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ABSTRACT

Numerical simulations of shock and rarefaction waves interacting with interfaces in
compressible multiphase flows

by

Marc T. Henry de Frahan

Chair: Eric Johnsen

Developing a highly accurate numerical framework to study multiphase mixing in high speed

flows containing shear layers, shocks, and strong accelerations is critical to many scientific

and engineering endeavors. These flows occur across a wide range of scales: from tiny bub-

bles in human tissue to massive stars collapsing. The lack of understanding of these flows

has impeded the success of many engineering applications, our comprehension of astrophys-

ical and planetary formation processes, and the development of biomedical technologies.

Controlling mixing between different fluids is central to achieving fusion energy, where mix-

ing is undesirable, and supersonic combustion, where enhanced mixing is important. Iron,

found throughout the universe and a necessary component for life, is dispersed through

the mixing processes of a dying star. Non-invasive treatments using ultrasound to induce

bubble collapse in tissue are being developed to destroy tumors or deliver genes to specific

cells. Laboratory experiments of these flows are challenging because the initial conditions

and material properties are difficult to control, modern diagnostics are unable to resolve

the flow dynamics and conditions, and experiments of these flows are expensive. Numer-

ical simulations can circumvent these difficulties and, therefore, have become a necessary

component of any scientific challenge.

Advances in the three fields of numerical methods, high performance computing, and

xvi



multiphase flow modeling are presented: (i) novel numerical methods to capture accurately

the multiphase nature of the problem; (ii) modern high performance computing paradigms

to resolve the disparate time and length scales of the physical processes; (iii) new insights

and models of the dynamics of multiphase flows, including mixing through hydrodynamic

instabilities.

The Discontinuous Galerkin (DG) method has been shown to be a highly scalable,

geometrically flexible, high-order accurate numerical method to solve systems of partial

differential equations. This powerful method has not yet been successfully adapted to

multiphase flows. Conventional implementation of this method to multiphase flows resulted

in numerical errors that led to incorrect solutions or simulation failures. A new procedure

in the DG method is developed. This new method preserves high-order accuracy while

avoiding these numerical errors and reducing them to unit roundoff (∼ 10−14). This method

is coupled to numerical sensors which detect flow discontinuities to apply limiting procedures

only where necessary and retain broadband motions in smooth regions of the flow. This

method has been validated with the usual numerical tests as well as through comparisons

with theory and experiments of hydrodynamic instabilities as well as experiments of a shock

in air hitting a drop of water. Solution enhancement techniques that increase the order of

accuracy of the method from 2P + 1 to 3P + 1, where P is the polynomial order of the

solution, are also presented.

To resolve the physics of interest, the method is implemented in a high performance

computing framework. Graphics Processing Units (GPU), traditionally used to manipulate

computer graphics, are used to perform fast, computationally intensive, and highly parallel

vector operations. Since on-chip GPU memory is limited, the problem must be distributed

across multiple GPUs and the data must be moved efficiently across the network to minimize

communication costs. The new multi-GPU parallel code uses the Message Passing Interface

to communicate between GPUs. Excellent weak and strong scaling up to at least 32 GPUs

is also demonstrated. This work presents a viable path towards exascale computing.

Using this computational framework, key insights are provided into the dynamics of

multiphase flows relevant to engineering, basic science, and biomedical applications. Simu-

lations with shocks interacting with multiple layers of different materials illustrate how to
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control the level of mixing by varying the material composition, material ordering, mate-

rial thickness, and perturbation phase alignment. This result is key to many engineering

applications involving flows with shocks and multiple fluids where controlling mixing is im-

portant (e.g fusion energy and supersonic combustion). Vorticity generation mechanisms

are shown to offer important insight into the growth of blast-driven hydrodynamic insta-

bilities. Circulation generated at the interface scales linearly with the length of the blast

wave and scales as a power law of the wave strength. When the wave has left the interface,

the perturbation growth scales as the square root of the circulation and time. Finally, the

Rayleigh-Taylor (RT) instability is used to characterize the strength of metals at extreme

pressures and strain-rates. In this case, simulations and experiments are compared to val-

idate theoretical models of material strength. These studies have direct applications to

engineering and biomedical fields such as fuel injection problems, plasma deposition, cancer

treatments, and turbomachinery.

xviii



CHAPTER I

Introduction

This chapter defines the scope of this dissertation and emphasizes the importance and

relevance of this work to many scientific and engineering problems. This work is placed in the

context of several applications, with a primary focus on Inertial Confinement Fusion (ICF)

and supernova collapse. The key concepts in this work, particularly mixing in compressible

multiphase flows and phenomena at interfaces, are defined. The main assumptions behind

the modeling framework are presented and the validity of using the Euler equations for the

problems of interest examined. The next section presents the motivation for using high-

order numerical methods for high fidelity simulations. Finally, this chapter concludes with

the thesis objective, the outline, and the main contributions of this work.

1.1 Physical context

Gases, liquids, and plasmas belong to the general family of fluids, i.e. they are substances

that change shape and deform continuously under the effect of a shear stress; they are said

to flow. Fluid flows are observed throughout nature and span many length scales, from the

blood in our veins to the interstellar medium. Due to their prevalence, understanding fluid

flows is critical to many applications. The study of single fluid flows, flows where there is

only one type of fluid in a particular state, e.g. the flow of air over an airplane wing, has

led to countless breakthroughs in scientific, engineering, and medical fields.

This thesis focuses on more complex flows, specifically flows which contain multiple

types of fluid. Multifluid flows are flows which involve the interactions of fluids in the
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same phase. These flows occur, for example, when different types of liquids are in the

same system. Pouring honey into hot tea, for example, involves two liquids with different

temperatures, densities, and viscosities. Multifluid flows are generally more difficult to

analyze than singlefluid flows because the differences in the fluid material properties have

a strong effect on the flow dynamics.

Many of the flows discussed pertain to multifluid flows, particularly flows with different

gases. However, the tools developed and several flows studied in this thesis pertain to

multiphase flows as well, a broader class of flows in which fluids in different phases are

present. The injection of fuel, a liquid spray, into a diesel engine’s combustion chamber

filled with hot gases, is an example of a multiphase flow. The scope of this work is restricted

to multiphase flows where fluids are not actively changing phases, e.g. going from a liquid

phase to a gaseous one. The numerical treatment of multiphase flows and the study of

several specific multiphase flows are the primary focus of this work.

Compressible multiphase flows are of particular interest as they occur in many differ-

ent applications. These flows contain local changes in density, high pressure regions, and

velocities that are not necessarily small compared to the speed of sound.

In the context of this work, mixing refers to the process in which two or more fluids

of different composition are entrained and dispersed within each other. A mixed region

of the flow is a macroscopic region where the mass fractions of the respective fluids are

less than one. As opposed to passive mixing between scalar fields, mixing in this work is

coupled to the flow dynamics, defined by Dimotakis [2] as level-2 mixing. Examples of this

type of mixing occur in flows containing varying density fluids in acceleration fields, such

as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities, Sections 1.3.1 and

1.3.2, and temperature and salinity-driven ocean currents and climate phenomena. Mixing

phenomena in compressible multiphase flows most relevant to this work are detailed in

Section 1.3. For hydrodynamic instabilities, perturbation amplitude usually quantifies the

amount of mixing in the flow. Additional metrics for quantifying mixing between fluids at

large and intermediate scales are presented and used in Section 4.6.
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1.2 Scientific and engineering applications

Compressible multiphase flows are ubiquitous in science and engineering. Mitigating

cavitation erosion, which involves small vapor bubbles created by tensile forces in the wake

of a ship’s propeller collapsing violently and damaging the propeller, is crucial to many

naval engineers [3]. For high speed multiphase nozzle injection, such as variable phase

turbines used in geothermal waste heat recovery systems [4, 5], understanding liquid droplet

breakup in supersonic flow is important for developing liquid atomizations models [6]. In

manufacturing, plasma deposition is a technique in which thin films of solid are deposited

using a vaporized liquid. The gas and liquid droplets usually travel at high velocities, and

understanding their impact on the substrate is important for controlling surface roughness

and defects [7, 8]. In diesel engines, the liquid fuel is injected as a high speed spray into

the combustion chamber. Efficient mixing of the fuel and oxygen is important to minimize

particulates and maximize the combustion rate and, thus, fuel efficiency [9]. In supersonic

combustion ramjets, or scram-jets, a type of jet engine for hypersonic flight, increasing the

rate of mixing between the fuel and oxidizer is critical to the engine’s success as the typical

residence time in the combustion chamber is milliseconds [10]. Shock induced mixing has

been proposed as an efficient mixing method for accomplishing this [10].

In the biomedical sciences, therapies have been developed where flows of complex tissues

interacting with high pressure waves are prevalent. In shockwave lithotripsy [11], a common

technique for treating kidney stones, ultrasound pulses are used to crush the kidney stones

in the patient. Histotripsy also uses ultrasound to induce tissue necrosis and tissue frac-

tionation to treat cancer tumors [12]. These non-invasive therapy tools focus energy into

tissue and create pressure waves interacting with interfaces of different materials. Though

the ultrasound phenomena do not have high velocities, the associated cavitation phenomena

do.

At much larger scales, though usually at lower speeds, terrestrial flows, like atmospheric

inversions [13], magma flow and solidification [14], and ocean mixing due to sudden temper-

ature changes [15], can also be subject to mixing instabilities. Planetary formation processes

and planetary object collisions are governed by flows in which shocks are interacting with
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fluids in different phases [16].

Of particular interest to this thesis and a specific focus and application of this work is

ICF and supernovae.

1.2.1 Inertial confinement fusion

ICF is a technology for harnessing energy from fusion reactions to generate electricity

using a nearly unlimited source of material, hydrogen, without producing carbon products

[17]. In ICF, a deuterium and tritium gas is encased in a small spherical capsule, about

5 mm in diameter. The capsule’s shell is formed by an outer shell, the ablator, primarily

plastic doped with several other elements, Figure 1.1, and an inner shell, usually a cryogenic

deuterium and tritium ice. It is heated to very high temperatures using various energy

sources. For indirect drive ICF, as pursued at the National Ignition Facility at Lawrence

Livermore National Laboratory, the capsule is suspended inside a gold canister, called a

hohlraum. One hundred and ninety two laser beams are aimed at the inner hohlraum

walls, Figure 1.1, and the laser light is converted to x-rays by the gold walls. The x-rays

then uniformly bathe the capsule with intense radiation and ablate the outer portion of the

capsule shell. The ablation of shell surface material drives the implosion of the fuel shell.

The fuel’s kinetic energy is then converted to internal energy as the fuel is decelerated to

rest by the matter at the core of the spherical capsule. Temperatures can reach several

tens of millions of degrees [18]. At these temperatures, the compressed fuel in the core is

expected to undergo thermonuclear burn and produce helium and very energetic neutrons.

One of the key challenges in ICF is achieving the very high densities and temperatures

necessary for initiating thermonuclear burn. This imposes very tight constraints on the

sphericity of the compression, i.e. a non-spherical implosion will not compress the fuel

to high enough temperatures in the center of the capsule, the hotspot. Hydrodynamic

instabilities, such as the Kelvin-Helmholtz (KH), RT, and RM instabilities, significantly

perturb the uniform compression and induce mixing between the hot fuel and the relatively

cold outer shell of the capsule. The mixing reduces the temperature in the hotspot and

inhibits ignition. Mixing through hydrodynamic instabilities is a main reason for the fact

that ICF efforts have yet to achieve high gain [20].
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Figure 1.1: Indirect drive ICF schematic of the hohlraum (left) and fuel capsule (right).
From Landen et al. [19], © IOP Publishing. Reproduced with permission. All
rights reserved.

1.2.2 Core collapse supernovae

At the other end of the length scale spectrum, core collapse supernovae form the biggest

explosions in the universe, Figure 1.2. Approximately 1046J/s is released through neutrinos

during a core-collapse supernova [21]. No other natural phenomenon comes close to this

amount of power. Core collapse supernovae are immensely important in astrophysics as

they are the most abundant manufacturers of elements in the universe. They lead to the

creation of neutron stars and black holes, and they are thought to be a source of shocks

instrumental in accelerating Galactic cosmic rays [22]. The focus in this work is on the more

frequent type of supernovae, core collapse supernovae, hereafter referred to as supernovae,

which are caused by the collapse of the iron core in a massive star. Before summarizing

the key components of the collapse dynamics, the reader is referred to the following review

articles [23, 24, 25, 21, 26, 22].

A supernova starts as a massive star, a star larger than eight solar masses, in hydrostatic

equilibrium and burning hydrogen, that collapses due to gravitational forces [21]. A cycle of

nuclear fusion reactions beginning with hydrogen produces helium. A helium core is formed,

leaving hydrogen burning in the outer shell. The helium core eventually contracts, raising
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the density and temperature enough so that the helium begins to fuse, in a cycle that leads to

carbon and oxygen. This cycle of fuel burning, core contraction, and ignition of the products

of the previous fusion reactions continues, producing neon, silicon, and, finally, iron. Each

successive stage is shorter than the previous one: for a fifteen solar mass star, the hydrogen

and helium burning stages can last millions of years, whereas silicon burns for a couple of

weeks [21]. As this process evolves, the star forms an “onion-like” structure, each inner layer

denser than the outer ones, with the heaviest element, iron, at the core, Figure 1.3. Because

iron has the maximum nuclear binding energy per nucleon, no net energy is released from

iron fusion and the burning cycle stops. The mass of the iron core increases until it exceeds

the Chandrasekhar limit (M > 1.4M⊙). At this point, the electron degeneracy pressure is

overwhelmed by gravitational forces and the core collapses in seconds. Material in the outer

edge of the core reach velocities close to a quarter of the speed of light. During the collapse,

the core density increases by a factor of 106, akin to Earth being compressed to a diameter

of 50km in 1 second. Because this collapse occurs on time scales much faster than those

for the speed of sound and gravity is much weaker away from the core, the outer layers

(neon, carbon/oxygen, helium, and hydrogen) remain motionless, unaware of the collapse.

Once the core has reached nuclear density (ρ ∼ 1014g/cm3), the short range nuclear force,

attractive at long distances, becomes repulsive at the core center. The collapse suddenly

stops and the core rebounds. Material from the outer edges of the core, still falling inwards,

slams into the central rebounding core, forming an outward moving shock. Energy losses

from the shock through photodisintegration and neutrino emission are such that, seconds

after collapse, as the shock arrives at the outer edge of the core, it stalls. The mechanisms

explaining how the shock is restarted are not well understood and much debated. The

predominant theory is that neutrinos from the core deposit enough energy at the shock

to restart the shock [22]. Once restarted, the shock continues its outward trajectory and

interacts with each successive layer of the star. Since the explosion is short compared to the

shock passage time through the star, a rarefaction wave overtakes the shock to form a blast

wave [27]. This blast wave encounters density gradients at the different interfaces between

the element layers. When the shock interacts with the different layers, it briefly increases

the temperature and density of the gases, leading to several rounds of explosive nucleo-
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synthesis and the creation of many other elements such as nickel, cobalt, and titanium

[22]. As the supernova explosion proceeds, much of the star material is dispersed in the

interstellar medium where gravitational forces will slowly coalesce the dispersed elements

to form new stars and planets.

Experimental observations of supernovae, such as one of the most studied supernovae,

SN1987A, [23], have exhibited failures in spherically symmetric theoretical models to predict

the light curves from the supernovae. In the case of SN1987A, heavy material from the inner

regions of the star was observed five days after the explosion instead of the predicted six

months [28]. To explain these discrepancies, scientists are predicting that hydrodynamic

instabilities, arising from the interaction of the blast wave with the perturbations at the layer

interfaces, are mixing heavy core elements into the outer portions of the star. Simulations

such as those performed by Kifonidis et al. [29], Miles [28] indicate that the light curves

observed from supernovae may be explained by hydrodynamic mixing. This active area of

study forms the context and motivation for our fundamental research of the mixing dynamics

of a blast wave interacting with a perturbed interface in an idealized system, ChapterV.

While most studies to date have focused on buoyancy-drag descriptions of the mixing, this

work provides circulation-based descriptions and models to highlight the physics of blast-

driven instabilities.

1.3 Mixing in compressible multiphase flows

The phenomena important to the applications of interest, described in Section 1.2, occur

at interfaces between fluids in compressible multiphase flows. Hydrodynamic instabilities

are particularly interesting as they initiate mixing between different fluids, determine the

evolution and amount of mixing, and thus directly influence the overall flow dynamics.

Hydrodynamic instabilities occur when small perturbations on an interface between fluids

grow because of the dynamics of the flow. The process behind the perturbation growth

dictates the nature and type of instability. Over time, the flow may transition to turbulence,

in which case the flow dynamics stretch the interface sufficiently that viscosity and mass

diffusion may be important during the relevant time scales [2].
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Figure 1.2: Image of the Crab Nebula, a supernova explosion remnant, by the Hubble Space
Telescope. The explosion remnant is approximately six light years wide. Photo
credit: National Aeronautics and Space Administration.

1.3.1 The Richtmyer-Meshkov instability

The RM instability occurs when a shock traverses a perturbed interface between fluids

of different densities [30, 31]. The growth of the perturbation is due to the shock gener-

ating baroclinic vorticity at the interface [32]. Specifically, the vorticity is created by the

misalignement of the pressure gradient across the shock and the density gradient across the

interface, as illustrated by the last term in the vorticity evolution equation for a compressible

inviscid flow,

∂ω

∂t
+ u · ∇ω = (ω · ∇)u− ω∇ · u+

1

ρ2
(∇ρ×∇p) (1.1)

where ρ is the density, p is the pressure, u is the velocity, and ω = ∇× u is the vorticity.

Vortex stretching, the first term on the right-hand side, only appears in three-dimensional

flows. Vortex compression, the second term, includes compressibility effects.

When the shock interacts with the interface, it first compresses the perturbations. If

the shock is moving into a lighter fluid (∇p · ∇ρ > 0), it induces a phase inversion in

the perturbation. After the shock has left the interface, the only mechanism left to drive

the interface growth is the vortex sheet at the interface formed by baroclinic vorticity

generation, Figure 1.4. As such, the RM instability is not a classical instability because it
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✪✫✬ s✿✩✮✮ ❜✧✦✫✯✫❇✺ ✦✩s♣✩★✥✯✈✩✮✴❄❅ ❯✿✩ ✬✯✪❇♦✫✪✮✮✴ ✪✦✦✪✫❇✩✬ ✫✧♠❜✩✦s ✯✫✬✯★✪✥✩ ✥✿✩ ✯✫✥✩✦✯♦✦ ♠✪ss ❃✯✫ s♦✮✪✦ ♠✪ss✩s❄ ✰♦✦ ✩✪★✿ ❜✧✦✫✯✫❇ s✿✩✮✮❅ ❳✯❇✿✥❍

❨●♣✮♦s✯✈✩ ✫✧★✮✩♦s✴✫✥✿✩s✯s ✦✩s✧✮✥✯✫❇ ✰✦♦♠ ♣✪ss✪❇✩ ♦✰ ✥✿✩ s✿♦★❊ ✇✪✈✩ ✥✿✦♦✧❇✿ ♦✈✩✦✮✴✯✫❇ ✮✪✴✩✦s✺ ❇✯✈✯✫❇ ✦✯s✩ ✥♦ ✩●♣✮♦s✯✈✩ ❜✧✦✫✯✫❇ ♦✰ s✯✮✯★♦✫

❃❙✯❩❄✺ ♦●✴❇✩✫ ❃❖❩❄ ✪✫✬ ✫✩♦✫♥★✪✦❜♦✫ ❃❚✩❩❭❲❩❄❅ ❙✥✦✯★✥✮✴ s♣✩✪❊✯✫❇✺ ✥✿✯s ★✮✪ss✯❝★✪✥✯♦✫ ✬✩♣✩✫✬s ♦✫ ✥✿✩ ✥✩♠♣✩✦✪✥✧✦✩ ✦✪✫❇✩✺ ✫♦✥ ♦✫ ✥✿✩ ✪✈✪✯✮✪❜✮✩

✰✧✩✮❅ ❚✩✈✩✦✥✿✩✮✩ss✺ ✥✿✩ ✫✪♠✩s ✯✫✬✯★✪✥✩ ✪♣♣✦♦●✯♠✪✥✩✮✴ ✇✿✯★✿ ★♦♠♣♦s✯✥✯♦✫✪✮ ✮✪✴✩✦s ♦✰ ✥✿✩ ♣✦✩✽s✧♣✩✦✫♦✈✪ ✇✯✮✮ ✧s✧✪✮✮✴ ❜✩ ✪✰✰✩★✥✩✬❅ ❖✧✥s✯✬✩ ✥✿✩

♦✧✥✩✦ ✬✪s✿✩✬ ✮✯✫✩✺ ✥✿✩ ★♦♠♣♦s✯✥✯♦✫ ✯s ✮✯✥✥✮✩ ✪✮✥✩✦✩✬ ❜✴ ✥✿✩ s✿♦★❊❅ ❯✿✩ ✯✫✫✩✦ ✬✪s✿✩✬ ✮✯✫✩ ✯✫✬✯★✪✥✩s ✥✿✩ ✪♣♣✦♦●✯♠✪✥✩ ❜♦✧✫✬✪✦✴ ♦✰ ✥✿✩ ♣✪✦✥ ♦✰ ✥✿✩

s✥✪✦ ✥✿✪✥ ✯s ✩❫✩★✥✩✬ ❃♠✪ss ★✧✥❄❅

❴❵❞❣❤ ✐❵❥❦❵❴❧q❧❵rt ✉❧❴❦❞❣②❧r③ q④⑤ ❥❵❴q ❣⑥⑦r✉❣rq r⑦✐❞❧✉⑤❴ ❧r

⑤❣✐④ ❞❣②⑤❤ ❣r✉t ❣q q④⑤ ⑥❵qq❵❥t q④⑤ r⑦✐❞⑤❣❤ ⑥⑦❤r❧r③ ❴q❣③⑤ q④❣q

❦❤❵✉⑦✐⑤✉ q④❵❴⑤ ❦❣❤q❧✐⑦❞❣❤ ❣❴④⑤❴⑧ ⑨⑩④⑤ ❴⑦⑥❴✐❤❧❦q❴ ❶ ❣r✉ ❷ ❴q❣r✉

❸❵❤ ✐❵❤⑤ ❣r✉ ❴④⑤❞❞ ⑥⑦❤r❧r③t ❤⑤❴❦⑤✐q❧❹⑤❞②⑧❺ ❻❵❤ ⑤❼❣❥❦❞⑤t q④⑤ ❥❵❴q

❣⑥⑦r✉❣rq r⑦✐❞❧✉⑤ ❧r q④⑤ ✐❵❤⑤ ❧❴
❽❾

❻⑤t ❿④❧✐④ ❧❴ q④⑤ ❦❤❵✉⑦✐q ❵❸

✐❵❤⑤ ❣r✉ ❴④⑤❞❞ ❴❧❞❧✐❵r ⑥⑦❤r❧r③⑧ ➀r q④⑤ r⑤❼q ❞❣②⑤❤t ❵r q❵❦ ❵❸ q④⑤

✐❵❤⑤t q④⑤ ❴❦⑤✐❧⑤❴
➁➂

❷❧ ❧❴ q④⑤ ❥❵❴q ❣⑥⑦r✉❣rq r⑦✐❞❧✉⑤t ❿④❧✐④ ❧❴ q④⑤

❦❤❵✉⑦✐q ❵❸ ❵❼②③⑤r ❴④⑤❞❞ ⑥⑦❤r❧r③⑧ ⑩④⑤ r⑦✐❞⑤❣❤ q❤❣r❴❸❵❤❥❣q❧❵r ❵❸
➁➂

❷❧ q❵
❽❾

❻⑤ ⑨❴❧❞❧✐❵r ❴④⑤❞❞ ⑥⑦❤r❧r③❺ ✐❵rq❧r⑦⑤❴ ❣q q④⑤ ❧rq⑤❤❴⑤✐q❧❵r

❵❸ q④⑤ ❴❧❞❧✐❵r ❞❣②⑤❤ ❣r✉ q④⑤ ❧❤❵r ✐❵❤⑤t q④⑤ q❤❣r❴❸❵❤❥❣q❧❵r ❵❸
➃❾

➄

q❵
➁➂

❷❧ ⑨❵❼②③⑤r ❴④⑤❞❞ ⑥⑦❤r❧r③❺ q❣➅⑤❴ ❦❞❣✐⑤ ❣q q④⑤ ❧rq⑤❤❴⑤✐q❧❵r ❵❸

q④⑤ ❵❼②③⑤r ❣r✉ ❴❧❞❧✐❵r ❞❣②⑤❤❴t ❣r✉ ❴❵ ❵r⑧ ➆❵q⑤ q④⑤ ❞❵✐❣q❧❵r ❵❸

q④⑤ ❿⑤❣➅ ❴➇❦❤❵✐⑤❴❴ ✐❵❥❦❵r⑤rq ⑨❴⑤✐q❧❵r ➈❺t ⑥❵q④ ❧r q④⑤ ✐❣❤⑥❵r➉

❵❼②③⑤r ❞❣②⑤❤ ⑨❤⑤❴⑦❞q❧r③ ❸❤❵❥ ④⑤❞❧⑦❥ ✐❵❤⑤ ⑥⑦❤r❧r③❺ ❣r✉ q④⑤

❵❼②③⑤r➉r⑤❵r ❞❣②⑤❤ ⑨❤⑤❴⑦❞q❧r③ ❸❤❵❥ ✐❣❤⑥❵r ❴④⑤❞❞ ⑥⑦❤r❧r③❺⑧ ⑩④⑤

❞❣qq⑤❤ ❞❣②⑤❤ ④❣❴ ⑥⑤⑤r ❦❤⑤✉❧✐q⑤✉ ➊➋➌➋➍ q❵ ⑥⑤ ❣ ❥❣❧r ❴❵⑦❤✐⑤ ❵❸ q④⑤

❧❥❦❵❤q❣rq ➎ ➇❤❣② ⑤❥❧qq⑤❤
❾➏

❻⑤⑧

➐q q④❧❴ ❦❵❧rqt q④⑤ ⑤❞⑤✐q❤❵r ✉⑤③⑤r⑤❤❣q⑤ ✐❵❤⑤ ④❣❴ r❵ ❸⑦❤q④⑤❤

❴❵⑦❤✐⑤ ❵❸ r⑦✐❞⑤❣❤ ⑤r⑤❤③② ❣q ❧q❴ ✉❧❴❦❵❴❣❞⑧ ➀q ③❤❵❿❴ ❧r ❥❣❴❴ ❣❴

❣ ❤⑤❴⑦❞q ❵❸ r⑦✐❞⑤❣❤ ⑥⑦❤r❧r③ ❧r q④⑤ ❵❹⑤❤❞②❧r③ ❴④⑤❞❞❴⑧ ➑④⑤r q④⑤

✐❵❤⑤ ❥❣❴❴ ❤⑤❣✐④⑤❴ q④⑤ ❶④❣r✉❤❣❴⑤➅④❣❤ ❞❧❥❧q ⑨➒ ➓ ➋➔→➒➣❺t q④⑤

⑤❞⑤✐q❤❵r ✉⑤③⑤r⑤❤❣✐② ❦❤⑤❴❴⑦❤⑤ ❧❴ ⑦r❣⑥❞⑤ q❵ ✐❵⑦rq⑤❤❣✐q ③❤❣❹❧q②

❣r✉t ✐❵r❴⑤↔⑦⑤rq❞②t q④⑤ ✐❵❤⑤ ✐❵❞❞❣❦❴⑤❴ ❸❤⑤⑤❞② ❣q ❣⑥❵⑦q ❣ ↔⑦❣❤q⑤❤

❵❸ q④⑤ ❴❦⑤⑤✉ ❵❸ ❞❧③④q⑧ ➑④⑤r q④⑤ ✉⑤r❴❧q② ❤⑤❣✐④⑤❴ ❹❣❞⑦⑤❴ r⑤❣❤

r⑦✐❞⑤❣❤ ✉⑤r❴❧q② ⑨↕ ➓ ➋➙
➃➛

③ ✐❥
➜➝

❺t r⑦✐❞⑤❧ ❣r✉ ❸❤⑤⑤ r⑦✐❞⑤❵r❴

⑥⑤③❧r q❵ ❸⑤⑤❞ q④⑤ ❴④❵❤q➇❤❣r③⑤ r⑦✐❞⑤❣❤ ❸❵❤✐⑤t ❿④❧✐④ ❧❴ ❤⑤❦⑦❞❴❧❹⑤ ❣q

❹⑤❤② ❴❥❣❞❞ ✉❧❴q❣r✐⑤❴⑧ ⑩④⑤ ✐❵❞❞❣❦❴❧r③ ❧rr⑤❤ ✐❵❤⑤ ❤⑤❣✐④⑤❴ ④❧③④

❧r❿❣❤✉ ❹⑤❞❵✐❧q❧⑤❴t ❵❹⑤❤❴④❵❵q❴ r⑦✐❞⑤❣❤ ✉⑤r❴❧q②t ❣r✉ ❤⑤⑥❵⑦r✉❴

❣❴ ❣ ✐❵r❴⑤↔⑦⑤r✐⑤ ➊➋➌➌➍⑧ ⑩④⑤ ❤⑤⑥❵⑦r✉❧r③ ❦❣❤q ❵❸ q④⑤ ✐❵❤⑤

⑤r✐❵⑦rq⑤❤❴ ❧r❸❣❞❞❧r③ ❥❣qq⑤❤t ③❧❹❧r③ ❤❧❴⑤ q❵ ❣r ❵⑦q❿❣❤✉ ❥❵❹❧r③

❦❤❵❥❦q ❴④❵✐➅ ❿❣❹⑤⑧ ⑩④⑤ ④❵q ❣r✉ ✉⑤r❴⑤ ❧rr⑤❤ ✐❵❤⑤ ④❣❴ ⑥⑤✐❵❥⑤

❣ ❦❤❵q❵➇r⑤⑦q❤❵r ❴q❣❤ ❿❧q④ ❣ ❥❣❴❴ ❵❸ ➒ ➓ ➋➔➈➒➣⑧ ➑④❧❞⑤ q④⑤

❴④❵✐➅ ❥❵❹⑤❴ ❵⑦q❿❣❤✉ q④❤❵⑦③④ q④⑤ ❵⑦q⑤❤ ✐❵❤⑤t ❧q ❞❵❴⑤❴ ⑤r⑤❤③②t

⑥❵q④ ⑥② ❦④❵q❵✉❧❴❧rq⑤③❤❣q❧r③ ❧❤❵r ❦⑤❣➅ r⑦✐❞⑤❧ ❣r✉ ⑥② ⑤❥❧❴❴❧❵r

❵❸ r⑤⑦q❤❧r❵❴⑧ ➐⑥❵⑦q ➋ ❴ ❣❸q⑤❤ ✐❵❤⑤ ✐❵❞❞❣❦❴⑤t ❿④⑤r q④⑤ ❦❤❵❥❦q

❴④❵✐➅ ❤⑤❣✐④⑤❴ q④⑤ ❵⑦q⑤❤ ⑤✉③⑤ ❵❸ q④⑤ ✐❵❤⑤t ❧q ④❣❴ ❞❵❴q ❧q❴ ➅❧r⑤q❧✐

⑤r⑤❤③② ❣r✉ ❴q❣❞❞❴⑧ ➞❵❿ ⑤❼❣✐q❞② q④⑤ ❴④❵✐➅ ❧❴ ❤⑤❹❧❹⑤✉ ❣r✉ ④❵❿ ❧q

❿❧❞❞ ⑦❞q❧❥❣q⑤❞② ❦❤❵❦❣③❣q⑤ q④❤❵⑦③④ q④⑤ ❴q⑤❞❞❣❤ ❞❣②⑤❤❴ ⑥⑤②❵r✉ q④⑤

❧❤❵r ✐❵❤⑤ ❣r✉ ✉❧❴❤⑦❦q q④⑤ ❴q❣❤ ❧r ❣ ✐❵❤⑤➇✐❵❞❞❣❦❴⑤ ❴⑦❦⑤❤r❵❹❣ ❧❴

❵r⑤ ❵❸ q④⑤ ❥❵❴q ⑤❞⑦❴❧❹⑤ ❦❤❵⑥❞⑤❥❴ ❧r r⑦✐❞⑤❣❤ ❣❴q❤❵❦④②❴❧✐❴ ➊➋➌→➍⑧

➑⑤ ❿❧❞❞ ❣✉✉❤⑤❴❴ ❴❵❥⑤ ✐⑦❤❤⑤rq ❧✉⑤❣❴ ❞❣q⑤❤⑧

❷❧r✐⑤ ❣ ❴⑤❞❸➇✐❵r❴❧❴q⑤rq ❥❵✉⑤❞ ❵❸ ✐❵❤⑤➇✐❵❞❞❣❦❴⑤ ❴⑦❦⑤❤r❵❹❣⑤

❧❴ ❴q❧❞❞ ❞❣✐➅❧r③t ✐⑦❤❤⑤rq ❴q⑤❞❞❣❤ ❥❵✉⑤❞❴ ❧r✉⑦✐⑤ q④⑤ ❴④❵✐➅ ❿❣❹⑤

❣❤q❧➟✐❧❣❞❞② ⑥② ✉⑤❦❵❴❧q❧r③ ❣ ❴❧③r❧➟✐❣rq ❣❥❵⑦rq ❵❸ ⑤r⑤❤③②

❴❵❥⑤❿④⑤❤⑤ r⑤❣❤ q④⑤ ❧❤❵r ✐❵❤⑤⑧ ⑩④⑤ ❥❣③r❧q⑦✉⑤ ❵❸ ⑤r⑤❤③②
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Figure 1.3: Illustration of the main element layers of an evolved star (not to scale). Left:
before the supernova explosion. In thin shells at the interface between the
layers, indicated in blue lines, nuclear burning of the elements noted at the
bottom produce the main components of the layers (C and S denote core and
shell burning). The approximate interior mass is indicated through the diagonal
numbers. Right: shock induced nucleo-synthesis processes. From José and
Iliadis [22].

does not exhibit exponential linear growth and does not contain any feedback mechanisms.1

The vortex sheet induces different velocities at different points along the interface. These

velocities deform the interface and create a bubble, defined as the light fluid moving into

the heavier fluid, and a spike – a heavy fluid moving into lighter fluid.

The RM instability has been extensively studied in the past. Initial growth models

were proposed by Richtmyer [30], Meyer [33]. These models use RT instability perturbation

analysis with an impulsive acceleration. They are valid at early time and predict a constant

growth rate. Other perturbation models have since been proposed for the entire growth of

the perturbation. The most successful ones are those by Zhang and Sohn [34] and Sadot

et al. [35]. This latter model is in very good agreement with experiments. Another modeling

approach focuses on modeling the vorticity deposition and deforming the interface based

on vortex sheet evolution equations. Samtaney and Zabusky [36], Jacobs and Sheeley [37]

evaluated the strength of the vortex sheet and used it to predict the perturbation growth.

Experimental and numerical studies of the RM instability have been performed extensively

to explore many different configurations, effects, and regimes, [32].

1To stay consistent with the literature, we will keep calling it an instability. We should really be referring

to the RM process.
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Figure 1.4: Illustration of a RM unstable flow for the vorticity generated at a light/heavy
interface. a) Initial condition. b) Circulation at the interface and vortex sheet
strength. c) Perturbation growth. From Brouillette [32]. Reproduced with
permission.

1.3.2 The Rayleigh-Taylor instability

The RT instability occurs when a heavy fluid is accelerated into a lighter one. A classic

example of this instability is when a heavy fluid is above a light fluid in a gravitational

field. The gravitational acceleration amplifies the perturbations at the interface between

the fluids, making spikes of heavy fluid fall and bubbles of light fluid rise, Figure 1.5. The

perturbation growth in the RT instability is driven by buoyancy.

Taylor [38] predicted the exponential growth of the perturbations in the early phase

of the instability, when the perturbation can still be described using normal mode analy-

sis. The next phase of the perturbation growth is typically described using buoyancy-drag

models [39]. These models look at the momentum balance of a bubble of light fluid rising

in a heavier one and consider buoyancy and drag forces on the bubble (or spike). For a

single-mode perturbation, the velocity of the bubble and spike can be described using the

Layzer model with [39]

(ρ1 + Caρ2)
du

dt
= (ρ2 − ρ1) g −

Cd

λ
ρ2u

2 (1.2)
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where u is the velocity, g is the acceleration, ρ1 and ρ2 are the fluid densities, λ is the

perturbation wavelength, Ca is the added mass coefficient (2D: Ca = 2; 3D: Ca = 1), and

Cd is the drag coefficient (2D: Cd = 6π; 3D: Cd = 2π). There is a clear competition

between the buoyancy force, the first term on the right side of Eq. (1.2), and the drag force,

the second term on the right side of Eq. (1.2). The terminal velocities of the bubble and

spike are, therefore,

ub/s =

√
2A

1±A

λb/s

Cd
g (1.3)

where A = ρ1−ρ2
ρ1+ρ2

is the Atwood number and λb/s is the bubble/spike wavelength. As

the height of the bubbles increase, the perturbation growth phase reaches the self-similar

regime, where the underlying assumption is that hb ∼ λb (hb is the bubble height). In

this phase, the growth is best described as bubbles rising and spikes falling quadratically in

time, according to

hb/s = αb/sAgt
2 (1.4)

where h is the height of the bubble/spike and t is the time. Eq. (1.4) can be shown by setting

λb/s ∼ hb/s in Eq. (1.3) and integrating the velocity to get the height. In recent years, a lot

of work in this field has been focused on measuring the model constants αb/s [40, 41, 42,

43, 44, 45, 46]. In general, as the instability develops, the growth region transitions to a

turbulent mixing region. This transition to turbulence is an active research area today [47].

1.3.3 The Kelvin-Helmholtz instability

Though relevant to many of the flows of interest, the KH instability is not discussed

here in depth. The KH instability occurs at the interface between fluids where there is a

velocity gradient across the interface. This typically happens in shear flows where fluids

are moving parallel to each other at different speeds, Figure 1.6. For example, the interface

of a fluid injected into a quiescent fluid is KH unstable. The KH instability can also be

seen in the shear flows in the massive storm near Jupiter’s Great Red Spot, Figure 1.7. The

late-time roll-ups near the bubble and spike observed in the RM and RT instabilities are
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Figure 1.5: Slightly denser dyed water spikes fall in water due to the RT instability. Ex-
perimental pictures by James Riordon, AIP.

also due to the KH instability.

1.4 Dimensional analysis

This section addresses the assumptions and validity of modeling the fluids in the systems

of interest with the Euler equations, written here in conservative form (i, j = 1, 2, 3):

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1.5a)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) = 0, (1.5b)

∂E

∂t
+

∂

∂xj
[uj(E + p)] = 0, (1.5c)

where ρ is the density, ui the velocity, E = ρe + 1
2ρuiui the total energy, e the internal

energy, p the pressure and δij the Kronecker delta. This system of hyperbolic partial

differential equations models conservation of mass, momentum, and energy for an inviscid

compressible fluid where heat transport can be neglected. In this work, to relate internal

energy and pressure, the system is closed with an ideal equation of state or the stiffened

equation of state, both belonging to the Mie-Grüneisen family of equations of state (see

12



Figure 1.6: Illustration of a KH unstable flow. The fluid on the top is moving at a different
velocity than the fluid on the bottom. In this shear flow configuration, the per-
turbations at the interface are KH unstable and will grow accordingly, thereby
mixing the two fluids.

Figure 1.7: Shear flow in the storm near Jupiter’s Great Red Spot have created a large scale
example of the KH instability. Image of Jupiter from Voyager 2 flyby. Photo
credit: National Aeronautics and Space Administration.

Section 2.3 for more details). Additional advection equations for the material parameters

are used to capture flows of fluids with different material properties.

The invariance property and similarity conditions for the Euler equations are central

to the notion of performing laboratory experiments and numerical simulations of physical

phenomena that occur in, for example, supernova explosions and turbomachinery. While

summarizing some of the key points here (and trying to retain the same notation), the reader

is referred to the article by Ryutov et al. [48] for a detailed discussion of the invariance

property and similarity condition of the Euler equations. The following transformation
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(denoted with a subscript 1) is an invariance of the Euler equations:

x = ax1, ρ = bρ1, p = cp1, (1.6a)

t = a

√
b

c
t1, u =

√
c

b
u1, (1.6b)

where a, b, and c are arbitrary positive constants. Additionally, using this invariance

transformation, it can be shown that two systems (x, ρ, p, t) and (x1, ρ1, p1, t1) are similar

and will describe the same physics if they satisfy the similarity condition:

ũ

√
ρ̃

p̃
= ũ1

√
ρ̃1
p̃1

(1.7)

given the scaling factors ũ, p̃, ρ̃, and h for the initial condition of the system (x, ρ, p, t):

u0 = ũF (x/h) , p0 = p̃G (x/h) , and ρ0 = ρ̃H (x/h) (1.8)

where F, G, and H are dimensionless functions, and given the scaling factors ũ1, p̃1, ρ̃1,

and h1 for the other system. The time scales of both systems are related through

t1 = t
h1
h

√
p̃/ρ̃

p1/ρ1
. (1.9)

These relationships provide a mapping from one system to another, without any assumptions

on compressibility or the subsequent physical evolution of the systems (shocks, non-linear

growth regimes, etc). As long as these relationships hold and the Euler equations are a

valid model, the same physics will be probed. The validity of the model assumptions for

several applications discussed in Section 1.2 is now examined.

1.4.1 The Euler equations for supernova explosions

The following discussion is borrowed from Ryutov et al. [48] and the reader is referred

to that article for a complete analysis of the problem. This discussion is limited to the early

stages of the supernova explosion, when the blast wave, after originating from the center

of the star, interacts with the different material layers, thereby instigating hydrodynamic
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instabilities. In this case, it can safely be assumed that the accelerations due to the super-

nova explosion are much larger than gravitational forces, which can therefore be neglected.

Additionally, the features of interest (e.g. the perturbation growth) are much smaller than

the radius of the star. Therefore, sphericity is neglected and a planar geometry is assumed.

For the Euler equations to model appropriately the astrophysical phenomena of interest,

the following must hold:

- Collisionality: To be able to use a fluid description of the system, the particles must

be localized. In a star, magnetic fields and collisions are responsible for localizing the

particles on scales much smaller than the characteristic length scale of the system, h.

Therefore, the ion Larmor radius and the collisional mean free path must be much

smaller than h. This is indeed the case during the supernova explosion [48].

- Negligible heat conduction: To use the Euler equations, diffusive heat transport must

be negligible. This assumption can be characterized through the Peclet number, the

ratio of heat convection to heat conduction. The main source of heat conduction in

an exploding star is the thermal diffusivity of electrons (1.2 × 106cm2/s). However,

the resulting Peclet number is quite large (≈ 1.5× 1012) and heat conduction can be

safely neglected [48].

- Negligible viscous effects: Viscous forces, which can be compared to the inertial forces

through the Reynolds number, must be negligible for the Euler equations to be valid.

The dominant viscosities, namely the photon viscosity and ion particle viscosity, are

small (7.0×107cm2/s)compared to the typical length scale (h ≈ 9×1010cm) and velocity

scale (ṽ ≈ 200km/s), resulting in a Reynolds number ≈ 2.6× 1010.

- Small radiation energy fluxes: The energy transported through radiation effects must

be small compared to the hydrodynamic energy fluxes. When the photon mean free

path (bremsstrahlung: 37000cm ; Compton: 680cm)is smaller than h, as is the case

in the exploding star, the photon thermal diffusivity (6.8 × 1012cm2/s) can be used to

define a Peclet number, which is close to 2.6× 105. The hydrodynamic description of

the system is therefore valid.
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1.4.2 The Euler equations for multiphase flows

The multiphase phenomena discussed in this thesis, such as the supersonic water droplet

in a turbomachine or the shock induced collapse of an air bubble in naval environments, are

characterized by highly compressible phenomena and high velocities. For these liquid-gas

interfacial flows, the Euler equations are a valid approximation when the following forces

are negligible:

- Viscous forces: As previously stated, the Reynolds number, the ratio of inertial forces

to viscous forces, must be large. For the supersonic water droplet interacting with a

Mach 1.18 shock (drop diameter, d = 4.8mm, shocked gas density, ρg = 1.53kg/m3, and

shocked gas velocity, ug = 96m/s, and the dynamic viscosity of air, µ = 1.8×10−5Pa s)

the Reynolds number is close to 105.

- Surface tension forces: The Weber number, the ratio of inertial forces to surface

tension forces, must also be large. For the supersonic water droplet (surface tension,

σ = 0.07286N/m), the Weber number is close to 104 [49].

- Gravitational forces: The Froude number, the ratio of inertial forces to external field

forces, usually gravity, is large for our applications since the length scales of the

bubbles and droplets are very small and flow velocities large.

Additionally, compressibility effects, characterized by the Mach number, the ratio of flow

velocity to the sound speed, are usually important for our flows of interest (M > 0.2).

The flows discussed in this work are therefore appropriately modeled as inviscid com-

pressible flows and the Euler equations will accurately describe the hydrodynamics. Through-

out this thesis, the equations are solved in an Eulerian framework. Simulations of the Euler

equations can not be said to converge in a point-wise fashion because they lack a physical

diffusion mechanism to diffuse small scale features [50]. As the resolution increases in these

simulations, additional small scale features will be resolved. However, the simulation results

presented in this work, e.g. the perturbation amplitude, are converged in an integral sense.

It should be noted that viscous and surface tension effects will become important during the

late-time dynamics of some of the problems of interest, particularly when the lengths scales
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of interest become small, as in the breakup of the supersonic droplet into many smaller

ones. Analyzing these particular flow features are beyond the scope of this work.

1.5 High-order numerical methods for multiphase flows

Experiments of compressible multiphase flows are costly to design, manufacture, and

implement. Additionally, because of the complex nature of the problems, the short time

scales, and the multiphysics aspects of the flows, diagnostic tools can only offer limited

information about the flow dynamics. The sensitivity of these flows to the initial conditions

and material properties make it difficult to attain good experimental repeatability.

Numerical simulations can circumvent these challenges and are a cost effective way of

understanding the flow dynamics by exploring the relevant parameter space, isolating the

physical effects of interest, and providing a complete description of the system’s evolution.

High-order numerical methods for discretizing systems of partial differential equations that

model the system, Section 1.4, are increasingly important in computational fluid dynamics.

These methods are usually defined as having an order of accuracy greater or equal to

two, which implies that the error from numerical discretization, E, decreases as E ∼ O(hn),

where h is the grid spacing and n ≥ 2. By increasing the rate of convergence, high-order

methods make it possible to achieve errors within engineering tolerances in a reasonable

amount of computational time. Borrowing from Fidkowski [51, 52], an estimate of the time

to a solution with the desired error is

log(T ) = d

(
− 1

P + 1
log(E) + a log(P + 1)

)
− log(F ) + constant (1.10)

where T is the simulation time, P is the solution interpolation order, d is the problem’s

spatial dimension, a is the complexity of the solution algorithm (e.g. a = 2 for matrix-vector

operations), and F is the time to complete a single operation. This equation is valid for

smooth flows, i.e. the solution is not discontinuous. The term in log(E) dominates when

the algorithm complexity is not too large and the desired error is very small (E << 1). In

this case, any increase in the interpolation order will lead to large gains in solution time

because this time depends exponentially on the inverse of the order of accuracy. Another
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Figure 1.8: Error as a function of computational time for simulations of the advection of a
sinusoidal density variation. Red squares: P = 1; green diamonds: P = 2; blue
circles: P = 3.

way of interpreting this result is that more complex problems (larger a) can be solved in

the same amount of time with a high-order method. Figure 1.8 illustrates this concept by

showing the error as a function of computational time. For a fixed computational time,

increasing the order of accuracy decreases the error. Similarly, a higher order numerical

method reaches a desired error level with less computational time.

Despite the advantages of high-order methods, the current methods most commonly

used in laboratory and industrial codes are based on Finite Volume (FV) methods and

are, at most, second order. Higher order implementations of these methods lead to an

increased numerical stencil, in effect increasing the interpolation by using data from beyond

the nearest neighbors. This introduces several complications. In parallel computation,

the increased stencil leads to more data movement and increased communication time.

Boundary conditions can be difficult to implement and require the addition of ghost cells. An

increased stencil also decreases the wave resolution of the scheme. For implicit time solvers,

these high-order FV methods with larger stencils require more memory and adversely impact

the stability of iterative algorithms [51, 53].

The Discontinuous Galerkin (DG) method, detailed in Chapter IV, combines the finite

element method and the FV method to preserve a compact stencil. Degrees of freedom are

added to each cell to represent the solution as a high-order polynomial. The solution is
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allowed to be discontinuous across the cells.2 Borrowing from FV method, fluxes between

immediately neighboring cells are used to exchange information between the cells. While

the DG method is a high-order numerical method which presents many advantages, it has

yet to be consistently adapted to flows containing multiple fluids in different phases. This

and other issues related to advection-diffusion problems are addressed in Chapters IV and

VI.

1.6 Thesis overview

As explained in this introduction, understanding mixing in compressible multiphase

flows is important to many scientific and engineering problems. However, compressible

multiphase flows are challenging to simulate as they require a robust and accurate treatment

of flow discontinuities, which separate regions of different density, pressure, and velocity,

high numerical resolution to resolve the disparate length and time scales, and methods

adapted to unsteady flows. Numerical simulations of these flows are currently limited by (i)

the numerical methods used to solve the partial differential equations describing the system,

and (ii) the computational expense. These two points are addressed in the first part of this

thesis. In the second part, the computational framework is used to analyze several flow

configurations of interest. This thesis has two main objectives:

1. to develop an accurate and consistent numerical framework to simulate compressible

multiphase flows: The guiding hypothesis is that the high-order DG method, a pow-

erful numerical method for discretizing flow evolution equations, must be adapted

and combined with a suitable high performance computing paradigm to provide accu-

rate physical insights into multiphase flow dynamics. Applying traditional numerical

methods to the evolution equations describing compressible multiphase flows with in-

terfaces can lead to spurious numerical errors that change the dynamics of the flow,

Chapter II. These errors can result in an incomplete or erroneous understanding of

the flow. The high computational resolution required to simulate the system accu-

rately and the wide parameter space motivates the use of graphics processing units, a

2Though this does not necessarily make discontinuities in the flow easier to model.

19



novel parallel paradigm for high performance computing, Chapter II. Finally, improve-

ments to the DG method for the discretization of the advection term are provided in

Chapter III.

2. to explore the fundamental dynamics of compressible multiphase flows through the

study of multilayered RM instabilities, Chapter IV, blast wave-driven instabilities,

ChapterV, and experiments of high-explosive-driven RT instabilities to understand

beryllium strength, ChapterVI: The guiding hypothesis is that the mixing dynamics

in these flows can be controlled by appropriately changing the waves driving the

instabilities and the material properties and configurations. Time-varying acceleration

fields at interfaces and vorticity deposition dynamics can be used equivalently to

describe perturbation growth evolution.

This work’s main contributions to the field of numerical simulations of mixing in com-

pressible multiphase flows are

- A new numerical method to simulate multiphase flows with different types of equations

of state while avoiding spurious numerical errors that could contaminate the flow

physics;

- A demonstration of a new framework for high performance computing that combines

graphics processing units with distributed memory parallelism;

- A novel way of increasing the order of accuracy of the DG method for the discretization

of the advection term in evolution equations;

- A study of the multilayered RM instability, of particular applicability to ICF, illus-

trating control of the instability growth by tuning the material layers;

- A novel description of different growth phases and the vorticity dynamics of the blast-

driven hydrodynamic instability, specifically circulation production is shown to be a

function of the important blast parameters, and the perturbation growth is shown to

scale with circulation;
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- A numerical analysis of experimental RT instabilities in beryllium to validate material

strength models.
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Part I

Numerical methods for multiphase

flows and validation

CHAPTER II

A new limiting procedure for Discontinuous Galerkin

methods applied to compressible multiphase flows with

shocks and interfaces

Sections 2.1 through 2.6 of this chapter are adapted from Henry de Frahan, M. T.,

Varadan, S. & Johnsen, E. 2015 A new limiting procedure for Discontinuous Galerkin

methods applied to compressible multiphase flows with shocks and interfaces. J. Comput.

Phys., 280 (0), 489–509. Section 2.7 is a validation study published in Henry de Fra-

han, M. T., Khieu, L. & Johnsen, E. 2015 High-order Discontinuous Galerkin Methods

Applied to Multiphase Flows. 22d AIAA Computational Fluid Dynamics Conference, doi:

10.2514/6.2015-3045.
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2.1 Abstract

Although the Discontinuous Galerkin (DG) method has seen widespread use for com-

pressible flow problems in a single fluid with constant material properties, it has yet to be

implemented in a consistent fashion for compressible multiphase flows with shocks and inter-

faces. Specifically, it is challenging to design a scheme that meets the following requirements:

conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discon-

tinuities (in particular, material interfaces). Following the interface-capturing approach of

Abgrall [54], we model flows of multiple fluid components or phases using a single equation

of state with variable material properties; discontinuities in these properties correspond to

interfaces. To represent compressible phenomena in solids, liquids, and gases, we present

our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG

framework, we propose a conservative, high-order accurate, and non-oscillatory limiting

procedure, verified with simple multifluid and multiphase problems. We show analytically

that two key elements are required to prevent spurious pressure oscillations at interfaces

and maintain conservation: (i) the transport equation(s) describing the material properties

must be solved in a non-conservative weak form, and (ii) the suitable variables must be

limited (density, momentum, pressure, and appropriate properties entering the equation

of state), coupled with a consistent reconstruction of the energy. Further, we introduce

a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We

verify this approach with one- and two-dimensional problems with shocks and interfaces,

including high pressure and density ratios, for fluids obeying different equations of state to

illustrate the robustness and versatility of the method. The algorithm is implemented on

parallel Graphics Processing Units (GPU) to achieve high speedup.

2.2 Introduction

The DG method is a numerical approach for partial differential equations that combines

advantages of the finite element and Finite Volume (FV) formulations. The solution is

discretized locally in each computational cell through an expansion in terms of polynomial

basis functions. As such, the DG method is high-order accurate, has a compact stencil
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that makes it highly scalable on parallel architectures, and is readily implementable on

unstructured grids. The DG approach exhibits superconvergent properties [55, 56], at a rate

of 2P+1 based on cell averages, where P+1 is the number of basis functions in each cell. In

a series of articles, Cockburn and Shu popularized the Runge-Kutta Discontinuous Galerkin

(RKDG) for time-dependent convection-dominated problems [57, 58, 59, 60, 61]. As with FV

methods, Riemann solvers are used to calculate the numerical fluxes between neighboring

cells. These solvers provide means to introduce dissipation, so that discontinuities can be

treated in a stable fashion. Limiters are further required to damp the oscillations caused

by high-order interpolation across a discontinuity. For example, Cockburn and Shu [58]

proposed a total variation bounded projection limiter that truncates higher-order Legendre

polynomials at detected discontinuities. To prevent excessive dissipation, Biswas et al. [62]

developed a hierarchical procedure that limits the Legendre coefficients from the highest to

lowest moments. Recently, different high-order limiters have been proposed by Krivodonova

[63] and Kuzmin [64]. In particular, Hierarchical Reconstruction (HR) [65, 66] is high-order

accurate and conservative; additionally, this compact limiting procedure does not require a

characteristic decomposition and is adaptable to unstructured grids.

While the DG method has been used extensively for single-fluid problems [61], the

treatment of compressible multicomponent and multiphase flows with interfaces has received

little attention. Our present interest lies in interface capturing for the Euler equations,

in which interfaces are regularized over a few grid points in analogy to shock capturing.

We seek to use methods that conserve the relevant physical quantities (mass, momentum,

energy) and are high-order accurate in smooth regions, non-oscillatory at discontinuities,

and physically consistent. In the FV formulation, Abgrall [54] showed that spurious pressure

oscillations are generated at interfaces between gases of different ratios of specific heats γ

if the transport equation describing the fluid composition is solved in conservative form.

Such errors may lead to negative pressures or trigger unphysical interfacial instabilities. In

FV methods, these oscillations can be prevented by solving a non-conservative evolution

equation for a specific function of γ [54]. Multicomponent flows are thus modeled as a

medium described by a single equation of state with variable material properties that must

be transported in an appropriate form; discontinuities in these properties correspond to
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interfaces. Saurel and Abgrall [67] and Abgrall and Karni [68] detailed various approaches to

solve this problem in the FV context, which can be extended to high-order accuracy [69, 70]

and finite differences [71, 72]. Such methods also conserve the total mass, momentum, and

energy in the system.

For compressible multiphase problems, the approach of Abgrall [54] can be generalized

to more complicated equations of state in the FV context. Transport equations for appro-

priate material-dependent parameters have been detailed for various equations of state, e.g,

stiffened equation [73], Van der Waals [74], Mie-Grüneisen [75]. Such approaches have been

used to simulate problems involving shock waves interacting with interfaces separating dif-

ferent fluids [76, 77]. Variations of the physical model, e.g, five- to seven-equations models,

have also been explored [78, 79, 80, 81]. These approaches have yet to be extended to the

DG framework. Furthermore, based on experience with high-order accurate FV methods

[69], we anticipate that limiting may have to be modified to prevent pressure errors.

At this time, a high-order accurate, conservative, non-oscillatory, and consistent treat-

ment of the Euler equations for capturing interfaces between fluids of different composition

and/or phase in the DG framework is lacking. Tokareva and Toro [82] and Franquet and

Perrier [83] used the DG approach for the Baer-Nunziato system of equations for multi-

phase flows while Michoski et al. [84] solved the compressible Navier-Stokes equations. In

these papers, limiting is based on first-order accurate slope limiters proposed by Cockburn

and Shu [85]. Franquet and Perrier [86] introduced a maximum-preserving limiter for the

color function used to distinguish the different fluids; their limiting procedure truncates

the higher-order terms (second order and above) and they do not discuss potential spu-

rious pressure oscillations and conservation issues introduced by the limiting procedure.

Wang and Shu [87] used an interface tracking method with a level-set advection equation

solved with the DG method for Hamilton-Jacobi equations. Gryngarten and Menon [88]

extend the Local DG method to the five-equations model [89], in which auxiliary variables

are introduced for consistency when solving the Hamilton-Jacobi equations, and a moment

limiter [63] is applied to the conserved and primitive variables. Although the amplitude

of the pressure oscillations appears to be reduced in this latter article, the authors do not

discuss possible conservation issues related to limiting the primitive variables. Several of
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the above references used solution-adaptive strategies to apply limiting only where needed,

i.e., near discontinuities. As stated earlier, these recent DG multiphase flows lack either one

or more of the three following properties: conservation of mass, momentum, and energy,

non-oscillatory pressure fields at material interfaces, and high-order accuracy. The goal of

this work is to fill this gap.

We propose a new approach to limiting in compressible multiphase flows that is conser-

vative, high-order accurate, and that prevents oscillations at interfaces (and shocks). Using

a capturing approach for DG, we show that two key elements are necessary to satisfy the

three properties listed above: (i) solving transport equations in a non-conservative weak

form, and (ii) limiting the suitable variables (density, momentum, pressure and appropri-

ate properties from the equation of state) coupled with a consistent reconstruction of the

energy. This procedure is general, and we show how it can be applied to other multiphase

models such as the five-equations model and Mie-Grüneisen family of equation of state.

This chapter is organized as follows. In Section 2.3, we present the physical model, followed

by the DG framework and limiting in Section 2.4. In Section 2.5, we discuss how spurious

pressure oscillations occur in multiphase flows in the DG framework; based on this knowl-

edge, we propose a strategy to avoid these errors through a new limiting procedure in the

central part of this study (Section 2.5.2.2). Finally, we provide numerical verification with

various one- and two-dimensional problems in Section 2.6.

2.3 Physical model

Neglecting physical diffusion, we consider the Euler equations for compressible flow,

written in three dimensions (i, j = 1, 2, 3):

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.1a)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) = 0, (2.1b)

∂E

∂t
+

∂

∂xj
[uj(E + p)] = 0, (2.1c)
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where summation is implied on repeated indices, ρ is the density, ui the velocity, E =

ρe + 1
2ρuiui the total energy, e the internal energy, p the pressure and δij the Kronecker

delta.

The system is closed by an equation of state relating the internal energy to the pressure.

We focus on analytical expressions for general compressible phenomena in fluids and solids.

For this purpose, we consider the Mie-Grüneisen equation of state [90],

p =
(
E − ρuiui

2
+
pref
Γ

− ρeref

)/( 1

Γ

)
, (2.2)

where Γ = 1
ρ

∂p
∂e

∣∣∣
ρ
is the Grüneisen coefficient, eref the reference internal energy, and pref

the reference pressure. A wide range of equations of state belong to the Mie-Grüneisen

family, e.g, the Jones-Wilkins-Lee equation for gaseous explosives [91], or the Cochran-

Chan equation for solid explosives [92]. For the problems of interest, we assume that the

material properties (Γref, pref, eref) do not vary with density. Setting eref = 0 reduces this

equation to the stiffened equation of state for liquids and solids, and setting pref = 0 and

Γ = γ − 1 further reduces it to the ideal gas law, where γ is the specific heats ratio.

To represent multiple components or phases, we follow an approach in which a single

equation of state describes all media, but with variable material properties; discontinuities

in these properties correspond to interfaces. These properties thus depend on the mass

fraction Y (i). Since the mass fraction obeys a mass conservation equation, any function

f(Y (i)) does as well, e.g,

∂

∂t

(
ρf(Y (i))

)
+

∂

∂xj

(
ρujf(Y

(i))
)
= 0, i = 1, . . . ,m− 1, (2.3)

wherem is the number of different fluids. In this work, we focus on binary systems (m = 2).

Using conservation of mass, Eq. (2.3) can be written in advection (non-conservative) form,

∂

∂t

(
f(Y (i))

)
+ uj

∂

∂xj

(
f(Y (i))

)
= 0, i = 1, . . . ,m− 1. (2.4)

Although physical diffusion is ignored, mixture regions may occur due to numerical

diffusion, thus requiring mixture rules. For instance, the physical relationship between γ
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and Y (i) for a binary gas mixture is

1

γ − 1

1

M
=

Y (1)

γ1 − 1

1

M1
+

1− Y (1)

γ2 − 1

1

M2
,

1

M
=
Y (1)

M1
+

1− Y (1)

M2
, (2.5)

where γi is the ratio of specific heats and M is the mixture molecular mass and the indices

denote fluids one and two. Similar relationships can be obtained for the other material

properties in the Mie-Grüneisen equation of state [77].

2.4 Numerical framework

2.4.1 Discontinuous Galerkin discretization

For simplicity, consider the one-dimensional hyperbolic equation

∂W

∂t
+
∂F

∂x
= 0, (2.6)

for the conserved variable W (x, t), where F (W ) is the flux, discretized in computational

cell Ωk = {x|x ∈ [xk−1/2, xk+1/2]} with uniform grid spacing ∆x. In the DG approach, the

solution is expanded in terms of P + 1 basis functions ϕn(x) (e.g, Legendre or Lagrange

polynomials) in each cell, W (x, t) ≃Wh(x, t) =
∑P

n=0wn(t)ϕn(x), whereWh is a projection

of W onto a finite-dimensional space. Taking the inner product of the conservation law

with a basis function over cell Ωk, the weak form of Eq. (2.6) is obtained

∫

Ωk

ϕi
∂W

∂t
dx =

∫

Ωk

dϕi

dx
F dx−

[
ϕiF̂

]xk+1/2

xk−1/2

. (2.7)

Substituting W (x) by its polynomial representation, and using the orthogonality of the

polynomials and the fact that φi(x = 1) = 1 and φi(x = −1) = (−1)i, the evolution

equation for the coefficients wn(t) is

∆x

2n+ 1

dwn

dt
=

∫

Ωk

dϕn

dx
F dx−

[
F̂
∣∣∣
xk+1/2

− (−1)n F̂
∣∣∣
xk−1/2

]
, (2.8)

where F̂ is an appropriate numerical flux.

The DG discretization is not straightforward for non-conservative equations, such as
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advection equations. A theoretical framework for determining weak solutions to non-

conservative products was proposed by LeFloch [93] and Dal Maso et al. [94]. Parés [95],

Castro et al. [96], and Canestrelli et al. [97] developed and implemented these ideas in a FV

framework, which was extended to DG by Rhebergen et al. [98] (followed here) and Sollie

et al. [99]. The non-conservative equation

∂V

∂t
+
∂G

∂x
+H

∂V

∂x
= 0, G = G(V ), H = H(V ), (2.9)

for V (x, t) can be written in weak form

∫

Ω
ϕi
∂V

∂t
dx =

∫

Ω

dϕi

dx
Gdx−

∫

Ω
ϕiH

∂V

∂x
dx −

[
ϕiĜ− {{ϕi}}H

∂V

∂x

]xk+1/2

xk−1/2

, (2.10)

where {{α}} = 1
2(αL+αR) and L and R denote the left and right states at the cell edges. The

last term in Eq. (2.10) contains the interface flux due to the non-conservative product. This

formulation attempts to reconcile the DG approach with the absence of a weak solution for

non-conservative products at the interface. Conservative fluxes are implemented with the

usual Riemann solvers. We use the Dal Maso-LeFloch-Murat theory [94] to evaluate

[
H
∂V

∂x

]

xk+1/2

=

∫ 1

0
H(ψ(τ ;V L, V R))

∂ψ

∂τ
(τ ;V L, V R) dτ, (2.11)

where ψ is a path connecting the left and right states. In this work, a simple linear path

connecting the left and right states is used. Several approximate Riemann solvers have

been developed for non-conservative products to solve for the non-conservative flux at the

interface in Eq. (2.10). Rhebergen et al. [98] proposed an HLL-like approach [100], which

can be extended to Lax-Friedrichs [101], Rusanov [102], and HLLC [103] solvers. Dumbser

and Toro [104] extended the Osher solver to non-conservative hyperbolic systems. Finally,

Toumi [105] proposed a weak definition of the approximate Riemann solver of Roe [106].

2.4.2 Limiting procedure: hierarchical reconstruction

We use HR, developed by Liu et al. [65] and Xu et al. [66] to limit the solution at

discontinuities, which preserves high-order accuracy in smooth regions. The idea underlying
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HR is to recompute the coefficients of the polynomials inside a cell, from the highest degree

coefficient to the lowest, e.g, using a MUSCL [107] or WENO [108] approach. The advantage

of this hierarchical procedure is that the order of accuracy remains high (although not

superconvergent, as demonstrated later). Let the polynomial in cell k be

Uk(x) =
P∑

n=0

c
(n)
k

xn

n!
. (2.12)

The limited coefficient c
(n)
k is computed by applying a limiter function to candidates of c

(n)
k .

To find these candidates, we calculate the n − 1 derivative of Uk(x) in terms of a linear

polynomial Lk and a higher-order polynomial Rk: ∂
n−1Uk = Lk(x) +Rk(x). Since the cell

averages of Lk in the element and the adjacent ones are known, we can form the candidate

coefficients for Lk and, therefore, candidates for c
(n)
k . In HR, the cell averages in an element

k and its neighbors are approximated in the following way:

Lk−1 = ∂n−1Uk−1 − R̃k, Lk = ∂n−1Uk − R̃k, Lk+1 = ∂n−1Uk+1 − R̃k, (2.13)

where R̃k(x) is the cell average of the remainder polynomial with the limited coefficients

and extends into the adjacent elements. The cell averages are then combined, here using

a standard MUSCL procedure [107], to reconstruct the limited first-order coefficient of Lk

and, equivalently, c
(n)
k . This procedure preserves the cell average of the limited variable.

While, in theory, limiting applied to the characteristic variables prevents small oscillations

in shock-tube problems [57], this approach is computationally expensive and leads to other

problems related to multi-dimensional inconsistencies and unstructured grids [65, 88].

2.5 Preventing spurious pressure oscillations at interfaces

The DG procedure works well for single-fluid compressible problems (e.g, constant ma-

terial properties in the equation of state). However, a naive implementation to flows of

non-constant material properties generally produces numerical errors. Starting with ideal

gases, we show that spurious pressure oscillations may be produced by two mechanisms: (i)

an unsuitable form of the transport equation, and (ii) a limiting procedure that does not
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preserve pressure equilibrium. We then propose an approach that prevents these errors, and

extend it to multiphase flows obeying a Mie-Grüneisen equation of state. By considering

the advection of an isolated interface between two ideal gases with different values of γ

moving at a constant velocity u > 0, we verify our analysis.

2.5.1 The cause for the oscillations

2.5.1.1 Oscillations due to the form of the transport equation

We first show that an unsuitable weak form of the transport equation causes spurious

pressure oscillations. Let the initial data in two neighboring cells k−1 and k be (ρ, ρu,E)k−1

and (ρ, ρu,E)k , respectively, with the interface located between the two cells. For the

advection of a material interface, ρk−1 6= ρk and γk−1 6= γk, but uk−1 = uk and pk−1 = pk.

The density, momentum, and energy are ρk =
∑P

n=0 ρ
k
nϕn, (ρu)

k =
∑P

n=0(ρu)
k
nϕn, E

k =

∑P
n=0E

k
nϕn. Thus, the semi-discrete continuity equation for cell k becomes:

∆x

2n+ 1

dρkn
dt

+ ρu|xI+1/2
− (−1)n ρu|xI−1/2

−
∫

Ωk

ρu
dϕn

dx
dx = 0. (2.14)

We use an upwind flux to approximate the mass flux value at xI−1/2 (and xI+1/2),

ρu|xI−1/2
= (ρu)k−1

∣∣∣
xI−1/2

=

P∑

m=0

(ρu)k−1
m ϕm

∣∣∣
xI−1/2

=

P∑

m=0

(−1)m(ρu)k−1
m . (2.15)

Since the velocity is positive and constant across the interface between the left and right

cells,

∆x

2n + 1

dρkn
dt

+ u

P∑

m=0

[
ρkm − (−1)n+mρk−1

m

]
− u

P∑

m=0

ρkm

∫

Ωk

ϕm
dϕn

dx
dx = 0. (2.16)

Similarly, for conservation of momentum:

∆x

2n + 1

d(ρu)kn
dt

+ u2
P∑

m=0

[
ρkm − (−1)n+mρk−1

m

]

− u2
P∑

m=0

ρkm

∫

Ωk

ϕm
dϕn

dx
dx+ p [1− (−1)n]− p

∫

Ωk

dϕn

dx
dx = 0,

(2.17)
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where the last two terms cancel out. Therefore, the evolution of the nth transport coefficient

is

∆x

2n+ 1

d(ρu)kn
dt

+ u2
P∑

m=0

[
ρkm − (−1)n+mρk−1

m

]
− u2

P∑

m=0

ρkm

∫

Ωk

ϕm
dϕn

dx
dx = 0, (2.18)

such that

d

dt
(ρu)kn = u

dρkn
dt

. (2.19)

Thus, the kinematic interfacial condition (constant velocity) is preserved.

For conservation of energy,

∆x

2n+ 1

dEk
n

dt
+ u(E + p)|xI+1/2

− (−1)n u(E + p)|xI−1/2
−
∫

Ωk

u(E + p)
dϕn

dx
dx = 0. (2.20)

Noting that the velocity and pressure are uniform initially, we write Ek = p
(

1
γ−1

)k
+ 1

2ρ
ku2.

Collecting the kinetic energy terms, which cancel out similar to the momentum equation,

and using Eq. (2.16),

∆x

2n+ 1

d

dt

{
p

(
1

γ − 1

)k

n

}
+ up

{
1

γ − 1

∣∣∣∣
xI+1/2

− (−1)n
1

γ − 1

∣∣∣∣
xI−1/2

}

− up
P∑

m=0

∫

Ωk

(
1

γ − 1

)k dϕn

dx
dx = 0.

(2.21)

Noting that, in general, we can express the ratio of specific heats as a function of the mass

fraction, f(Y ) = 1
γ−1 , we expand the temporal derivative to obtain:

∆x

2n+ 1

dp

dt
f(Y )kn + p

{
∆x

2n+ 1

d

dt
f(Y )kn + u

[
f(Y )|xI+1/2

− (−1)n f(Y )|xI−1/2

]

−u
P∑

m=0

∫

Ωk

f(Y )k
dϕn

dx
dx

}
= 0.

(2.22)

The term in braces is a discrete form of a non-conservative evolution equation for f(Y ).
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Recalling Eq. (2.5),

1

γ − 1
= f(Y ) =

1
Y
M1

+ 1−Y
M2

(
Y

γ1 − 1

1

M1
+

1− Y

γ2 − 1

1

M2

)
. (2.23)

Thus, because of the nonlinearity of f in Y , solving the transport equation for Y in con-

servative or non-conservative form cannot ensure that the term in the braces in Eq. (2.22)

is identically zero. As a result, the dynamic interfacial condition (pressure equilibrium) is

violated: the pressure is no longer uniform at the next time step, or any subsequent, thus

leading to spurious pressure oscillations.

2.5.1.2 Oscillations due to the limiting procedure

Even if the correct form of the transport equation is used, pressure equilibrium may

be violated by the limiting procedure, i.e., given a constant pressure at the beginning of a

time step, fully conservative limiting may produce pressures that no longer are constant. To

show this, let us denote three adjacent computational cells L : x ∈ [−3,−1], C : x ∈ [−1, 1],

and R : x ∈ [1, 3], with

ρL 6= ρC 6= ρR, γL 6= γC 6= γR,

uL = uC = uR = u > 0, pL = pC = pR = p.

Before limiting, the pressures at the nodal values are equal, e.g, p(1) = p(−1) for P = 1. To

prevent pressure errors, the nodal values after limiting must be the same, i.e., p̃(1) = p̃(−1),

where p̃(x) = 1̃
γ−1 (Ẽ− 1

2
(ρ̃u)2

ρ̃ ). The following development shows that this condition cannot

be met by limiting the conserved variables, specifically the total energy, as traditionally

done.

Without loss of generality, consider P = 1 and HR limiting [65, 66]. In each cell, let the

solution be

ρ(x) = ρ0 + ρ1x, ρu(x) = (ρu)0 + (ρu)1x,

E(x) = E0 + E1x,
1

γ − 1
(x) =

(
1

γ − 1

)

0

+

(
1

γ − 1

)

1

x,
(2.24)
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and the limited solution be

ρ̃(x) = ρ̃0 + ρ̃1x, ρ̃u(x) = (̃ρu)0 + (̃ρu)1x,

Ẽ(x) = Ẽ0 + Ẽ1x,
1̃

γ − 1
(x) =

˜( 1

γ − 1

)

0

+
˜( 1

γ − 1

)

1

x.

(2.25)

For density, the limiting procedure leads to ρ̃0 = ρ0 and ρ̃1 = minmod
(
ρC0 − ρL0 , ρ

R
0 − ρC0

)
/2.

The minmod () function of two numbers a and b is defined as

minmod (a, b) =





min (a, b), if a, b > 0,

max (a, b), if a, b < 0,

0, otherwise.

(2.26)

For momentum, ρ̃u = uρ̃, such that velocity equilibrium is preserved. Limiting of the

conserved variables produces the following slope in energy:

Ẽ1 =
1

2
minmod

(
p

{(
1

γ − 1

)C

0

−
(

1

γ − 1

)L

0

}
+
u2

2
(ρC0 − ρL0 ),

p

{(
1

γ − 1

)R

0

−
(

1

γ − 1

)C

0

}
+
u2

2
(ρR0 − ρC0 )

)
.

(2.27)

Since, in general, minmod (x1 + y1, x2 + y2) 6= minmod (x1, x2) + minmod (y1, y2) for vari-

able xi and yi, pressure cannot be factored out of the minmod function.

As a preview of Section 2.5.2.2, the condition p̃(1) = p̃(−1) = p(1) = p(−1) = p can be

enforced to produce a slope in total energy as follows:

Ẽ1 =
1(
1

γ−1

)
0

(
E0 −

u2

2
ρ0

) ˜( 1

γ − 1

)

1

+
u2

2
ρ̃1

= p
1

2
minmod

((
1

γ − 1

)C

0

−
(

1

γ − 1

)L

0

,

(
1

γ − 1

)R

0

−
(

1

γ − 1

)C

0

)

− u2

2

1

2
minmod

(
ρC0 − ρL0 , ρ

R
0 − ρC0

)
.

(2.28)

By construction, such a definition preserves a uniform pressure. Clearly, Eq. (2.27) does

not reduce to Eq. (2.28) and therefore does not preserve pressure equilibrium, i.e., p̃ =

34



1̃
γ−1(Ẽ − 1

2
(ρ̃u)2

ρ̃ ) = p. Thus, fully conservative limiting introduces pressure errors in flows

with variable γ. We generalize this approach to arbitrary P and multiphase flows in Section

2.5.2.2.

2.5.2 Strategy to prevent oscillations

Now that the cause for spurious pressure oscillations has been established, we propose

a strategy to avoid these errors. Our approach relies on (i) the transport equation(s)

describing the material properties must be solved in a non-conservative weak form, and

(ii) the suitable variables must be limited (density, momentum, pressure and appropriate

properties entering the equation of state), coupled with a consistent reconstruction of the

energy.

2.5.2.1 Transport equations for the material properties

To prevent spurious pressure oscillations, the form of the transport equations for the

material properties is crucial. From Eq. (2.21) in Section 2.5.1.1, to ensure that the pressure

remains constant in time and space (i.e., dp/dt|k = 0), the following equation must hold

∆x

2n + 1

d

dt

(
1

γ − 1

)k

n

+ u

{
1

γ − 1

∣∣∣∣
xI+1/2

− (−1)n
1

γ − 1

∣∣∣∣
xI−1/2

}

− u
P∑

m=0

(
1

γ − 1

)k

m

∫

Ωk

ϕm
dϕn

dx
dx = 0,

(2.29)

which is the weak form of

∂

∂t

(
1

γ − 1

)
+ u

∂

∂x

(
1

γ − 1

)
= 0. (2.30)

This result is consistent with the findings of Abgrall [54] for FV methods.

For multiphase flows with the Mie-Grüneisen equation of state (2.2), a similar analysis

35



shows that the weak form of the following equations must be solved:

∂

∂t

(
1

Γ

)
+ u

∂

∂x

(
1

Γ

)
= 0, (2.31a)

∂

∂t

(pref
Γ

)
+ u

∂

∂x

(pref
Γ

)
= 0, (2.31b)

∂

∂t
(ρeref) +

∂

∂x
(ρueref) = 0. (2.31c)

These equations are consistent with those obtained by Shyue [75] for FV methods and

could include density-dependent material properties. The difference lies in the fact that the

equations must be written in the appropriate weak form for DG, as described in Section

2.4.1.

2.5.2.2 Conservative, high-order accurate, and non-oscillatory limiting for DG

For discontinuous problems, it is necessary to limit the solution to avoid numerical

oscillations with high-order methods. Our goal is to ensure that this limiting procedure

does not lead to oscillations at interfaces for non-constant γ (and other material properties).

Let A(x), B(x), C(x), and U(x) be Taylor polynomials inside a cell Ω = {x|x ∈ [−1, 1]},

A(x) =
P∑

n=0

An
xn

n!
, B(x) =

P∑

n=0

Bn
xn

n!
, C(x) =

P∑

n=0

Cn
xn

n!
, U(x) =

P∑

n=0

Un
xn

n!
. (2.32)

Let a be a constant inside a cell and the limiting operation be denoted by a tilde. Let us

assume A(x), B(x), and U(x) are coupled through an algebraic relation U = f(A,B,C), or,

equivalently, C = f−1(A,B,U). We seek a limiting procedure for U that is non-oscillatory,

i.e., if C(x) = a, then C̃(x) = f−1(Ã, B̃, Ũ) = a, high-order accurate, and conservative, i.e.,
∫
Ũ dΩ =

∫
U dΩ. The second and third properties can generally be achieved using high-

order limiting such as HR [65, 66] for single fluids. However, such limiting procedures are

nonlinear, which lead to the following difficulties (see proofs thereof in C): (i) the limited

value of a sum is not equal to the sum of limited values, and (ii) limiting a product of

functions violates conservation. In other words, Ã+B 6= Ã+ B̃ and
∫
ÃB̃ dΩ 6=

∫
AB dΩ.

Satisfying these latter two properties is essential to prevent pressure errors due to limiting.

We show how these two difficulties can be overcome to produce a non-oscillatory limiting
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procedure.

(i) Sum of limited functions. First, let U(x) = f(A,B, a) = aA + B. If we limit U as

Ũ = ˜aA+B and use the limited values of A and B to recover a, we obtain:

ã = f−1(Ã, B̃, Ũ) =
1

Ã
(Ũ − B̃) =

1

Ã
( ˜aA+B − B̃). (2.33)

This expression is generally not equal to a because of the nonlinearity of the limiting

procedure. On the other hand, if we compute the limited value of U based on Ã and

B̃, i.e., Ũ = ãA+ B̃, then the constant is recovered:

ã = f−1(Ã, B̃, Ũ) =
1

Ã
(Ũ − B̃) =

1

Ã
(ãA+ B̃ − B̃) = a. (2.34)

Hence, limiting the terms in the addition separately ensures that a constant function

remains constant after limiting and therefore that this procedure is non-oscillatory.

Furthermore, limiting a sum of functions (possibly multiplied by a constant) is con-

servative:

∫
Ũ dΩ =

∫
ãAdΩ +

∫
B̃ dΩ = a

∫
AdΩ +

∫
B dΩ =

∫
U dΩ. (2.35)

High-order accuracy is guaranteed as long as the limiting procedure is high-order

accurate.

(ii) Product of limited functions. Limiting a product of functions separately violates the

conservation property: if U = f(A,B,C) = AC and Ũ = ÃC̃, then
∫
Ũ dΩ 6=

∫
U dΩ.

We propose a remedy to this problem. Using the chain rule for the product of A and
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C, the coefficients of U can be expressed in terms of the coefficients of A and C

U0 =
∂0U

∂x0

∣∣∣∣
0

=
∂0(AC)

∂x0

∣∣∣∣
0

= A0C0, (2.36a)

U1 =
∂1U

∂x1

∣∣∣∣
0

=
∂1(AC)

∂x1

∣∣∣∣
0

= A1C0 +A0C1, (2.36b)

U2 =
∂2U

∂x2

∣∣∣∣
0

=
∂2(AC)

∂x2

∣∣∣∣
0

= A2C0 + 2A1C1 +A0C2, (2.36c)

. . .

Un =

n∑

k=0

(
n

k

)
An−kCk, (2.36d)

where
(n
k

)
is the binomial coefficient. We reconstruct the limited coefficients of U by

Ũn =

n∑

k=0

(
n

k

)
Ãn−kC̃k, for n = 0, . . . , P. (2.37)

We then impose conservation,

∫
Ũ dΩ =

∫
U dΩ ⇔

∑

k=0,2,4,...

2

(k + 1)!

(
Ũk − Uk

)
= 0. (2.38)

These P + 2 conditions constrain P + 1 coefficients. We relax these conditions and

use

Ũn =
n∑

k=0

(
n

k

)
Ãn−kC̃k, for n = 1, . . . , P, (2.39a)

Ũ0 = U0 −
∑

k=2,4,...

1

(k + 1)!

(
Ũk − Uk

)
. (2.39b)

If C = a, then C0 = a and Ck = 0 for k > 0, so that this procedure reduces to Ũ = aÃ,

thus verifying the non-oscillatory condition. This procedure naturally preserves high-

order accuracy.

In conclusion, the present limiting procedure is conservative and non-oscillatory, and

preserves the high-order moments of the solution. Additionally, this procedure requires ap-

proximately the same number of operations as fully conservative limiting. This discussion
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is general and applies to different limiting approaches beyond HR.

2.5.2.3 Application to multiphase flows

The derivations above can be directly applied to multiphase flows. It is immediately

clear that limiting the total energy in the multiphase Euler equations results in oscilla-

tory pressure fields. It is therefore necessary to apply our modified limiting procedure by

reconstructing coefficients of the total energy through

Ẽn = ρ̃en + K̃n, for n = 1, . . . , P (2.40a)

Ẽ0 = E0 −
∑

k=2,4,...

1

(k + 1)!

(
Ẽk − Ek

)
, (2.40b)

where the limited kinetic energy K̃ is reconstructed from the limited density and momen-

tum polynomials. Limiting the density and momentum, instead of ρ and u, ensures that

the method is conservative with respect to those variables. The limited internal energy

polynomial, ρ̃e, is reconstructed to ensure that the pressure remains non-oscillatory. For

the different equations of state, this implies:

- Ideal gases: we limit p and 1
γ−1 , and reconstruct the internal energy as

ρ̃en =
n∑

k=0

(
n

k

)
p̃n−k

˜( 1

γ − 1

)

k

, for n = 1, . . . , P. (2.41)

- Stiffened equation of state with ρe = p+γB
γ−1 , where γ and B are constant: we limit p,

1
γ−1 and γB

γ−1 , and reconstruct the internal energy as

ρ̃en =
n∑

k=0

(
n

k

)
p̃n−k

˜( 1

γ − 1

)

k

+
˜( γB

γ − 1

)

n

, for n = 1, . . . , P. (2.42)

- Mie-Grüneisen equation: we limit p, 1
Γ ,

pref
Γ and ρeref, and reconstruct the internal
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energy as

ρ̃en =

n∑

k=0

(
n

k

)
p̃n−k

(̃
1

Γ

)

k

−
(̃pref

Γ

)
n
+ (̃ρeref)n, for n = 1, . . . , P. (2.43)

By contrast to other limiting approaches, e.g, [88], our proposed reconstruction, while

relying on limiting pressure, is not a straightforward application of limiting the primitive

variables, as this would lead to conservation errors (see Section 2.6.2). Our limiting approach

is readily extended to other multiphase models such as the five-equations model (see C).

2.5.3 Verification

We now verify that the proposed approach is oscillation-free, high-order accurate, and

conservative. For simplicity, we consider gases; similar tests can readily be performed for

the other equations of state under consideration. We define the L∞ error in the cell average

of a quantity U as

L∞ = max
i=1...NE

∣∣∣∣
1

∆x

∫

Ωi

Uexact dx− 1

∆x

∫

Ωi

Unumerical dx

∣∣∣∣ , (2.44)

where NE is the number of cells in the mesh and the integrals are evaluated with a Gaussian

quadrature of order 2P + 1. In our comparisons, we consider three approaches:

A. Conservative transport equation for ρY with the physical relationship between Y and

γ (2.23) assuming M = M1 = M2 as in [73], and limiting of the conserved variables

(ρ, ρu,E, ρY ), which we call the “fully conservative approach,”

B. Non-conservative transport equation for 1/(γ − 1) and limiting of the conserved vari-

ables (ρ, ρu,E) and 1/(γ − 1),

C. Non-conservative transport equation for 1/(γ−1) and limiting of the variables (ρ, ρu, p, 1/(γ−

1)), which we call “our approach.”
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2.5.3.1 Verification of the non-oscillatory property: sharp interface advection

We consider the advection of sharp isolated material interfaces to show that both an

appropriate form of the transport equation and our modified limiting are necessary to

prevent pressure oscillations. Two interfaces, characterized by discontinuities in ρ and γ,

are advected at a constant velocity u = 1 and under constant pressure in the periodic

domain x ∈ [−1, 1]. The initial conditions are

(ρ, u, p, γ) =





(1, 1, 1, 1.4), for x ∈ [−0.5, 0.5],

(0.125, 1, 1, 1.6), otherwise.

(2.45)

Because of the sharp interfaces, limiting is required. The exact solution for this problem is a

translation of the initial profiles, with velocity and pressure remaining constant throughout.

Fig. 2.1 shows the pressure field at t = 2 (after one period) for the three approaches

A, B, and C. Quantitatively, examining the flow solution, the L∞ error in the cell averages

for pressure is O(10−2) with the fully conservative approach (A); it is smaller for approach

B (O(10−3)). For the proposed approach (C), it is essentially negligible (O(10−11)). The

pointwise errors are approximately two orders of magnitude larger. The errors for the first

two approaches are observed to propagate away from the interface and affect the solution in

the entire domain. The amplitude of these oscillations may grow physically upon interaction

with other flow features. While these oscillations are small in this test case, we show in

later validation tests that they propagate in the flow field, interact with other flow features,

and cause the simulations to fail (Sections 2.6.3 and 2.6.4). It is clear that the errors arise

for two reasons: the form of the transport equation for the material properties and the

limiting procedure. The non-conservative formulation coupled with our modified limiting

(our approach C) presents an oscillation-free pressure.

2.5.3.2 High-order property: smooth variation in γ

We consider the advection of a smooth variation in γ and density to ensure that the

proposed approach does not affect the convergence rate. This distribution moves at a

constant velocity u = 1 and under constant pressure in the periodic domain x ∈ [−1, 1].
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Figure 2.1: Pressure profile at t = 2 for the advection of a sharp material interface (P = 2,
∆x = 1/128). Solid red: conservative transport equation and limiting of
the conserved variables (fully conservative approach). Dashed green: non-
conservative equation and limiting of the conserved variables. Dash-dotted blue:
non-conservative equation and modified limiting (our approach).

The initial conditions are

(ρ, u, p, γ) = (1 + 0.2 sin(4πx), 1, 1, 1.4 + 0.2 sin(πx)). (2.46)

Since this problem is smooth, a stable solution can be achieved without limiting. The exact

solution for this problem is a translation of the initial profiles, with velocity and pressure

remaining constant throughout.

We first consider the solution to this problem with no limiting, to ensure that the

non-conservative form of the transport equation produces the expected convergence rate,

independently of limiting. Fig. 2.2 shows the L∞ error in cell averages of 1/(γ − 1) and

pressure after one period for the conservative and non-conservative transport equations

(e.g, comparing approaches A and B/C with no limiting). For pressure, errors are produced

with the conservative approach, and decrease at the expected rate of convergence for DG

(2P +1); a sufficiently fine resolution is required to achieve this convergence rate. With the
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non-conservative approach, errors lie at the round-off level for all grids. For 1/(γ − 1), the

convergence rate is 2P + 1 in both cases. The error is slightly larger for the conservative

approach due to the pressure oscillations that affect all fields.

We now consider the solution to this problem with limiting, to evaluate its effect on

the convergence rate. In Fig. 2.3, we compare the three approaches A, B and C. Overall,

limiting reduces the convergence rate to P + 1 at best, as expected. Again, approach A

(conservative equation and limiting) produces the largest pressure errors. In this case, the

pressure oscillations affect all fields and reduce the convergence rate in 1/(γ− 1); the errors

decrease at a rate lower than P + 1. The non-conservative form of the equations with

limiting of the conserved variables (approach B) exhibits minor errors in γ; the pressure

errors do not decrease at rate P + 1 until a sufficiently fine grid is used. Our approach C

produces round-off errors in pressure, as expected.

These problems illustrate two points. First, pressure oscillations are prevented only

by both solving a suitable form of the transport equation and limiting the appropriate

variables; the fully conservative approach A produces the largest errors. Second, even if

no pressure oscillations are produced, limiting significantly reduces the convergence rate

in smooth regions (P + 1 instead of 2P + 1). To prevent this reduction in accuracy in

flows with smooth and discontinuous features, a solution-adaptive approach is presented

in Section 2.5.4, in which a sensor discriminates between discontinuities in γ, where our

limiting approach should applied, and smooth regions, in which no limiting should be used,

e.g, as in [72] for finite differences.

2.5.3.3 Conservation property

Our proposed limiting procedure is conservative by construction, in that it preserves the

cell averages of the relevant conserved variables and the telescoping property of the fluxes.

Although we do not display results for conciseness, we verified that energy is conserved

using the two above verification problems. In both verification cases, the error in energy

lies at the round-off level for all approaches.
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(a) 1
γ−1

. (b) Pressure.

Figure 2.2: L∞ cell-average error vs. ∆x for the advection of a smooth distribution in γ
with no limiting (P = 2). Red squares: conservative transport equation. Green
diamonds: non-conservative equation. Dashed line: 2P + 1 slope.

2.5.4 Solution-adaptive approach: discontinuity sensors

The numerical treatment of discontinuities (introducing numerical dissipation), even

with high-order accurate methods, lies in direct contradiction with that of smooth broad-

band motions (preventing numerical dissipation). For such problems, applying limiting only

where needed and using non-dissipative methods elsewhere constitutes a more accurate and

efficient approach [109]. To discriminate between smooth and discontinuous regions, a dis-

continuity sensor is required. The overall accuracy and efficiency strongly depends on the

discontinuity sensor. However, designing such sensors that are independent of the numer-

ical scheme is challenging. Thus, there is a need for physics-based discontinuity sensors.

Another difficulty with hybrid finite difference/volume methods is that the stencil size in-

creases with order of accuracy. As a result, transition regions between the capturing and

central schemes exist [110]. Because of its compactness, the DG approach allows for the use

of high order immediately next to cells that contain discontinuities.

A characteristics-based sensor inspired by the physics is developed for the Euler equa-

tions. In a first sweep, the sensor first identifies cells affected by material/contact discon-

tinuities. Then, shock waves are detected. A different approach is used for each feature.

First, we consider interfaces/contacts. At each element interface, let L and R denote the

cell-average value of the corresponding variable on the left and right cell, respectively. The
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(a) 1
γ−1

. (b) Pressure.

Figure 2.3: L∞ cell-average error vs. ∆x for the advection of a smooth distribution in γ with
limiting (P = 2). Red squares: conservative transport equation and limiting of
the conserved variables (fully conservative approach A). Green diamonds: non-
conservative equation and limiting of the conserved variables (approach B).
Blue circles: non-conservative equation and modified limiting (our approach
C). Dashed line: P + 1 slope.

discrete characteristic variables for the Euler equations are

∆α = R−1∆W, ∆W =WR −WL =

3∑

i=1

∆̂αiR̂(i), (2.47)

where R is the matrix of right eigenvectors, W the vector of conserved variables, α the

vector of characteristic variables, and the hat values denote average values, e.g, Roe’s [106].

Specifically, the strength of a contact discontinuity propagating the density jump ∆ρ is

∆α̂2 =
∆ρĉ2 −∆p

ĉ2
(2.48)

where c is the speed of sound. This quantity is used as a sensor for contact discontinuities,

with the following normalization:

ξ =
|∆α2|
ρL + ρR

, Ξ =
2ξ

(1 + ξ)2
. (2.49)
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Similarly, we construct a sensor for the multifluid Euler equations based γ,

ζ =
|γR − γL|
γL + γR

, Z =
2ζ

(1 + ζ)2
. (2.50)

If Ξ or Z is greater than 0.01, limiting is used in the cells that share that interface.

To detect shocks, we use the sensor developed by Lombardini [111]. At each cell edge,

we test the Lax entropy condition, which is satisfied by a physical shock wave:

uL − cL > û− ĉ > uR − cR. (2.51)

If this condition is satisfied at the interface, the following pressure sensor is used:

φ =
|pR − pL|
pL + pR

, Φ =
2φ

(1 + φ)2
. (2.52)

with a threshold of 0.001.

These sensors lead to robust detection of shocks and discontinuities and are straightfor-

ward to implement in multiple dimensions. Though the thresholds are heuristically chosen

to be widely applicable (to all problems under consideration), it is likely that an optimal

value is problem-dependent. The sensors’ detection of discontinuities is not sensitive to the

threshold values used in this work (within an order of magnitude).

2.5.5 Algorithm

Our proposed algorithm for interface capturing of compressible multiphase flows using

DG can be summarized as follows:

1. Given the coefficients wn(t) at time t,

2. Identify the cells that require limiting with our proposed solution-adaptive approach,

3. In the detected cells, limit the flow variables (ρ, ρu, p) and the appropriate material

properties, e.g, 1/(γ − 1) for ideal gases, 1/(γ − 1) and γB/(γ − 1) for the stiffened

equation of state, or 1/Γ, pref/Γ and ρeref for the Mie-Grüneisen equation,
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4. Reconstruct the internal energy coefficients according to our non-oscillatory procedure

following Eq. (2.41), (2.42) or (2.43),

5. Use the DG discretization to march the Euler equations (2.1) forward in time, and

the non-conservative transport equations for the material properties, i.e., Eqs. (2.31).

2.6 Numerical tests

We use one- and two-dimensional test problems involving shock waves and interfaces

for different equations of state to illustrate the robustness and versatility of our method.

For all problems, the standard explicit fourth-order Runge-Kutta method is used, with

a Courant number of 0.5. All the numerical tests were performed with the Roe solver

and a Lagrange basis. Due to discontinuities, HR with discontinuity sensors is used in all

problems. We implemented a highly parallel version of the code on a GPU, which allows

for simulations approximately two orders of magnitude faster than on a single Computing

Processing Units (CPU). Multi-GPU parallelism using the Message Passing Interface (MPI)

is implemented to achieve high speedup for large problems. CUDA is used to communicate

data from the GPU to the CPU and MPI transfers data between the host CPU, Figure 2.4.

The code exhibits good weak and strong scaling with increasing number of GPU, Figure 2.5.

Though the increase in communication across the network negatively impacts strong scaling

from one to two GPUs, strong scaling follows the ideal trend beyond two GPUs. The

supercomputing cluster used for the scaling analysis, Stampede operated by the Texas

Advanced Computing Center, has one GPU per computing node. This means that GPU to

GPU communication is particularly expensive as data needs to be moved between nodes.

The two-dimensional simulations were performed using GPUs on the Flux cluster at

the Center for Advanced Computing at the University of Michigan. Gmsh is used for the

mesh generation and post-processing visualization [112]. The code’s workflow and main

features are presented in Figure 2.6. Git is used as the main version control system. The

code has been used previously to simulate the multilayered Richtmyer-Meshkov (RM) and

Rayleigh-Taylor (RT) instabilities [113] and experiments of blast-wave-driven shear flow in

high-energy-density regimes [114].
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Figure 2.4: High performance computing paradigm combining GPUs and CPUs with CUDA
and MPI.
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Figure 2.5: Code scaling as a function of the number of GPUs.

2.6.1 Multifluid Shu-Osher problem

We consider the Shu-Osher problem [115], extended to include two ideal gases of different

γ [72]. A Mach Ms = 3 shock interacts with a sharp material interface preceding a smooth

variation in density and γ. The initial conditions are

(
ρ, u, p,

1

γ − 1

)
=





(3.857143, 2.629369, 10.3333, 2.5), for x ≤ 1,

(1 + 0.2 sin (5(x − 5)), 0, 1, 1.33 + 0.2 sin (5(x− 5))), otherwise.

(2.53)

In Fig. 2.7, we compare the pressure profile for approaches A, B, and C at early time.

The fully conservative approach A leads to large pressure oscillations and the simulation
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Figure 2.6: Simulation workflow. Blue: pre-processing scripts; green: main simulation code;
orange: post-processing scripts.

fails at the illustrated time. The pressure oscillations with approach B are small enough

to not significantly impact the solution in this problem. Our approach C does not exhibit

any pressure oscillations and adequately represents the solution at time 1.8 (Fig. 2.8). As

with finite difference methods for similar resolutions, the entropy waves are damped as they

propagate away from the shock [109].

2.6.2 Strong shock impacting on an interface

We consider a strong shock (Mach 8.96) interacting with a moving gas-gas interface

[116]. We denote the post-shock region with index 4 (−1 < x < −0.8), the pre-shock region

with the first gas by 02 (−0.8 < x < −0.2), and the pre-shock region with the second gas
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Figure 2.7: Pressure profile at t = 0.31 for the multifluid Shu-Osher problem (P = 2,
∆x = 1/30). Solid red: conservative transport equation and limiting of the
conserved variables (fully conservative approach A). Dashed green: conservative
equation and limiting of the conserved variables (approach B). Dash-dotted blue:
non-conservative equation and modified limiting (our approach C).

by 01 (−0.2 < x < 1). The initial conditions for this problem are:

ρ =





ρ4 = ρ02
(γ02+1)M2

s
(γ02−1)M2

s+2
,

ρ02 = 0.1,

ρ01 = 1.0,

u =





u4 =
c02
Ms

2(M2
s−1)

γ02+1 + uc,

u02 = uc,

u01 = uc,

p =





p4 = rp0,

p02 = p0,

p01 = p0,

γ =





γ4 = γ02,

γ02 =
5
3 ,

γ01 = 1.4,

(2.54)

with r = p4
p0

= 100 and p0 = 1 such that Ms =
√

γ02+1
2γ02

r + γ02−1
2γ02

= 8.96. We add a

background velocity, uc = −2, so that the interesting flow features remain near the middle

of the domain. As a result, the interface dissipates slightly as it moves to the left before

interacting with the shock. Fig. 2.9 shows the density, velocity, pressure, and γ profiles at

t = 0.04 for P = 2. Limiting the total energy (approach B) leads to significant oscillations in

pressure (5% overshoot near the contact) and velocity. Approach A produce 11% overshoots

in pressure (data not shown). These errors are avoided with our proposed approach (C).

The small bumps in u and p around x = −0.6 are due to shock startup errors [117, 118].
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(a) Density. (b) Velocity.

(c) Pressure. (d) Ratio of specific heats.

Figure 2.8: Profiles at t = 1.8 for the multifluid Shu-Osher problem using our approach C
(P = 2). Solid black: reference solution (1280 cells). Dash-dotted blue: (300
cells).

This particular case illustrates the importance of the conservative nature of our ap-

proach. If one directly limits the primitive variables (ρ,u,p) as suggested in [88], energy

conservation errors are O(10−1), compared to O(10−14) for our proposed approach. Such

errors lead to incorrect shock speeds and interface positions.

2.6.3 Richtmyer-Meshkov instability

We use the single-mode RM instability experiments from [119] for validation. A shock

(Ms = 1.21) initialized in air (ρair = 1.351 kg/m3, γair = 1.276, Mair = 34.76 kg/kmol)

and moving downwards impinges a perturbed interface between the air and the denser SF6

(ρSF6 = 5.494 kg/m3, γSF6 = 1.093, MSF6 = 146.05 kg/kmol), thereby initiating the RM
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(a) Density. (b) Velocity.

(c) Pressure. (d) Ratio of specific heats.

Figure 2.9: Profiles at t = 0.04 for the strong shock-interface interaction (P = 2, ∆x =
1/128) using the non-conservative equation for 1/(γ − 1). Solid green: limiting
of the conserved variables (approach B). Dashed blue: modified limiting (our
approach C). Solid black: exact solution.

growth through baroclinic vorticity deposition. The initial perturbation amplitude and

wavelength are A0 = 0.183 cm and λ0 = 5.933 cm. The diffuse interface is initialized in a

thermodynamically consistent fashion using an exponential diffusion function [120], with a

diffusion length of 0.5 cm. We impose periodic boundaries on the sides and zero-gradient

conditions at the entrance and exit of the shock tube. The gases have an initial upward

velocity such that the interface remains in the domain after the shock interaction.

With the fully conservative approach A, pressure oscillations are produced and lead

to negative densities early in time, causing the simulations to fail just after the shock

interaction (Fig. 2.10). Even with approach B, pressure errors at the interface are significant.
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(a) t = 0ms. (b) t = 0.08ms.

Figure 2.10: Density, simulated Schlieren, and vorticity (|∇ × u|) for the single-mode RM
instability (P = 2, 128 cells per wavelength). Conservative transport equation
and limiting of the conserved variables (fully conservative approach A).

These errors in pressure modify the velocity field, and therefore the vorticity, to eventually

distort the interface morphology (Fig. 2.11). Furthermore, these initially small errors lead

to a loss in symmetry at late times, as explained in [72].

These oscillations are avoided when using our approach C as evidenced by comparing the

vorticity contours of Fig. 2.12 to those of Fig. 2.11. The early-time growth of the instability

(before reshock) from the simulation agrees well with the experimental data, as shown

through convergence of the perturbation amplitude in the integral sense on a sequence

of grids (Fig. 2.13). With our approach, we can accurately simulate the physics of such

problems, unlike certain prior studies that had to assume gases of constant γ [120].

2.6.4 Interaction of a shock in water with a gas bubble

We consider a shock initiated in water impinging upon a cylindrical (two-dimensional)

air bubble to assess our approach for more complicated equations of state, and for high

pressures and large density ratios. An air bubble of radius r0 = 1 initially lies at rest in water

at atmospheric pressure; surface tension is neglected. A Mach 1.82 shock, corresponding

to a pressure ratio of 1.9 × 104, is initialized in the water upstream of the bubble at x =

−2 [121, 81, 122, 123]. The density, velocity, and pressure, non-dimensionalized by the
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(a) t = 0.31ms. (b) t = 5.21ms.

Figure 2.11: Density, simulated Schlieren, and vorticity for the single-mode RM instability
(P = 2, 128 cells per wavelength) using non-conservative transport equation
and limiting of the conserved variables (approach B).

properties of air at atmospheric pressure, in the different parts of the domain are

(ρ, u, p) =





(1, 0, 0.71), in the bubble,

(846.58, 0, 0.71), in the water upstream of the shock,

(1078.12, 644.28, 1.36 × 105), in the water downstream of the shock.

(2.55)

For air, γ = 1.4 and B = 0 bars. The values of these properties for water for the stiffened

equation of state are determined through empirical fits [124, 125]: γ = 5.5 and B = 4921.15

bars [126].

Fig. 2.14 shows a sequence of simulated Schlieren contours for this problem using our

approach C. Simulated Schlieren contours are a function of the density gradient norm and

were generated by post-processing the density field with the following formula:

Φ(x, y) = exp

(
−k |∇ρ|

maxx,y |∇ρ|

)

where k is an positive constant chosen to visualize the density gradients. As in past simula-

tions a re-entrant jet forms and impacts the opposite side of the bubble, thereby generating

a strong shock moving radially outward. When limiting the conserved variables (approaches
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(a) t = 0.31ms. (b) t = 5.21ms.

Figure 2.12: Density, simulated Schlieren, and vorticity for the single-mode RM instability
using our approach (P = 2, 128 cells per wavelength).

A and B), large spurious pressure oscillations are generated, which lead to negative den-

sities as the shock starts to interact with the bubble; thus, the simulations fail. For such

large pressure and density ratios, higher resolution (e.g, order of accuracy, grid refinement

or Riemann solver) may lead to large negative pressures in the numerically diffuse inter-

face regions and thus cause simulations to fail for reasons beyond the scope of this chapter

[127, 128, 67, 74]. For this reason, we use the Rusanov flux solver with all three approaches

for this problem only.

2.7 Validation study: the supersonic drop

As a validation study, we present numerical simulations of a multiphase problem ap-

plicable to many engineering fields, including fuel injection, plasma deposition, raindrops

impacting high speed vehicles, and turbomachinery[7, 8]. Simulations of a shock interact-

ing with a drop of water in air are compared to experimental data. We present the flow

dynamics and discuss the interactions between a supersonic air flow and a compliant water

cylinder.

In this problem, an initial 2D water drop of radius r0 is stationary in air. A Mach 2.5

shock coming from the left impinges on the drop, Figure 2.15. This setup is similar to past

experiments and simulations of a shock interacting with a water column [49, 129]. The

55



Figure 2.13: Amplitude growth vs. t for the single-mode RM instability using our approach
C (P = 2). Black square: experimental data [119]. Solid red: 16 cells per
wavelength; dashed green: 32; dash-dot blue: 64; dotted orange: 128.

simulation domain size is 23r0 in the x-direction and 16r0 in the y-direction. The drop

is initially located at (x, y) = (0, 0). The mesh is refined around the drop and the grid is

stretched from 2r0 above and below the centerline to the edge of the domain to allow for high

resolution of the drop dynamics while maintaining a reasonable computational runtime. The

entire domain contains approximately 5 million degrees of freedom. Each simulation was

performed in parallel on eight GPU for approximately 24 hours. The properties of the air

are ρair = 1.1765kg/m3, γair = 1.4, and p∞,air = 0Pa. Those for water are ρwater = 996kg/m3,

γwater = 5.5, and p∞,water = 492115000Pa [126]. All materials are initially at atmospheric

pressure. The non-dimensional time is defined as t = T us
2r0

, where T is the physical time

and us is the post-shock air velocity. Density is non-dimensionalized by ρair, velocity by

cair, and pressure by ρairc
2
air, where cair is the speed of sound in air.

As the shock impinges on the drop, it creates a supersonic flow around the drop. The

initial shock is deflected by the drop and the reflected shock evolves into a bow shock,

Figure 2.16a. Baroclinic vorticity generated at the drop surface by the passage of the shock

creates a wake downstream of the drop which forms into a reentrant flow at later times,

Figure 2.16b. This flow causes a decrease in the drop width and an increase in the height,

Figure 2.16c. The strong coupling between the wave dynamics and the deforming geometry

causes a series of compressions which steepen into shocks in the wake of the drop, Figures

2.16c and 2.16d.
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(a) t = 0.15. (b) t = 0.35.

(c) t = 0.45. (d) t = 0.55.

Figure 2.14: Simulated Schlieren of density for a strong shock impacting a two-dimensional
air bubble in water using our approach C (P = 2, 128 cells per diameter).

In Figure 2.17, we compare our simulation results to the experiments of the same setup

as the experiments of Igra and Takayama [49]. There is good qualitative agreement with the

experiments as the shape and wake of the drop in both the simulation and experiment look

similar. The dark region upstream of the drop in the experimental pictures is most likely due

to the experimental visualization technique which might be capturing evaporation effects or

might be distorted by edge effects from the walls holding the water column. Experimental

measurements of the drop width are accurately described by the simulation, Figure 2.18.

There is very good agreement early in time and this agreement improves as the mesh is

refined. Late time discrepancies can be explained by 3D effects and transport phenomena

such as evaporation which are not modeled in the simulations.
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Figure 2.15: Problem setup for a shock impinging on a drop of water in air.

(a) t = 5.4 (b) t = 13.50

(c) t = 27.00 (d) t = 34.65

Figure 2.16: Density (top half) and Mach number (bottom half) contours for a 2.5 shock
Mach number.
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t = 3.137 t = 6.335 t = 12.578

t = 15.919 t = 25.544 t = 30.885

Figure 2.17: Comparison of experimental visualization of the droplet using a holographic
interferogram [130, 49] (bottom) and simulated density (top) at a 1.18 Mach
number.
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Figure 2.18: Centerline drop width as a function of time. Solid red line: simulation results
atMs = 1.18; dashed green line: simulation results atMs = 1.47. Red squares:
experimental data at Ms = 1.18 [49]; green pentagons: experimental data at
Ms = 1.47.
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2.8 Conclusions

In this chapter, we introduce a solution-adaptive1 DG method to simulate compressible

multiphase flows with shocks and interfaces in a stable and accurate fashion. Following the

interface-capturing approach of Abgrall [54], we model flows of multiple fluid components

or phases using a single equation of state with varying material properties. To represent

compressible phenomena in solids, liquids and gases, we consider the Mie-Grüneisen family

of equations of state, which describes a wide range of media, including stiffened and ideal gas

equations of state. We show why spurious pressure oscillations occur in the DG framework

when material properties vary, and how to remedy this problem. Using stringent test

problems in one and two dimensions, we verify our approach. We can make the following

conclusions:

• We develop a DG method that is conservative, non-oscillatory at interfaces (and

shocks) and high-order accurate in smooth regions.

• Two key steps must be followed to avoid spurious pressure oscillations at interfaces

between fluids of different material properties:

1. Transport equations for appropriate material properties must be solved in a

suitable weak form. E.g, for ideal gases, a non-conservative equation for 1/(γ−1)

must be solved, as suggested by Abgrall [54] for FV methods.

2. Solution limiting must be applied to the appropriate variables (density, momen-

tum, pressure, and the appropriate properties in the equation of state) to result

in a non-oscillatory, conservative, and high-order accurate procedure. Limiting

of the primitive variables does not ensure conservation. Our proposed approach

does not require more operations than fully conservative limiting.

• We develop a new characteristic-based discontinuity sensor inspired by the physics for

shocks, interfaces, and contacts.

1In this work, solution adaptivity implies that the limiting procedure is only applied at solution discon-

tinuities. In other work, it might refer to mesh adaptivity to the solution.
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• We can handle strong shocks in multi-dimensional settings involving possibly large

density ratios for gas/gas, gas/liquid and fluid/solid interfaces in which the media

obey an equation of state in the Mie-Grüneisen family.

• Results indicate that the largest errors are produced when solving the transport equa-

tion in conservative form and limiting the conserved variables (approach A). This

approach fails for relatively simple problems involving gas/gas interfaces. Using a

non-conservative transport equation and limiting the conserved variables (approach

B) produces non-negligible errors shown to affect interface morphology in gas/gas

problems and produce negative pressures in gas/liquid problems.
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CHAPTER III

Improvement of the accuracy of Discontinuous Galerkin

methods for advection-dominated problems

This chapter presents work on improving the accuracy of the discretization of the advec-

tion terms by the Discontinuous Galerkin method. Some of the results in this section have

been published in Henry de Frahan, M. T., Khieu, L. & Johnsen, E. 2015 High-order

Discontinuous Galerkin Methods Applied to Multiphase Flows. 22d AIAA Computational

Fluid Dynamics Conference, doi: 10.2514/6.2015-3045.

3.1 Introduction

The Discontinuous Galerkin (DG) method is a numerical method for partial differential

equations, in which the solution is discretized in a computational cell through an expansion

in terms of polynomial basis functions. This approach combines advantages of the finite

element and the Finite Volume (FV) methods. In addition to being high-order accurate, the

DG method is a compact-stencil scheme, so it is highly scalable on parallel architectures,

and implementable on unstructured grids. The discontinuity of the solution at the cell

interfaces naturally provides a means to introduce dissipation as needed. As with FV

methods, physical fluxes between neighboring cells are calculated using Riemann solvers.

The DG approach exhibits superconvergence properties for the advection terms, at a rate

of 2P + 1, where P is the polynomial order [55, 56]. Cockburn and Shu popularized the

Runge-Kutta Discontinuous Galerkin (RKDG) for time-dependent convection-dominated

problems [57, 58, 59, 60, 61]. Shocks and discontinuities can accurately be captured using
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limiters to dampen the oscillations that are caused by high-order interpolation across a

discontinuity [58, 62, 63, 64, 65, 66, 131].

Because of the discontinuous representation of the solution at the cell interfaces, the DG

method is not naturally amenable to discretizing second order derivatives, which appear,

for example, in the diffusion terms of the Navier-Stokes equations. Past approaches to

resolve this issue have involved interior penalty methods for elliptic and parabolic equations

[132, 133, 134] and rewriting the second order terms as a system of first-order derivatives

[135, 136]. However, these approaches are not consistent and require tunable parameters.

The Recovery Discontinuous Galerkin (RDG) method was developed to provide a unified

and consistent framework for discretizing second order derivatives [137, 138, 139]. This

method removes the discontinuity at the interface by recovering the underlying high-order

polynomial spanning neighboring cells. This is achieved by matching polynomial moments

in cells that share interfaces. The RDG method for a structured quadrilateral mesh is

stable, works in multiple dimensions, and can be applied to non-linear diffusion operators.

It also exhibits superconvergent properties at a rate greater than 3P . However, using the

RDG method leads to a mismatch in the convergence properties of the advection terms

(2P + 1) and the diffusion terms (> 3P ). In a system containing both advective and

diffusive processes, the numerical discretization of the diffusive terms is more accurate than

the discretization commonly used for the advective terms of the partial differential equations.

This mismatch in the order of accuracy implies that the convergence of a simulation with

advective and diffusive processes will be dominated by the slower advective convergence

rate. Improving the order of accuracy of the advection terms’ discretization would allow us

to converge equally rapidly for both the diffusive and advective processes. This is important

when simulating large systems requiring high numerical resolution, such as direct numerical

simulations of turbulent processes.

This chapter builds on previous research [140] to fix the order of accuracy mismatch

between the advection and diffusion discretizations by increasing the discretization order of

accuracy of the advection terms. We propose several new ideas and frameworks to enhance

the advection discretization of the DG method.
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3.2 Advection equation discretization with the Discontinuous Galerkin

method

We consider, without loss of generality, the one-dimensional hyperbolic equation

∂u

∂t
+
∂F

∂x
= 0 (3.1)

for the conserved variable u, where F (t, x, u) is the flux. In the DG scheme, the solution

u is expanded in each cell of the domain Ωj in terms of P + 1 basis functions φn(x),

uj(t, x) ≈ uh(t, x) =
∑P

n=0 u
(n)
j (t)φn(x). In the rest of this chapter, we choose φn(x) to be

the Legendre polynomial of order P , without loss of generality. The flux at an arbitrary

interface j+1/2 is evaluated using a Riemann solver, which involves the left and right values

of u at that interface, uL and uR, which are provided by the polynomial representation of uj

and uj+1. The cells j−1, j, and j+1 represent the computational stencil of the DG method

used to evolve the solution in time. This compact stencil is one of the method’s defining

properties and we wish to keep the stencil compact when improving the DG method.

To study the stability of our DG enhancement schemes, we analyze the scalar linear

advection equation 3.1, where F (t, x, u) = au and a > 0. The DG update equations are:

d

dt

∫

Ωj

vjuj dx = −a
∫

Ωj

vj
∂uj
∂x

dx,

and, using integration by parts,

d

dt

∫

Ωj

vjuj dx = −a[vjuj ]
xj+1/2
xj−1/2

+ a

∫

Ωj

∂vj
∂x

uj dx, (3.2)

where vj is a test function in Ωj . By using the solution basis functions as the test functions,

expanding u(t, x) on the solution basis, and using an upwind flux (without loss of generality),

we rewrite the update equations as a linear system for the solution coefficients:

∆x

a

d

dt
uj = M(T )uj (3.3)

where T represents the translation of the solution by one cell: Tuj = uj+1 and T−1uj =
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uj−1. The Fourier transform of M(T ), M̂(β), is obtained by substituting T for its transform

eiβ . Calculations of the eigenvalues of M̂(β) and their respective Taylor-series expansions

are used to compare with the exact differential operator, λe = −iβ, and to establish the

numerical scheme’s stability and order of accuracy.

3.3 Interface-Centered Reconstruction schemes

Systematic approaches to exploring improvements to the DG scheme have previously

been presented [140]. This previous work has shown that an improved DG scheme for

advection called Interface-Centered Reconstruction with Binary Projection (ICB) exhibits

a 3P + 1 order of accuracy and has reasonable stability properties. We recall the scheme

here and study its stability properties. This approach relies on increasing the polynomial

order of the numerical representations uj and uj+1 to calculate interface approximations

ûj+1/2,L(x) and ûj+1/2,R(x), from which uL and uR are evaluated.

The central idea of the ICB scheme is as follows. The reconstruction of ûj+1/2,L(x) is

biased towards the left, cell j, meaning that the enhanced representation can contain more

moments of uj than uj+1,

∫ xj+1/2

xj−1/2

φjnûj+1/2,L dx =

∫ xj+1/2

xj−1/2

φjnuj dx n = 0, . . . , P (3.4a)

∫ xj+3/2

xj+1/2

φj+1
n ûj+1/2,L dx =

∫ xj+3/2

xj+1/2

φj+1
n uj+1 dx n ∈ N (3.4b)

where N is a subset of {0, . . . , P}, the set of indexes of the moments of the original

polynomial. A similar set of equations can be derived for ûj+1/2,R(x), which is then biased

towards cell j + 1. This binary reconstruction scheme achieves a 3P + 1 order of accuracy

if N contains P original moments. This implies that there are P + 1 subsets N formed

with combinations of the set {0, 1, . . . , P}, leading to P + 1 reconstructions schemes that

exhibit 3P + 1 accuracy. We denote the schemes of this type by ICB#1[#2] where #1 is

the original polynomial order P and #2 is the subset N .

For P = 1, we can construct two enhancement schemes, ICB1[0] and ICB1[0], to enhance

the cell interface values. Von Neumann analysis of the resulting schemes show that both
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Figure 3.1: Loci of eigenvalues of the enhanced schemes for P = 1 in the complex plane.
Red squares: ICB1[0]; green diamonds: ICB1[0].

schemes exhibit fourth order accuracy and are stable (ℜ(λi) ≤ 0 ∀ i = 0, . . . , P ), Figure 3.3.

For P = 2, there are three optimal enhancement schemes, ICB2[0, 1], ICB2[1, 2], and

ICB2[0, 2]. These schemes lead to seventh order accuracy (as opposed to fifth order accuracy

for standard DG). However, as illustrated in Figure 3.2b, the real part of the eigenvalues

are positive for some values of β. This incursion into the real positive half of the complex

plane can lead to numerical instabilities if the time-marching scheme is inadequate. These

incursions are small enough (their maximum value is 0.00073) to be covered by a standard

fourth order Runge-Kutta time integration scheme. However, this implies the existence of

a lower bound on the CFL number to ensure that the scheme remains stable. For very

small CFL numbers, these incursions will eventually lie outside the region of stability of the

time-integration scheme.

For P = 2, instead of using two moments from neighboring cells to enhance the interface,

we can use suboptimal sets using only one moment of the neighboring cell: ICB2[0], ICB2[1],

and ICB2[2]. These suboptimal schemes are stable and exhibit sixth order accuracy.

In conclusion, Von Neumann analysis of the ICB enhancement method shows that, for

the one-dimensional scalar advection equation and for various suboptimal choices of the set
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(a) Eigenvalue loci. (b) Zoom of Figure 3.2a.

Figure 3.2: Loci of eigenvalues of the enhanced schemes for P = 2 in the complex plane.
Red squares: ICB2[0, 1]; green diamonds: ICB2[1, 2]; blue circles: ICB2[1, 2].

Figure 3.3: Loci of eigenvalues of the enhanced schemes for P = 2 in the complex plane.
Red squares: ICB2[0]; green diamonds: ICB2[1]; blue circles: ICB2[2].
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N , the scheme exhibits improved convergence and is stable. Using one moment from the

neighboring cell for the enhancement scheme leads to a stable and 2P +2 order of accuracy

scheme. Including additional moments in the enhancement scheme leads to a numerical

method with increased accuracy but unstable properties. This is most likely due to the fact

that, as more neighboring modes are included, the scheme tends to a central scheme, i.e.

unstable for advection equations due to the lack of upwinding.

3.4 Interior enhancement schemes

While the ICB schemes focus on enhancing the order of accuracy of the interface fluxes,

another approach is to enhance the interior solution accuracy. Replacing uj by an enhanced

solution ûj in the interior integral a
∫
Ωj

∂vj
∂x uj dx in Eq. (3.2) may lead to an increase in the

method order.

3.4.1 Increasing the number of modes

The simplest way of increasing the order of accuracy of the interior solution is by in-

creasing the polynomial representation while preserving the original solution coefficients:

ûj = uj +
N∑

n=P+1

û
(n)
j φn(x) (3.5)

The new coefficients, û
(n)
j can be obtained through a variety of ways, including using the

ICB schemes or downprojecting the RDG solution.

However, a close analysis of the DG discretization shows that any additional higher order

coefficients will not affect the evolution equations for the original coefficients. Orthogonality

of the Legendre polynomials and their derivatives implies that

∫

Ωj

∂φi
∂x

ûj dx =

∫

Ωj

∂φi
∂x

(
P∑

n=0

u
(n)
j φn(x) +

N∑

n=P+1

û
(n)
j φn(x)

)
dx

= 0 ∀i < n

Therefore, all the additional entries for the original coefficients (i = 0, . . . , P ) are zero
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when integrated against higher order coefficients (n ≥ P + 1). Hence, any increase in the

interior solution accuracy by increasing the solution basis space and preserving the original

coefficients will not result in a different DG discretization scheme. The only way to do so

is to change the original coefficients.

3.4.2 Enhancing the original coefficients of the interior solution basis

As discussed previously, we can envision replacing the original coefficients of the solution

by more accurate coefficients,

ûj =
P∑

n=0

û
(n)
j φn(x),

where û
(n)
j are different than the original solution coefficients u

(n)
j . We propose two ways

for determining these new coefficients.

The first involves constraining the new coefficients by (i) preserving the cell average to

maintain a conservative scheme and (ii) fitting the new polynomial to the enhanced cell

interface values, leading to the following system of equations:

û
(0)
j = u

(0)
j

P∑

n=0

û
(n)
j φn(xj+1/2) = ûj+1/2,L

P∑

n=0

û
(n)
j φn(xj−1/2) = ûj−1/2,R

where ûj+1/2,L and ûj−1/2,R could be obtained through the ICB schemes. Unfortunately,

this method, tested for P = 2 and various edge enhancement schemes, is unstable. This

is most likely because the resulting approximation relies on using information from the left

and right neighbors in a central fashion, thereby losing the upwinding property.

A second way of determining the new coefficients is through least-squares matching of
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the solution in neighboring cells,

∫ xj+1/2

xj−1/2

φiûj dx =

∫ xj+1/2

xj−1/2

φi(x)uj dx

∫ xj+3/2

xj+1/2

φj+1
i ûj dx =

∫ xj+3/2

xj+1/2

φj+1
i uj+1 dx

∫ xj−1/2

xj−3/2

φj−1
i ûj dx =

∫ xj−1/2

xj−3/2

φj−1
i uj−1 dx.

Though this provides new coefficients for the interior solution, this technique, tested for

P = 1, 2, leads to a reduced order of accuracy method which is unstable even if paired with

ICB at the interfaces. Solely increasing the interior solution accuracy does not seem to be

a promising avenue for enhancing the DG advection discretization accuracy.

3.4.3 Simultaneous enhancement of the interior and interface solution

In this section, we explore a cell-centered enhancement approach of both the interior

and interface solution. A variation of this scheme was first proposed in [140]. We generalize

this scheme here and explore some of the resulting properties. The key idea of the scheme

is to enhance the interior solution by matching modes on either side of the cell of interest.

For cell j, we therefore solve the following system of equations:

∫ xj+1/2

xj−1/2

φiûj dx =

∫ xj+1/2

xj−1/2

φi(x)uj dx i = 0, . . . , P

∫ xj−1/2

xj−3/2

φj−1
m ûj dx =

∫ xj−1/2

xj−3/2

φj−1
m uj−1 dx m ∈ M

∫ xj+3/2

xj+1/2

φj+1
n ûj dx =

∫ xj+3/2

xj+1/2

φj+1
n uj+1 dx n ∈ N

where M and N are subsets of {0 . . . P}. An important difference with previous schemes

is that M and N can be completely different. Though similar to ccp schemes of Khieu

and Johnsen [140] and PnPM methods, this framework generates a large family of enhanced

polynomials. The enhanced solution therefore belongs to P(P + |M|+ |N |), were |.| is the

number of elements in a set.

Von Neumann analysis shows that the order of accuracy of the method is stable if
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|M| = |N | ≤ P + 1. Though this method shows increased accuracy while preserving

stability, it exhibits an increased stencil because it is based on a cell-centered reconstruction,

i.e. ûj+1/2,L = f(uj−1, uj , uj+1).

3.5 Interface enhancement schemes

For the rest of this chapter, we return to discussing cell interface enhancement schemes.

3.5.1 Upwinding ICB schemes

One reason we believe ICB schemes become unstable when using too much information

from neighboring cells is that the scheme becomes too close to a central scheme and loses

the upwinding property. One way of restoring the upwinding property is by evaluating the

flux at the right edge of the cell using the ICB polynomial enhanced by the neighboring left

cell. Instead of enhancing the cell interface value using downwind information, the solution

is enhanced using upwinding. Instead of the ICB reconstruction procedure Eq. (3.4), we

propose

∫ xj+1/2

xj−1/2

φjnûj+1/2,L dx =

∫ xj+1/2

xj−1/2

φjnuj dx n = 0, . . . , P (3.6a)

∫ xj−3/2

xj−1/2

φj−1
n ûj+1/2,L dx =

∫ xj−3/2

xj−1/2

φj−1
n uj−1 dx n ∈ N (3.6b)

This idea can be expanded to more complex situations where linear combinations of left

and right cell enhancement can be chosen according to wave propagation directions. Un-

fortunately, this method does not lead to a stable and high-order accurate method.

3.5.2 Linear combination of different ICB schemes

While the previous section explored the idea of linear combinations of differing neighbor

ICB enhanced polynomials in order to restore the upwinding property, another strategy

involves combining ICB schemes with different neighboring modes. Enhancing the cell
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interface value becomes

ûj+1/2,L =

P∑

k=0

ωkû
k
j+1/2,L

where ûkj+1/2,L is given by ICBP [k] and the weights ωk satisfy
∑P

n=0 = 1. For P = 1,

this implies a linear combination of ICB1[0] and ICB1[1]. An equal weighting of the ICB

schemes, i.e. ωk = 1
P+1 ∀k, leads to a stable, 2P + 2 scheme. Though this scheme is an

improvement on the traditional DG method, it is comparable to the previous ICB schemes.

An optimal set of weights leading to a 3P + 1 scheme may exist and may be calculated

using optimization tools though it is not clear that this problem is well-posed.

3.5.3 Hierarchical ICB schemes

We previously discussed how the ICB schemes are stable with an order of accuracy

of 2P + 2 when using one mode from the neighboring cell. Building on this observation,

we propose hierarchically enhancing the cell interface value through stable ICB schemes

through the following algorithm:

For i = 0, . . . , P

- Set n = P + 1 + i

- Determine û
(n)
j using ICBP + i[ki]

where the values ki are chosen from the set {0, . . . , P}. For P = 2, the algorithm for

evaluating ûkj+1/2,L can be illustrated by the following:

- Step 1: Starting with the original solution coefficients {u(0)j , u
(1)
j , u

(2)
j } and using

ICB2[k], we can determine three values for the new coefficient û
(3)
j :

- for k = 0, û
(3)
j = −u

(0)
j

22 − u
(1)
j

11 − 3u
(2)
j

11 +
u
(0)
j+1

22

- for k = 1, û
(3)
j = −u

(1)
j

30 − u
(2)
j

5 +
u
(1)
j+1

30

- for k = 2, û
(3)
j = −u

(2)
j

10 +
u
(2)
j+1

10

- Step 2: Perform ICB3[k] on {u(0)j , u
(1)
j , u

(2)
j , û

(3)
j }, where û(3)j is defined by one of the

expressions in step 1 or by the equivalent ICB expression using the left cell (j − 1):
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- for k = 0, û
(4)
j = −u

(0)
j

90 − u
(1)
j

45 − u
(2)
j

15 − 11û
(3)
j

45 +
u
(0)
j+1

90

- for k = 1, û
(4)
j = −u

(1)
j

146 − 3u
(2)
j

73 − 15û
(3)
j

73 +
u
(1)
j+1

146

- for k = 2, û
(4)
j = −u

(2)
j

70 − û
(3)
j

7 +
u
(2)
j+1

70

- for k = 3, û
(4)
j = − û

(3)
j

14 +
û
(3)
j+1

14

It should be noted that none of these approximations, except the last one, requires

information from non-nearest neighbor cells. The stencil remains compact.

We performed Von Neumann analysis for various polynomial orders and different combi-

nations of enhancement schemes. For example, for P = 2, we can construct an enhanced

P = 4 polynomial by hierarchically using ICB3[k1] for û
(4)
j and an average of ICB2[k0]

from the left cell and ICB2[k0] from the right cell for û
(3)
j . This family of schemes, for all

k1 ∈ {0, 1, 2} and k1 ∈ {0, 1, 2} are stable and seventh order (3P + 1). We have therefore

identified a family of enhancement schemes which are 3P + 1 order accurate for the linear

advection equation and stable. This is not a strictly compact scheme as the enhancement

procedure for an interface requires information from both the left and right cell. However,

each step in the algorithm has a compact stencil. This family of schemes when k1 = k0 is

equivalent to the family of schemes proposed in Section 3.4.3 with M = N = {k1 = k0}.

3.6 General problem formulation and properties

Though not of immediate practical use, a general formulation of the enhancement prob-

lem can be stated and the properties of the problem can be explored. In this section, we

formulate the enhancement problem using linear algebra.

The DG evolution matrix M(T ) in Eq. (3.3) can be written for the conventional DG

method as, using Legendre basis functions:

M = D−1 (− (G1 −G0) + F)

where D−1 = [(2i+ 1)δi,j ] i=0,...,P
j=0,...,P

is the inverse mass matrix, G1 = [1] i=0,...,P
j=0,...,P

is the interface

flux matrix at the right cell edge, G0 = T−1
[
(−1)iδi,j

]
i=0,...,P
j=0,...,P

G1 is the interface flux matrix
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at the left cell edge, and F =
[
2
∑P

k=0 δi−k−1,j+1

]
i=0,...,P
j=0,...,P

is the interior flux matrix. Here,

δi,j is the Kronecker delta and we use i for the row index and j for the column index.

Interface-centered enhancing strategies can be incorporated in this framework by defin-

ing Ge, an unknown flux enhancement matrix. This enhancement interface flux matrix

can be written as Ge = A+ TC, where A determines which modes are used from the cell

and B determines the modes used from the neighboring cell. The rows of G should be

identical because the interface value is the same regardless of the coefficient being updated,

i.e. uj+1/2 does not depend on the coefficient u
(i)
j being considered. We can therefore write

G = G1 +Ge

= [1] i=0,...,P
j=0,...,P

+




1

...

1




[
α0 . . . αP

]
+ T




1

...

1




[
γ0 . . . γP

]

where αi and γi are the unknowns that determine the enhancement scheme. Substituting

G1 by G = G1 +Ge in Eq. (3.7) leads to the following enhanced DG evolution matrix:

Me = D−1
(
uvT + F

)
(3.7)

where u =
[
(−1)iT − (P + 1)

]
i=0,...,P

and v = [1 + αi + Tγi]i=0,...,P are column vectors.

The objective for enhancement is to determine αi and γi (i = 0, . . . , P ) such that

1. the eigenvalues of M̂e(β), λi, have negative real parts, i.e. R(λi) < 0;

2. one these eigenvalues has a Taylor series expansion around β = 0 equal to −iβ +

K(iβ)3P+1;

where M̂e(β) = Me(e
iβ) and K is an arbitrary constant.

Several interesting eigenvalue properties can be explored using this framework. The

rank of a matrix which can be written as uvT, where u and v are non-zero column vectors

with n entries, is equal to one. The rank nullity theorem then implies that the nullity of the

matrix is equal to n − 1, i.e. rank(A) + nullity(A) = n, where nullity(A) = dim(ker(A)).

The ker(A) is the eigenspace of the matrix for the zero eigenvalue. Therefore, zero is an
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eigenvalue of the matrix with multiplicity n− 1. We also know that the trace of the matrix

is equal to the sum of the eigenvalues and equal to the product of u and v:

tr(A) =
n∑

i=0

λi = vTu. (3.8)

Hence, the only non zero eigenvalue of the interface flux matrix is

λ = vTu =

P∑

i=0

(
(−1)iT − (P + 1)

)
(1 + αi + Tγi) (3.9)

It can also be shown that the only eigenvalue of F is zero with multiplicity P + 1.1 Un-

fortunately, while these properties are interesting, it is difficult to infer much about the

properties of the eigenvalues of the sum of these matrices (uvT+F). However, this general

formulation of the enhancement problem may be of use in future work.

3.7 Conclusions

In this chapter, we explored several new ways of enhancing the DG method’s discretiza-

tion of the advection equation. While the original DG method is 2P + 1 order accurate,

Recovery DG, recently proposed to discretize the diffusion equation, is greater than 3P

accurate. Our objective is to fix the order of accuracy mismatch for advection-diffusion

simulations by increasing the advection discretization order of accuracy while maintaining

a compact stencil. Building on previous work, we proposed several new families of enhance-

ment schemes, the most promising of which is the hierarchical ICB family which is 3P + 1

and stable. However, this leads to numerical schemes that are not strictly compact, though

each step in the hierarchical enhancement process has a compact stencil.

Future work along this direction to explore enhancement schemes for discretizing the

advection equation with the DG method should be performed. In Section 3.5.2, we proposed

a linear combination of ICB schemes with weights ωk. An optimization problem can be

1The proof is sketched as follows:

1. F is a strictly lower triangular matrix.

2. Strictly lower triangular matrices are nilpotent, i.e. N is nilpotent if Nk = 0 for k > 0 integer.

3. The eigenvalues of nilpotent matrices are zero.
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formulated and, possibly, solved to determine the appropriate weights, under the constraint

that the scheme is stable (eigenvalues in the negative real part of the complex plain), while

maximizing the order of accuracy. Another potential solution strategy could be to explore

different polynomial bases for enhancing the solution. Finally, exploring enhancement in

combination with limiting procedures, such as hierarchical limiting presenting in Chapter II,

could lead to a new limiter that does not reduce the order of accuracy to P + 1.
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Part II

Shocks, waves, and blasts at

interfaces

CHAPTER IV

Numerical simulations of a shock interacting with successive

interfaces using the Discontinuous Galerkin method

This chapter is adapted from Henry de Frahan, M. T., Movahed, P. & Johnsen,

E. 2015 Numerical simulations of a shock interacting with successive interfaces using the

Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor

instabilities. Shock Waves, 25 (4), 329–345.
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4.1 Abstract

In this work, we investigate the growth of interface perturbations following the interac-

tion of a shock wave with successive layers of fluids. Using the Discontinuous Galerkin (DG)

method, we solve the two-dimensional multifluid Euler equations. In our setup, a shock im-

pacts up to four adjacent fluids with perturbed interfaces, Figure 6.2. At each interface,

the incoming shock generates reflected and transmitted shocks and rarefactions, which fur-

ther interact with the interfaces. By monitoring perturbation growth, we characterize the

influence these instabilities have on each other and the fluid mixing as a function of time in

different configurations. If the third gas is lighter than the second, the reflected rarefaction

at the second interface amplifies the growth at the first interface. If the third gas is heavier,

the reflected shock decreases the growth and tends to reverse the Richtmyer-Meshkov (RM)

instability as the thickness of the second gas is increased. We further investigate the effect

of the reflected waves on the dynamics of the small scales and show how a phase differ-

ence between the perturbations or an additional fluid layer can enhance growth. This study

supports the idea that shocks and rarefactions can be used to control the instability growth.

4.2 Introduction

Hydrodynamic instabilities play important roles in high-energy-density physics (hedp)

problems [20], such as in Inertial Confinement Fusion (ICF) [17] and supernova collapse

[29]. The RM instability (RM instability) occurs in flows where a shock interacts with a

perturbed interface between two fluids of different densities. At interfaces, the incoming

shock deposits baroclinic vorticity that drives the perturbation growth [32]. ICF capsules

and supernovae both consist of concentric layers of different materials in a spherical geom-

etry. As a result of high-energy lasers or star collapse, shocks are generated and interact

with these multiple layers. The interfaces, already unstable to the shock interaction, further

experience accelerations due to the converging geometry [141]. As a result, situations in

which a heavy material is accelerated into a light material are also Rayleigh-Taylor (RT)

[38] unstable. These hydrodynamic instabilities govern the subsequent hydrodynamics of

the ICF capsule and the supernovae. In ICF capsules, mixing between the outer ablator
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(a) t = 0.1ms. (b) t = 0.5ms.

(c) t = 2.5ms. (d) t = 6.5ms.

Figure 4.1: Density (left), density gradient (numerical Schlieren, middle), and vorticity
fields (right) for the single-interface RM instability. Shock wave moving down-
wards. Air (top) – SF6 (bottom).

shell and the inner fuel is one of the dominant limitations preventing fusion burn [19].

The canonical RM instability, consisting of a single planar shock wave interacting with

a single planar interface separating two fluids, has been studied extensively in the past,

both experimentally [142, 143, 119, 144] and numerically [145, 120, 146, 147, 72]. While

some of these studies have considered late-time mixing, most have focused on the early time

dynamics. Furthermore, little attention has been given to shocks interacting with multiple

interfaces, a set-up relevant to ICF and supernova explosion. Most of the research involving

multiple layers focused on gas curtains, as in [148, 149, 150], which consider a thin layer of

fluid within another fluid.
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Systematic studies involving shocks interacting with three or more different fluids have

yet to be performed. Following the interaction of a wave with an interface, a reflected

and a transmitted wave are produced. Depending on the acoustic impedance of each fluid

and the incoming wave, the waves resulting from this interaction may be compressions or

rarefactions. For systems with many layers, many such interactions occur, and whether the

growth of a given perturbed interface is enhanced or inhibited depends on the direction

of the baroclinic vorticity deposited by all the waves. Thus, although perturbations are

expected to grow due to the RM instability of the incoming shock, this growth may be

inhibited or enhanced by rarefactions (i.e., transient acceleration fields due to a varying

pressure) depending on whether the system is RT-stable. Furthermore, the growth may be

enhanced by additional RM instability due to subsequent shock interactions. Eventually,

these instabilities contribute to mixing between the layers.

Our objective is to use numerical simulations to investigate the interaction of a shock

wave with successive perturbed interfaces, and specifically RM (due to shocks) and RT (due

to rarefactions) growth. We are interested in determining whether perturbation growth is

enhanced or inhibited due to the fluid properties (acoustic properties of the gases and sep-

aration). We consider multiple adjacent ideal gases separated by single-mode perturbed

interfaces. We use the high-order accurate DG method to solve the multifluid Euler equa-

tions [151, 113]. Using two-dimensional simulations, we analyze the effects of the shocks,

rarefactions, and the separation distance on the mixing between the three fluids. The chap-

ter is organized as follows. First, the physical model and numerical model are presented,

followed by a validation study. We then investigate the perturbations growth for our base-

line problem (a shock interacting with three adjacent gases), and quantify the mixing and

small-scales dynamics. We close with a discussion of phase differences between the pertur-

bations and the addition of a fourth fluid layer.

80



Figure 4.2: Instability growth versus time for the single-interface RM instability. Black
squares: experimental data from [119]. Lines: simulation results at 16 (solid
red), 32 (dash green), 64 (dash-dot blue), 128 (dot orange), and 256 (dash-dot-
dot purple) cells per wavelength.
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4.3 Physical model and numerical method

We consider the two-dimensional Euler equations,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (4.1a)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) = 0, (4.1b)

∂E

∂t
+

∂

∂xj
[uj(E + p)] = 0, (4.1c)

where ρ is the density, ui is the velocity, E = ρe+ 1
2ρuiui is the total energy, e is the internal

energy, p is the pressure and δij is the Kronecker delta. The system is closed by the ideal

gas equation of state relating the internal energy to the pressure, ρe = p
γ−1 , where γ is the

ratio of specific heats. Here, physical diffusion processes are neglected since we consider

high Reynolds number flows.

To avoid spurious pressure oscillations in flows with variable γ, it is necessary to solve

an additional non-conservative transport equation for γ to capture interfaces [54],

∂

∂t

(
1

γ − 1

)
+ uj

∂

∂xj

(
1

γ − 1

)
= 0. (4.2)

We extended this approach to the DG method [151, 113]. The DG method [57, 58, 59,

60, 61] is a numerical method for solving partial differential equations which combines

the advantages of the finite element and Finite Volume (FV) methods. In contrast with

previous RM instability studies using finite difference and FV methods [148, 145, 120, 146,

147], the numerical solution is represented in each computational cell of the domain with

high-order polynomial basis functions. The method is therefore high-order accurate and is

superconvergent in the cell averages at a rate of 2P+1 [55, 56], where P+1 is the number of

basis function in each cell. The method’s compact stencil, i.e., cells communicate only with

their direct neighbors, enables a highly scalable implementation for parallel architectures.

Additionally, the DG method is naturally amenable to unstructured grids. At cell interfaces,

a Riemann solver is implemented to calculate the fluxes between the cells. In this chapter,

the cell fluxes are calculated by the approximate Riemann solver of Roe [106]. Additionally,
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a limiting procedure is required to avoid solution oscillations at flow discontinuities. We

use a non-oscillatory, conservative, and high-order accurate limiting procedure based on

hierarchical reconstruction, which has been suitably modified to prevent spurious pressure

oscillations [113]. Solution limiting is performed gradually and hierarchically from the

highest polynomial degree to the lowest to retain as much of the high-order accuracy of the

method as possible. In contrast with other limiters, e.g, [57], the present limiter does not

reduce the solution to first order in the flow domain but is (P + 1)st order accurate. At

discontinuities, the scheme reduces to first order, as do all FV, finite difference, and DG

method shock-capturing schemes. The system is evolved in time using the standard explicit

fourth-order Runge-Kutta method [152] with a Courant number of 0.5.

Taking advantage of the method’s compact stencil [57], a highly parallel version of

the method on Graphics Processing Units (GPU) is implemented. This allows for simula-

tions completing approximately two orders of magnitude faster than on a single Computing

Processing Units (CPU). The high-resolution simulations in this chapter completed in ap-

proximately one hour. The simulations were performed on GPUs at the Flux cluster at

the Center for Advanced Computing at the University of Michigan. Mesh generation and

post-processing visualization were carried out with Gmsh, a three-dimensional finite ele-

ment mesh generator with built-in pre- and post-processing facilities [112]. Our code has

been used previously to simulate hedp experiments of blast-wave-driven shear flow [114].

4.4 Single-interface RM instability validation

We use the single-mode RM instability experiments of [119] to validate our numerical

method. Two gases, air and SF6, lie in a shocktube at atmospheric pressure, and the inter-

face between the two is sinusoidally perturbed. The properties of air are ρair = 1.351 kg/m3,

γair = 1.276, and those of SF6 are ρSF6 = 5.494 kg/m3, γSF6 = 1.093 [120]. The initial am-

plitude and wavelength of the interfacial perturbations are a0 = 0.183 cm and λ = 5.933 cm,

respectively. The mean air-SF6 interface is initially at y = 0. A Mach 1.21 shock initialized

in air impinges upon the perturbed interface, thereby initiating the RM instability growth.

For these simulations, the domain is one perturbation wavelength wide in the x-direction
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and 20 cm long in the y-direction. The boundaries are periodic on the sides, and we impose

non-reflecting boundary conditions, modeled as zero gradient boundary conditions, at the

entrance and exit of the shock tube. The domain is discretized uniformly in x and y. The

number of cells per wavelength is 128. We use a linear polynomial basis (P = 1) for the

DG method, resulting in third-order accuracy in smooth regions. An exponential diffusion

function is used to initialize a thermodynamically consistent diffuse interface between the

gases [120], with a thickness set to 0.5 cm. To avoid a large spatial domain, we add a

constant upward velocity calculated from an exact Riemann solver so that the post-shock

upward mean velocity is zero and the interfaces remain in the domain. As we are interested

in the mixing layer width, the perturbation amplitudes in this chapter are measured as half

the difference between the maximum and the minimum y-position of the perturbation. The

perturbation location is found by taking the 0.5 contour level of the mass fraction field.

This measure of the amplitude does not take into account the phase of the perturbation.

Upon interaction with the interface, the shock generates baroclinic vorticity due to

the misalignment of the density and pressure gradients (Fig. 4.1a and 4.1b). As a result,

the perturbed interface grows in time, leading to bubbles of light fluid penetrating the

heavier one, and spikes of heavy fluid penetrating the lighter one (Fig. 4.1c and 4.1d).

Figure 4.2 compares the early-time experimental growth (before reshock, at 6.6ms in the

experiment) of the instability with the simulation growth at different resolutions. As the

grid is refined, the results (amplitude) converge in an integral sense, with good agreement

with the experimental data. The numerical results in this chapter were performed using

the grid with 128 cells per wavelength.

4.5 Shock interaction with two successive interfaces

Our baseline problem consists of a shock interacting successively with two interfaces

separated by a distance h. Our set-up can be described as three adjacent gases (A, B, and

C) with interfaces initially perturbed with the same single mode, and a shock initialized in

the first gas (Fig. 6.2). For comparison with single-interface RM instability studies [119],

we choose air for gas A, SF6 for gas B, and a shock Mach number of 1.21. The goal is to
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Figure 4.3: Baseline multi-layered problem setup.

Table 4.1: Relevant properties for the different gases.

Case ρA [kg/m3] γA ρB [kg/m3] γB ρC [kg/m3] γC

nominal [119] 1.351 1.276 5.494 1.093 – –
1 1.351 1.276 5.494 1.093 0.178 5/3
2 1.351 1.276 5.494 1.093 10 5/3

understand how the physics depend on the nature of the third gas (heavy or light — see

Table 4.1). In particular, we study the effect of increasing the thickness of gas B (i.e., the

distance separating gas A from gas C) measured by the non-dimensional distance h
λ , where

λ is the perturbation wavelength. We also change the density of gas C, Table 4.1, to create

either a reflected rarefaction or shock at the second interface. The nominal case (no gas C)

corresponds to the experiment in [119] with no reshock, as in Section 4.4.

4.5.1 Light third gas

We first consider a third gas (C), whose properties correspond to helium and is lighter

than SF6 (B). Figure 4.4 shows the waves produced during the process in an x− t diagram,

and Fig. 4.5 provides a qualitative illustration of the effect these waves have on the dynam-

ics of the interfaces through contours of density, density gradient (displayed as a numerical

Schlieren image) and vorticity. When the shock interacts with the first interface and de-
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Figure 4.4: Wave diagram from a one-dimensional simulation for the baseline problem with
a light third gas (initial shock coming from the right, h

λ = 1). Solid red: air-SF6

interface; dashed green: SF6-light third gas interface.

posits baroclinic vorticity (Fig. 4.5a), a transmitted and a reflected shock are created; the

reflected shock eventually leaves the domain. The transmitted shock then impinges upon

the second interface, and deposits vorticity (Fig. 4.5b). From this latter interaction, a re-

flected rarefaction and another transmitted shock, which eventually leaves the domain, are

produced (Fig. 4.5c). The reflected rarefaction propagates back towards the first inter-

face and interacts with the evolving instability (Fig. 4.5c). Given the sign of the vorticity

already present along the interface due to the first shock interaction, this rarefaction fur-

ther increases the vorticity (Fig. 4.5d). Alternately, this process can be understood as an

accelerated interface in an RT-unstable configuration due to the transient passage of the

rarefaction. This overall process thus initiates two spikes moving in opposite directions:

one into gas A (produced by the incoming shock and reflected rarefaction) and the other

into gas C (due to the transmitted shock). The nonlinear evolution of the perturbations is

visible in Fig. 4.5e and 4.5f. Eventually the reflected waves diminish in strength and do not

affect the dynamics of the interfaces anymore.

The perturbation growth at both interfaces is shown in Fig. 4.6 for different non-dimensional

spacings h
λ between the interfaces. We start by considering the first interface (Fig. 4.6a).
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(a) t = 0.1ms. (b) t = 0.4ms. (c) t = 0.5ms.

(d) t = 0.8ms. (e) t = 2.5ms. (f) t = 6.5ms.

Figure 4.5: Density (left), density gradient (numerical Schlieren, middle), and vorticity
(right) fields for the baseline problem with a light third gas and h

λ = 1. Shock
wave moving downwards. Air (top) – SF6 (middle) – light gas (bottom).

Until the reflected rarefaction reaches it, the growth of the first interface is that of the

nominal case. A transition immediately follows where the growth is nonlinear and increases

dramatically. This behavior is caused by rarefactions reflected from the second interface

and interacting with the first. These rarefactions deposit vorticity at the first interface in

the same direction as the initial shock, thus amplifying the initial growth. These waves have

the effect of accelerating the heavy fluid into the light fluid, an unstable configuration that

leads to transient RT growth. As h
λ is increased, these waves reach the first interface at later

times. As a result, the perturbation amplitude is larger when the rarefaction reaches the

interface, thus enhancing the baroclinic vorticity generation. Additionally, the rarefactions

have spread more, increasing the interaction time with the interface. In this RT unstable

set-up, the acceleration is applied for a longer time. For these two reasons, the growth rate

of the first interface increases with increasing h
λ . After t > 3ms, the growth rate is constant;

it is higher for larger values of h
λ due to the larger amplitude at the time of interaction. By

then, the reflected and transmitted waves have left the domain or decreased in amplitude

such that their effect on the growth is negligible.
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(a) Air-SF6 interface. (b) SF6-light third gas interface.

Figure 4.6: Interface growth versus time for the baseline problem with a light third gas for
different thicknesses of gas B.

(a)
t = 0.6ms.

(b)
t = 2.5ms. (c) t = 5ms.

Figure 4.7: Density gradient (numerical Schlieren) for the baseline problem with a light
third gas for h

λ = 0.5

The morphology and evolution of the second interface is different and strongly depends

on h
λ (Fig. 4.6b). In the case of h

λ = 0.5, a single SF6 spike moves downward while the

air and helium interfaces start interacting on the sides of the spike, (Fig. 4.6b, 4.7). The

evolution of this interface for h
λ = 1.5 is very different. An initial central SF6 spike moves

downward. The interface then experiences a phase reversal following interaction with the

compression generated by the reflection of the rarefaction at the first interface (Fig. 4.6b,

4.8). This effect is less important for the h
λ = 1 case, Fig. 4.6b. At later times, interface

proximity effects affect the flow dynamics by enabling or preventing the phase reversal. In

addition, reflecting waves in the SF6 interact with higher amplitude perturbations as the

separation distance increases, thereby increasing the baroclinic vorticity generation.
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(a)
t = 2.5ms. (b)

t = 3.8ms.
(c)
t = 6.5ms.

Figure 4.8: Density gradient (numerical Schlieren) for the baseline problem with a light
third gas for h

λ = 1.5.

Figure 4.9: Wave diagram from a one-dimensional simulation for the baseline problem with
a heavy third gas (initial shock coming from the right, h

λ = 1). Solid red:
air-SF6 interface; dashed green: SF6-heavy third gas interface.
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(a) t = 0.5ms. (b) t = 0.7ms. (c) t = 5ms.

Figure 4.10: Density (left), density gradient (numerical Schlieren, middle), and vorticity
(right) fields for the baseline problem with a heavy third gas and h

λ = 1.

Table 4.2: Density, velocity, and pressure from solving the shock interactions with an exact
Riemann solver for the baseline problem with a heavy third gas (SI units).

Interaction air SF6 heavy third gas

Shock at 1st interface
ρ 1.87 5.5 10
u 103.6 0 0
p 1.52 105 105 105

Transmitted shock at 2nd interface
ρ 2.07 9.02 10
u 71.75 71.75 0
p 1.72 105 1.72 105 105

Reflected shock from 2nd interface
at 1st interface

ρ 2.07 10.1 14.79
u 71.75 55.43 55.43
p 1.72 105 1.95 105 1.95 105

Post-shock refraction
ρ 2.21 9.74 14.79
u 50.21 50.21 55.43
p 1.87 105 1.87 105 1.95 105

4.5.2 Heavy third gas

We now consider a third gas (C), which is heavier than SF6 (B). Figure 4.9 shows the

different transmitted and reflected waves in an x − t diagram, and Fig. 4.10 provides a

qualitative illustration of the effect these waves have on the dynamics of the interfaces. In

this set-up, the transmitted shock from the first interface leads to a reflected and transmitted

shock at the second interface (Fig. 4.10a). Upon interaction with the evolving RM instability

at the first interface, the reflected shock decreases the amount of vorticity at the first

interface by depositing vorticity in the opposite direction (Fig. 4.10b). Both perturbations

grow in the same direction, with the first spike moving slowly into gas A (Fig. 4.10c).
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(a) Air-SF6 interface. (b) SF6-heavy third gas interface.

Figure 4.11: Interface growth versus time for the baseline problem with a heavy third gas
for different thicknesses of gas B. Black lines: impulsive model [30] for the
growth after the interaction with the first shock and the reflected shock.

Figure 4.11b illustrates the growth of the RM instability at the first interface for different

h
λ . The growth follows that of the nominal case until the reflected shock from the second

interface reaches it. The growth and growth rate decrease thereafter, more so as h
λ increases.

Because the reflected shock moves from a dense to a less dense gas, the reflected shock

deposits vorticity in the opposite direction as the initial shock. Further amplifying this

effect, the greater distance implies that the perturbation has grown more before interacting

with the reflected shock. As h
λ increases, the growth rate becomes negative, indicating a

phase reversal of the RM instability. Although the set-up is analogous, the growth of the

perturbation amplitude does not increase as significantly as in experiments with reshock

[119] because of the weaker transmitted shock and smaller interface perturbations at the

time of interaction, as in the previous section. The monotonic attenuation in the amplitude

with increasing h
λ is most likely limited to cases when the second shock interacts with the

interface before the perturbation becomes nonlinear. It is to be expected that a reflected

shock interacting with a nonlinear interface leads to a large increase in the perturbation

amplitude and increased mix. For h
λ = 1.5, we observe “freeze-out” of the growth due to

the multiple wave interactions [148]. This supports the idea that shell thickness and shock

timing could be used advantageously to minimize the amount of mix and spike penetration

in ICF capsules [20]. The second interface (between the SF6 and the heavy gas) exhibits
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continuous growth and no phase reversal (Fig. 4.11a). The growth rates are similar since the

subsequent waves interact weakly with this interface after the transmitted shock interaction.

In Fig. 4.11b, we compare the impulsive model [30] to the initial growth rate of the

instability and the growth rate after the interaction with the reflected shock. The impulsive

model growth rate is given by

da

dt
= k∆uA+a+0 , (4.3)

where a(t) is the perturbation amplitude, a+0 is the post-shock amplitude, k is the pertur-

bation wave number, A+ = (ρ+1 − ρ+2 )/(ρ
+
1 + ρ+2 ) is the post-shock Atwood number, and

∆u is the velocity jump at the interface following shock refraction. For the nominal case,

the growth rate is 7.4m/s [120]. We solve three Riemann problems using an exact Rie-

mann solver to calculate the numerical values of A+ and ∆u to determine the growth due

to the reflected shock from the second interface: (i) the initial shock interacting with the

first interface; (ii) the transmitted shock interacting with the second interface; and (iii) the

reflected shock from the second interface interacting with the first interface. The various

states of the gases are reported in Table 4.2. The a+0 is measured from two-dimensional

simulations right after shock refraction: a+0 = 0.38 cm for h
λ = 0.5, a+0 = 0.42 cm for h

λ = 1,

and a+0 = 0.58 cm for h
λ = 1.5. We subtract the growth rate due to the reflected shock

from the initial nominal growth rate to obtain the growth after reflected shock interaction:

da
dt = 5.49 m/s for h

λ = 0.5, da
dt = 6.07 m/s for h

λ = 1, and da
dt = 8.38 m/s for h

λ = 1.5.

From Fig. 4.11b, the impulsive model accurately predicts the initial growth rates after both

shock interactions and deviates from the simulation results at later times, as expected.

In Fig. 4.11a, the impulsive model agrees well with the initial growth rate of the second

interface for the three separation distances.

4.6 Fluid mixing

Although physical diffusion is neglected, we are interested in mixing between the differ-

ent fluids through fluid entrainment and dispersion, i.e., at large and intermediate scales.

For analysis purposes, we use metrics analogous to those used to measure chemical mixing.

We quantify the amount of mixing between the fluids using two different approaches.
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(a) M . (b) Ξ.

Figure 4.12: Mixing metrics versus time for the baseline problem with a light third gas for
different thicknesses of gas B.

(a) M . (b) Ξ.

Figure 4.13: Mixing metrics versus time for the baseline problem with a heavy third gas for
different thicknesses of gas B.
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(a) Light third gas. (b) Heavy third gas.

Figure 4.14: Enstrophy versus time for the baseline problem for different thicknesses of gas
B.

(a) Light third gas. (b) Heavy third gas.

Figure 4.15: Turbulent kinetic energy versus time for the baseline problem for different
thicknesses of gas B.

We first define the mix between fluid A and B as

MAB =

∫

S
ρ2YAYB dS, (4.4)

where Y(i) is the mass fraction of fluid i. This equation represents the total reaction rate

in a chemical reaction between fluid A and B with a temperature invariant reaction rate

[153, 154, 155]. The total mix, M , in the system is defined as

M =MAB +MBC +MAC , (4.5)
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where fluid A is the air, fluid B is the SF6, and fluid C is the third gas.

To study mix without the effect of the density difference between the first and second

interface and to distinguish between mixed gas and unmixed entrained gas, we use the ratio

of the total chemical product formed by the mixing fluids and the entrainment length [47].

The chemical product formed by a chemical reaction between fluid A and B limited by the

lean reactant and, with a stoechiometric coefficient of 0.5, is

YAB =





2YA, if YA ≤ 0.5,

2YB , if YB < 0.5.

(4.6)

The total chemical product in the system from this reaction is equal to

PAB =

∫
∞

−∞

〈YAB〉dy, (4.7)

where 〈·〉 denotes the average in the (transverse) x-direction. The maximum chemical

product possible resulting from complete mixing (homogenization) of the two fluids in each

y-plane is

hAB =

∫
∞

−∞

YAB(〈YA〉, 〈YB〉) dy. (4.8)

This quantity is the entrainment length [47], which is also a measure of mixing layer thick-

ness. Another measure of mixing can be defined as

ΞAB =
PAB

hAB
. (4.9)

This quantity is close to unity when the fluids are completely mixed, i.e., PAB ≈ hAB , and

close to zero when the fluids are segregated, i.e., PAB ≪ hAB . It, therefore, distinguishes

between mixed fluids and unmixed entrained fluids. We quantify the total mixing in the

system as

Ξ =
Pm

hm
=
PAB + PBC + PAC

hAB + hBC + hAC
. (4.10)

For the light third gas case, M is shown in Fig. 4.12a. M is larger for the light third

gas case than the nominal case. This is due to the large perturbation growth from the
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(a) Air-SF6 interface. (b) SF6-light third gas interface.

Figure 4.16: Interface growth versus time for the baseline problem with a light third gas
and h

λ = 1 for different phase misalignments.

RT-unstable phase driven by the rarefactions and the presence of two interfaces mixing. M

increases as h
λ increases because of the high growth of the first interface for larger h

λ . Because

of the high density at the air-SF6 interface relative to that at the SF6-light gas interface,

M mostly measures the mixing of the air with the SF6. Figure 4.12b shows the temporal

evolution of Ξ. This quantity starts at a high value because the perturbed interfaces are

initially diffuse and no small-scale features are present. The decrease in Ξ, after the shock

and rarefaction interactions, is due to the entrainment of the fluids that do not mix on

these time scales as the mixing region width increases. As time increases, the mixing

between the fluids increases, as does Ξ. As h
λ is varied, Ξ does not change significantly,

indicating that an increase in entrainment length is balanced with a corresponding increase

in unmixed interpenetrating fluids. The mix between the first and third gases, MAC and

ΞAC , is essentially zero for all cases.

For the heavy third gas case, because of the density weighing, M is dominated by the

mixing at the second interface (Fig. 4.13a). As h
λ increases, the transmitted shock reaches

the second interface later in time. By then, the second interface has stretched more before

being shocked. The increased length of this diffusion layer results in increased M with h
λ

after the transmitted shock interaction. M is almost constant after the shock interaction

because there is little entrainment of the fluids. For the heavy third gas, Ξ is generally

much lower than that for the light third gas (Fig. 4.13b). There is little mixing of the fluids
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(a) Air-SF6 interface. (b) SF6-light third gas interface.

Figure 4.17: Interface growth vs time for the baseline problem with a heavy third gas and
h
λ = 1 for different phase misalignments.

(a) Light third gas. (b) Heavy third gas.

Figure 4.18: Air-SF6 interface growth versus time for the baseline problem, h
λ = 0.5 for

different phase misalignments.

relative to the entrainment of the fluids. When freeze-out occurs (hλ = 1.5), there is a sharp

reversal of the downward trend in Ξ because the interface is diffusing numerically and no

longer growing. For all cases, there is no mix between the first and third gases.
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(a) t = 0.5ms. (b) t = 1ms. (c) t = 3ms.

Figure 4.19: Density (left), density gradient (numerical Schlieren, middle) and vor-
ticity (right) fields for the baseline problem and a light third gas(
h
λ = 0.5 and ∆ϕ = λ

2

)
.

4.7 Characterization of the dynamics at the small scales

To characterize the small-scale dynamics, we present the time evolution of the mass-

weighted enstrophy in the whole domain,

Ω =

∫

S
ρω2 dS, (4.11)

where ω = ∇ × u is the vorticity (Fig. 4.14). The curl is computed using the Gmsh Curl

plugin which evaluates the derivatives of the Lagrange shape functions in each cell. The

derivative operator for the present simulations is, therefore, second-order accurate. Ω varies

with resolution for inviscid calculations but the overall trend, main features, and conclusions

remain unchanged when comparing to higher resolution simulations.

For both the heavy and the light third gas, the shock passage creates a jump in enstrophy

due to baroclinic vorticity deposition at the interfaces and the generation of small scales.

These small-scale features are more prevalent in the light third gas case, as indicated by

the higher enstrophy (Fig. 4.14a). The increase in enstrophy by the reflected rarefaction

waves as explained in Section 4.5.1 is clearly noticeable. For this case, increasing h
λ further

amplifies the small scales in the domain because the rarefaction interacts with a larger

perturbed interface for a longer time.

For the heavy third gas case, the small-scale features are not as prevalent (Fig. 4.14b).

The reflected shock interacts with a heavy-light interface, as opposed to the initial shock,
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(a) t = 0.5ms. (b) t = 2ms. (c) t = 7ms.

Figure 4.20: Density (left), density gradient (numerical Schlieren, middle) and vor-
ticity (right) fields for the baseline problem with a heavy third gas(
h
λ = 0.5 and ∆ϕ = λ

2

)
.

(a) t = 0ms. (b) t = 0.5ms. (c) t = 5ms.

Figure 4.21: Density (left), density gradient (numerical Schlieren, middle) and vor-
ticity (right) fields for the baseline problem with a light third gas(
h
λ = 0.5 and ∆ϕ = λ

4

)
.

and, therefore, the density gradient direction is opposite to that of the initial shock. As a

result, this reflected shock generates baroclinic vorticity in the direction opposite to that

of the initial shock, thereby reducing the amount of enstrophy in the domain (Fig. 4.14b).

For this case, the enstrophy decreases as h
λ increases because the perturbation is larger,

amplifying the baroclinic vorticity generation of the reflected shock.

At the time of interaction with the second interface, the curvature of the shock wave

depends on the distance it has traveled since the first interaction. For h
λ = 0.5, it retains

some curvature upon interaction due to the first interface interaction. For large values of

h
λ , the shock wave adopts a planar configuration by the time it reaches the second interface.

This effect may account for the observed differences in the growths of the second interface

(Fig. 4.11a) as a curved shock deposits more baroclinic vorticity at the interface. Higher

enstrophy is in fact observed for h
λ = 0.5 while the other two distances have similar enstrophy
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(a) Light third gas. (b) Heavy third gas.

Figure 4.22: Air-SF6 interface growth vs time at h
λ = 1 with a fourth gas.

(a) M . (b) Ξ.

Figure 4.23: Mixing metrics vs time for the light third gas case at h
λ = 1 with a fourth gas.

profiles (Fig. 4.14b).

Calculating the energy of the small-scale motions can further expand our understanding

of the energy at the small scales. We denote the average velocities in each horizontal cross

section (spanwise direction) ū and v̄ and calculate the “turbulent kinetic energy” (tke),1

TKE =

∫

S

1

2
ρ
[
(u− ū)2 + (v − v̄)2

]
dS, (4.12)

shown in Fig. 4.15. In the case of a light third gas, the initial shock and subsequent re-

1Since the present simulations are two-dimensional, they cannot represent vortex stretching, and thus

turbulence. By tke, our intent is to describe the energy contained in the small scales.
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(a) Lighter fourth gas. (b) Heavier fourth gas.

Figure 4.24: Wave diagram from a one-dimensional simulation for the light third gas case
with a fourth gas (initial shock coming from the right, h

λ = 1). Solid red:
air-SF6 interface; dashed green: SF6-light third gas interface; dashed-dot blue:
third-fourth gas interface.

flected rarefaction greatly increase the tke in the domain with respect to the nominal case

(Fig. 4.15a). This is due to the effect of the reflected rarefaction as detailed previously.

However, for the heavy third gas case, the reflected shock causes a significant drop in tke

when it deposits vorticity in the opposite direction as the initial shock (Fig. 4.15b). For all

cases, the slight decrease in enstrophy and tke as a function of time is most likely due to

numerical diffusion.

4.8 Effect of a phase difference between successive interfacial perturba-

tions

In the problems to this point, we aligned the interfaces so that the initial perturbations

are in phase. In this section, we investigate the effect of a “misalignment” on the pertur-

bation growth. Because of the periodic nature of the problem, we restrict our study to a

phase difference between the first and second interfaces ∆ϕ ∈ [0, λ2 ]. Specifically, we choose

∆ϕ = λ
4 and λ

2 to compare to our baseline problem, where ∆ϕ = 0.

The effect of the phase difference depends on the separation distance between the inter-

faces. When the interfaces are separated by a distance larger than h
λ = 1, the effect of ∆ϕ

on the growth of either interface is negligible for both the light and heavy third gas cases
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(a) M . (b) Ξ.

Figure 4.25: Mixing metrics vs time for the heavy third gas case at h
λ = 1 with a fourth

gas.

(Fig. 4.16, 4.17). A slight asymmetry in the interface perturbation appears at late times

but it is not very noticeable.

When the interfaces are closer to each other, e.g, h
λ = 0.5, the effect of ∆ϕ is more notice-

able. For the light third gas case, the growth of the perturbations is enhanced (Fig. 4.18a).

When ∆ϕ = λ
2 , the vorticity is deposited in the same direction at both interfaces in each

half of the domain (Fig. 4.19), thereby increasing the growth. This happens to a lesser

extent for ∆ϕ = λ
4 . The case ∆ϕ = λ

2 with a light third gas is analogous to the SF6 gas

curtain presented in [148] when the amplitudes of both interfaces are equal and opposite.

Although our setup differs in the shock Mach number, initial perturbation amplitudes, and

density ratios, Mikaelian [148] observes the same qualitative perturbation growth at both

interfaces.

For the heavy third gas case, the growth diminishes as ∆ϕ increases (Fig. 4.18b). For

∆ϕ = λ
2 , the vorticity is deposited in the opposite direction at both interfaces in each half

of the domain (Fig. 4.20), thereby decreasing the growth. This happens to a lesser extent

for ∆ϕ = λ
4 . When ∆ϕ = λ

4 , there is a clear asymmetry in the evolution of the interfaces

(Fig. 4.21). This behavior is due to asymmetric wave reflections and interface proximity

effects.
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(a) Lighter fourth gas. (b) Heavier fourth gas.

Figure 4.26: Wave diagram from a one-dimensional simulation for the heavy third gas case
with a fourth gas (initial shock coming from the right, h

λ = 1). Solid red: air-
SF6 interface; dashed green: SF6-heavy third gas interface; dashed-dot blue:
third-fourth gas interface.

4.9 Effect of a fourth gas

In this section, we study the effect of a fourth gas on the growth of the instability at

the first interface. For the light third gas case, we use air as a heavier fourth gas and a gas

with ρ = 0.05 kg/m3 and γ = 5
3 as a lighter gas. For the heavy third gas case, we use air as

a lighter fourth gas and a gas with ρ = 15 kg/m3 and γ = 5
3 as a heavier gas.

The presence of a fourth gas can significantly change the growth. For a heavier fourth

gas (Fig. 4.22a), growth of the first interface is enhanced. However, the amount of mix

does not change significantly (Fig. 4.23). The heavier fourth gas has little effect on the

mix. The wave dynamics are such that the reflected rarefactions are stronger and affect

the interface for a longer period of time (Fig. 4.24). A lighter third gas suppresses the

growth and the mixing as the reflected waves are weaker and their interactions decrease the

baroclinic vorticity.

For the heavy third gas case, the growth is enhanced when using a lighter fourth gas

(Fig. 4.22b). At the third interface, a rarefaction is reflected back towards the first interface

(Fig. 4.26a), initiating a RT growth phase at the first interface. When using a heavier

fourth gas, a shock is reflected at the third interface, further amplifying the effect of the

first reflected shock by depositing vorticity in the opposite direction as the initial shock
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and thereby decreasing the growth. Since the growth is small, Ξ increases because there

is a small amount of entrained fluid relative to the mixed fluid (Fig. 4.25). For both the

heavier and lighter fourth gas cases, M is larger because of the density weighing of the mass

fractions. Though the perturbation growth for the heavier fourth gas case is smaller, there

is increased mix in the domain.

4.10 Conclusions

In this work, we used a high-order accurate DG method to simulate the interaction

of a shock wave with successive interfaces separating different gases. In particular, we

investigated the effect of the acoustic impedance (and density) of the third gas on the

growth of the RM instability at the different interfaces. Through this study, we make the

following conclusions:

• If the third gas is lighter than the second gas, the reflected rarefaction at the second

interface amplifies the growth at the first interface for two main reasons: the reflected

rarefaction deposits vorticity in the same direction as the incoming shock and the

perturbation amplitude at the time of interaction with the rarefaction has grown. If

the third gas is heavier, the reflected shock decreases the growth and tend to reverse

the perturbation growth as the thickness of the second gas increases. This behavior is

governed by RM (instantaneous acceleration of the interface) and RT (acceleration of

a heavy fluid into a light one) instabilities, which are both transient in this problem.

• The results strongly depend on the separation distance between the interfaces. We

observed freeze-out in the case of a heavy third gas. This study supports the idea

that perturbation growth may be controlled using rarefactions and shocks [17].

• We characterized fluid mixing through two different metrics. The light third gas

resulted in higher fluid mixing relative to entrained unmixed fluid than the heavy

third gas case.

• To represent the behavior at the small scales, we characterized the temporal evolution

of enstrophy and energy of the small scales by relating this to the effect of the reflected
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waves.

• The phase difference between the perturbations does not affect the growth if the inter-

faces are far from each other. Because of baroclinic vorticity and interface proximity,

the phase difference has a significant effect on the growth if the interfaces are initially

close to each other.

• By adding a fourth gas, we can significantly increase the growth in a light-heavy-

light-heavy or a light-heavy-heavier-light configuration. This effect is due to the RT-

unstable phase of the growth induced by reflected rarefactions.

The present work presents an exploration of a small range of the parameter space; future

exploration of the number of layers, gas properties and thicknesses, and amplitude properties

are desirable to better understand this problem. This study forms the basis for further

three-dimensional studies of randomly perturbed interfaces, transition to turbulence, and

late-time mixing evolution. A more in-depth investigation of such a set-up may be beneficial

to control perturbation growth in ICF.
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CHAPTER V

Interaction of a blast wave with a perturbed interface

5.1 Introduction

Blast wave-driven hydrodynamic instabilities are prevalent in many different scientific

and engineering applications [156, 17, 157, and references therein]. Blast waves are formed

by a sudden localized deposition of energy which increases the density and pressure of

the material at that point [158, 159]. This deposition of energy leads to a shock moving

outwards from the energy source point and a rarefaction wave which follows behind the

shock. The rarefaction eventually overtakes the shock. The resulting interaction decreases

the shock strength [160].

In astrophysics, the explosion from a supernova initiates a blast wave which interacts

with many different layers of materials as it radiates outwards from the center of the core

collapse [161, 29]. Collisions of comets with planets and their atmospheres may lead to

blast waves interacting with different materials [162]. A solar flare can also form a blast

wave which then interacts with the solar wind [20].

As a blast wave interacts with a perturbed interface between two fluids, two important

hydrodynamic phenomena may take place at interfaces [27]. The shock at the front of a

blast wave initiates a Richtmyer-Meshkov (RM) instability1 [30] by instantaneously deposit-

ing baroclinic vorticity at the interface because of the misalignment of the pressure gradient

across the shock and the density gradient across the interface. The rarefaction which imme-

1We emphasize again that this is not a classical instability because it does not exhibit exponential linear

growth and does not contain any feedback mechanisms. To stay consistent with the literature, we will keep

calling it an instability. We should really be referring to the RM process.

106



diately follows the shock front imposes a time varying acceleration of the interface, leading

to a form of the Rayleigh-Taylor (RT) instability [163, 38].

While shock accelerated or RM instabilities and constant acceleration RT instabilities

have been extensively studied in the past [32, 164, 165, 166], blast wave-driven hydro-

dynamic instabilities and hydrodynamic instabilities with time varying accelerations have

recently generated some interest in the community. In traditional fluid mechanics, Vetter

and Sturtevant [142], Leinov et al. [167], Morgan et al. [168], Morgan [169] have looked in-

terfaces driven by complex accelerations including RM with reshock and rarefaction driven

instabilities.

In high energy density physics, Drake et al. [170] performed initial blast wave-driven

experiments of a three-dimensional “egg-crate” patterned perturbation. The experiments

suggested that the RT spikes (dense material penetrating into a less dense one) overtook

the shock. Kuranz et al. [27] studied the perturbation growth by considering both the com-

pressibility effects of the blast wave as well as the RT instability process due to the blast

wave acceleration of the interface. Kuranz et al. [171] performed blast wave-driven insta-

bility experiments to study spike penetration. Experimental results showed narrow spikes

penetrating deep behind the blast wave shock front. Discrepancies in spike penetration and

morphology with simulations were discussed and several hypotheses were proposed.

Computational studies of blast-driven perturbations have explored the effect of the ini-

tial conditions on late-time mixing dynamics and transition to turbulence. Miles et al. [172]

performed simulations of two-dimensional multimode blast-driven instabilities at drive con-

ditions similar to those achievable at the National Ignition Facility. The authors did not

find a self-similar behavior for the development of the mixing layer and showed sensitivity

of the mixing layer width to the initial conditions. In a similar study, Miles et al. [173]

simulated strong blast waves interacting with perturbed interfaces and discussed the effects

of the spike-spike and bubble-bubble interaction on the mix layer growth. In [174], the

flow’s transition to turbulence was shown to be sensitive to the initial conditions and spec-

tra of the perturbations. Miles [175] combines a buoyancy-drag and bubble-merger model

with divergence and compressibility effects and compares the predictions to simulations of

cylindrical blast wave-driven instabilities. Finally, Mori [176] used simulations to study the
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effects of a blast wave interacting with a bubble on suppressing the vorticity production by

the rarefaction.

Models for hydrodynamic instabilities generally follow two different directions: the first

uses vorticity models to infer the perturbation growth, the second relies on potential flow

models. The present discussion will focus on growth and vorticity models that pertain to

hydrodynamic instabilities driven by blast waves or subject to time varying accelerations.

Vortex models for the RM instability were first proposed by Samtaney and Zabusky

[36], Zabusky et al. [177], Zabusky [178]. Jacobs and Sheeley [37] modeled the growth of

single-mode RM instability experiments by assuming a row of line vortices at the interface.

Similarly, Rikanati et al. [179] expanded this model and used multi-mode RM instabilities

to validate a model of the mixing zone growth using vortex dynamics. Vortex deposition

models have had much success modeling RM instabilities [143, 180, 181, 182, 168].

Using potential flow arguments, Oron et al. [39] proposed a buoyancy drag model for

the late-time growth of bubbles subject to a RT instability with time varying acceleration.

Srebro et al. [183] expanded this model to span the early-mid-late time growth evolution by

incorporating exponential decay terms based on the perturbation growth. Miles [184, 28]

develop a buoyancy drag model for blast-driven instabilities which incorporate the effects of

the shock (RM instability), compressibility, and time dependent acceleration (RT instabil-

ity). This model was compared successfully to experiments by Kuranz et al. [27]. Miles [184]

presents a bubble merger model for multimode perturbations interacting with blast waves.

Building on [185], Mikaelian [186] proposed a generalized Layzer model for non-constant

complex accelerations of perturbed interfaces with time-varying Atwood numbers. This

modeled resulted in a coupled set of ordinary differential equations to solve numerically.

Drake [187] modeled the spike and drag induced by the broadening of the spike tip to find

that that the resulting drag had a strong effect on the spike penetration.

The objective of this work is to use numerical simulations to investigate two-dimensional

planar blast waves interacting with perturbed gas interfaces. The resulting interaction gives

rise to RM and RT growth, depending on the shock strength and blast profile. Specifically,

we want to identify regimes in which one or the other instability dominates. In contrast with

previous studies, we seek to provide models of both the perturbation growth and vorticity
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production mechanisms for two configurations.

We focus here on a blast wave going from a heavy fluid to a lighter one (RT unstable

configuration) as this is the fluid configuration most relevant to supernova physics. How-

ever, most of the models we propose do not rely on this assumption. Our analysis is based

on simulations of a two-dimensional planar blast wave, modeled by a shock (instantaneous

acceleration) followed by a rarefaction (time-dependent deceleration), interacting with a

sinusoidal perturbation at an interface between two fluids. Our blast wave model is such

that we can control the shock front Mach number, the rarefaction strength and the rar-

efaction length. Varying these three parameters, as well as the configuration, enables a

rigorous exploration of the instability dynamics. We use a high-order accurate Discontinu-

ous Galerkin (DG) method to solve the multifluid Euler equations that model the system.

The chapter is organized as follows. First, we present the physical model and numerical

methods. The problem setup, including the fluid properties and blast wave model, is then

detailed. After a qualitative description of the problem, we provide models of the position,

velocity, and acceleration of a one-dimensional interface driven by a blast wave, as well as

models for the volumetric expansion or compression of the interface. These models are vali-

dated with one-dimensional simulations. Finally, using simulations of two-dimensional blast

wave-driven hydrodynamic instabilities, we develop and validate models of the perturbation

growth and vorticity production mechanisms.

5.2 Problem setup

5.2.1 Domain and fluid properties

For the two-dimensional simulations, the domain is half a perturbation wavelength-

wide, λ, in the x-direction and 70λ long in the y-direction. Since we are interested in the

time evolution of the interface growth, the large domain is necessary to ensure that the

interface stays inside the domain as it is being driven by the blast wave. The x = 0 and

x = λ/2 boundaries are reflective boundaries, i.e. walls, to enable the simulation of just

half the domain. Non-reflecting boundary conditions, modeled as zero gradient boundary

conditions, are used at the ends of the shock tube. Grid stretching at the top and bottom
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Figure 5.1: Problem setup.

of the shock tube is used to minimize reflections from the boundaries. Otherwise, the mesh

is uniform in x and y from y = −30λ to y = 20λ and there are 200 cells per wavelength.

At this resolution, integral quantities are converged. For the DG method, a quadratic

polynomial basis (P = 2) is used to achieve fifth-order accuracy in smooth regions of the

flow. A thermodynamically consistent diffuse interface between the gases [120] is initialized

using an exponential diffusion function with an initial thickness of 0.08λ. To measure the

mixing layer width, the reported perturbation amplitude is the half difference between the

x = 0 and x = 0.5λ interface locations. The location of the perturbation is defined as the

0.5 contour level of the mass fraction field. The initial perturbation amplitude, a0, is 0.03λ.

The setup is similar for the one-dimensional simulations.

Our problem consists of a model blast wave propagating downwards to interact with

with an initially perturbed interface separating two gases A and B of different densities and

a constant ratio of specific heats, γ = 1.4, Figure 5.1. The density of the top fluid ρA,

is the reference density and the density of the bottom fluid, ρB = 1
3ρA. This corresponds

to the configuration of a a heavy fluid on top of a light one where the Atwood number
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A = ρA−ρB
ρA+ρB

= 0.5. All quantities in this chapter are appropriately normalized by λ, ρA, and

the speed of sound cA =
√

γρA
p0

, where p0 = 105Pa.

5.2.2 Modeling the blast wave

A sudden and large deposition of energy in a highly localized region in space often results

in the formation of a blast wave. The blast wave propagates in the radial direction outwards

from the energy source. The blast configuration is that of a shock followed by a rarefaction

and analytical solutions of the blast propagation, often referred to as the Taylor-Sedov blast

wave solutions, have been extensively studied [158, 159].

In the present study, the blast wave is modeled explicitly as a shock followed by a

rarefaction, Figure 5.2. This flexible initialization was chosen to provide precise control

over the blast front Mach number,Ms, blast wave strength, K, and blast wave length when

it reaches the interface, L. We denote the region ahead of the shock with a subscript 0,

the post-shock/pre-rarefaction region with 1, the region inside the rarefaction with r, and

the region behind the rarefaction with 2. In contrast with previous studies of blast-drive

instabilities where there is an adiabatic rarefaction expanding into a vacuum, the post-

rarefaction region is maintained at a constant pressure and velocity. Experimentally, these

conditions can be achieved in a shock tube by initiating a shock and designing the reservoir

such that the rarefaction reflects off the end of the shock tube and catches up with the

shock just as it reaches the interface.

In one-dimensional simulations, the shock is located at ys, the head of the rarefaction is

at yh and the tail is at yt. The shock and the rarefaction are both moving towards the left

(or downwards in two-dimensional simulations). The distance between the initial positions

of the shock and the following rarefaction is such that the rarefaction reaches the interfaces

at the same time as the shock, i.e. ys = yh = yi0 at ti, where yi0 is the initial interface

location and ti is the time of when the blast wave reaches the interface.

In the post-shock region, given a Mach number, the shock relations determine ρ, u, and
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(a) Initial profile and definition of the
different flow regions.

(b) Profile at interface interac-
tion time, ti, with the problem
parameters.

Figure 5.2: Schematics of modeled blast wave pressure profile.

p:

ρ1
ρ0

=
(γ + 1)M2

s

(γ − 1)M2
s + 2

, (5.1a)

u1 = 1− ρ0
ρ1
us, (5.1b)

p1
p0

=
2γM2

s − (γ − 1)

γ + 1
, (5.1c)

where the shock velocity us = −Msc0. The shock position is ys(t) = ust+ ys0 where ys0 is

the shock origin.

The strength of the rarefaction, K, is defined as K = p2
p1

and determines the flow

conditions in region 2:

ρ2
ρ1

= K
1
γ , (5.2a)

u2 =
2c1
γ − 1

(
1−K

γ−1
2γ

)
+ u1, (5.2b)

The rarefaction is moving into a flow moving at the post-shock velocity u1. Inside the
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rarefaction, we have

ρr
ρ1

=

(
1− γ − 1

2

|ur − u1|
c1

) 2
γ−1

, (5.3a)

ur =
2

γ + 1

(
c1 − u1 +

y − yr0
t

)
+ u1, (5.3b)

pr
p1

=

(
1− γ − 1

2

|ur − u1|
c1

) 2γ
γ−1

, (5.3c)

where yr0 is the rarefaction origin. The rarefaction head location is yh = −(c1 − u1)t+ yr0

and the tail location is yt = −
(
c1 − u1 − γ+1

2 (u2 − u1)
)
t+yr0. The non-dimensional length

of the rarefaction is therefore L = l
λ = |yh − yt| = γ+1

2 (u2 − u1)t. Given Ms, K, and L,

we can determine ys0 and yr0 such that the shock and rarefaction coalesce to form a blast

wave as they reach the interface. The time at which a rarefaction of length L reaches the

interface is ti =
2

γ+1
L

u2−u1
. Using ti, we can solve for the shock and rarefaction origins:

yi0 = ys(ti) ⇒ ys0 = yi0 − usti, (5.4a)

yi0 = yh(ti) ⇒ yr0 = yi0 + (c1 − u1)ti. (5.4b)

The simulations are initialized at t0 = 0.5ti. This setup provides similar Mach number

decay rates and blast profiles as the point blast initialization, Figure 5.3, and allows us

to explicitly control the shock Mach number, the rarefaction length, and the rarefaction

strength.

5.3 Perturbation growth of a blast-driven interface

Before exploring our analysis of the blast-driven hydrodynamic instability, we first

present some qualitative results of the perturbation dynamics through visualizations of den-

sity, simulated Schlieren, and vorticity from a blast wave with Ms = 3, K = 0.1, and L = 1

interacting with a heavy-light interface, Figure 5.4. We also show plots of the amplitude

and circulation corresponding to each of the snapshots, Figures 5.4e and 5.4f. Figure 5.4a

illustrates the initial condition. The blast wave moves downward and can be clearly iden-

tified in the density and Schlieren figures. When the shock hits the interface, Figure 5.4b,
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(a) Density profile of the blast wave as a func-
tion of time.

(b) Decay of the shock front Mach number
as a function of distance traveled by the blast
wave for different initial blast pressure ratios.

Figure 5.3: Comparison of the density profile and shock Mach number for a blast wave
initialized by a localized deposition of energy and our model of the blast wave
using a shock and a rarefaction. Solid lines and symbols: point-source blast
wave; dashed lines and empty symbols: model blast wave.

it induces a phase reversal of the interface and generates vorticity at the interface because

of the misalignment of the density gradient across the interface and the pressure gradient

across the shock. We refer to this early and short-lived phase as the RM phase. As the

rarefaction behind the shock interacts with the interface it continues to generate baroclinic

vorticity because of the misalignment of the density and pressure gradients, Figure 5.4c.

The perturbation amplitude and circulation in the domain increase accordingly. During

this interaction phase, the interface is being both accelerated and decompressed. Finally,

after the wave has left the interface, the circulation remains constant and the perturbation

keeps growing because of the vorticity at the interface, Figure 5.4d. We refer to this as

the coasting phase. In the following sections, we explore each phase and provide modeling

insight into the growth and vorticity dynamics.

5.4 One-dimensional perturbation growth

In this section, we develop models of volumetric expansion, interface acceleration, and

blast wave interaction time with the interface. Volume changes of the material due to the

passage of the blast wave will contribute to the growth of the interface perturbation. Un-
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(a) t = 0 (b) t = 0.4

(c) t = 1.2 (d) t = 12

(e) Amplitude as a function of time. (f) Circulation as a function of time.

Figure 5.4: A blast with Ms = 3, K = 0.1, and L = 1 interacts with an interface. Vi-
sualizations of density, simulated Schlieren, and vorticity, as well as plots of
perturbation growth and circulation. Shaded green background: early phase
(RM); shaded blue background: interaction phase; shaded orange background:
coasting phase.
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derstanding the interface acceleration is important for modeling the growth of the interface

due to the RT instability. Finally, the interaction time between the blast wave and the

interface will determine the duration during which the interface will undergo volumetric

expansion and unstable growth. We explore these three quantities through one-dimensional

models and simulations.

5.4.1 Volumetric expansions of blast waves at interfaces

As the blast wave traverses the material, it changes the material volume by compressing

it first (the shock front) and then decompressing it (the following rarefaction). Volumetric

changes will have an effect on the growth of the perturbation. Models for volumetric changes

will be useful in determining the decompression effects on the two-dimensional perturbation

growth.

We start by analyzing the volumetric expansion associated with a pure rarefaction in-

teracting with an interface. Using the simple wave theory of gas dynamics and the method

of characteristics, we can explicitly solve for the states of the gases after the rarefaction

has interacted with the interface, Figure 5.5a. Assuming a pure rarefaction interacting with

a gas-gas interface, with the rarefaction initialized in the A medium and moving into the

B medium, the isentropic relations state that the ratio of sound speeds pre- and post-

rarefaction interaction is

cAr

cA
= 1− T

γ − 1

2

u2
cA

(5.5a)

cBr

cB
= 1− T

γ − 1

2

u2
cA

(5.5b)

where cA is the initial sound speed in the A medium, cAr the sound speed in medium A after

rarefaction interaction, cB the initial sound speed in the B medium, cBr the sound speed in

medium B after rarefaction interaction, T = 2α
α+1 the transmission coefficient (α = cA

cB
). By

combining the isentropic relations and the expression relating the sound speed to pressure,

116



(a) Rarefaction interaction. Green: incoming
rarefaction; blue: transmitted rarefaction; or-
ange: reflected rarefaction.

(b) Blast wave interaction. Green: incoming
rarefaction and shock; blue: transmitted wave;
orange: reflected wave; purple: reflected wave
from the shock.

Figure 5.5: Schematic representing the interaction of a waves with an interface.

we have

pBr

p0
=

(
cBr

cB

) 2γ
γ−1

(5.6a)

ρBr

ρB
=

(
cBr

cB

) 2
γ−1

(5.6b)

and similarly for material A. Therefore, the associated volume change due to the passage

of the rarefaction is

aAr = aA

(
pAr

p0

)−1
γ

(5.7a)

aBr = aB

(
pBr

p0

)−1
γ

. (5.7b)

For a blast wave, we must take into account the effect of the shock. When the blast

is going from a heavy gas into a lighter one, there is a reflected rarefaction and a trans-

mitted shock, Figure 5.5b. The reflected rarefaction is going to interact with the incoming

rarefaction wave (the main part of the blast wave) and change its properties.
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Though the shock and incoming rarefaction reach the interface at the same time, for the

purpose of determining the effect of the reflected waves on the the incoming rarefaction, we

break down the problem into two parts:

1. the shock hits the interface and a reflected rarefaction is created;

2. this reflected rarefaction interacts with the incoming rarefaction wave.

For the first part, we assume that the characteristics of this reflected rarefaction are solely

determined by solving the Riemann problem of the shock interacting with the interface.

An exact Riemann solver provides the density, velocity, and pressure of the reflected rar-

efaction. We denote the state between the transmitted shock and the reflected rarefaction

with subscript 3. We note that this region is used for derivation purposes only, in reality it

is vanishingly small since the shock and rarefaction are timed to reach the interface at the

same time.

Following the derivation of Courant and Friedrichs [188], we solve the interaction of this

reflected wave with the incoming rarefaction to determine its effect on the main rarefaction.

The state behind the incoming rarefaction, after the reflected wave has interacted with it,

is denoted with subscript 4. The pressure and volume in this state can be determined as

p4
p3

=

(
c4
c3

) 2γ
γ−1

and
V4
V3

=

(
p4
p3

)−1
γ

,

where c4 = γ−1
4

(
u3 − u2 +

2
γ−1(c3 + c2)

)
. The strength of the modified rarefaction, p4

p1
is

increased with respect of the original rarefaction strength, K, because the reflected rarefac-

tion decompresses the incoming one. The length of the rarefaction does not influence the

volume change felt by the interface because the length does not influence the pressure in

the post-wave region. This model for the volume change was implemented and shows good

agreement with one-dimensional simulations across a wide range of shock mach numbers

and rarefactions strengths, Figure 5.6. The volume change in the simulations was measured

by tracking Lagrangian particles initially located at ±a0 with respect to the interface.

This model enables us to map the decompression ratio, ν = a4
a0
, as a function of Ms

and K. The length of the rarefaction does not influence the decompression near the inter-
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Figure 5.6: Volumetric change, ν, from simulation compared to the volumetric change, pre-
dicted by our model. Solid black line: exact. Symbol fill color denotes K: red:
K = 0.05; green: K = 0.1; blue: K = 0.3. Symbol type denotes Ms: square:
Ms = 1, diamond: Ms = 1.2, circle: Ms = 2, pentagon: Ms = 2.5; hexagon:
Ms = 3.

face. Figure 5.7 shows how this ratio varies in the Ms-K phase space. As the blast wave

strength increases (K → 0), the decompression ratio increases. Similarly, as the Mach

number increases, the decompression ratio increases as well. However, beyond Ms = 5, the

compression from the shock reaches the strong shock limit, i.e. the maximum compression

from a single shock is reached, and increasing Ms no longer has an effect on the volumetric

change. The red line in Figure 5.7 delineates the ν = 1 contour. To the right of this line,

ν is less than one, indicating that volumetric change does not play a significant role in the

perturbation growth. The region corresponding to ν < 1 indicates a region in the phase

space where volume changes significantly affect the perturbation growth.

5.4.2 Interface acceleration and interaction time

The duration over which the interface will experience an acceleration as well as the

acceleration itself are important as they determine the RT unstable growth phase of the

perturbation. Exact expressions for the interaction time, te, and accelerations, g, for the

model blast wave do not exist. We propose here models to approximate these quantities.

To estimate the interaction time and interface acceleration, an example of which is
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shown in Figure 5.10, we combine two different approximations of the interface trajectory

by the model blast wave. The first approximation relies on using the incoming rarefaction

(main part of the blast wave), suitably modified to account for the reflected wave due to

the shock and reflections at the interface, Figure 5.8a. The interface position driven by this

rarefaction can be found by solving the following ordinary differential equation:

dỹi
dt

= (1−R)
2

γ + 1

(
cA1 − u1 +

ỹi − yr0
t

)
+ u3

where R is the (post-shock) reflection coefficient accounting for the incoming rarefaction

reflections at the interface, cA1 − u1 is the velocity of the rarefaction wave head, and u3 is

the velocity of the interface right after the shock hits it. Solving this equation and then

differentiating ỹi(t) provides the interface velocity, ũi(t), and the interface acceleration, g̃(t).

An approximation of the interaction time can be determined by solving for the intersection

of the rarefaction tail and the interface position. The rarefaction tail does not follow a sim-

ple path in the y-t plane because it traverses a fluid with variable sound speed (due to the

reflections from the interface). However, we assume that it travels at a constant velocity,

given by the post-interaction state, γ+1
2 u4 − cA4, where u4 = (1− R)u2, an approximation

of the interface velocity after the blast wave interaction. This is similar to assuming that

the interface is being driven by a rarefaction with a different post-rarefaction state. Though

not immediately obvious, it can be shown, by comparing the velocities and trajectories of

this assumed tail and the original tail, that this will provide an overestimate of the inter-

action time for the case of a heavy-light interface (and an underestimate for a light/heavy

interface).

Similarly, a second approximation of the interface dynamics and the interaction time

can be obtained by looking at the transmitted rarefaction wave, Figure 5.8b. We assume

an interface driven now by a centered rarefaction originating at

ŷr0 = yi0 + (cB3 − u3)ti.
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Figure 5.7: Decompression ratio, ν = V4
V0
, as a function of rarefaction strength, K, and

shock Mach number, Ms. Solid red line: ν = 1 contour.

(a) Interface driven by the incoming wave. (b) Interface driven by the transmitted wave.

Figure 5.8: Schematic representing the incoming and transmitted waves driving the inter-
face.
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The interface position is then given by

dŷi
dt

= (1−R)
2

γ + 1

(
cB3 − u3 +

ŷi − ŷr0
t

)
+ u3

where we recall that cB3−u3 is the velocity of the transmitted rarefaction wave head in the

B fluid right behind the transmitted shock. Differentiating the solution to this equation

provides the interface velocity and accelerations. Again, we assume that the tail of this

rarefaction travels at a constant velocity, γ+1
2 u4 − cB4. Solving for the intersection of

the interface with this tail determines a second approximation of the interaction time. In

contrast with our previous estimate, a similar analysis of the tail velocities shows that

this provides an underestimate of the interaction time for a heavy-light interface (and an

overestimate for a light-heavy interface).

Since our two approximations of the interface dynamics, one based on the incoming rar-

efaction, the other on the transmitted rarefaction, provide an overestimate and an underes-

timate, we average the interface dynamics and interaction times from both predictions. We

verified these predictions by comparing to one-dimensional simulations and obtained good

agreement in the parameter range of interest, Figure 5.9.

Using this model of the interface dynamics enables the systematic analysis of the in-

terface acceleration. According to Shvarts et al. [189], if the interface is experiencing an

acceleration which decays as g(t) ∼ tβ and β < −2, then the interface is undergoing a RM

instability. If β > −2, i.e. the acceleration decays slowly, then the interface is undergoing

a RT instability. For β = 0, the acceleration is constant, corresponding to the classical RT

instability. Our model of the interface acceleration can be used to provide an estimate of

the decay parameter, β, as a function of Ms, K, for L = 1, Figure 5.11. Across the range

of interest, β is close to one, indicating that the interface is in the RT regime. The decay

parameters decreases with increasing L but increases with increasing Mach number and

rarefaction strength. Since the wave has a finite length and the velocity is constant in the

post-wave region, the interface acceleration goes to zero after the wave leaves the interface,

Figure 5.10.
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Figure 5.9: Interaction time from simulation compared to the interaction time predicted by
our model. Solid black line: exact. Symbol fill color denotes K: red: K = 0.05;
green: K = 0.1; blue: K = 0.3. Symbol edge color denotes L: red: L = 1;
green: L = 2; blue: L = 3. Symbol type denotesMs: square: Ms = 1, diamond:
Ms = 1.2, circle: Ms = 2, pentagon: Ms = 2.5; hexagon: Ms = 3.
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(b) Zoom of left figure.

Figure 5.10: Acceleration as a function of time for Ms = 3, L = 2, K = 0.1.

123



10
−3

10
−2

10
−1

10
0

K

1

2

3

4

5

6

7

8

9

10

M
s

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0β

(a) L = 1.

10
−3

10
−2

10
−1

10
0

K

1

2

3

4

5

6

7

8

9

10

M
s

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0β

(b) L = 3.

Figure 5.11: Acceleration decay parameter, β, as a function of rarefaction strength, K, and
shock Mach number, Ms.

5.5 Growth and vorticity dynamics of a blast-driven instability

In this section, we explore the perturbation growth and the vorticity dynamics for a

single-mode perturbation driven by the model blast wave.

5.5.1 The early phase

The early growth phase is dominated by shock dynamics. As previously discussed, the

shock deposits baroclinic vorticity at the interface through the last term in the vorticity

evolution equation for a two-dimensional inviscid flow:

∂ω

∂t
+ (u · ∇)ω = ω(∇ · u) + 1

ρ2
(∇ρ×∇p). (5.8)

The evolution equation for the circulation in the half-domain, Γ =
∫
S ω dS, is

∂Γ

∂t
=

∫

S

1

ρ2
(∇ρ×∇p) dS (5.9)

It can be shown that the other two terms in Eq. (5.8), though they are different fields locally,

balance each other when integrated in the half domain, see AppendixD. The following initial
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Figure 5.12: Early phase amplitude and circulation for Ms = 3, L = 1, and K = 0.1.

perturbation growth rate has previously been proposed [30]:

ȧ(t) = k∆uAa0

where k = 2π
λ , ∆u is the velocity change due to the shock, A is the Atwood number, and a0

is the initial perturbation amplitude. Other work [190] has indicated that some restrictions

to this model may apply. However, this model is a good first approximation for the growth

in this phase.The vorticity distribution and the circulation have been shown to be [37]

ω(x) = −2ȧ0 sin(kx) and Γ =
−4

k
ȧ0.

There is good agreement between these predictions for the perturbation growth and circu-

lation and the simulation results at early time, Figure 5.12. These quantities will form the

initial conditions for modeling the interaction phase, the subsequent growth phase.

5.5.2 The interaction phase

During the interaction phase, the growth of the perturbation is driven by two simulta-

neous effects: volumetric change due to the change in pressure from the rarefaction; and

the RT instability from the time-varying and transient acceleration of a heavy fluid into a
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light one. Similarly to previous studies [27], we assume that these effects are additive

a(t) = avol(t) + ainst(t)

where avol(t) is the perturbation growth due to volumetric change and ainst(t) is the growth

due to the acceleration. We have already discussed and provided models for the growth of

the perturbation due to volumetric change in Section 5.4.1. As indicated by our study of

the interface acceleration, we focus on RT models of the perturbation growth. The most

common model for the non-linear stage of the RT instability with a time varying acceleration

field is a buoyancy-drag model detailed in [39],

(ρb + Caρs)
dub
dt

= (ρs − ρb)g(t)−
Cd

λ
ρsu

2
b (5.10a)

where ρb is the bubble density, ρs the spike density, ub the bubble velocity with respect to

the one-dimensional interface, Ca the added mass coefficient (Ca = 2 in two dimensions),

and Cd the drag coefficient (Cd = 6π in two dimensions). The model has some success

describing the bubble evolution in the non-linear stages of the perturbation growth. Srebro

et al. [183] proposed the addition of a dependence on the amplitude growth to model the

early-mid-late stages of the growth through a term, E(t) = exp (−Cekhb), where hb is the

bubble height, k = 2π
λ , and Ce = 3 in two dimensions. The bubble growth model then

becomes

((CaE(t) + 1)ρb + (Ca + E(t))ρs)
dub
dt

= (5.11a)

(1− E(t))(ρs − ρb)g(t) −
Cd

λ
ρsu

2
b .

In the linear growth stage, a first order expansion about hb reduces this model to

dub
dt

= Akhbg(t). (5.12a)

Figure 5.13 illustrates the growth of the bubble and spike with respect to the interface (from

one dimensional simulations) and compares it to the predictions from the buoyancy-drag
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Figure 5.13: Bubble and spike growth as a function of time in the interaction phase (blue
shading). Solid red: bubble growth, hb; dashed red: spike growth, hs; solid
black: buoyancy drag model of bubble growth; dashed black: buoyancy drag
model of spike growth.

model. The growth model seems to accurately describe the growth of the perturbation

during the interaction phase.

5.5.3 The coasting phase

After the wave leaves the interface, the vorticity present at the interface continuously

induces perturbation growth. The circulation is constant in this phase as there is no source

or sink of circulation (excepting of course numerical diffusion). In this phase, buoyancy-drag

models fail to capture the growth dynamics as the acceleration field is zero.

Dimensional analysis of the growth suggests that

a(t) ∼
√

Γct (5.13)

where Γc is the constant circulation in this growth phase and can be expressed as:

Γc =

∫

te

∫

S

∇ρ×∇p
ρ2

dS dt (5.14)

=

∫

te

∫

S

|∇ρ||∇p| sin θ
ρ2

dS dt (5.15)

= f(|∇ρ|, |∇p|, ρ, θ, a, λ, t) (5.16)
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where we integrate baroclinic vorticity generation over the wave interaction time and the

area containing the interface, S. The quantities in the integral can be related to the input

parameters. The sin θ term depends on t and S but is mostly O(1), i.e. sin θ ∈ [0, 1].

Since the interaction time between the interface and the blast wave also scales linearly

with the blast wave length, the wave interacts for a longer time and, therefore, generates

correspondingly more vorticity at the interface. Ignoring the effect of reflections on pressure,

the pressure inside the rarefaction can be related to L and K as such:

pr = p0

(
1− γ − 1

γ + 1
− γ − 1

γ + 1

yi
L

(
1−K

γ−1
2γ

)) 2γ
γ−1

(5.17)

Finally, assuming an isentropic flow, the density is related to the pressure:

ρr = ρ0

(
pr
p0

)
(5.18)

and a corresponding equation for the density gradient can be obtained. Plugging the re-

sulting expressions into Eq. (5.15), it can be shown after some manipulation, that

Γc = F (Ms, A)L
(
1−K

γ−1
2γ

)2
. (5.19)

This hypothesis can be verified by observing that Γc does indeed scale linearly with the blast

wave length, Figure 5.14. However, the slope of this linear relationship depends strongly

on the rarefaction strength and the shock Mach number. Additionally, Γc also follows a

quadratic power law with the rarefaction strength, Figure 5.15. For Ms = 1.2, there seems

to be a strong interaction between a weak shock and the rarefaction that negatively affects

the power law scaling.

In Figures 5.16 and 5.17, we show for various parameter sets, the perturbation growth as

a function of time. For a fixed Ms and K, increasing L increases the perturbation growth

because the RT unstable phase lasts longer, Figure 5.16a. For a fixed K and different

Ms, the growth increases with increasing Ms and K, Figure 5.17a. However, dividing the

perturbation growth by
√
Γct leads to a collapse of the data around −0.4, Figure 5.16b and

5.17b. This indicates that vorticity is indeed the main driver of perturbation growth in this
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Figure 5.14: Circulation in the coasting phase, Γc, as a function of rarefaction length, L, for
different shock Mach numbers,Ms, and rarefaction strengths, K. Red squares:
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Figure 5.16: Perturbation growth as a function of time for a fixed Ms = 3 and K = 0.1.
Solid red: L = 1; dashed green: L = 2; dot-dashed blue: L = 3.

phase and the circulation can be used to capture the perturbation growth.

5.6 Conclusion

In this chapter, we investigated the interaction of a blast wave with an interface in an

RT-unstable configuration (based on the blast wave acceleration profile). We modeled the

blast wave by a shock followed by a rarefaction, both initiated to reach the interface at the

same time and form a blast wave profile. This blast wave model was validated through com-

parisons of point source blast wave simulations. Using fundamental gas dynamics theory, we

elucidated the dynamics and, based on this knowledge, developed one-dimensional models

of the interface dynamics, focusing on the volumetric change and interface acceleration due

to the passage of the blast wave. These models agreed well with simulations and allowed

for the subsequent modeling of two dimensional hydrodynamic instability growth.

The perturbation growth and vorticity dynamics were studied by looking at three phases

of the growth:

1. The early phase: It is dominated by shock-driven instability growth similar to the

RM instability and initiates the perturbation growth and vorticity at the interface.

2. The interaction phase: The main part of the blast wave interacts with the interface and

increases the vorticity at the interface. The time-varying and transient acceleration
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Figure 5.17: Perturbation growth as a function of time for a fixed L = 1. Solid red: Ms = 2,
K = 0.1; dashed green: Ms = 2, K = 0.05; dot-dashed blue: Ms = 3, K = 0.1;
dotted orange: Ms = 3, K = 0.05.

of the interface drives a RT instability which can be captured through buoyancy-drag

models of the bubble and spike growth.

3. The coasting phase: After the wave has left the interface, circulation in the mixing

region continue mixing the two fluids and increase the perturbation growth. The cir-

culation is constant in this phase. This constant circulation scales linearly with the

blast wave length and scales according to a power law in the rarefaction strength.

Furthermore, this constant circulation can be used to non-dimensionalize the pertur-

bation growth in this phase to show that the amplitude scales as the square root of

this constant circulation multiplied by time. Across shock Mach numbers, rarefaction

lengths, and rarefaction strengths, the normalized perturbation growth is constant.

This work sets the basis for continuing to investigate hydrodynamic instabilities driven by

complex waves, including the impact of vortex stretching on perturbation growth in three

dimensions and late time growth dynamics.
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CHAPTER VI

Experimental and numerical investigations of beryllium

strength models using the Rayleigh-Taylor instability

This chapter is adapted from Henry de Frahan, M. T., Belof, J. L., Cavallo, R.

M., Raevsky, V. A., Ignatova, O. N., Lebedev, A., Ancheta, D. S., El-dasher,

B. S., Florando, J. N., Gallegos, G. F., Johnsen, E. & LeBlanc, M. M.. 2015

Experimental and numerical investigations of beryllium strength models using the Rayleigh-

Taylor instability J. Appl. Phys., 117 (22), 225901.

This work was featured on the cover of volume 117 (issue 22) of the Journal of Applied

Physics and was the subject of a Lawrence Livermore National Laboratory news article

[191].

6.1 Abstract

We present a set of high explosive driven Rayleigh-Taylor (RT) strength experiments

for beryllium to produce data to distinguish predictions by various strength models. De-

sign simulations using existing strength model parameterizations from Steinberg-Lund and

Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between

not just different strength models, but different parameters sets of the PTW model. Ap-

plication of the models to the post-shot results, however, suggests growth consistent with

little material strength. We focus mostly on efforts to simulate the data using published

strength models as well as the more recent RING relaxation model developed at VNIIEF.

The results of the strength experiments indicate weak influence of strength in mitigating the
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growth with the RING model coming closest to predicting the material behavior. Finally,

we present shock and ramp-loading recovery experiments.

6.2 Introduction

Beryllium (Be) is a metal with excellent structural properties and unique radiation

characteristics [192]. It has a high elastic modulus, a low Poisson ratio, a low density, and a

high melting point. Be has an elastic stiffness comparable to steel, at a quarter the density of

steel [193]. Its high strength-to-weight ratio and high melting point make it ideal for many

defense and aerospace applications [194, 195, 196, 197, 198]. However, Be’s low ductility

at room temperature presents challenges for both manufacturing and conditions where it

might experience extreme deformations, thus limiting its use to low strain applications. It

would, therefore, be helpful to understand the dynamic behavior of Be under more extreme

conditions of high pressure, strain, and strain-rate.

Early investigations of Be focused primarily on dynamic material properties of polycrys-

talline Be under tensile stress conditions [199]. Initial Be equation of state descriptions and

shock wave profiles up to 5 GPa provided material constants for early analytic models [200].

Christman and Feistmann [201] investigated the dynamic properties of Be, such as elastic

constants and elastic precursor decay, which produced a yield plateau, strain hardening,

and strain-rate behavior. Chhabildas et al. [202] studied the hcp-bcc phase transition in

Be over the stress region 6–35 GPa using shock-release experiments. Using biaxial tensile

tests, Lindholm et al. [203] and Lindholm and Yeakley [199] observed yield, plastic flow,

and failure of Be under plane stress conditions. Pope and Johnson [204] performed the first

attempt at studying yielding on primary slip planes of Be using shock loading planar impact

of single crystal Be. They also studied the effects of material anisotropy on plane wave prop-

agation. Jönsson and Beuers [205] studied the dislocation microstructure of single crystal

Be at 2% strain. Christian and Mahajan [206] provided an extensive review of twinning

in various crystal structures, including Be. Using Split-Hopkinson pressure bar (SHPB)

experiments with strain-rates from 10−3 to 10−4 s−1, Blumenthal et al. [192], Blumenthal

[207] studied the evolution of dynamic mechanical behavior and crystallographic texture to
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understand deformation mechanisms and the role of texture in polycrystalline Be. Brown

et al. [208] showed how active deformation mechanisms can be controlled via manipulation

of straining direction [209], deformation temperature Brown et al. [210], deformation rate

[193], and crystallographic texture [211]. Brown et al. [211] extensively investigated the

importance and relative contribution of twinning and slip in Be over a range of strain-rates

(10−4–104 s−1). Other experimental data [193] showed the dominance of twinning at strain-

rates around 104 s−1. Brown et al. [212] recently performed Be ramp-release experiments

to investigate Be shear stress in high strain rate (106 s−1) and pressures (110 GPa).

Be failure modes and spall have been the focus of recent experimental work. Experiments

of explosively loaded Be samples up to strain-rates of 104–105 s−1 were used to investigate

Be spall fracture and showed a weak dependence between the spall strength and strain-

rate [213]. Adams et al. [214, 215] observed elastic precursor decay as a function of target

thickness in plate impactor experiments. In earlier experiments, their data indicated brittle

spall behavior and a long rise-time in the elastic and plastic waves, which they attribute

to twinning being the predominant initial deformation mechanism [214]. In another set

of plate-impactor experiments, Mescheryakov et al. [216, 217] instigated spallation in the

Be sample and studied material tensile strength in the microsecond region of dynamic

loading. Recent experiments [218, 219] used post-mortem analysis of explosively driven Be

to evaluate failure behaviors. Peak shock pressures of 15 GPa were observed but no definite

source of failure in Be was identified [218].

Few dynamic studies of Be have been performed in recent years and little is known about

its strength properties at high strain (& 0.2), strain-rate (& 104 s−1), and pressure (& 10

GPa), yet there are many competing material strength models that try to characterize its

behavior by extrapolating to these more extreme conditions with often diverging results.

Most strength models are informed by physics (e.g., strain hardening laws, rate dependen-

cies on thermal activation and phonon drag, pressure and temperature dependence of shear

moduli, etc.), but are ultimately predicated on certain ansatz to facilitate practical appli-

cations to phenomena in regimes beyond those easily accessible with current experimental

techniques. As a result, the governing equations contain multiple parameters that are cal-

ibrated using data from experiments in low pressure, strain, and strain-rate regimes, e.g.,
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data from Split-Hopkinson pressure bar experiments (at zero pressure, strains of 10–20%,

and rates below 104 s−1) or Taylor anvil experiments (∼ 10 GPa, strains of 0.1 (Ref. [220]),

and rates near 105 s−1). Because the models are typically tied to phenomenology, they tend

to diverge when confronted with data far from their calibration points, whether that is in

pressure, temperature, strain or strain-rate space, see Figure 6.1. In this paper, we discuss a

set of dynamic experiments to characterize Be strength behavior under extreme conditions

and use the results to discriminate among different strength models. A RT instability oc-

curs at the interface between two materials accelerated such that the pressure and density

gradients are anti-parallel [163, 38]. Under conditions where the accelerated material has

no strength (and low viscosity), a surface perturbation grows non-linearly as t2, where t is

time. However, in the instances where the material remains solid, the perturbation growth

is mitigated and even halted depending on the mode of the interface perturbation [221]. In

1974, [222] took advantage of this observation and developed a technique using high explo-

sives (HE) to accelerate aluminum and stainless steel plates with perturbations machined

on the HE facing surface. By setting off an HE charge at a stand-off distance of ∼ 1.3–2.5

cm, they accelerated the plates without shocking the material and reached peak pressures

of 10 GPa. By modeling the growth of imposed sinusoidal perturbations on the side of the

material facing the expanding HE products, they inferred the influence of strength during

the dynamic loading process. Others have since expanded the technique to other materials

using modern diagnostic techniques in addition to traditional flash radiography [223, 224],

while others still have adopted the technique using lasers to drive targets with plasma to

achieve yet higher strain rates and pressures [225, 226]. We designed HE-driven RT experi-

ments for ramp loading of Be to reach pressures of 50 GPa and strain-rates of 106 s−1. These

are pressure and strain-rate regimes where data are sparse and strength models diverge in

their predicted behavior.

This article is organized as follows. We describe the setup of the HE-driven RT exper-

iments and present the experimental results in Section 6.3. After discussing the existing

strength models, we compare the experimental results to simulations of the experiments in

Section 6.4. We end with a discussion of Be recovery experiments. Though there are other

effects besides plasticity, our analysis is predicated on the assumption that plasticity is the
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Figure 6.1: Total stress as a function of strain-rate in Be for different strength models
(curves determined by setting the model parameters in MIDAS (Ref. [227])
for adiabatic uniaxial compression at 300 K and 0 initial pressure). Left (a):
strain = 0.2; right (b): strain = 1. Solid red: SCG; dashed green: SL; dotted-
dashed blue: PTW; dotted orange: PTW (Preston); dotted-dotted-dashed pur-
ple: PTW (Chen); dotted-dotted-dotted-dashed burgundy: PTW (Blumen-
thal); solid ma- genta: RING; dashed red: MTS. The models and different
flavors of models are detailed in Section 6.3.1.

dominant effect governing the flow. We address and qualify this assumption in Section 6.4.

6.3 Experiments

6.3.1 Rayleigh-Taylor experimental design

The experimental setup is shown in Figure 6.2. A two-stage planar HE drive launches

an iron impactor at a second charge of HE, overdriving it beyond the Chapman–Jouguet

pressure. The detonated HE products expand across the vacuum gap and shocklessly load

against the Be target, which has a machined sinusoidal perturbation on the loaded surface,

Figure 6.3, with a quasi-isentropic compression wave, hereby initiating an RT instability

at the HE-Be interface. A Plexiglas bracket initially holds the Be target in place before

the target is accelerated by the HE. The Be targets are made of S200F Be composed

of 98.5 wt.% pure Be with a maximum of 1.5%BeO. The targets were manufactured by

Materion Electrofusion using a hot isostatic press. The rippled patterns were formed via

wire electrical discharge machining. The Be microstructure was imaged using electron

backscatter diffraction (EBSD), see Figure 6.4. The grain size distribution was calculated

from the EBSD image, see Figure 6.5. The average grain size in the tested Be was 9.5µm.
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Figure 6.2: Two stage loading device for the quasi-isentropic loading of a rippled Be target.
Planar shock wave generator (1); first stage HE (2, ∅90 mm ×80 mm); Plexiglas
damper (3, ∅90 mm ×2 mm); iron impactor (4, ∅90 mm ×2.2 mm); vacuum
gap (5, 10 mm); second stage HE (6, ∅90 mm ×10 mm); Plexiglas bracket (7);
vacuum gap (8, 2 mm); Be target (9, ∅50 mm); vacuum volume (10); Plexiglas
disk (11, ∅90 mm ×10 mm); optical gauge (12).

EBSD scans indicate a weak (0001) basal plane texture aligned with the drive direction,

see Figure 6.6. Nine Vickers hardness tests determined the average Be hardness to be

1830±200 MPa (from a hardness of 186.9 kgf mm−2 from a load of 1 kg over a ∼ 0.031

mm long diagonal spot). The perturbation is sinusoidal and the wavelength for all the RT

experiments was λ = 4mm. The perturbation peak-to-valley amplitude for four experiments

with 2 mm substrates (as measured to the middle of the perturbations) was 0.48 mm.

For two other experiments, the perturbation amplitude was 0.38 mm on 1.78 mm thick

substrates. An example of a machined Be target used in these experiments is shown in

Figure 6.3. The experiments were designed by conducting a series of simulations over an

ensemble of strength models and Be equations of state. To optimize the dispersion of the Be

strength models (thereby maximizing model differentiation), the design simulations varied

the perturbation wavelength, amplitude, target thickness, and HE stand-off distance. Bevels

were machined into the outer edge of the targets to enable side-on imaging of the ripple

growth as the target accelerates and deforms. Without these bevels, the outer edge of the

target would hide the perturbation growth from the imaging diagnostic.
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Figure 6.3: Pictures of a machined Be target. The graduated ruler is in inches. Left (a):
front view; right (b): back view.

Figure 6.4: Be microstructure from three EBSD scans of 250 × 250 µm. The colors are a
function of the lattice orientation and help distinguish the grains. The dark
dots are assumed to be BeO.
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Figure 6.5: Grain size distribution from EBSD scans. 2038 grains were measured and the
average grain size is 9.5 mm.

Figure 6.6: Polar maps of grain orientation from EBSD scans. Color map is in units of
multiples of a uniform density (MRD) with a max = 2.015 and min = 0.978
(min cutoff used for display, the actual values can be smaller). TD is the
transverse direction and RD the rolling direction.
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We performed several SHPB experiments to characterize the dynamic behavior of the

Be samples in strain-rate regimes between 2000 and 5000 s−1 and compare with models

calibrated to previous data [227]. These experiments were performed at ambient conditions.

The targets were made from the same batch of pressed S200F as the RT targets, and the

SHPB tests were conducted at LLNL. The SHPB data usually end at low strains in the

samples due to brittle failure. Figure 6.7 shows the stress-strain curve for an experiment

with a strain-rate of 2000 s−1 (the data from a single experiment are shown for illustration

purposes and the SHPB experimental data for all the experiments are available in MIDAS

(Ref. [227])). The strength models based on previous SHPB results seem accurately to

describe the stress-strain response at these relatively low strain-rates. It is not possible

to discriminate among the different models in these regimes for these particular samples.

The multiple parameter sets for the Preston-Tonks-Wallace (PTW) model all fit the SHPB

data but they predict different behavior for the higher strain-rates observed in the RT

experiments, see Figure 6.7(b). The RING model also fits the data well in this regime,

though it predicts lower stress at higher strains than the data. The lack of differences in

the models at these low strain-rates, and strains, and their significant divergence at high

strain, strain rates, and pressures is the main motivation for performing these RT strength

experiments. The RT experiments are designed to provide data in these regimes to help

discriminate among the different available strength models.

6.3.2 Diagnostic techniques

Two diagnostic techniques were used to capture the experimental data. X-ray radio-

graphs at the Eridan-3 facility at RFNC-VNIIEF imaged the target perturbation growth,

see Figure 6.8. A 1 MeV, 0.15 µs pulse flash x-ray was used to record one image for each

experiment, which was captured on a ADC-CR photochromatic screen [228]. Measurements

of the free surface velocity of the targets were performed with a Velocity Interferometer Sys-

tem for Any Reflector (VISAR) during each experiment [229]. The VISAR spot size is 200

µm and the spot is centered on the back of the target to minimize the effects of potential

bowing of the target as it is being driven (radiographs shown there is very little bowing

until late in time for some shots, see Section 6.3.3). The pressure of the explosives on the
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Figure 6.7: Stress as a function of strain in Be for a characteristic strain-rate of 2000 s−1.
Left (a): comparing to the SCG, SL, PTW, RING, and MTS models; right
(b): comparing four different PTW parameter sets over a large range of strains.
Solid black: SHPB experimental data at ambient temperature; solid red: SCG;
dashed green: SL; dotted-dashed blue: PTW; dotted orange: PTW (Preston);
dotted-dotted-dashed purple: PTW (Chen); dotted-dotted-dotted-dashed bur-
gundy: PTW (Blumenthal); solid magenta: RING; dashed red: MTS.

loaded surface of the target determines the free surface velocity of the target, and hence the

expected RT growth. Comparing the VISAR data with simulations indicates that the drive

conditions in the simulations match that of the experiments so a proper interpretation of

the growth data can be made (see Section 6.4).

6.3.3 Experimental results

We performed a total of six HE-driven Be RT experiments with x-ray diagnostics to

measure the perturbation growth as a function of distance traveled. We use distance traveled

since it can be measured directly in the experiment without having to account for fiducial

timing in the HE drive. Time and distance are, of course, easily related through the

velocimetry. The radiographs are shown in Figure 6.9. The clear white region in the center

of the radiograph is the Be liner. The bright area on the bottom of the radiograph is the

HE, and the bevels observed on the side are the Plexiglas brackets holding the liner. The

apparent absence of any visible voids in the Be suggests that the targets have not spalled

at image time, though there is the possibility that cracks formed at length scales below

the camera detection limit. It is possible that the last radiograph shows signs of failure in

the bubble, though this is not very clear. The perturbations exhibit non-linear growth at
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Figure 6.8: X-ray radiograph diagnostic setup. X-ray source (1); armored protection (2);
collimator (3); protective screen (4); experimental assembly (5); protective setup
(6); armored cassette (7); ADC-CR screen (8).

larger distances, see Figures 6.9(e) and 6.9(f). The evolution of the perturbation growth

with increasing distance traveled was measured using the six radiographs, and the growth

factors are shown in Figure 6.10.

Measurements of the free surface velocity during each of the experiments indicate con-

sistent drive conditions, see Figure 6.11. Time t = 0 is the HE arrival time at the Be/HE

interface. For a small part of the trace, there are some spurious fringes around 1 µs due to

the large VISAR spot tracking different parts of the target with slightly different velocities.

The velocimetry profile recovers at 1.2 µs and those fluctuations disappear.

6.4 Numerical simulations of the experiments

We model the experiments with Ares, an Arbitrary Lagrangian Eulerian hydrodynamics

code [230]. The mesh resolution for all the simulations is 8 µm, at which point the simula-

tion results are converged. We assumed planar symmetry and performed two-dimensional

simulations of a half wavelength slice of the system, thereby neglecting the release at the

edges of the system. The second layer of HE, which unloads against the target, is 90 mm

in diameter while the target itself is 50 mm across. The gap between the two is only 2 mm

(see Figure 6.2) so that even if the release in the unloading HE products was fast enough

to decrease the planarity of the drive at a 45◦ angle, the target would still see a 1D planar

143



Figure 6.9: Radiographs of the six HE-driven Be RT experiments. The brighter area on the
bottom of the radiograph is the HE. The clear white region in the center of the
radiograph is the Be liner. (a) A0 = 0.38mm, h = 1.78mm, S = 1.4 ± 0.2mm,
A = 0.6 ± 0.1mm; (b) A0 = 0.48mm, h = 2mm, S = 6.3 ± 0.3mm, A =
2.4± 0.1mm; (c) A0 = 0.48mm, h = 2mm, S = 7.1± 0.3mm, A = 2.6± 0.1mm;
(d) A0 = 0.38mm, h = 1.78mm, S = 8.9 ± 0.3mm, A = 2.7 ± 0.2mm; (e)
A0 = 0.48mm, h = 2mm, S = 11.7±0.3mm, A = 3.6±0.2mm; (f) A0 = 0.48mm,
h = 2mm, S = 14.6 ± 0.2mm, A = 4.1 ± 0.2mm. A0 is the initial peak-to-
valley perturbation amplitude, h is the initial target thickness, S is the target
displacement, and A is the measured peak-to-valley perturbation amplitude.
The direction of motion is towards the top of the images.
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Figure 6.10: Growth factors as a function of displacement. Left (a): A0 = 0.38mm and
h = 1.78mm; right (b): A0 = 0.48mm and h = 2mm. Black dots: experimen-
tal data; dotted-dashed green: no strength; solid red: SCG; dashed green: SL;
dotted-dashed blue: PTW; dotted orange: PTW (Preston); dotted- dotted-
dashed purple: PTW (Chen); dotted-dotted-dotted-dashed burgundy: PTW
(Blumenthal); solid magenta: RING; dashed red: MTS. The error bars for
the simulated growth factors are representative single point error bars captur-
ing uncertainties in the simulated drive with respect to the scatter among the
experimental drive measurements. These error bars were obtained by propa-
gating the uncertainty in the simulated drives from Figure 6.11.

Figure 6.11: Free surface velocity, U , as a function of time. t = 0 is the HE arrival time
at the Be/HE interface. The rise time of the first stress wave is greater than
15 ns and, therefore, is not a shock. Dashed red: h = 1.78 mm; dashed-
dotted green: h = 2 mm; black: numerical simulation. The error bars for
the simulated free surface velocity are representative single point error bars
representing the scatter among the experimental drive measurements. The
error in a single experimental measurement is typically much smaller (around
5%).
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Table 6.1: JWL++ reactive flow equation of state parameters for the HE.

ρ0 (g/cm3) A (Mb) B (Mb) R1 R2 ω E0 (Mb) n κ G b β

1.89 7.8 3.9 0.1 1.2 0.3 0.159 7.4 7.8 3000 1 3.6

drive when the HE products arrived at the front surface. Assuming a sound speed in Be of

13 000 m s−1, it takes the release wave from the edge of the Be about 2 µs to travel the

radius of the target, affecting only the latest few data points, which were obtained after

seeing limited growth at the earlier times taken first in the sequence. 2D simulations were

performed in the target design to determine the shape of the bevel at the edge of the target,

which was specifically designed to prevent bowing in the target that could interfere with

the side-on view of the diagnostic. The results shown in Figure 6.9 demonstrate the planar

behavior of the target even at long travel distances.

The simulated system consists of the iron impactor, the HE, the vacuum gap, and a half

wavelength ripple on the Be target. The iron impactor initiates the HE detonation, with its

impact velocity determining the peak pressure in the HE explosion. The HE was modeled

with a JWL++ reactive flow equation of state [231] using the parameters in Table 6.1. All

other materials used a tabulated equation of state from the LEOS data library based on

a QEOS-like model [232]. We also compare the results using an analytic Gruneisen EOS.

The drive, Figure 6.12(a), and the growth, Figure 6.12(b), are very similar regardless of the

form of the equation of state. Though contributions to the results beyond plasticity might

exist, we did not use a damage model for the Be as we assume that strength is the dominant

effect in these experiments. Our analysis assumes that the observables are a direct result

of plastic flow. We address this assumption at the end of this section.

We examined the behavior of several strength models, which typically have very differ-

ent dependencies on strain, strain-rate, and shear modulus, as they relate to the Be flow

strength. The Steinberg-Cochran-Guinan [233] (SCG) model is rate-independent but as-

sumes “high” rates of order 105 s−1. The flow strength goes as the strain to the nth power,

where n is a work hardening parameter, and the shear modulus includes linear pressure

and thermal terms. The Steinberg-Lund [234] (SL) model is based on the SCG model and

adds an additional strain-rate dependence in the thermal activation regime. The strain-
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Figure 6.12: Simulation of a 2 mm thick target with A0 = 0.48 mm. Left (a): free surface
velocity as a function of time where t = 0 is the HE arrival time at the Be/
HE interface; right (b): growth factors as a function of distance traveled.
Solid: tabulated equation of state from the LEOS data library; black outlined
dashed: analytic Gruneisen equation of state. Green: no strength; blue: PTW;
magenta: RING; red: MTS.

rate depends on the inverse of the sum of an exponential of the thermal component of the

stress with the inverse of the athermal component of the stress. The PTW (Ref. [1]) model

describes material behavior in both the thermal activation and phonon drag regimes over

many orders of magnitude of strain-rate. At low strain-rates (< 104 s−1), two different ex-

pressions for the work hardened saturation stress and flow strength are used to describe the

thermal regime and vary as the error function of the logarithm of the inverse of the strain

rate. At high strain-rates, the phonon drag regime for dislocation motion is described using

the theory of overdriven shocks where the saturation stress and yield stress are set equal

and are related to a power of the strain-rate divided by the atomic vibration frequency. The

stress in the transition region between the low and high strain-rate regimes is the maximum

of the low and high strain-rate regime stresses. A single model can have different parameter

sets to describe a given material. In this paper, we use four versions of the PTW model,

each differing in their model parameters: the original values [1], and those proposed by

Prime et al. [235] are shown for Be in Table 6.2. The relaxation model of beryllium strength

[236, 237] (RING) model includes relaxation terms, a term to account for twinning and

terms to account for recovery at elevated temperatures. Finally, the mechanical threshold

stress [238] model, valid at strain-rates up to the phonon drag limit, includes thermal acti-
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Table 6.2: Summary of the different PTW Be material parameters used in this paper (see
Ref. [1] for the parameter definitions). The shear modulus is from Steinberg-
Guinan, while the melt curve comes from the LEOS table.

Original PTW
Chen’s PTW Preston’s PTW Blumenthal’s PTW
(PTWC) (PTWP) (PTWB)

θ 0.04 0.025 0.045 0.0394
p 1.4 2 2.5 2
s0 0.007 0.0093 0.00845 0.0077
s∞ 0.0012 0.00135 0.00083 0.0006
κ 0.14 0.11 0.12 0.145
γ 1× 10−5 1× 10−5 7× 10−5 1× 10−5

y0 0.0015 0.0009 0.00129 0.0018
y∞ 0.0005 0.0009 0.00051 0.0004
y1 0.007 0.0093 0.00845 0.0077
y2 0.25 0.16 0.16 0.4
β 0.25 0.16 0.16 0.25

vation effects. The stress is a linear combination of different stresses caused by dislocation

barriers. These are scaled via factors representing the structure functions for the various

dislocation barriers. The scaling factors are highly non-linear functions of temperature and

strain-rate. These models have been calibrated to data from low pressures and low strain

and strain-rate experiments. Predicting the RT growth in higher pressure and strain-rate

regimes is therefore particularly challenging.

By tuning the velocity of the iron impactor detonating the second stage HE, Figure 6.2,

we ensure that the simulations have the same drive conditions as the experiments. Compar-

isons between the velocimetry data of the Be targets measured by VISAR and a simulation

using the PTW model are presented in Figure 6.11. Simulations with different strength

models do not present significantly different predictions of the free surface velocity because

the drive conditions are essentially independent of the strength models. The simulations

are sufficient to allow for an interpretation of the growth data with an adequate accelera-

tion profile. Small discrepancies between the experimental drives and simulated drives have

little impact on our results. We performed sensitivity analysis of the drives by increasing

and decreasing the simulated drives by one root mean square deviation (as measured be-

tween the simulated and experimental drives, illustrated with representative error bars in

Figure 6.11). The impact of these changes on the growth factors is within the experimental
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error bars.

Simulations of the experiments indicate that the Be targets reached ∼ 50 GPa and strain-

rates of 106 s−1, the phase-space where the model predictions of the perturbation growth

differ. The simulations that best match the experimental data show a peak yield stress in Be

of 2.2 GPa, which is comparable to the values of 1.8 GPa reported by Chhabildas et al. [202]

and 16.5 reported by Brown et al. [212]. Though there is some agreement between these

experiments, the comparison is not perfect because the strain rates and loading paths are

different between an RT experiment and these shock-release and ramp-loading experiments.

The rise time of the first stress wave is greater than 15 ns and, therefore, is not a shock. The

simulations corroborate that this wave is a ramp and that the temperature is lower than

that generated by a shock. According to the simulations, the temperature in the Be in these

experiments is inferred to be approximately 700 K. In the SHPB experiments of Blumenthal

[207], there is no evidence of Be failure even at strains as high as 1.0. Therefore, we have no

evidence that the Be failure is occurring in the RT experiments, for which the peak strains

do not exceed 1.0 (with the possible exception of very late in time). Simulations of the RT

experiments indicate that the sample is under compressive strain during the entire process

under which we take data. While a release wave propagates from the rear free surface

of the target, the stress is continuously increased as the compressive ramp wave from the

HE moves through the target. As a consequence, the Be target never experiences tension

in the RT bubble. Additionally, the stress vs. strain curves from the SHPB experiments

are smooth and do not show evidence of failure under compression (although microcracks

develop at high strains (> 0.2), these will not affect the results unless the sample is under

tension).We present pseudo-color plots of pressure and strain-rate in Figure 6.13. Initially, a

compression wave induced by the iron impactor travels through the HE, causing detonation,

see Figure 6.13(a). The HE then expands through the vacuum gap and loads against the

Be target, see Figure 6.13(b). The ripples at the HE-Be interface grow as the target is

accelerated by expanding HE gas, see Figures 6.13(d) and 6.13(e).

Figure 6.10 also presents a comparison between the predicted growth factors of the per-

turbations using different strength models and the experimental data points as a function of

target displacement. The data suggest that the Be ripples grew close to classically and are
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Figure 6.13: Pseudocolors of pressure (top half) and strain-rates (bottom half) in the HE
and Be target. Red line: HE-Be interface; black line: Be back. t = 0 is the
HE arrival time at the Be/HE interface. Pressure color map is in units of GPa
with min=0 GPa and max=60 GPa. Strain-rate color map is in units of s−1

with min = 103s−1 and max = 3× 106s−1. (a) t = −0.3µs; (b) t = 0.1µs; (c)
t = 0.3µs; (d) t = 0.7µs; (e) t = 1.1µs.
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consistent with either low strength in the Be, or significant, but unobserved, damage. “Clas-

sically” usually refers to a constant acceleration at a non-viscous liquid/gas interface. In

this context, we use it to describe growth in the presence of no strength or viscosity regard-

less of the dynamic loading profile. From the radiographs, we observe that the ripples have

a significant mushroom shape, indicative of a classical RT growth in the non-linear regime.

Consequently, most of the strength models under-predict the growth of the perturbations.

The Mechanical Threshold Stress model predicts very little growth, which indicates that

the work hardening is over-predicted for this region of the phase space. The MTS stress-

strain curve, as shown in Figure 6.1, clearly illustrates this as it is steeper than the other

stress-strain curves in this region of phase space. The RING model, as adopted in Ares, is

the strength model with results closest to the experimental data. The experiments enable

us to discriminate against certain models, such as MTS, which do not capture the data in

this regime while the results indicate that the RING and SCG models are adequate in this

regime. The small differences among the PTW models are not as significant as the differ-

ences between PTW and the other models in general. The data indicate that the models

in general are inadequate for capturing the high strain, strain-rate, and pressure regime

of the experiments. These models require better physics-based components to underwrite

their validity. This is due in part to the fact that they are based on observations made

in different parts of the phase space and they cannot be relied upon to predict material

behavior away from their calibration points without accepting the inherent risk associated

with extrapolation.

If the perturbation growth is due solely to plasticity, the RING model is the closest to

the data but still misses the late-time behavior. However, an alternate theory is possible if

damage occurs early in the experiment and manifests itself through the appearance of high

growth. The data are insufficient to discriminate solely between plastic-driven growth and

a combination of plasticity and damage. The recovery experiments (see Section 6.5) seem

to indicate support for the idea of damage induced growth. Either way, the data indicate

that existing strength models are insufficient in their current forms to capture properly the

behavior of Be under extreme loading conditions.
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6.5 Recovery experiments

Current plasticity models generally assume deformation mechanisms driven by disloca-

tions. However, Be is known to incur substantial twinning and can experience brittle failure

under room temperature conditions. For example, previous work [207] on hot isostatically

pressed S200F indicates that at strains up to ∼ 20% under uniaxial compression, the domi-

nant deformation mechanism is basal slip. The contributions from twins peak at 10% strain

but never become dominant. To understand the extent of twinning and failure that might

be present in higher strain-rate regimes, such as our RT experiments, we also performed

Be recovery experiments, where Be samples were loaded and then recovered for analysis.

The goal of these experiments was to explore the effect of loading and shock strength on

the Be microstructure and to determine Be dislocation dynamics. Unfortunately, it is not

possible to recover the RT targets themselves since their thin nature causes them essentially

to disintegrate at late times before they can be recovered. As such, thicker targets were

used with different loading profiles from the RT experiments making an exact comparison

of the deformation not possible; nonetheless, the path we chose is close enough to describe

the behavior of Be under both uniaxial loading and at least similar drive conditions.

We performed two types of recovery experiments. In the first, a Be target disk of ∅60×15

mm (diameter × thickness) was sandwiched between two layers of aluminum (∅120 × 0.5

mm for the front disk and ∅120× 5 mm for the back disk) and placed near a charge of HE.

The Be sample experienced quasi-isentropic loading resulting from the detonation of the

HE. The compression wave steepened to a shock as it traveled in the Be. This experiment

was designed to keep the pressure in the material constant, but to have a varying strain-

rate (from 105 to 1010 s−1). In the second experiment, a Be sample of the same dimensions

was also placed between two layers of aluminum, but this time an HE charge launched an

aluminum impactor (∅120 × 2 mm) resulting in a shock wave that decreased in strength

as it traveled in the Be. In this case, the strain-rate was constant (approximately 105

s−1), but the pressure varied from 15 to 10 GPa. Manganin-based pressure sensors (MPS)

were used to measure the pressure in the sample. For both experiments, to minimize edge

rarefactions, the Be target is surrounded by an aluminum (Al) sleeve. The impedance of
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Figure 6.14: Microsection of Be sample loaded with a quasi-isentropic compression wave.
The large black void on the upper left is a crack while the long straight lines
are remnants of the cross-sectioning process. The grains are clearly visible
with the small black dots around the grain boundaries showing concentrations
of BeO.

the Be and Al is well matched due to the high Al sound speed (the intensity reflection

coefficient is 0.03) and a simple one-dimensional hydrodynamic analysis shows little effect

from interface rarefaction. Given the reputation of brittle failure in Be and uncertainty in

the dominant deformation mechanism, a priori expectations from the experiments ranged

from mild deformation to complete disintegration.

A microsection of the recovered Be sample for the first type of experiment is shown

in Figure 6.14. The pressure sensors indicated a peak pressure of 25 GPa in the sample.

The microsection reveals a fine-grained structure with an average grain size of 14± 6.7µm.

A crack is clearly visible. The observed twinning fraction was slightly less than 50%. A

recovered sample from the second type of experiment illustrates the partial destruction of

the Be sample under this type of loading, see Figure 6.15. In this case, the peak pressure in

the sample was around 14 GPa. From these two types of recovery experiments, it is clear

that the samples fractured but did not completely disintegrate.

Using the MPS data, we calibrated the simulations to obtain the same experimental

conditions, see Figure 6.16. The different loading paths and target strains are clearly visible

when comparing Figures 6.17 and 6.18. In the first experiment, the simulation indicates

that the pressure inside the target reached 26 GPa and remained constant throughout the

material for about 1 µs before decreasing smoothly. The strain inside the target reached
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Figure 6.15: Picture of post-shot Be sample loaded with a thin metal impactor.

Figure 6.16: Pressure at the MPS locations as a function of time for the recovery experi-
ments. t = 0 is the arrival time of the first pressure spike at the loaded surface
of the Be. Left (a): for the first recovery experiment; right (b): for the second
recovery experiment. Dashed black: experimental data from the MPS; solid
red: simulation data.

0.1, remained constant, and then increased again. In the second experiment, the pressure at

the leading edge of the Be target increased rapidly to approximately 15 GPa and decreased

sharply thereafter to a near-constant value of 10 GPa. The amplitude of the shock wave

decreased as it traveled in the Be. The strain varied from 0.15 to 0.11 depending on the

depth in the Be target. The simulations also indicate different strain-rate behaviors in the

two experiments, see Figure 6.19. In the first experiment, an initial spike in strain-rate is

followed by a constant rate of ∼ 2 × 104 s−1. In the second experiment, the strain-rate is

around 105 s−1 for about 0.25 µs and then decreases rapidly to approximately 2× 103 s−1.
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Figure 6.17: Pressure and strain for the first recovery experiment at various depths in the
Be target. t = 0 is the arrival time of the first pressure spike at the loaded
surface of the Be. Left (a): pressure as a function of time; right (b): strain as
a function of time. Solid red: 0.015 cm; dashed green: 0.15 cm; dotted-dashed
blue: 0.3 cm; dotted orange: 0.45 cm; dotted-dotted-dashed purple: 0.6 cm;
solid black: 0.75 cm; dotted maroon: 0.9 cm; dotted magenta: 1.05 cm; dashed
red: 1.2 cm; dotted-dashed green: 1.35 cm; dashed blue: 1.485 cm.

Figure 6.18: Pressure and strain for the second recovery experiment at various depths in
the Be target. t = 0 is the arrival time of the first pressure spike at the loaded
surface of the Be. Left (a): pressure as a function of time; right (b): strain
as a function of time. Solid red: 0.015 cm; dashed green: 0.15 cm; dotted-
dashed blue: 0.3 cm; dotted orange: 0.45 cm; dotted-dotted-dashed purple:
0.6 cm; solid black: 0.75 cm; dotted maroon: 0.9 cm; dotted magenta: 1.05
cm; dashed red: 1.2 cm; dotted-dashed green: 1.35 cm; dashed blue: 1.485 cm.
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Figure 6.19: Strain-rate as a function of time for both recovery experiments at various
depths in the Be target (red: leading edge; green: middle; blue: trailing edge).
t = 0 is the arrival time of the first pressure spike at the loaded surface of the
Be. Solid: first recovery experiment; dashed: second recovery experiment.

6.6 Discussion and conclusion

We performed six HE-driven Be RT experiments to discriminate among different strength

models. These experiments were designed to reach a phase space where the models’ growth

predictions differed. Relative to the predicted behavior, the data suggest that the Be ripples

growth was only slightly mitigated by strength, indicating weaker than anticipated strength.

The RING model does reasonably well predicting the growth for the larger initial amplitude

experiments. The other models under-predict the perturbation growth. The experimental

results challenge the underlying assumptions of the existing strength models. Once the ma-

terial enters a strain, strain-rate, and pressure phase space far from the calibration regimes

of the current models, its predicted behavior breaks down. In part, the models rely on a

limited range of data, but also limited physical assumptions, mostly having to do with how

strain and strain rate carry the plastic flow. For example, the results raise questions about

the ansatz formulations, such as what are the proper rate hardening relationships in the

thermal activation and phone drag regimes; where do the regimes even cross; are strain

and strain rate the proper independent variables or should they be explicitly replaced with

dislocation density and velocity? To complicate the challenge of developing a complete con-

stitutive model for Be, the recovery experiments showing a twinning fraction of slightly less

than 50% suggest that twining should not be overlooked as an important physical mecha-
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nism in the material flow. Furthermore, while the RT experiments show no observable spall

or cracks at length scales that could be imaged, the recovery experiments do. Granted, the

loading profiles between the two experiments differ, and the recovery experiments by their

nature are done late in time, long after release waves have traversed the samples. However,

the recovery experiments do suggest failure mechanisms should be included in any advanced

Be plasticity model. As such, experiments might be done that are specifically designed to

catch material failure under loading to determine if the behavior observed in these exper-

iments is more a result of failure mechanisms, such as shear localization, or if indeed the

plastic flow is truly a result of weaker constitutive properties than those predicted by most

models.

If similar experiments are proposed for future work, we recommend adjusting the ex-

isting models to match the data set presented here and then driving the targets through

different regions of stress-strain-rate phase space by adjusting drive or initial perturbations,

or by tamping the target to maintain the Be at pressure for longer periods of time. Varying

the initial perturbation wavelength would lead to a dispersion curve that could increase our

understanding of Be strength in these extreme regimes while higher temperature experi-

ments could also be a means to distinguish the models in future experiments.
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CHAPTER VII

Conclusions and future work

7.1 Summary and key findings

The objective of this work is (i) to develop a numerical and computational framework

to perform studies of mixing phenomena in compressible multiphase flows, and (ii) to study

mixing phenomena relevant to many scientific and engineering applications, including in-

ertial confinement fusion, supernova explosions, fuel injection, plasma deposition, cancer

treatments, and turbomachinery.

To accomplish the first objective,

- novel numerical techniques were presented to solve consistently compressible mul-

tiphase flows with shocks and interfaces [151, 131]. Spurious pressure oscillations

generated at interfaces caused simulations using conventional methods to fail. A non-

conservative approach for the material parameters, combined with a new limiting

technique, reduced to unit roundoff these spurious pressure oscillations, Figures 2.1,

2.2, and 2.3. Additionally, new sensors were developed to detect flow discontinuities

and apply limiting only at these discontinuities. This work enables the simulation

of compressible multiphase flows using the Discontinuous Galerkin (DG) method, a

state-of-the-art high-order numerical method. Using our methods and framework,

scientific insight can be provided into many types of flows relevant to, among others,

astrophysics, naval engineering, and biomedical engineering.

- A multi-Graphics Processing Units (GPU) parallel paradigm was implemented to re-

solve the flow features and the length scales of interest by combining the cuda frame-
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work and the Message Passing Interface (MPI) to communicate between GPUs [239],

Figure 2.4. The effectiveness and robustness of a new parallel computing framework

that uses the latest hardware and software capabilities was demonstrated. The code

exhibits good weak and strong scaling up to at least 32 GPUs, Figure 2.5. As the

need for exascale computing increases, these types of heterogeneous computing which

combine specialized hardware and software will be critical for the simulation of ever

more complex flows.

- New enhancement procedures for the advection discretization of the DG method were

proposed. Two new family of numerical schemes are stable and exhibit a theoretical

3P+1 convergence rate. This work is particularly important because it fixes the order

of accuracy mismatch between advection and diffusion DG discretization and enables

the simulation of advection-diffusion problems without loss of accuracy.

Using this framework, we have also addressed our second objective by

- Studying the mixing dynamics of multi-layered Richtmyer-Meshkov (RM) instabili-

ties and providing support to the idea that shocks and rarefactions can be used to

control the instability growth [113], Figure 4.11. This concept of control is especially

important in Inertial Confinement Fusion (ICF), where mixing from hydrodynamic

instabilities is particularly detrimental. Control of mixing through complex acceler-

ations may prove to be critical in other types of flows as well, e.g. in supersonic

combustion.

- Modeling perturbation growth and vorticity dynamics of a blast-driven hydrodynamic

instability. The circulation dynamics was related to the wave parameters, and shown

to scale linearly with rarefaction length, Figure 5.14, and as a power law of rarefaction

strength, Figure 5.15. Perturbation growth was shown to scale with the circulation,

Figures 5.16 and 5.17. This approach to understanding wave interactions with inter-

faces can prove valuable to analyzing different types of waves driving hydrodynamic

instabilities in many other contexts, including, for example, ultrasound induced lung

hemorrhaging.
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(a) Problem setup for the blast-driven KH ex-
periment.

(b) Density at 35ns for our simulation.

(c) Mixing zone width as a function of distance
behind the shock. Symbols: experimental data.
Solid lines: prediction using h = C

∫ τ

0
∆us dt+h0,

where ∆us is the shear velocity in the mixing zone
predicted from the simulation. Black: foam den-
sity of 0.05g/cm3; Red: foam density of 0.05g/cm3.
From Di Stefano et al. [114]. © AIP Publishing
LLC. Reproduced with permission.

Figure 7.1: Blast-driven KH instability experiments from Di Stefano et al. [114].

- Using the Rayleigh-Taylor (RT) instability to test material strength models of Beryl-

lium in high-strain-rate (106s−1) and pressure (50GPa) regimes [240]. These experi-

ments provided valuable data for the modeling of beryllium strength in regimes where

the data is sparse. Beryllium in this phase-space exhibited weaker than anticipated

strength, Figure 6.10. The experimental technique using the RT instability combines

our knowledge of hydrodynamic instabilities with numerical simulations to infer prop-

erties of materials, in this case strength, and can be expanded to test many other

materials in these regimes.

- Providing insights into the flow dynamics of the blast-driven Kelvin-Helmholtz (KH)

instability, which were subsequently used to model experiments in [114], as summa-

rized in Figure 7.1.
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7.2 Suggestions for future work

Several active areas of research can be pursued on the basis of this work. In this sec-

tion, we discuss potential extensions of the models to incorporate different physical effects,

improvements to the numerical framework, further directions for the high performance com-

puting paradigm, and studies of other fluid problems using our framework.

7.2.1 Extending the physical models

The evolution equations, Eq. (1.5), and models used throughout this thesis to represent

multiphase flows, e.g the stiffened equation of state, Eq. (2.2), may be extended to explore

a larger physical space and improve the fidelity of our simulations. Models for viscosity,

surface tension, heat, mass transfer, and visco-elastic effects could be incorporated by adding

the relevant modeling terms to the system of partial differential equations. In the context

of plasma physics, where, for example, magnetic and electric fields highly influence the

hydrodynamics, we could start by solving single-fluid plasma equations such as the ideal

[241], Hall [242, 243], or resistive magneto-hydrodynamic equations. Further improvements

in this direction may include solving “multifluid” plasma equations (e.g. the 5-moment

[244, 245, 246] or 13-moment equations [247, 248]), where “multifluid” here means that the

electrons and ions are evolved separately and coupled through source terms.

Turbulence arising from hydrodynamic instabilities or in multiphase flows is an active

area of research today. Performing Large Eddy Simulations (LES) or Direct Numerical

Simulations (DNS) of these types of flows would require the addition of subgrid scale models

or viscous effects. This presents opportunities both for developing subgrid scale models for

multiphase flows and for studying the effect of turbulence on mixing in multiphase flows.

Chemical reactions in many of the applications discussed in the introduction have a sig-

nificant effect on the mixing dynamics. Incorporating these reacting flows into our frame-

work is challenging due to the large number of possible chemical reactions and species but

it would enable the fundamental study of these effects on mixing, with the objective of

providing fundamental or even optimization insight into engineering applications such as

internal combustion engines.
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7.2.2 Improving the numerical methods

Three-dimensional flow solvers is the first priority to improve the fidelity of the sim-

ulation results and expand the code’s capabilities. Additionally, while the mathematical

models describing some of the physics presented in Section 7.2.1 have been well studied and

established, their numerical implementation remains problematic and will have a significant

impact on the numerical methods. Disparate time scales and length scales may constrain

the spatial and time discretizations, making the simulations impractical on today’s com-

puters. Most significantly with respect to the work presented here, the hyperbolicity of

the partial differential equations is no longer assured. Computing higher order derivatives

efficiently becomes paramount. Recent efforts to extend the DG method to the Navier-

Stokes equations with the Recovery Discontinuous Galerkin (RDG) method [139, 138, 137]

have been successful in achieving very high order accuracy and could help resolve some

of the effects of interest. Yet many open questions remain, including preserving accuracy

in three-dimensions, at boundaries, and in unstructured grids. Finally, we mentioned in

Chapter III several strategies and their shortcomings to increase the order of accuracy of

the DG method for advection and match that obtained by the RDG method for diffusion.

Chapter III presented some ideas that could be pursued to achieve a stable and strictly

compact enhancement scheme for advection.

7.2.3 Directions for high performance computing

Supercomputing with GPUs is a very recent field and has seen many technological

advances over the course of my dissertation work. Eight major versions of CUDA have

been released since my start at the University of Michigan. The GPUs used for this work,

the Tesla K20, has fifteen times the processing power and twice the bandwidth of the

Tesla C1060, the GPU used for my Master’s thesis. Our high performance computing

paradigm, consisting of multiple GPUs each linked to a different Computing Processing

Units (CPU) and communicating through these, is robust and easily adapted to a wide

range of cluster configurations and GPUs. However, it does not take advantage of the recent

developments in GPU to GPU communication, namely NVIDIA’s GPUDirect and Unified
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Memory capabilities. GPUDirect allows for memory transfers directly between GPUs and

significantly reduces the communication overhead by eliminating many unnecessary memory

copies from the host to the device and host to host. GPUDirect uses a similar syntax as

MPI, and, as such, can be easily implemented provided the cluster supports this capability.

Similarly, CUDA’s Unified Memory model allows for easier memory management across

GPUs and CPUs by blurring the line between GPU and CPU memories. Finally, the very

recent OpenAcc programming standard abstracts the accelerator, which can be either a

GPU or CPU, and attempts to simplify parallel programming and code optimizing with the

help of the compiler.

Throughout this work, following Donald Knuth’s advice [249], “premature optimization”

was avoided and a robust implementation of the methods was prioritized. This choice implies

that the code, through an in-depth profiling exercise, could most likely be optimized to

further increase its efficiency.

Finally, as high performance computing clusters increase the number of nodes and com-

puting devices, faults due to, for example, hardware failure, cosmic rays, and quantum

tunneling, will increase as well and risk introducing errors in the computations. Making the

numerical methods fault tolerant is rapidly becoming a priority. The DG method has the

unique advantage that the solution is discretized in cells and represented inside each cell

by a polynomial. This advantage can be exploited through intra- or inter-cell interpolation

with limiting and recovery procedures to reconstruct missing data due to faults.

7.2.4 Investigating compressible multiphase flows

Our numerical framework can be used to study many interesting problems in high speed,

compressible, multiphase flows with interfaces. Provided the necessary improvements in

models, methods, and computing paradigms, the following problems could be investigated

as a direct continuation of this work.

In the context of hydrodynamic instabilities, such as the blast-driven instability, the

growth of multimode initial perturbations and the late time bubble merging can be easily

investigated by changing the initial conditions. Studying the conditions under which the

perturbation’s growth is such that it interacts with the blast wave front (as observed for
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shocks by Rikanati et al. [182]) may also be of interest. The effect of reflected waves in

the multilayered RM study, Chapter IV, can be further explored by simulating a single

perturbed interface interacting with multiple waves (e.g. shocks, rarefactions, and blasts)

coming from different sides of the interface. The timing between the waves and the types of

waves is expected to have a significant impact on the growth. Various combinations of the

waves and parameters could be used to quantify the increase or decrease of mixing. With the

inclusion of thermal and radiation effects, the code may be used to investigate these effects

on perturbation growth in regimes relevant to supernova collapse and ICF. Some preliminary

studies of the multilayered KH instability were performed and presented at the APS 56th

Meeting of the Division of Plasma Physics. These studies could be further developed in

two main directions. The first is to investigate the supersonic KH instability, such as

was recently observed experimentally by Wan et al. [250]. The second is to analyze the

perturbation growth and transition to turbulence of an evolving KH instability interacting

with a shock, blast, or rarefaction wave.

Many interesting problems in multiphase flows can also be investigated. We have sim-

ulated supersonic liquid drops hitting walls and observed large negative tensions inside the

drops, Figure 7.2. Analyzing this situation with a small air bubble inside the drop either

by modeling it or with a very high resolution computation, may lead to interesting cav-

itation effects and wall damage mechanisms. Simulations of colliding drops and jets can

offer insight into combustion engine flows. Additionally, for homogeneous bubbly flows, we

developed a mixture model which modifies the stiffened equation of state to enforce the

correct speed of sound in the mixture, Figure 7.3. Finally, studying the effect of air bubbles

in a liquid flow on the turbulent statistics can lead to some interesting turbulence enhancing

or reducing methods.
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(a) Problem setup for a supersonic drop hit-
ting a wall.
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Figure 7.2: Setup and simulation results of non-dimensional density (top half of right col-
umn) and pressure (bottom half of right column) for a Mach 2.5 drop hitting a
wall.
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(a) Speed of sound as a function of gas volume
fraction, αg. Solid red: adiabatic theory [251];
dashed green: isothermal theory [251]; black
squares: experiments by Brennen [251]; dot-
ted orange: original stiffened equation of state;
dash-dotted blue: proposed model.

(b) Pressure in the flow (Mach 3, angle of the
wedge = 10◦).
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(c) Shock deflection angle as a function of in-
flow Mach number. Solid black: adiabatic the-
ory; black symbols: experimental data [252];
red symbols: simulation data with proposed
model; squares: 4◦ wedge; diamonds: 4◦

wedge.
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(d) Shock pressure ratio as a function of in-
flow Mach number. Solid black: adiabatic the-
ory; black symbols: experimental data [252];
red symbols: simulation data with proposed
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Figure 7.3: Speed of sound in the bubbly mixture and simulation results of supersonic
bubbly flow over a wedge.
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APPENDIX B

Limiting properties and extensions

B.1 Proofs of the nonlinear properties of limiting

B.1.1 Addition

Let U = A + B, with two different limiting approaches Ũ = Ã+B and
˜̃
U = Ã + B̃.

We denote three adjacent computational cells L : x ∈ [−3,−1], C : x ∈ [−1, 1], and

R : x ∈ [1, 3]. Without loss of generality, we assume for simplicity P = 1 and Hierarchical

Reconstruction (HR) limiting. In this case,

A(x) = A0 +A1x, Ã(x) = A0 + Ã1x, B(x) = B0 +B1x, B̃(x) = B0 + B̃1x. (B.1)

where Ã1 =
1
2minmod

(
AC

0 −AL
0 , A

R
0 −AC

0

)
and B̃1 =

1
2minmod

(
BC

0 −BL
0 , B

R
0 −BC

0

)
. We

can write the limited slopes of U as

Ũ1 =
1

2
minmod

(
UC
0 − UL

0 , U
R
0 − UC

0

)

=
1

2
minmod

(
(AC

0 −AL
0 ) + (BC

0 −BL
0 ), (A

R
0 −AC

0 )− (AR
0 −AC

0 )
)
,

(B.2)

and, in the other case,

˜̃
U1 = Ã1 + B̃1 =

1

2

(
minmod

(
AC

0 −AL
0 , A

R
0 −AC

0

)
+minmod

(
BC

0 −BL
0 , B

R
0 −BC

0

))
.

(B.3)
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The non-linearity of the minmod procedure implies that Ũ1 6= ˜̃
U1 and, therefore, Ã+B 6=

Ã+ B̃.

B.1.2 Multiplication

Let U = AB and Ũ = ÃB̃. Without loss of generality, we assume P = 2 and HR

limiting. Through polynomial identification,

Ũ0 = Ã0B̃0, Ũ1 = Ã1B̃0 + Ã0B̃1, Ũ2 = Ã2B̃0 + Ã1B̃1 + Ã0B̃2. (B.4)

The cell averages of U and Ũ are

∫
U dΩ = U0 +

1

6
U2 = A0B0 +

1

6
(A2B0 +A1B1 +A0B2) , (B.5)

∫
Ũ dΩ = Ũ0 +

1

6
Ũ2 = Ã0B̃0 +

1

6

(
Ã2B̃0 + Ã1B̃1 + Ã0B̃2

)
. (B.6)

We can compute the difference in the cell averages of U and Ũ to obtain

∫
Ũ dΩ−

∫
U dΩ = A0B0 +

1

6

(
Ã1B̃1 −A1B1

)
− 1

62

(
Ã2B̃2 −A2B2

)
6= 0. (B.7)

Since this difference is non-zero in general, this implies that
∫
ÃB̃ dΩ 6=

∫
AB dΩ.
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APPENDIX C

Limiting properties and extensions

C.1 Proofs of the nonlinear properties of limiting

C.1.1 Addition

Let U = A + B, with two different limiting approaches Ũ = Ã+B and
˜̃
U = Ã + B̃.

We denote three adjacent computational cells L : x ∈ [−3,−1], C : x ∈ [−1, 1], and

R : x ∈ [1, 3]. Without loss of generality, we assume for simplicity P = 1 and HR limiting.

In this case,

A(x) = A0 +A1x, Ã(x) = A0 + Ã1x, B(x) = B0 +B1x, B̃(x) = B0 + B̃1x. (C.1)

where Ã1 =
1
2minmod

(
AC

0 −AL
0 , A

R
0 −AC

0

)
and B̃1 =

1
2minmod

(
BC

0 −BL
0 , B

R
0 −BC

0

)
. We

can write the limited slopes of U as

Ũ1 =
1

2
minmod

(
UC
0 − UL

0 , U
R
0 − UC

0

)

=
1

2
minmod

(
(AC

0 −AL
0 ) + (BC

0 −BL
0 ), (A

R
0 −AC

0 )− (AR
0 −AC

0 )
)
,

(C.2)

and, in the other case,

˜̃
U1 = Ã1 + B̃1 =

1

2

(
minmod

(
AC

0 −AL
0 , A

R
0 −AC

0

)
+minmod

(
BC

0 −BL
0 , B

R
0 −BC

0

))
.

(C.3)
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The non-linearity of the minmod procedure implies that Ũ1 6= ˜̃
U1 and, therefore, Ã+B 6=

Ã+ B̃.

C.1.2 Multiplication

Let U = AB and Ũ = ÃB̃. Without loss of generality, we assume P = 2 and HR

limiting. Through polynomial identification,

Ũ0 = Ã0B̃0, Ũ1 = Ã1B̃0 + Ã0B̃1, Ũ2 = Ã2B̃0 + Ã1B̃1 + Ã0B̃2. (C.4)

The cell averages of U and Ũ are

∫
U dΩ = U0 +

1

6
U2 = A0B0 +

1

6
(A2B0 +A1B1 +A0B2) , (C.5)

∫
Ũ dΩ = Ũ0 +

1

6
Ũ2 = Ã0B̃0 +

1

6

(
Ã2B̃0 + Ã1B̃1 + Ã0B̃2

)
. (C.6)

We can compute the difference in the cell averages of U and Ũ to obtain

∫
Ũ dΩ−

∫
U dΩ = A0B0 +

1

6

(
Ã1B̃1 −A1B1

)
− 1

62

(
Ã2B̃2 −A2B2

)
6= 0. (C.7)

Since this difference is non-zero in general, this implies that
∫
ÃB̃ dΩ 6=

∫
AB dΩ.

C.2 Extension to other multiphase models

We illustrate the generality of our limiting approach by applying it to the five-equations

model, also used to describe multiphase flows [89], written for a two-phase system as:

∂α1

∂t
+ uj

∂α1

∂xj
= 0, (C.8a)

∂(ρ1α1)

∂t
+

∂

∂xj
(ρ1α1uj) = 0, (C.8b)

∂(ρ2α2)

∂t
+

∂

∂xj
(ρ2α2uj) = 0, (C.8c)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) = 0, (C.8d)

∂E

∂t
+

∂

∂xj
[uj(E + p)] = 0, (C.8e)
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where ρi and αi are the density and volume fraction of the ith fluid, respectively, α2 = 1−α1

and ρ = α1ρ1 + α2ρ2. The mixture internal energy is defined as ρe = α1ρ1e1 + α2ρ2e2.

Gryngarten and Menon [88] discuss a primitive reconstruction procedure but do not address

possible conservation issues arising from limiting the primitive variables. For high-order

accurate, non-oscillatory, and conservative limiting, we directly apply our limiting procedure

detailed above. For a Mie-Grüneisen equation of state, we limit p and α1 and reconstruct

the internal energy as

ρ̃en =
1

Γ1

n∑

k=0

(
n

k

)
p̃n−k(̃α1)k +

(
−pref,1

Γ1
+ ρeref,1

)
(̃α1)n

+
1

Γ2

n∑

k=0

(
n

k

)
p̃n−k(̃α2)k +

(
−pref,2

Γ2
+ ρeref,2

)
(̃α2)n, for n = 1, . . . , P,

(C.9)

where α̃2 = 1 − α̃1. Our limiting procedure can readily be extended to other models, e.g.,

Baer-Nunziato [83], in this way.
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APPENDIX D

Circulation in two-dimensional inviscid flow

D.1 Compressible and advective terms in the circulation equation

In this appendix, we show that the advective and compressible terms in the evolution

equation for circulation balance each other. This is important to show that the only con-

tribution to circulation in a two-dimensional inviscid flow is baroclinic vorticity generation.

We start with the evolution equation for vorticity in a two-dimensional inviscid flow:

∂ω

∂t
= −(u · ∇)ω − ω(∇ · u) + 1

ρ2
(∇ρ×∇p)

where ω is the z-component of vorticity, u is the velocity vector, ρ is the density, and p is

the pressure. Integrating this evolution equation in the half-domain around the interface

yields the evolution equation for circulation

∂Γ

∂t
=

∂

∂t

∫

A
ω dA =

∫

A

(
−(u · ∇)ω − ω(∇ · u) + 1

ρ2
(∇ρ×∇p)

)
dA

=

∫

A
∇ · (uω) dA+

∫

A

1

ρ2
(∇ρ×∇p) dA

= uω|dA +

∫

A

1

ρ2
(∇ρ×∇p) dA

=

∫

A

1

ρ2
(∇ρ×∇p) dA
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because uω| dA is zero on the boundary of the integration surface (ω is zero at the inter-

gration boundaries). The evolution equation of circulation in our two-dimensional inviscid

flow depends solely on the baroclinic vorticity generation term.
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Flow with Mie–Grüneisen Equation of State, J. Comput. Phys. 171 (2001) 678–707.

[76] E. Johnsen, T. Colonius, Numerical simulations of non-spherical bubble collapse., J.
Fluid Mech. 629 (2009) 231–262.

[77] G. Ward, D. Pullin, A hybrid, center-difference, limiter method for simulations of
compressible multicomponent flows with Mie-Grüneisen equation of state, J. Comput.
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