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Abstract

Many prepubertal girls and young women suffer from premature ovarian insufficiency
induced by chemotherapy given for treatment of cancer and autoimmune diseases. Auto-
transplantation of cryopreserved ovarian tissue could restore the lost ovarian endocrine function
and fertility. Unfortunately, tissue ischemia, inconsistent graft quality and the risk of re-
introducing malignant cells may stand in the way of the clinical translation of this approach.
Therefore, isolation and re-implantation of multiple follicles may serve as a safer alternative;
individual follicles can be isolated from the stromal environment in the ovarian tissue, and
encapsulated in a hydrogel functioning as a supportive matrix for these isolated follicles. In the
present study, we engineered an artificial ovarian tissue from the early stage follicles using a
synthetic hydrogel, poly(ethylene glycol) vinyl-sulfone (PEG-VS), as a supportive matrix. The
chemistry of the multi-arm PEG-VS formed by Michael-type addition allows: [1] modification
with integrin binding peptides (such as RGD) for cell adhesion and migration and [2] a precise
control over mechanical properties, making it suitable for reproductive tissue engineering
applications. In this work, first we characterized the crosslinking kinetics of multi-arm PEG
hydrogel. We investigated the role of PEG functionality on bioactive modification and
mechanical properties of hydrogels, and the combined effect of mechano-biological properties on
behavior of encapsulated cells. While the molar concentration of the reactive functional groups
was identical in all the conditions, PEG with a larger number of functional groups on each unit
allowed a greater degree of modification as well as a more precise control of mechanical
properties, making it more suitable for supporting three-dimensional culture. Next, we modeled
premature ovarian failure in mice to analyze the capability of PEG hydrogels to support

folliculogenesis, vascularization, steroidogenesis and graft longevity in vivo. PEG hydrogels



supported folliculogenesis of enzymatically-isolated follicles, leading to repeating estrous cycles
and functioning hypothalamus-pituitary-gonadal axis with physiological levels of follicle-
stimulating hormone. Furthermore, we demonstrated re-vascularization of the hydrogel,
suggesting its capability of undergoing remodeling process. In summary, this is the first study
proving the concept of a fully functional artificial ovarian tissue transplant built on the platform

of the synthetic PEG hydrogel.



CHAPTER |

Introduction

1.1 Understanding ovarian physiology

Ovarian tissue contains follicles at different developmental stages surrounded by stroma
cells and rich vasculature. Follicles, the functional units of the ovary, are composed of a germ
cell (the oocyte) and one or more layers of somatic cells (granulosa and theca cells), which are
responsible for the production and metabolism of sex hormones, estradiol and progesterone. At
birth, the human ovary contains approximately one million of immature follicles, called
primordial follicles, which have the potential to develop and produce mature oocytes capable of
fertilization. This number decreases to 300,000 follicles at puberty and continues to decline until
menopause(1). The ovarian reserve declines rapidly with significantly decreasing fertility around
the age of 38 in women due to follicle exhaustion, and eventually, leading to menopause.
Premature depletion of the ovarian reserve in women exposed to chemotherapy causes premature
ovarian failure (POF) and sterility.

Primordial follicles, the most immature and abundant class of follicles, constitute the ovarian
reserve, and activation of a small portion of this reserve each cycle ensures ovarian function(1).
Mammalian females are born with a set number of immature primordial follicles, which remain
quiescent until puberty. Starting at puberty during each menstrual cycle a small cohort of

primordial follicles gets activated and enters the pool of growing follicles(2). Upon activation, at
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the primary stage of development, the oocyte expands and granulosa cells become cuboidal(3).
Through the secondary stage of development, the granulosa cells proliferate rapidly along with
the somatic theca cells on the exterior basement membrane and secrete sex hormones in response
to circulating gonadotropins. The process of the selection and maturation of follicles depends on
a complex set of systemic and local signals exchanged between follicles and the surrounding
environment, which include circulating hormones(4), paracrine factors(5), extracellular matrix(6,
7), and vasculature(8-10). The final stage of follicle development into antral follicle culminates
with the development of an antrum (a fluid-filled cavity adjacent to the oocyte), and it is

followed by ovulation of an oocyte.
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Fig. 1.1 — Ovarian Physiology. Ovary contains follicles at different developmental stages surrounded
by stroma cells and rich vasculature. Follicles, the functional units of the ovary, are composed of a
germ cell (the oocyte) and layers of somatic cells (granulosa and theca cells), which are responsible
for the production and metabolism of sex hormones, estradiol and progesterone. Copyright at
Beniamin Cumminas.



1.2 Fertility and ovarian endocrine function preservation

Progress in modern anticancer therapy has led to improved long-term survival rates of above
80% in most childhood malignancies(11). Unfortunately, chemotherapy and radiation have
irreversible long-term side effects. Elimination of germline cells in the ovary and testes and
resulting deficient reproductive and endocrine function is one of them. The rates of POF are very
high; it occurs in up to 40% of the young women and girls treated with radiation and
chemotherapy or combination of both(12, 13). In girls, POF has devastating consequences
including late puberty, short stature and altered body image, interference with the physical and
psychological development well into young adulthood(14). In young women, POF leads to a
plethora of metabolic abnormalities; cripples cardiovascular system and causes premature
aging(15, 16).

Currently, clinical strategies for fertility preservation exist only for women who can produce
a fully mature egg. If the anticancer treatment can be delayed, patients can undergo hormonal
induction for 2 to 3 weeks to stimulate follicle development and recover mature oocytes(17). The
oocytes can then be fertilized in vitro post-treatment. However, pre-treatment egg preservation
does not address the loss of ovarian endocrine function, and most importantly, egg preservation
is not available to prepubescent girls or patients who require immediate treatment(18).

In vitro follicle culture and cryopreservation of ovarian tissue could address the loss of
fertility and endocrine function, and expand options available to the patients (Fig.1.2). Multiple
reports have shown successful survival and growth of mature mouse follicles in vitro using either
two- or three-dimensional culture systems(19-23), yet this approach can not address the loss of
the endocrine function. Another technique is autotransplantation, which is transplantation of

cryopreserved ovarian tissue, which has shown promising results for fertility and ovarian
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Fig.1.2 — Treatment Effects on Fertility and Options for Preserving Fertility in Women with
Cancer. (A) A high-dose radiation and most chemotherapeutic agents damage the growing cells in
mature and immature follicles and, depending on the type of drug, the dose, and the age of the patient,
may result in depletion of many or all follicles. This depletion may result in a short-term loss of
reproductive function and an inability to attain a natural pregnancy after treatment. (B) For patients
who do not require immediate treatments, they can delay treatment and undergo hormonal induction
for 2 to 3 weeks to stimulate follicle development and recover mature oocytes. The oocytes can be
frozen or fertilized, depending on the wishes of the patient. If there is insufficient time or if there are
contraindications, one ovary can be removed, and ovarian cortical strips can be cryopreserved for use
in tissue transplantation or emerging techniques such as in vitro follicle maturation. (According to
Jeruss, JS. and Woodruff, TK. Preservation of fertility in patients with cancer. N.Engl.J.Med. 2009,
360.9.902 -911)



function restoration. Autotransplantation does not require repeated cycles of hormone
stimulation, thus reducing risk of ovarian carcinoma or ovarian hyperstimulation syndrome, and
allowing immediate start of anti-cancer treatments(24).

A successful autotransplantation would require maintenance of a large primordial follicle
population, which can maintain monthly cycles and provide healthy fertilizable eggs(17, 25-27).
However, several groups reported that the size of the graft decreased (30 — 70% of the original
size) after autotransplantation, and there was a significant loss of the follicular pool (50 — 90%)
due to tissue ischemia and hypoxia as a result of oxidative stress(28-30). Furthermore, it was
hypothesized that insufficient number of follicles secreting inhibitory factors led to a burst
activation of premature follicles and shortened graft longevity(31). As a result, multiple invasive
procedures are required to achieve ovarian function due to the short life span of ovarian
tissue(28). More importantly, the elevated risk of re-introducing malignant cells when
transplanting ovarian tissue from a patient with hematological cancer presents another
limitation(32). Therefore, isolating individual follicles free from other ovarian cells and grafting
a purified follicle population presents a safer alternative; individual follicles can be separated
from the rest the ovarian tissue, while the artificial supportive matrix can prevent follicular loss

and promote graft remodeling.

1.3 Tunable synthetic hydrogel as a platform for grafting of isolated follicles

The chemistry of the multi-arm PEG-VS cross-linked by MTA allows: [1] modification with
integrin binding peptides (such as RGD) for cell adhesion and migration(33, 34), and [2] a
precise control over mechanical properties(35). Also stepwise co-polymerization of end-

functionalized multi-arm PEG-VS can be carried out at physiological temperature and pH(36),



making it suitable for reproductive tissue engineering applications. Multi-arm PEG hydrogels
crosslinked with protease-sensitive peptides can degrade in response to enzymes secreted by the

follicle, such as plasminogen activators (PA) and matrix metalloproteinases (MMPs) (Fig.1.3)(7,

37-39).
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Fig. 1.3 — Synthesis scheme for the stepwise copolymerization of biomolecules containing free
thiols on Cys residues with end-functionalized PEG macromers bearing conjugated
unsaturated moieties. (Adapted to Lutolf, MP. et al. Synthesis and physiochemical
characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type
addition. Biomacromolecules. (2003) 4,713 —722.)

Cell and follicle responsive proteolytic degradation is required for cell proliferation,
migration, and expansion of the follicle encapsulated in a hydrogel. The mesh size of PEG
hydrogels is in the range of tens to a hundred nanometers, which allows diffusion of oxygen and
nutrients to the encapsulated tissues(40). Previous studies demonstrated that PEG-based matrices

support folliculogenesis in vitro(22), vascularization of tissue constructs in vivo(41) and promote



matrix remodeling in bone defects(42, 43) through the control of the hydrogel degradation
kinetics and their material properties.

Therefore, we hypothesized that a finely tuned and functional PEG hydrogel would serve as a
biomimetic grafting material that supports folliculogenesis, remodeling and vascularization.
These tunable biophysical and biochemical properties(35, 36) of PEG hydrogels would
successfully mimic the native complexity of the extracellular matrix and function as a platform

for artificial ovarian tissues.

1.4 Dissertation organization

The aims of this doctoral research are to develop, validate, and characterize functional and
tunable 3D synthetic PEG hydrogel to mimic the components of extracellular matrix (ECM) for
reproductive tissue engineering applications. This study was designed to understand the role of
biomimetic 3D hydrogels in reconstruction and regeneration of ovarian tissues in vivo. In
Chapter I1, we address three different components of building an artificial ovarian tissue from
enzymatic isolation and purification of the early stage follicles to encapsulation in natural
hydrogels. The work investigating the enzymatic isolation and purification of isolated follicles
using microfluidic device was published in RSC Advances in 2013. Chapter 111 presents the work
of characterizing natural hydrogels, fibrin, collagen or fibrin-collagen, to design more dynamic
environment for cells, and to understand how different mechanical and biological properties
affect cellular growth and behavior. This work was published in Journal of Biomedical Materials
Research Part A in 2015. Chapter IV reports the work of characterizing of a synthetic PEG
hydrogel: [1] how increasing PEG functionality from 4 to 8, and the act of bioactive modification

affect the kinetics of hydrogel formation and material properties, [2] the combined effect of



mechano-biological properties on cellular behavior. This work was published in Soft Matter in
2016. Chapter V describes the development of immature follicles encapsulated in PEG hydrogels
and evaluates the graft function after orthotopic transplantation into ovariectomized mice. We
demonstrated that PEG hydrogels with proteolytically-controlled degradation successfully
supported follicle growth and promoted graft revascularization and remodeling. Regenerated
artificial ovarian tissue successfully restored the cyclic hormonal changes in the reproductive
tract as well as the function of Hypothalamus-Pituitary-Gonadal (HPG) axis. This work is
currently under review. Lastly, chapter VI provides a summary of the findings and the future

directions of this research in particular and the field in general.
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