weeks, 9 females) and 15 older (M= 48.24 weeks, 

range = 47.67-52.72 weeks, 7 females); unstructured play = 14 younger (M = 27.85 

weeks, range = 25.22 -28.21 weeks, 9 females) and 15 older (M = 48.24 weeks, range = 
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48.75-54.11 weeks, 8 females). Table 4.1 contains the summary of participant 

characteristics. 

 
4.2.2 Session Overview 

 The present study followed a similar protocol to a previous study (Nishiyori et al., 

2016). Briefly, upon arrival at the fNIRS lab, we allowed infants to acclimate to our 

space by playing with toys and interact with the research team. During this time, a 

research team member explained the study to parents and answered any questions parents 

had. Parents read and signed the informed consent. Next, we removed infants’ clothing 

except their shirt and diaper to allow infants to move freely. We measured the infant's 

head circumference, distance between inion and nasion, and between left and the right 

pre-auricular points to identify FPz according to the 10–20 international system (Jasper, 

1958). After we placed the infant into the customized infant seat, we secured the 

headgear on the infant's head. Floor to ceiling curtains were approximately 60 cm away 

from both sides of the table on which the infant seat rested, which minimized the amount 

of distraction due to open space. We began testing with the reaching task, followed by a 

brief break and then tested the treadmill stepping task. During the break, we re-arranged 

the lab to prepare for the stepping task. After completing the treadmill stepping task, we 

re-arranged the lab to prepare for the unstructured play condition. After the unstructured 

play condition was complete, we took photographs of the headgear on the infants to 

confirm the optodes/headgear had not moved from the target areas, as this could affect 



 95 

the quality and precision of our fNIRS measurements. We then removed the headgear and 

took basic anthropometric measurements (e.g., weight, total body length, leg (thigh and 

shank) length and circumference, and thigh and umbilicus skinfold). Finally, we 

administered the Motor Subscale of the Bayley Scales of Infant Development III (BSID-

III, Bayley, 2006). 

 

4.2.3 Tasks 
 
4.2.3.1 Reaching 
 
 For the reaching task, infants were secured with a wide soft chest strap in a 

customized infant seat (seat pan was 32 cm above the table top, backrest: 75 cm long, and 

reclined approximately 10° from the vertical). The infant seat was secured to the top of a 

table [117.4 (L), 59.5 (W), 79.5 cm (H)], so that infant's head would be at eye level with 

the video monitor. We positioned a video monitor (23” LCD, Phillips, Andover, MA, 

USA) on a cart in front of and approximately 80 cm away from the seat. We hung a thick 

black curtain in front of the monitor that could be opened and closed to hide the monitor 

during reaching trials and revealed videos playing during the rest phase. For reaching 

trials, a variety of age-appropriate small grip-sized toys [5 (L) × 5 (W) × 5 cm (H)] were 

presented to elicit reaching and maintain interest. 

 For the task phase, an experimenter presented the toy at the infant's midline 

within reach, followed by a rest phase. The experimenter first retrieved the toy from the 

infant, then unveiled the monitor playing an infant entertainment video (e.g., Baby 
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Einstein) intended to keep the infant calm and still for a minimum of 20 s (rest phase). If 

after 10 s from toy presentation, the infant did not reach for the toy we presented, we 

began a rest phase then started a new trial with a new toy. We repeated the cycle of 

reaching and rest for a minimum of 10 successful trials. 

4.2.3.2 Stepping 

 We placed our custom-designed treadmill [frame: 93.5 (L) × 43.7 (W) × 21 cm 

(H); belt: 81.5 (L) × 30.6 cm (W)] on top of and near the front edge of the same table 

used for reaching, in the center of the room. Each trial consisted of a rest-phase followed 

by a stepping phase. We started with a 30 s rest phase. During the rest phase, the 

experimenter held the infant who rested against the experimenter's chest. From pilot 

sessions, we determined that this was the best position to keep the infant calm and 

minimize movements thus optimizing rest phase status and values. Following the rest 

phase, each treadmill trial lasted 30 s. During each trial, an experimenter supported the 

infant under the arms so they were upright with feet touching the belt surface. Infants 

were encouraged to support as much of their weight as they could; experimenter provided 

supplemental weight support and posture control. The treadmill belt speed was set at .20 

m/s for both younger and older infants based on previous research which showed this to 

be the most effective speed to elicit alternating steps in infants across the first year of life 

(Teulier et al., 2009). If infants did not respond to the moving belt with any leg 

movements during a trial, that is, they allowed their legs to drag and extend behind them, 

we lifted the infant up to bring their legs forward and placed them on the belt again to 
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encourage the desired motor response - stepping. We collected a minimum of 10 stepping 

trials, in which infants responded to the moving treadmill belt with leg movements.  

 
4.2.3.3 Unstructured Play 

We positioned infants in a seated position inside a nursing pillow that was 

positioned at the center of a large blanket. This blanket was positioned in the center of the 

room. An experimenter sat directly across from the infant and a research assistant sat 

behind the infant to provide any postural adjustments or reposition the infants if they 

moved outside of the nursing pillow. 

Once the infants were positioned in the nursing pillow, the experimenter started 

by presenting small grip-sized toys that were used during the reaching task. The 

experimenter presented toys continuously to maximize the number of reaching trials. If 

infants become fussy, we presented them with other types of toys, such as those that were 

visually engaging and/or make noises. We aimed to measure a minimum of six minutes, 

in which infants were actively reaching for or manually exploring the toys. We chose 6 

minutes, because this is the suggested window of time in order to conduct a connectivity 

analyses during this active state (Smyser et al., 2011). Thus, their behaviors included 

maintain seated posture, looking at toys, reaching for toys, manually and orally exploring 

toys, and other spontaneous arm movements.  

4.2.4 fNIRS Data Acquisition 

The fNIRS data were acquired with the same fNIRS system and in a similar 
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procedure described in Nishiyori et al. (2016). The only difference was in the number and 

configuration of the optodes. In the present study, the headgear contained a total of nine 

source- and sixteen detector-optodes placed approximately 2.5 cm apart creating a 28-

channel array (Figure 4.1). There were three separate arrays for each of the three regions 

(Figure 4.2). Fourteen channels covered the bilateral frontal area, from F7 to F8. Eight 

channels covered the bilateral M1 area, from C3 and C4, centered on Cz. Finally, six 

channels covered the bilateral cerebellar area, in which the most superior channels were 

positioned between Oz landmark and the Inion (Schutter & van Honk, 2006). 

 

4.2.5 Video Recording 

 We used a digital camcorder (Canon, Melville, NY, USA) that sampled at 60 Hz 

to record reaching and treadmill stepping tasks, and the unstructured play condition. 

During the reaching task, the camera was mounted on a tripod positioned at a 45° from 

midline and 100 cm away from the center of the infant seat. During stepping trials, the 

camcorder was repositioned perpendicular to the side of the treadmill. For the naturalistic 

condition, the camera was positioned approximately 45° from the midline and 120 cm 

away from the infant. These camera positions allowed us to view any gross movements 

of the headgear and fNIRS cables. The onset of task and rest phases, and any undesired 

behaviors, such as crying and head turning, were documented. The camcorder and fNIRS 

system were synchronized via an audio signal. At the start of each condition, we inserted 

an audio signal simultaneously to the video and fNIRS data. We then mapped the timing 
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of the onset of reaches and treadmill steps and the start of the rest phases onto the fNIRS 

data to identify functional movement-related changes in hemodynamic activity of the 

three regions. 

 

4.2.5 Bayley Scale of Infant Development – Motor subscales 

 At the end of the session, we administered the Motor Subscale of the 

Bayley Scales of Infant Development (BSID-III, Bayley, 2006). This scale allowed us to 

characterize the status of gross and fine motor skill acquisition between and within the 

two groups. 

 

4.2.6 Trial Rejection 

 To determine the usability of trials, all videos were behavior-coded offline by two 

different researchers. For reaching, trials were valid if the infant reached for and 

successfully grasped the object. Trials were not considered for further analysis if infants 

did not reach for the object. For the treadmill stepping context, trials were valid if the 

infant stepped in response to the moving belt. Trials were not considered for further 

analysis if infants did not step in response to the moving belt for more than half of the 30-

sccond trial. For example, if the infant allowed her legs to drag behind them for a 

majority of the trial, we did not code this as a successful trial. 
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4.2.7 fNIRS Data Processing 

 fNIRS data were processed using the Homer2 (Huppert, Diamond, Franceschini, 

& Boas, 2009) Matlab toolbox (Mathworks, MA). Data were low-pass filtered at .8 Hz 

and then motion-corrected using a wavelet-based filtering (Molavi & Dumont, 2012).The 

optical density signal was then converted into concentration using the modified Beer–

Lambert Law. Partial path-length factor was set at 6.0 and the known coefficients of 

oxygenated (HbO) and deoxygenated (HbR) hemoglobin (Cope et al., 1988; Obrig & 

Villringer, 2003). Concentration data were then time locked to movement onset and 

epoched. For the reaching task the epoch consisted of 3 s prior to and 10 s post onset of 

reach. For the stepping task, the epoch was 1 s prior to and 10 s post onset of stepping. 

Epochs were averaged for each channel, group, and task and baseline corrected to pre-

movement period. Outlier trials in which task-related change in HbO and HbR exceeded 

two standard deviations were excluded from further analysis. With this criterion, 18.2% 

of the total 580 test trials from reaching and stepping (29 participants x 2 tasks × 10 

trials) were excluded. 

 For the unstructured play condition, data were pre-processed with the same 

parameters as the data from the reaching and treadmill stepping tasks. For this condition, 

hemodynamic activity was recorded continuously until we accumulated a minimum of 6 

minutes in which the infants were actively reaching, manipulating and/or exploring the 

toy. In some cases, we successfully collected a continuous 6-minute bout of reaching. If 

infants became fussy, however, the research team interacted with them to calm them 
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down before proceeding with more reaches. As a result, there were cases in which we 

collected shorter bouts (minimum of 2 minutes) of reaching with intermittent calming 

phases, which were later concatenated to reach 6 minutes. Each infant included in the 

analyses successfully completed a minimum of 6 minutes of active reaching.  

 

4.2.8 Data Analysis 

 For the reaching and stepping tasks, three dependent variables of interest were 

extracted from the data. First, in order to determine the number of functionally active 

channels, the change in HbO values from each channel within the epoch were used. We 

used an independent samples t-test to detect any significant changes between pre- and 

post-onset of the movement for all trials. This test provided the number of channels 

demonstrating task-related activity, which were then compared across group for each task 

using separate independent t-tests. The dependent variable of number of active channels 

was quantified as a tally of significant channels for each infant in each task. The same 

analysis was performed for HbR. Second, percent signal change was calculated based on 

the change of concentrations for both HbO and HbR compared to rest values within an 

epoch. We then determined group differences in peak activity by comparing percent 

signal change in the channel that exhibited peak HbO change from each participant. 

Separate independent samples t-tests were performed for reaching and stepping. Finally, 

we summed the percent signal change of the active channels to calculate the volume of 

activity during a task. The volume of each HbO (sum of percent signal change across 
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active channels) across groups was compared for each task using separate independent 

samples t-tests for each task. Volume derived in this manner provides an indication of 

percent signal change across significant channels. In conjunction with the number of 

active channels and peak signal change, it can provide information about the focality of 

cortical activity that neither the number nor peak signal change alone can provide.  

 Functional connectivity within and across the 28 channels distributed across the 

three brain regions of interested was assessed using correlation coefficients (r) between 

each possible pair of channels. For each infant, we calculated the correlation coefficients 

with the 6 minutes of filtered and motion-corrected signal from the unstructured 

condition. There were 378 r values produced for each infant representing all pairs of 

channels [(28 x 27)/2]. We calculated the average r-value for each pair of channels for 

each group. Then, we compared these r-values between groups by using the Fisher r-to-z 

transformation. This comparison identified which pairs of channels’ correlated activity 

changed between younger and older infants. 

 

4.3 Results 

 The Bayley data revealed that younger infants, as expected, achieved fewer items, 

46 (SD = 4.51), than older infants, 73 items (SD = 4.14). The scores were tightly 

clustered for each age group; therefore we could not make meaningful comparisons with 

the fNIRS data. Table 4.1 contains the breakdown of fine motor, gross motor, and total 

scores from the participants.  
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4.3.1 Reaching 

In the younger group, an average of 10.4 (SD = 2.1) right-handed, 10.8 (SD = 2.7) 

left-handed, and 9.2 (SD = 3.3) two-handed reaching trials were valid and included in the 

data analysis. In the older group, an average of 11.1 (SD = 2.3) right-handed, 9.3 (SD = 

2.2), and 11.4 (SD=2.0) two-handed reaching trials were considered valid and included in 

the data analysis. The analyses for differences in the peak percent signal change in HbO 

revealed no differences between younger and older infants across all channels.  

 In the M1, the independent t-test revealed that during right-handed reaches, 

younger infants (6.29 ± .83) showed activity in more channels than older infants [3.57 ± 

1.74, t(27) = 4.67, P < .001]. Similarly, the volume of activity was significantly lower in 

younger infants (.22 ± .055 μM) compared to older infants [1.02 ± .55 μM, t(27) = 8.4, P 

< .001]. During left handed reaches, younger infants (5.79 ± 2.67), showed activity in 

more channels than older infants [3.42 ± 1.55, t(27) = 5.62, P < .001]. Volume of activity 

was significantly lower in younger infants (.48 ± .12 μM) compared to older infants [1.44 

± .63 μM, t(27) = 11.17, P < .001]. During two-handed reaches, younger infants (5.36 ± 

1.15) showed activity in a similar number of channels as older infants [4.50 ± .854, t(27) 

= 3.53, P = .002]. Volume of activity was significantly lower in younger infants (.08 

± .16 μM) compared to older infants [.27 ± .11 μM, t(27) = 12.89, P < .001]. 

 In the pFC, the independent t-test revealed that during right-handed reaches, 

younger infants (9.79 ± 1.53) showed activity in more channels than older infants [5.57 ± 
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1.45, t(27) = 2.77, P = .01]. Volume of activity was significantly lower in younger infants 

(.73 ± .18 μM) compared to older infants [1.54 ± .85 μM, t(27) =9.7, P < .001].During 

left-handed reaches, younger infants (8.64 ± 1.95) showed activity in more channels than 

older infants [5.21± 1.19, t(27) = 5.58, P < .001]. Volume of activity was significantly 

lower in younger infants (.25 ± .06 μM) compared to older infants [1.7 ± .62 μM, t(27) 

=8.7, P < .001]. During two-handed reaches, younger infants (8.57 ± 1.91) showed 

activity in more channels than older infants [6.07 ± 1.73, t(27) = 3.07, P = .005]. Volume 

of activity was significantly lower in younger infants (.08 ± .02 μM) compared to older 

infants [.27 ± .1 μM, t(27) = 7.5, P < .001]. 

In the cerebellum, the independent t-test revealed that during right-handed reaches, 

younger infants (4.36 ± .929) showed activity in more channels than older infants [2.21 

± .699, t(27) = 2.56, P = .017]. Volume of activity was significantly lower in younger 

infants (.53 ± .69 μM) compared to older infants [2.4 ± .59 μM, t(27) = 12.2, P < .001]. 

During left-handed reaches, younger infants (4.42 ± 1.09) showed activity in more 

channels than older infants [2.71 ± 1.27, t(27) =5.34, P < .001]. Volume of activity was 

significantly lower in younger infants (.70 ± .17 μM) compared to older infants [1.82 

± .61 μM, t(27) = 6.61, P < .001]. During two-handed reaches, younger infants (4.29 ± 

1.44) showed activity in more channels than older infants [3.21 ± 1.19, t(27) = 5.82, P 

< .001]. Volume of activity was significantly lower in younger infants (.11 ± .05 μM) 

compared to older infants [.4 ± .1 μM, t(27) = 9.71, P < .001]. 
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4.3.2 Treadmill Stepping 

An average of 8.3 (SD=3.2) and 9.6 (SD=2.2) stepping trials were valid and 

included in the data analysis for the younger and older group, respectively. Similar to the 

reaching data, the comparison of peak activity in the channels did not detect any 

significant differences.  

In the M1, younger infants (3.07 ± 1.20) showed activity in fewer channels than 

older infants [6.0 ± 1.04, t(27) = 2.96, P = .006]. Volume of activity was not significantly 

different between younger (1.35 ± .36 μM) and older infants [1.55 ± .39 μM, t(27) = 1.4, 

P = .17]. 

In the pFC, younger infants (8.42 ± 1.70) showed activity in more channels than 

older infants [7 ± 1.71, t(27) = 2.53, P = .017]. Volume of activity was significantly 

lower in younger infants (1.3 ± .83 μM) compared to older infants [2.6 ± .33 μM, t(27) = 

5.34, P < .001]. 

In the Crbl younger infants (4.14 ± .864) showed activity in similar number of 

channels compared to older infants [3.96 ± .770, t(27) = .925, P = .363]. Volume activity 

was not significantly different between younger (.84 ± .23 μM) and older infants [.83 

± .21 μM, t(27) = , P = .90]. 

 

4.3.3 Unstructured play 

 During the unstructured condition, younger infants, on average, reached for toys 

23 times [right-handed = 9; left-handed = 8; two-handed = 6], while older infants reached 
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32 [right-handed = 12; left-handed = 7; two-handed = 12] times within the 6-minute 

window. 

 The average correlations across all 378 channel-pairs for younger and older 

infants are shown in Figures 4.3 and 4.4, respectively. Figures 4.5 and 4.6 highlight those 

correlations that were statistically significant. In younger infants, all 9 channel-pairs were 

located within the same local brain region (Figure 4.5). For older infants, 49 channel-

pairs were significantly correlated (Figure 4.6). In addition to a increased number of 

significant channel-pairs within a region, older infants also showed a cluster of 

significant correlations between channels located in the pFC and Crbl (Figure 4.6).  

Moreover, the critical r-value for a sample of 15 (df = 13) in the older group was 0.51. 

Based on this value, there were 49 pairs of channels that were significantly correlated 

(Figure 4.6). 

 Although there were qualitative differences in the number and distribution of 

significant correlations, the Fisher r-to-z transformation showed only 3 pairs of channels 

were significantly different between the younger and older groups. These included pair of 

channels within each brain region [channels 7 and 8 (M1), channels 18 and 20 (pFC), and 

channels 25 & 26 (Crbl), Figure 4.7]. In all three pairs of channels, the connectivity was 

higher in older infants compared to younger infants.  

 

4.5 Discussion 

The present study aimed to describe the emerging neural network that underlies 
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the development of functional motor skills in the first year of life. Guided by the 

framework of the dynamic systems approach (Byrge, Sporns, & Smith, 2014; Smith & 

Thelen, 2003; Thelen & Smith, 1994) and TNGS (Edelman, 1987; Sporns & Edelman, 

1993), we hypothesized refined neural activation patterns would emerge in the 

developmentally advanced older infants due to practice. Thus, we predicted a larger area 

of neural activity within each brain region when the tested skills were emerging or novel, 

and unstable. Moreover, we predicted that activity would be refined or localized as skills 

become stable and functional when infants have had increased experience using the 

motor skill. The results of our current study supported our predictions. Across the three 

brain regions, our results demonstrated the predicted changes in functional activation 

across ages and tasks. Our functional connectivity data showed increased correlations 

during reaching in neighboring channels, within local regions, in older infants compared 

to younger infants. The developmental change in network activity among the three 

regions demonstrates the functional cortical development is associated with the increase 

in experience with specific motor outcomes. 

 

4.5.1 Neural Activity during Reaching 

Our findings regarding developmental changes in M1 reinforce our previously 

published results (Nishiyori et al., 2016). The current work extended those data by 

showing that prefrontal cortex and cerebellar activity follow a similar pattern of change 

between younger and older infants. That is, as infants shift from being nascent reachers to 
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skilled reachers with practice, neural activation patterns are refined.  

Reaching is functional but not stable by 6 months of age. Younger infants are able 

to drive the target muscles to reach but also activate other muscles (coactivation) that 

they have not learned to inhibit or control (Nishiyori, et al., 2016). When reaching for a 

toy, infants are visually engaged with the objects and must be excited by or attracted to 

the toy in order for them to attempt to acquire the object. Younger infants are easily 

distracted by the visually stimulating field and require increased resources of areas 

commonly known to contribute to the role of attention, in order to focus on the toy that 

they reach for. Our data shows that younger infants activated the prefrontal areas, 

specifically around the dorsolateral prefrontal cortex (DLPFC), which is defined in 

neuroscience as the decision-making and attention-to-task area (Grossmann, 2013). Our 

data show that younger infants utilize a larger area of the DLPFC over successive reaches 

during the early stages of motor learning and control. Furthermore, the activity of the 

pFC area in the context of reaching can also be explained by increased errors during the 

early phases of skill acquisition, which have been shown in adult motor learning tasks 

(Halsband & Lange, 2006). At 6 months of age, infants are still exploring and learning 

strategies to control their body in the best way while reaching for a toy.  

At 6 months, infants are learning ways to control their posture and balance in a 

seated position. Moreover, when infants move their arms away from their bodies, in an 

attempt to reach for a toy, their intrinsic dynamics change and must regain balance. 

Infants around this age have been shown to coactivate the muscles of their arms and 
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shoulders, and are exploring the most efficient method to successfully reach for the toy, 

when they have just started to become successful at reaching. The active control of 

posture and balance engages the Crbl. Six-month old infants are still developing 

anticipatory postural control, which relies on the feed forward processing of information 

(Baumann et al., 2015). Furthermore, the cerebellum is controlling, online, the loss of 

balance when infants are reaching for toys but are still developing the necessary and 

adequate postural control.  

By 12 months, infants are skilled reachers and have refined their neuromotor 

patterns instead of increasing their task-specific motor cortical representations (Nishiyori, 

et al., 2016).  Our 12-month-olds have had significantly more experience, and successful 

attempts of reaching (i.e. less errors). Compared to 6-month-olds’ reaching data, our 12-

month-olds showed reduced area of activity surrounding the DLPFC in, which suggests 

that infants at this age are efficient in their selection of action, thus requiring less 

attentional resources when reaching for a toy. Moreover, our older infants have had 

extensive experience reaching for objects, thus their postural control has improved and 

hand trajectories towards the target are more efficient (Bertenthal & Von Hofsten, 1998; 

Harbourne, Lobo, Karst, & Galloway, 2013; Thelen & Spencer, 1998). The refinement of 

Crbl activity by 12 months, reflects the improvements in balance, postural and hand 

control when reaching for a toy. Furthermore, the Crbl provides feedback to areas such as 

the DLPFC and M1 during motor learning tasks, and processes feedback information and 

integrates sensory input, such as visuomotor information, to guide motor output signals 
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(Baumann et al., 2015). The refinement of Crbl activity in our older infants could be 

explained by the reduced contributions of feedback to the DLPFC and M1, as the 

movement accuracy has improved by this age.  

 

4.5.2 Neural Activity during Stepping 

The developmental changes in M1 activity during stepping also follow the same 

pattern reported in our earlier study (Nishiyori et al., 2016). That is, younger infants 

activated a smaller area compared to older infants. Similar to reaching, we found a 

disperse-to-focal pattern of change in the activity of the prefrontal cortex. Unlike 

reaching, however, we did not see a change in the area of activity in the cerebellum 

between younger and older infants.  

Stepping upright is a behavior that 6-month-old infants exhibit only when 

researchers provide the moving treadmill belt and bodyweight and postural support. 

Specifically, younger infants in our study had no experience moving their lower limbs in 

alternation in the upright posture. As a result, stepping at this phase in development, may 

not elicit significant M1 activity in this context, in which there is an absence of a 

volitional intent to produce any particular action pattern (Nishiyori et al., 2016). 

Interestingly, the activation of the prefrontal cortex at some level shows that infants, even 

at 6 months are actively engaged with the context. Given the secure handling provided to 

their trunk, infants may simply try to keep their feet from moving out from under their 

bodies. The novel context requires infants to be cognitively engaged, as they explore 
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strategies to keep their legs under their bodies. 

By 12 months, infants have traversed space voluntarily by scooting, crawling, 

cruising, and perhaps walking. They are experienced using the DLPFC to attend to 

relevant information and make decisions above responding, thus, they have begun to 

refine these population of local neural links, which they can access during the treadmill 

stepping condition. Thus, older infants, according to our data, activated a smaller area of 

the DLPFC compared to younger infants. Moreover, older infants may exhibit more 

consistent alternating stepping patterns but the control of these patterns does not stabilize 

until later in childhood. As a result, infants are still developing early functional control of 

their lower limbs, which could explain the lack of difference in our cerebellar data 

between the younger and older infants. The lack of refinement in our Crbl data during the 

treadmill stepping condition, could also be explained by the different role that the Crbl 

plays at different phases in skill acquisition. That is, in 6-month-olds, the Crbl could be 

contributing to the cognitive strategies that are being explored in the novel context, 

whereas in 12-month-olds, the Crbl is providing feedback and online control of 

movements, similar to our 6-month-old reaching data.  

 

4.5.3 Network Activity 

The comparison of correlations across all channels between younger and older 

infants revealed significantly higher connectivity in 3 pairs of channels. The r-values 

from these 3 pairs were significantly higher in the older infants compared to younger 
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infants. Moreover, we did not detect differences in the inter-regional pairs of channels 

during the unstructured-play condition. The increased connectivity within brain regions 

seen in our older infants, compared to younger infants, demonstrates the strengthening of 

local areas when infants are actively reaching for, manipulating, and exploring toys. 

 Previous reports have shown that experience-dependent changes in cortical 

organization take place (Bell & Fox, 1996; Corbetta, Friedman, & Bell, 2014). Each of 

these studies showed an inverted U-shape pattern in the development of coherence related 

to an infant’s crawling (Bell & Fox, 1996) and walking (Corbetta, Friedman, & Bell, 

2014). These studies showed when infants were at novices of a skill, coherence between 

lateral and frontal electrode sites (F7 and C3) were higher compared to those with more 

experience with the same skill. Similarly, in our data, we showed that younger infants 

during the unstructured play condition exhibit significant correlations within local areas 

within a brain region. Older infants, who have much more experience reaching and 

exploring toys, as they showed during this condition, showed significant correlations in 

more local areas within a brain region, as well as between brain regions. Perhaps, infants 

become more experienced, beyond 12-months of age and into the 2nd year of post-birth 

life, functional connectivity within local brain areas will decrease as more global and 

between-brain region connectivity will become strengthened.  

Data from the naturalistic condition parallel our findings from the reaching 

condition. In our reaching data, younger infants showed a lower volume of activity in all 

three regions during all types of reaches compared to older infants. This suggests that as 
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infants are improving the control of their upper limbs and posture, there is an increase in 

the strength of activity within each of those regions. The connectivity data revealed a 

similar pattern. That is, two neighboring sites within the same broad brain region are 

increasing their connectivity. Our two sets of data further support the experience-

dependent change in neural firing patterns.  

 

4.6 Conclusion 

In conclusion, we have demonstrated the utility of using fNIRS to document the 

developmental changes across three motor-brain regions as infants perform functional 

motor skills. This study has shown the changes in both prefrontal cortex and the 

cerebellum as functional motor skills emerge. To the best of our knowledge, this is one of 

the first studies to quantify cerebellar activity in infants using fNIRS. 

Similar to previous work (Nishiyori et al., 2016), our study shows that when 

functional motor skills are nascent and novel, the underlying neural activity is dispersed. 

As infants make self-initiated and goal-directed attempts, their motor outcomes become 

more efficient and successful. Similarly, the neural activity becomes refined. This 

refinement is further described by the increase in connectivity within brain regions as 

infants improved the control of their upper limbs. Thus, as skills improve the strength in 

activity increases, which supports the experience-dependent changes in neural activity 

early in life. This suggests that, as brain activation patterns emerge similar to the patterns 

identified in early muscle activity and movement patterns. Further research is warranted 
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to describe the specific experience-dependent changes in neural activity in the three 

regions we investigated. For example, future research could explore the dose-based 

changes in physical activity or object manipulation to test if experience-dependent 

changes in brain activity could be enhanced or altered. Furthermore, our data were 

limited to two age-specific groups, thus future work should incorporate different age 

groups based on specific amounts of experience with a skill. Finally, our data shed light 

on the volition and adaptation in early development of neuromotor control, which may 

help understand how infants with disabilities acquire new functional motor skills.
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Table 4.1. Average (M) and standard deviation (SD) for anthropometric measurements and the Motor Scale of the 
Bayley Scale of Infant Development (MS-BSID-III) for each group by task. 

  Younger Older 

  Reaching Stepping Unstructured 
Play Reaching Stepping Unstructured 

Play 

  M SD M SD M SD M SD M SD M SD 

Age (weeks) 27.85 2.41 26.31 2.36 27.85 2.41 49.32 2.08 48.24 2.26 49.32 2.08 

Weight (kg) 8.61 0.72 8.54 0.81 8.61 0.72 9.72 1.31 9.94 1.06 9.72 1.31 

Length (cm) 67.24 2.57 68.13 2.49 67.24 2.57 76.41 2.84 77.82 2.18 76.41 2.84 

Head 
Circumference 

(cm) 
43.31 1.40 43.68 1.33 43.31 1.40 48.03 0.94 47.82 1.35 48.03 0.94 

Inion-Nasion 
(cm) 26.13 0.74 25.95 1.12 26.13 0.74 27.72 1.30 28.06 1.71 27.72 1.30 

A1 to A2 (cm) 25.82 1.02 26.03 0.90 25.82 1.02 27.81 1.66 27.44 0.96 27.81 1.66 

 
BSID-III 

(raw 
score) 

Fine 20.9 2.86 20.6 2.74 20.9 2.86 27.80 0.51 27.12 27.80 0.51 0.51 

Gross 25.21 1.71 25.61 1.94 25.21 1.71 43.82 4.06 42.44 43.82 4.06 4.06 

Total 46.11 4.51 46.20 3.68 46.11 4.51 72.86 4.14 69.56 72.86 4.14 4.14 
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Figure 4.1. Channel numbers (black squares) for each brain region. Red circles represent 
sources and blue circles represent detectors. 
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Figure 4.2. Position of sources (red circles) and detectors (detectors) for a) prefrontal; b) 
primary motor; and c) cerebellum areas. Black lines represent channels.
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Figure 4.3. Correlation values (r) between all pairs of channels for younger infants during the unstructured play 
condition. Darker red values indicate stronger correlations. 
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Figure 4.4. Correlation values (r) between all pairs of channels for older infants during the unstructured play condition. 
Darker red values indicate stronger correlations. 
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Figure 4.5. Pairs of channels showing significant correlation values (r) based critical values for younger infants during 
the unstructured play condition. Darker red values indicate stronger correlations.
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Figure 4.6. Pairs of channels showing significant correlation values (r) based critical values for older infants during the 
unstructured play condition. Yellow box highlights inter-brain regions. Darker red values indicate stronger correlations. 
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Figure 4.7. Depiction of significant channel pairs (red line, P < .05) that were higher in 
older infants compared to younger infants. 
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Chapter V: General Discussion 
5.1 Overall Discussion 
 The series of studies in this dissertation are among the first to directly measure the 

changes in neural activity that underlie the development of functional motor control early 

in life. The studies, particularly those from Chapter 3 and 4, were hypothesized based on 

previous empirical data of kinematic, kinetic, and overt behavioral changes. The data 

from both studies improve our understanding regarding the dynamic and complex 

development of neuromotor control.  

 The studies from Chapter 3 and 4 were hypothesized based on the theory of 

neuronal group selection (TNGS, Edelman, 1987; Sporns & Edelman, 1993), and the 

dynamic systems approach. The findings from my studies have directly tested the 

hypotheses regarding the neural changes as infants improve their motor control. TNGS 

postulates that the brain has repertoires of circuits that form neuronal groups, or 

population of interconnected neurons, that share functional properties. These neuronal 

groups are selected based on the match between the internal and environment constraints 

compared to the other competing groups. As infants repeat or practice motor skills, 

similar constraints are matched, thus the same neuronal groups are selected and 

eventually form a map that is specific and unique to the motor skill (Sporns & Edelman, 

1993). This work was supported by studies with cats and the development of their visual 



 131 

cortices (Gray & Singer, 1989), as well as computer simulations (Reeke Jr, Sporns, & 

Edelman, 1990); but has not been tested with human infants. 

 The data from Chapter 4 further supports the classical work by Edelman and 

colleagues. I have successfully utilized fNIRS to take the first step to describing the 

typical changes in neural activation patterns as infants develop, acquire, and improve 

functional motor control. Additionally, the data from this dissertation support the host of 

data that show emergent muscle activity and joint movement patterns as infants increase 

their experience with a functional motor skill. With the addition of neural data, motor 

developmental researchers can begin to test hypotheses centered upon the development of 

the central nervous system. Such research would provide a window into typical and 

atypical development across many subsystems.  

 Over the recent years, the use of fNIRS has enabled researchers to understand the 

functionality of the prefrontal cortex during infancy (Grossmann, 2013). In Chapter 4, the 

functional activation of the prefrontal cortex during both reaching and stepping tasks 

demonstrate that infants are actively engaged during goal-directed behavior and that 

reaching or stepping is not reflexive. To the best of my knowledge, the work presented in 

Chapter 4 is one of the first attempts to quantify cerebellar activity using fNIRS. Our 

optode positions were guided by previous EEG and transcranial magnetic stimulation 

(TMS) studies that used anatomical landmarks that have been shown to detect cerebellar 

activity (Schutter & van Honk, 2006). However, future research should register optode 

location with anatomical imaging to confirm the suitability of EEG and TMS localization 
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methods for use with fNIRS. 

5.2 Limitations 
 The series of studies in my dissertation have yielded findings that support the 

utility of fNIRS during infant movements. However, several issues must be addressed 

and resolved in future work. First, as discussed above, we did not use subject or group-

specific MR images to co-register and localize the positions of the fNIRS optodes. We 

relied on the work of Okamoto and colleagues (2004) that identified the hypothesized 

brain areas according to the landmarks of the international 10-20 international system 

(Jasper, 1958). Most studies, to date, have relied on this method to position the fNIRS 

optodes. Based on our results with adults, we were able to show that our array of 

channels covered the primary motor cortex (Nishiyori, Bisconti, & Ulrich, 2016). These 

results provided insight when we constructed the array of channels for our study with 

infants (Nishiyori, Bisconti, Meehan, & Ulrich, 2016). To date, studies that have 

registered fNIRS optodes on infant MR images is scarce, although significant progress 

has been made over the past few years (Emberson, Richards, & Aslin, 2015; Lloyd-Fox 

et al., 2014). The use of anatomical registration and photon migration would confirm the 

exact neuroanatomical location of our measurements. 

 Second, infants’ neuroanatomy undergoes drastic changes over the first year after 

birth. For example, longitudinal studies examining the neuroanatomical structural 

changes have shown that an increase in cortical surface area develops at a more rapid rate 

during the first postnatal year, compared to the second postnatal year (Li et al., 2014). In 
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addition, brain volume and skull thickness increase over the first year of life as well. The 

changes in these tissues may confound our functional results by altering the absorption 

rate of light independent of the brain’s hemodynamic responses. Further, we kept the 

same distance between optodes and maintained the same probe geometry. Therefore, we 

could be quantifying from slightly different regions of the brain across participants and 

age groups. If the increase in brain volume and skull thickness affected our results, we 

should have seen similar patterns of change in the area of brain activity between younger 

and older infants during both functional tasks. The results between younger and older 

infants during reaching and stepping show a different pattern. For reaching, the area of 

activity decreased, while for stepping the area of activity increased. Although I cannot 

completely rule out the affect of increase in brain volume and skull thickness, the results 

from Chapters 3 and 4 demonstrate that my probe geometry minimized the possible 

confound attributed to increase in brain volume and skull thickness between the two age 

groups.  

 Third, the study from Chapter 4 is the first to quantify hemodynamic activity of 

the cerebellum in infants using fNIRS. We followed anatomical landmarks from a 

modified 10-20 international system used in a study with transcranial magnetic 

stimulation (TMS) in adults, that successfully recorded electrophysiological responses 

from the human cerebellum (Schutter & van Honk, 2006). We positioned our probe array 

to surround these areas to quantify cerebellum activity. However, in order to be 

completely conclusive that our responses were in fact from the infant cerebellum, future 
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work needs to be co-registered and localized to an infant’s structural MRI. Moreover, 

sensitivity distributions of photon migration (Monte Carlo simulations) should be 

estimated in order to confirm that our probe geometry is accurately measuring Crbl 

activity.  

 Finally, the studies in this dissertation did not quantify any behavioral measures 

that could be acquired during fNIRS data collection, such as limb trajectories and 

velocities or muscle activation patterns. Indeed incorporating the additional measures 

would provide more improved measures and analyses. However, the additional 

equipment and set up time could increase the likelihood of infants becoming fussy and 

result in fewer successful trials or incomplete protocols. Instead of assessing the behavior 

on a trial by trial basis, I used the Bayley Scales of Infant Development – Motor subscale 

This assessment has been a popular tool among motor development researchers and is 

used to characterize the status of motor development in infants. I used this assessment of 

motor development to infer experience and skill level for 6 and 12-month old infants, 

which provided the necessary information for these studies. As the technology improves, 

future researchers may be in better positions to incorporate additional measures. 

  

5.3 Future Directions 
 The studies in my dissertation are the first to document the neural activation 

patterns as infants performed dynamic and functional motor skills. Thus, there are a wide 

variety of future directions for this line of work. Foremost, longitudinal studies that 
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examine the developing and fluctuating changes in neural activation patterns over the 

course of developmental time would provide an understanding of how the onset of 

different skills change the organization and reorganization of the brain. For example, 

researchers have documented the developmental shifts in early goal-directed hand use 

and its link to the emergence of postural control and locomotion. Specifically, bimanual 

reaching declines while there is an increase in unimanual reaching around the time of 

onset of independent sitting as well as hands and knees crawling (bimanaual onset). 

Neural activation patterns when infants shift from one pattern of movement to another 

would provide insight on the plasticity of the developing CNS. Understanding the 

plasticity of the typically developing CNS is a critical step to describe how the brain 

changes in infants with disabilities. Such work would enable clinicians to test the impact 

of interventions and therapies on the developing brain. 

 

Conclusion 

 This dissertation provided a critical first step to describe the early neural 

activation patterns that emerge as infants develop and improve their functional motor 

skills. In other words, this is only the beginning. With the use of fNIRS in the context of 

dynamic and functional movements in infants, I have shown the successful measurement 

of three different brain regions in infants related to motor control and learning. 

Furthermore, the findings support that as infants explore their environment by reaching 

for toys or traversing across space and improve these behaviors by repeated daily 
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attempts and continuous cycles of perception and action, the underlying neural activity 

emerges and refines in parallel to the motor outcomes. As I have constructed a portion of 

the necessary groundwork, future research can further build, improve, and refine our 

understanding the development of the central nervous system early in life.
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