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CHAPTER I

An Introduction to Instrumental Variables

The randomized controlled trial (RCT) is considered the “gold standard” for eval-

uating the effectiveness of a treatment or intervention. Randomizing subjects to a

treatment helps to ensure that treatment groups are comparable on both measured

and unmeasured covariates. When treatment groups are comparable, effects can be

obtained through direct comparisons using standard statistical methods. While this

is a major benefit of RCTs, they are not without limitations. They can be costly,

and in some cases it is impossible or even unethical to randomize the treatment. Ob-

servational data are an increasingly common alternative to RCTs, but come at the

cost of removing control over treatment assignment from the hands of the researcher.

This gives rise to the possibility of systematic differences between treatment groups.

While it may be possible to measure and control for certain covariates, there re-

mains a possibility that treatment groups differ in unmeasured ways that confound

the relationship of interest. This is a primary concern in any observational study,

and methods that ignore this unmeasured confounding give biased and potentially

misleading results.

Instrumental variable (IV) methods are widely used to deal with this issue and

are becoming increasingly popular in health and medical research. IV models are
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able to obtain consistent effect estimates in the presence of unmeasured confound-

ing between the treatment and outcome, but rely on assumptions that are hard to

prove and often criticized (Wooldridge, 2001). A key component of an IV analy-

sis is the instrumental variable, or the instrument. The instrument is a variable

that influences or encourages individuals toward a particular treatment without di-

rectly affecting the outcome. In this sense, the instrument mimics randomization

by randomly “assigning” individuals to different likelihoods of receiving the treat-

ment. An instrument must satisfy three basic assumptions (Angrist et al., 1996;

Baiocchi et al., 2014). Presented graphically in Figure 1.1, the instrument 1) must

be correlated with the treatment, 2) must be randomly assigned, or independent of

unmeasured confounders, and 3) cannot directly affect the outcome.

Instrument Outcomex
3

Unmeasured Confounders

Treatment

x2

1

Figure 1.1: Causal diagram depicting the relationship between variables in an instrumental variables
analysis, as well as the assumptions imposed on the instrument.

The assumption that the instrument is randomly assigned implies that there are

no unmeasured confounders between the instrument and the outcome. Unfortu-

nately, this cannot be verified to hold and the assumption often faces criticism. This

assumption is easy to justify when an instrument is based on a truly random process,

for example using treatment assignment as an instrument for treatment received in

a randomized trial with noncompliance. Without actual randomization, however,

finding an instrument that meets this criteria can be a difficult task. In observa-

tional studies it is more common to find an instrument that, although not subject
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to randomization, arguably meets this assumption after controlling for a set of mea-

sured instrument-outcome confounders (Garabedian et al., 2014). In other words,

the instrument is argued to be conditionally distributed “as good as random.” For

example, regional treatment preferences may serve as a reasonable instrument after

controlling for patient characteristics such as race, age, education, income, insur-

ance status and comorbidities, geographic characteristics such as rural/urban status

and socioeconomic indicators, and provider characteristics such as procedure vol-

ume, supply, and profit or teaching status. Garabedian et al. (2014) discuss the

most common instruments and potential instrument-outcome confounders associ-

ated with each, and emphasize that failing to control for these confounders violates

the assumption that the instrument is randomly assigned and can bias estimation.

In Chapter II we propose a weighted IV estimator that controls for measured

instrument-outcome confounders using the IV propensity score. The IV propensity

score represents the probability that an individual is encouraged, based on their

instrument value, toward the treatment. This is different from the more common

treatment propensity score, which is the probability that an individual actually re-

ceives the treatment. Similar to the treatment propensity score (Rosenbaum and

Rubin, 1983; Lunceford and Davidian, 2004), the IV propensity score balances the

distribution of observed covariates across instrument groups while reducing the di-

mension of the adjustment problem, a major benefit as the number of covariates

increases. Unlike the treatment propensity score, which is only useful for address-

ing measured treatment-outcome confounding, methods based on the IV propensity

score can provide consistent effect estimates in the presence of both measured and

unmeasured confounders between the treatment and the outcome.

The proposed estimator uses weights that are designed to approximate the prob-
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ability of being selected into a one-to-one match on the IV propensity score (Frölich,

2007), though we present an extension for approximating k:1 matching designs as

well. We therefore refer to the proposed estimator as the IV-matching weight estima-

tor. We show that the IV-matching weight estimator has several benefits over one-to-

one IV propensity score matching. These include increased efficiency in estimation,

straightforward variance estimation, and speed of computation. The IV-matching

weight estimator is further shown to be more efficient than alternative weighting

estimators (Tan, 2006), possibly a result of using stable weights that are bounded

between 0 and 1.

While we develop this estimator for use with binary outcomes, we present prelimi-

nary research on applying the method to time-to-event or survival data. Specifically,

we modify the procedure to estimate the difference in mean survival between groups,

although other estimands relevant to survival studies may be considered as well.

Given the importance of survival data in health and medical research, this work has

potential for a broad applications.

Chapter III is concerned with the strength of the correlation between the instru-

ment and the treatment, specifically how this strength can be increased. Instru-

ments with little influence over treatment assignment are termed weak instruments,

and there are a number of problems associated with using them. They suffer from

greater finite-sample bias and greater variability in estimation (Bound et al., 1995;

Wooldridge, 2001). Additionally, results obtained using weak instruments are sensi-

tive to violations of the assumption that the instrument is randomly assigned (Bound

et al., 1995; Small and Rosenbaum, 2008; Baiocchi et al., 2010). Given the critical na-

ture of this assumption, the robustness provided by stronger instruments is a major

benefit and has motivated recent methods for strengthening the instrument.
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We develop a novel method for strengthening the instrument within the IV-

matching framework of Baiocchi et al. (2010, 2012). The proposed method involves

weighting pairs based on a within-pair measure of instrument strength in a way that

increases the strength of the instrument across all pairs. Compared with existing

methods for strengthening the instrument (Baiocchi et al., 2010, 2012), the proposed

weighting procedure is able to strengthen the instrument without compromising the

quality of matches formed. Match quality is a priority in any matching design, since

poor match quality can lead to biased and misleading estimated effects. The im-

proved match quality is therefore an important benefit of weighting over existing

alternatives.

Finally, in Chapter IV we investigate instrumental variable estimation using strength-

ened instruments to better understand their properties. Theory suggests that stronger

instruments provide for decreased finite-sample bias, increased efficiency in esti-

mation, and results that are more robust to unmeasured instrument-outcome con-

founders (Bound et al., 1995; Wooldridge, 2001; Small and Rosenbaum, 2008). These

benefits have motivated methods for strengthening weak instruments, including those

of Baiocchi et al. (2010, 2012) and that proposed in Chapter III. It has yet to be

shown, however, that strengthened instruments provide the same benefits as instru-

ments that are naturally stronger. We use the term “strengthened” to refer to any

instrument whose strength has been increased by the researcher, and the term “nat-

urally stronger” to refer to instrument that is more correlated with the treatment

without the research increasing this correlation.

Our findings suggest that while strengthened instruments provide for more ef-

ficient estimation, they are unable to decrease finite-sample bias or improve the

robustness to unmeasured instrument-outcome confounders as previously suggested.
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We find that methods for strengthening the instrument inadvertently strengthen the

relationship between the instrument and any unmeasured instrument-outcome con-

founders in the process. This important finding has thus far been overlooked in the

literature, and has likely led to the belief that strengthened instruments provide esti-

mates that are more robust to unmeasured instrument-outcome confounders. These

findings give guidance for future research related to methods for strengthening the

instrument.



CHAPTER II

A Weighted Estimator of the Local Average Treatment
Effect with Observed Confounders

2.1 Motivation

Instrumental variable (IV) methods are widely used to deal with the selection bias

or unmeasured confounding that is often present in observational studies. While IV

models can obtain consistent estimates in the presence of this unmeasured confound-

ing, they rely on assumptions that are difficult to verify and often criticized. A key

component of an IV analysis is the instrument, a variable that is considered to en-

courage individuals toward the treatment or control. The instrument is assumed to

be correlated with the treatment, have no direct effect on the outcome outside of

its effect on the treatment, and be randomly assigned (Angrist et al., 1996; Baiocchi

et al., 2014).

The assumption that the instrument is randomly assigned implies that there are

no unmeasured instrument-outcome confounders. This assumption is easy to make

when an instrument is based on actual randomization, for example using the treat-

ment that a subject is randomly assigned to as an instrument for the treatment a

subject ultimately receives in a randomized trial that suffers from noncompliance.

Such instruments are rarely available in observational studies, however, and it is more

common to find an instrument that meets this requirement only after controlling for

7
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a set of measured instrument-outcome confounders. In other words, the instrument

is conditionally distributed “as good as random.” For example, regional treatment

preference may serve as a reasonable instrument after controlling for patient char-

acteristics such as race, age, education, income, insurance status and comorbidities,

geographic characteristics such as rural/urban status, socioeconomic indicators, and

provider characteristics such as procedure volume, supply, and profit or teaching

status. Garabedian et al. (2014) discuss the most commonly used instruments and

potential instrument-outcome confounders associated with each, and emphasize that

failing to adjust for these can bias estimation.

Instrument-outcome confounders can be adjusted for in several ways. They can be

included as covariates in two stage regression models. While two stage least squares

is the most common among these, it may be inappropriate for binary outcomes

(Bhattacharya et al., 2006). Two stage residual inclusion was proposed in Terza

et al. (2008) for use with binary outcomes. Matching on confounders is a common

nonparametric alternative to these regression methods, but becomes difficult when

there are many confounders or confounders with many discrete levels. Though less

common in practice, methods have proposed using the IV propensity score rather

than the full set of confounders. These include the inverse probability weighting

estimator of Tan (2006), the matching estimator of Frölich (2007), and the weighting

and subclassification methods of Cheng and Lin (2013).

The IV propensity score is the probability that an individual is encouraged toward

the treatment, as indicated by their instrument value. This is different from the

more common treatment propensity score, which represents the probability that an

individual actually receives the treatment. Like the treatment propensity score, the

IV propensity score balances the distribution of confounders across groups while
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reducing the dimension of the adjustment problem (Rosenbaum and Rubin, 1983;

Lunceford and Davidian, 2004). Unlike the treatment propensity score, which is only

useful for addressing measured treatment-outcome confounding, methods based on

the IV propensity score can provide consistent effect estimates in the presence of

both measured and unmeasured treatment-outcome confounding.

In this chapter we propose an IV estimator based on the IV propensity score.

It is a weighted estimator that uses weights designed to reflect the probability of

being selected into a one-to-one IV propensity score match. One-to-one IV propen-

sity score matching involves pairing encouraged subjects to unencouraged subjects

with similar scores, usually within a specified range. Often a match cannot be found

within this range. Pairing the encouraged subject to an unencouraged subject with

a score outside of this range can bias estimation, whereas dropping the encouraged

subject reduces sample size which leads to a decrease in efficiency. Furthermore,

matching becomes a computationally difficult task as sample size increases. The

proposed estimator avoids these pitfalls associated with matching. An additional

benefit of weighting estimators is that they allow for straightforward variance esti-

mation, whereas the correlation structures introduced by matching algorithms are

difficult to account for when estimating the variance of matching estimators (Austin,

2008, 2009b, 2011a).

We further present two extensions of the proposed estimator that could prove

useful in practice. The first is a modification to the weight function to approximate

k:1 matching designs. The second is an alternative formulation of the estimator

that provides protection against misspecification of the IV propensity score model.

Though this requires the additional specification of an outcome model, this double

robust estimator will give consistent estimates if at least one of the IV propensity
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score or outcome models is correctly specified.

The remainder of this chapter is organized as follows. In Section 2.2 we define

notation, discuss the IV propensity score, and introduce our proposed estimator.

Finite-sample performance is reported through simulations in Section 2.3, and use

of the method is illustrated with a real data example in Section 2.4. Future work on

applying the method to survival data is presented in Section 2.5, and we conclude

with a discussion in Section 2.6.

2.2 Methods

2.2.1 Notation

We define notation using the potential outcomes framework (Rubin, 1974; Ney-

man, 1923; Angrist et al., 1996). For each of i = 1, ..., n subjects, let Zi = 1 if

subject i is encouraged toward the treatment and Zi = 0 if encouraged toward the

control. Let Di(Zi) indicate treatment received for subject i given their encourage-

ment status, and let Yi(Zi, Di(Zi)) indicate the response for subject i given their

encouragement status and treatment value. Di(Zi) and Yi(Zi, Di(Zi)) are referred

to as potential outcomes. When subject i is encouraged toward the treatment, we

observe treatment Di(1) and response Yi(1, Di(1)) from subject i, otherwise we ob-

serve treatment Di(0) and response Yi(0, Di(0)). Our interest is in estimating the

parameter

(2.1) λ =
E(Yi(1, Di(1))− Yi(0, Di(0)))

E(Di(1)−Di(0))
.

This is the ratio of the instrument’s effect on the response to its effect on the treat-

ment, and is often referred to as the local average treatment effect (LATE) (Imbens

and Angrist, 1994; Angrist et al., 1996). Rather than an average treatment effect

over the entire population, the LATE is interpreted as an average effect over a sub-
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group of the population known as compliers. Depicted in Table 2.1, compliers are

individuals that take the treatment they are encouraged toward, and are one of four

population subgroups defined by their response to encouragement.

Table 2.1: Population subgroups defined by the effect of encouragement on treatment. D(1) denotes
the treatment a subject will receive if they are encouraged toward treatment, while D(0)
denotes the treatment they will receive if they are encouraged toward the control.

D(1)
1 0

D(0)
1 Always-takers Defiers
0 Compliers Never-takers

The difficulty in estimating λ comes from the fact that we never observe individ-

uals under both states of encouragement, and therefore never observe both of their

potential outcomes. The data provides, for example, E(Yi(1, Di(1))|Zi = 1), or the

average response under encouragement among the encouraged subjects. This differs

from E(Yi(1, Di(1))), which is the average response over the entire population if the

entire population were encouraged. To recover the expectations in equation (2.1),

and to aid in the interpretation of λ, we make the following five assumptions (Angrist

et al., 1996):

A1. Stable Unit Treatment Value Assumption (SUTVA). Often known as no in-

terference, SUTVA requires that the outcomes for one subject be unaffected by the

encouragement status or treatment assignment of other subjects. This assumption

will be violated if spillover effects exist between patients or groups. SUTVA allows

us to consider a subjects potential outcomes as a function of their treatment and

encouragement, rather than a function of the treatment and encouragement assign-

ments of the entire population.

A2 - Random assignment of the instrument. The instrument is assumed to be ran-

domly assigned, which implies that there are no unmeasured confounders between
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the instrument and the outcome. This assumption is often made conditional on

measured instrument-outcome confounders. It cannot be verified to hold, and weak

instruments are especially sensitive to violations of this assumption (Baiocchi et al.,

2014; Bound et al., 1995; Small and Rosenbaum, 2008; Staiger and Stock, 1994).

A3 - Exclusion restriction. The instrument is assumed to affect the outcome

only through its effect on the treatment. This implies that Yi(1, Di(1) = d) =

Yi(0, Di(0) = d) for all i, d. Since both potential outcomes are never observed for

any individual, this assumption cannot be verified to hold.

A4 - Nonzero association between instrument and treatment. The instrument is as-

sumed to be correlated with the treatment. This implies that E(Di(1)−Di(0)) 6= 0.

A5 - Monotonicity. Monotonicity is the assumption that no individual always

does the opposite of what they are encouraged to do. This implies that there are no

defiers (Table 2.1) and that Di(1) ≥ Di(0) for all i.

The SUTVA and random assignment assumptions allow for unbiased estimation

of the instrument’s effect on the outcome and the treatment, or the numerator and

denominator in (2.1). The remaining assumptions give λ a meaningful interpreta-

tion. By exclusion restriction, always- and never-takers (Table 2.1) do not contribute

to estimation since their treatment values, and therefore their response values, do

not vary with encouragement. Monotonicity ensures that the subgroup of defiers is

empty, while a nonzero association between the instrument and the treatment en-

sures that the subgroup of compliers is not empty. With the addition of assumptions

these three assumptions, λ can therefore be interpreted as an average treatment ef-

fect among the compliers, who are often referred to as “marginal patients.” Unlike

the average treatment effect, which is applicable to the entire population, λ only

applies to subjects that can be encouraged to switched treatment states. Further
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discussion of these assumptions can be found in Imbens and Angrist (1994), Angrist

et al. (1996) or Baiocchi et al. (2014), among many others.

2.2.2 Proposed Estimator

In this section we present our proposed estimator. It is a weighted IV estimator

of the local average treatment effect that adjusts for measured instrument-outcome

confounders using weights that are based on the IV propensity score. Defined as

(2.2) e(x) = P (Z = 1|X = x),

the IV propensity score represents the probability of receiving encouragement toward

the treatment. This is different from the more common treatment propensity score,

which represents the probability of actually receiving the treatment. From the theo-

rems of Rosenbaum and Rubin (1983), we can say that the distribution of covariates

X is balanced across instrument groups conditional on e(x), and if the instrument

is independent of unmeasured confounders conditional on X, then it is independent

of unmeasured confounders conditional on e(x) as well. Taken together, these two

statements imply that conditioning on e(x) is sufficient for adjusting for X.

Define the observed treatment and response values for subject i as Di = ZiDi(1)+

(1 − Zi)Di(0) and Yi = ZiYi(1, Di(1)) + (1 − Zi)Yi(0, Di(0)), respectively. Our pro-

posed estimator, which we refer to as the IV-matching weight (IV-MW) estimator,

is given as

(2.3) λIV-MW =

∑
iWiZiYi/

∑
iWiZi −

∑
iWi(1− Zi)Yi/

∑
iWi(1− Zi)∑

iWiZiDi/
∑

iWiZi −
∑

iWi(1− Zi)Di/
∑

iWi(1− Zi)
,

where weights Wi are defined as

(2.4) Wi =
min(ei(xi), 1− ei(xi))

Ziei(xi) + (1− Zi)(1− ei(xi))
.
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This weight is similar to the matching weight of Li and Greene (2013), but defined

using the IV propensity score rather than the treatment propensity score. The IV-

MW estimator is therefore useful for dealing with both measured and unmeasured

treatment-outcome confounding, whereas the estimator of Li and Greene (2013) is

useful only in the presence of measured treatment-outcome confounding but will not

provide consistent estimates if unmeasured treatment-outcome confounders exist.

Weights Wi are referred to as matching weights because they approximate the

probability of being selected into a one-to-one match on the IV propensity score.

The asymptotic equivalence of the IV-MW estimator with one-to-one matching on

the IV propensity score is shown in Appendix A, but we illustrate the idea here with a

simple example. Consider a region around IV propensity score e = 0.1 with m = 100

individuals. From (2.2), there is an expected me = 10 encouraged and m(1−e) = 90

unencouraged individuals in this region. All encouraged individuals are therefore

expected to find a match, and W = min(0.1, 0.9)/(1 × 0.1 + 0 × 0.9) = 1 for these

individuals. However, only 10 of the 90 unencouraged individuals are expected to

be matched, and W = min(0.1, 0.9)/(0× 0.1 + 1× 0.9) = 1/9 for these individuals.

Figure 2.1 displays the weight assigned to encouraged and unencouraged individuals

across the range of IV propensity scores.

Alternatives to the IV-MW estimator proposed in (2.1) include one-to-one IV

propensity score matching (Frölich, 2007) and inverse probability weighting using

the IV propensity score (Tan, 2006). These two methods are, to the best of our

knowledge, the only published alternatives that make use of the IV propensity score

to control for measured instrument-outcome confounders. A benefit of the proposed

IV-MW estimator over one-to-one IV propensity score matching is that all subjects

contribute a fraction of themselves to estimation, avoiding the situation where in-
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Figure 2.1: Matching weights for encouraged and unencouraged subjects by IV propensity score.

dividuals are removed after not finding a suitable match. This avoids a decrease in

sample size and efficiency. A benefit of the proposed estimator over inverse probabil-

ity weighting using the IV propensity score is that the weights are bounded between

0 and 1, whereas inverse probability weights can “blow up” near probabilities 0 or

1, causing an increase in the variance of the estimate (Li et al., 2014). We therefore

expect the proposed IV-MW estimator to be more efficient than both one-to-one IV

propensity score matching and inverse probability weighting using the IV propensity

score.

An additional benefit of weighting estimators over matching based estimators is

that they allow for straightforward variance estimation. Matching algorithms intro-

duce complicated correlation structures that are difficult to account for when esti-

mating the variance of matching estimators. Often, the matched nature of the data

is ignored entirely (Austin, 2008, 2009b, 2011a). Following Lunceford and Davidian

(2004) and Li and Greene (2013), a sandwich type variance estimator is obtained
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using estimating equations

(2.5) 0 =
n∑
i=1

φi(θ) =
n∑
i=1



WiZi(Yi − µy1)

Wi(1− Zi)(Yi − µy0)

WiZi(Di − µd1)

Wi(1− Zi)(Di − µd0)

Sη(η)


,

where θ = (µy1, µy0, µd1, µd0,η
′), with µy1 = E(WiZiYi)/E(WiZi), µy0 = E(Wi(1 −

Zi)Yi)/E(Wi(1−Zi)) and similar for µd1 and µd0. Sη(η) represent estimating equa-

tions for coefficients η from the model used to estimate the IV propensity score, often

a logistic regression. An estimate of var(θ̂) is obtained as n−1Â−1n B̂n(ÂTn )−1, where

Ân =
∑n

i=1 ∂φi(θ)/∂θ|θ=θ̂ and B̂n =
∑n

i=1 φi(θ)φ
T
i (θ)|θ=θ̂. Applying the multivariate

delta method with g(θ) = (µy1 − µy0)/(µd1 − µd0), an estimate of var(λ̂) is obtained

as ∇g(θ)T ˆvar(θ̂)∇g(θ). This procedure allows for simultaneous estimation of the IV

propensity score and λ, and is used for variance estimation for all estimators com-

pared in Sections 2.3 and 2.4. For the IV propensity score matching procedure, this

sandwich variance estimate ignores the matched nature of the sample. This typically

leads to an overestimated variance (Austin, 2009b, 2011a), though in simulations

reported in Section 2.3 the estimated and empirical standard deviations are found

to be approximately equal.

Note that Wi is not differentiable everywhere with respect to η due to the mini-

mum function in the numerator. To apply this variance estimation procedure, rewrite

the weight function as

(2.6) Wi =
ei(xi)I[ei(xi) ≤ 0.5] + (1− ei(xi))I[ei(xi) > 0.5]

Ziei(xi) + (1− Zi)(1− ei(xi))
.

These indicator functions can then be replaced with cumulative distribution functions

to create a smooth, differentiable function for Wi (Horowitz, 1992).
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In the following two sections we extend the IV-MW estimator in ways that could

prove useful in practice. We first adjust the weight function in (2.4) to approximate

a k:1 matching algorithm. We then modify the estimator in (2.3) for a double robust

IV-MW estimator that protects against misspecification of the IV propensity score

model. This requires the additional specification of an outcome model but will give

consistent estimates if at least one of the IV propensity score or outcome models is

correctly specified.

k:1 IV-matching Weights

The weights proposed in (2.4) are designed to approximate a one-to-one match

on the IV propensity score. While one-to-one matching is the most common in

practice (Austin, 2008), if the pool of unencouraged subjects is large enough we

might consider matching multiple unencouraged subjects to each encouraged subject.

Increasing the number of unencouraged subjects has the benefit of increasing the

sample size, thereby decreasing the variability in estimation. More on k:1 matching

using propensity scores, including guidance for the selection of k, can be found in

Austin (2010). For approximating k:1 matching designs, we redefine the weights as

(2.7) Wi =
min(kei(xi), 1− ei(xi))

Zikei(xi) + (1− Zi)(1− ei(xi))
.

As the number of unencouraged subjects to be matched increases, the probability

that they will be selected into a match for any given IV propensity score increases,

while decreasing the probability that encouraged subjects will be able to find k

individuals to match with. Figure 2.2 displays the weight assigned to encouraged

and unencouraged subjects across the range of IV propensity scores for one-, two-,

three-, and four-to-one IV propensity score matching.
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Figure 2.2: Weights for encouraged and unencouraged subjects across IV propensity scores for 1:1,
2:1, 3:1 and 4:1 matching designs. Weights for 1:1 matching are the same as Figure 2.1

Double Robust IV-MW Estimator

The IV-MW estimator in (2.3) requires correct specification of the IV propensity

score model for consistent estimation. In this section, we modify the IV-MW esti-

mator to protect against misspecification of the IV propensity score model. While

this requires the additional specification of an outcome model, the double robust

(IV-MWDR) estimator will provide consistent estimates if at least one of the IV

propensity score or outcome models is correctly specified, but does not require cor-

rect specification of both.

Let m0(Xi) = E {Yi|Xi, Zi = 0} denote the outcome model for the unencouraged

group and similarly let m1(Xi) the outcome model for the encouraged group. Follow-

ing from Lunceford and Davidian (2004) and Li and Greene (2013), a double robust

version of the IV-MW estimator is given as

(2.8) λIV-MWDR
=

A+B − C∑
iWiZiDi/

∑
iWiZi −

∑
iWi(1− Zi)Di/

∑
iWi(1− Zi)

,
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where

A =
∑
i

Wi{m1(Xi)−m0(Xi)}/
∑
i

Wi,

B =
∑
i

WiZi{Yi −m1(Xi)}/
∑
i

WiZi,

C =
∑
i

Wi(1− Zi){Yi −m0(Xi)}/
∑
i

Wi(1− Zi).

Variance is estimated using the procedure of Section 2.2.2, with estimating equations

(2.9) 0 =
n∑
i=1

φi(θ) =
n∑
i=1



Wi{m1(Xi)−m0(Xi)− µA}

WiZi{Yi −m1(Xi)− µB}

Wi(1− Zi){Yi −m0(Xi)− µC}

WiZi(Di − µd1)

Wi(1− Zi)(Di − µd0)

S1(α1)

S0(α0)

Sη(η)



,

where θ = (µA, µB, µC , µd1, µd0,α
′
1,α

′
0,η

′). µA, µB, µC , µd1, and µd0 correspond

to the limits of A, B, C, and the averages in the denominator of (2.8). S1(α1) and

S0(α0) represent the estimating equations for the parameters in m1(Xi) and m0(Xi),

and Sη(η) the estimating equations for the parameters in the IV propensity score

model.

2.3 Simulation

2.3.1 Setup

In this section we report the results of simulation studies for investigating the

finite-sample performance of the proposed IV-MW estimator. We compare it with

two alternatives that make use of the IV propensity score: the inverse probability
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weighting (IV-IPW) estimator of Tan (2006) and one-to-one IV propensity score

matching (IV-PSM) (Frölich, 2007). The IV-IPW estimator has the same form as

the IV-MW estimator in (2.1), but with the numerator of (2.4) replaced with 1. For

the IV-PSM procedure, we match on the logit of the IV propensity score, using an

optimal one-to-one match with a caliper of width equal to one fourth the standard

deviation of logit of the IV propensity scores. For information about caliper selection,

see Cochran and Rubin (1973), Raynor (1983), Rosenbaum and Rubin (1985), or

Austin (2011b).

We generate 1,000 datasets with binary outcome, treatment, and instrument for

i = 1, ..., n individuals from

P (Yi = 1|Di, X1i, X2i) = logit−1(βDi + δ1X1i + δ2X2i + εYi ),(2.10)

P (Di = 1|Zi) = logit−1(γ0 + γ1Zi + εDi ),(2.11)

P (Zi = 1|X1i, X2i) = logit−1(ψ0 + ψ1X1i + ψ2X2i).(2.12)

(εY , εD) are drawn from a bivariate normal with correlation 0.8 to represent unmea-

sured treatment-outcome confounding. X1 and X2 represent measured instrument-

outcome confounders and are randomly drawn from standard normal distributions.

β is varied from 0 to 1 and sample size is varied from 500 to 2,000. Results are

reported under the following parameter settings: ψ0 = γ0 = −1, ψ1 = δ1 = −0.25,

γ1 = 1 and ψ2 = δ2 = 0.25.

2.3.2 Results

Results for estimation and coverage properties of the estimators are reported in

Table 2.2. Each of the three estimators are found to be approximately unbiased. This

is expected because we have adjusted for instrument-outcome confounders X1 and

X2 in this simulation, and there are no unmeasured instrument-outcome confounders
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that would bias these IV methods. Coverage rates for each method are converging to

the nominal rate as sample size increases. Both weighted estimators have lower mean

squared errors (MSE) than IV-PSM, with the proposed IV-MW estimator achieving

the lowest MSE in each scenario. The 2:1 and 3:1 matching scenarios confirm that

the IV-MW estimator remains unbiased with the lowest MSE.

Table 2.2: Bias, MSE, and 95% coverage probabilities of IV-MW, IV-IPW, and IV-PSM for esti-
mation of λ. Reported results have been multiplied by 100.

Weighting Matching
IV-MW IV-IPW IV-PSM

k N β λ Bias MSE CP Bias MSE CP Bias MSE CP
1:1 500 0.0 0.00 -0.39 6.11 97.4 -0.51 6.38 97.2 0.50 12.53 97.2

0.5 0.12 -0.09 5.88 97.4 -0.38 6.17 97.1 1.05 9.42 98.2
1.0 0.22 -0.65 5.18 97.9 -0.40 5.50 97.4 -0.13 8.61 98.3

1:1 1000 0.0 0.00 0.16 2.59 96.2 0.27 2.62 96.2 0.69 4.14 96.5
0.5 0.12 0.42 2.50 96.9 0.67 2.57 96.5 0.70 3.84 97.0
1.0 0.22 0.31 2.17 97.0 0.81 2.32 96.5 1.19 3.59 96.8

1:1 2000 0.0 0.00 -0.04 1.28 95.6 -0.03 1.32 95.3 0.38 1.85 95.4
0.5 0.12 0.22 1.15 96.1 0.35 1.19 95.9 0.39 1.61 96.8
1.0 0.22 -0.71 1.26 95.2 -0.27 1.32 94.6 -0.19 1.87 95.5

2:1 2000 0.00 0.00 -0.10 1.25 96.1 -0.12 1.27 95.7 0.30 1.83 95.8
0.50 0.12 0.51 1.29 94.8 0.46 1.31 94.7 0.38 1.84 95.1
1.00 0.22 0.18 1.19 95.0 0.36 1.22 95.4 0.13 1.69 96.0

3:1 2000 0.00 0.00 -0.25 1.27 95.8 -0.31 1.27 96.3 -0.27 1.87 95.8
0.50 0.12 0.52 1.21 95.0 0.51 1.22 95.2 0.55 1.72 96.4
1.00 0.22 -0.05 1.16 95.7 -0.09 1.18 95.6 -0.16 1.65 97.5

A comparison of the estimated and empirical standard deviations in Table 2.3

confirms that the sandwich variance estimates (ASD) approximate the empirical

standard deviations (ESD) well. Applying the sandwich variance procedure to the

IV-PSM procedure requires that we ignore the matched nature of the data. While

this typically leads overestimation of the variance (Austin, 2009b, 2011a), this is not

seen to be an issue in the simulations reported here.

Additional simulations were performed to study the performance of the double

robust IV-MW estimator (IV-MWDR) of Section 2.2.2. For these simulations, the
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Table 2.3: Comparison of standard deviations obtained empirically (ESD) and using the sandwich
variance technique of Section 2.2.2 (ASD). Reported results have been multiplied by 100.

Weighting Matching
IV-MW IV-IPW IV-PSM

k N β λ ASD ESD ASD ESD ASD ESD
1:1 500 0.0 0.00 24.58 24.71 25.03 25.25 33.01 35.40

0.5 0.12 23.97 24.26 24.68 24.84 31.22 30.67
1.0 0.22 23.03 22.74 23.84 23.45 29.56 29.33

1:1 1000 0.0 0.00 16.37 16.08 16.62 16.19 20.06 20.35
0.5 0.12 16.06 15.79 16.32 16.02 19.76 19.59
1.0 0.22 15.40 14.74 15.79 15.21 19.03 18.91

1:1 2000 0.0 0.00 11.35 11.30 11.48 11.50 13.66 13.59
0.5 0.12 11.14 10.73 11.34 10.90 13.45 12.69
1.0 0.22 10.84 11.20 11.12 11.50 13.20 13.68

2:1 2000 0.0 0.00 11.27 11.20 11.52 11.29 13.74 13.52
0.5 0.12 11.00 11.35 11.31 11.43 13.42 13.54
1.0 0.22 10.67 10.90 11.03 11.02 13.07 12.99

3:1 2000 0.0 0.00 11.34 11.26 11.52 11.28 13.71 13.67
0.5 0.12 11.17 11.00 11.36 11.03 13.44 13.12
1.0 0.22 10.85 10.78 11.05 10.84 13.09 12.85

generating equations for Y and Z were redefined as

P (Yi = 1|Di, X1i, X2i) = logit−1(βDi + δ1X1i + δ2X2i + εYi +X1iX2i),(2.13)

P (Zi = 1|X1i, X2i) = logit−1(ψ0 + ψ1X1i + ψ2X2i +X1iX2i).(2.14)

The interaction term X1iX2i is ignored to represent an incorrectly specified model.

Results in Table 2.4 confirm that IV-MWDR provides consistent effect estimates

and maintains nominal coverage rates if at least one of the outcome or IV propensity

score models is correctly specified. The original IV-MW estimator only provides

consistent estimates when the IV propensity score model is correctly specified, and

its performance suffers greatly when this model is misspecified. An interesting finding

in Table 2.4 is that even though IV-MWDR requires the additional specification of an

outcome model, its performance is not damaged compared to IV-MW in situations in

which the double robust property would not be needed, i.e. when the IV propensity

score model is correctly specified. In other words, we do not lose anything, in terms

of bias or efficiency, by specifying the outcome model.
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Table 2.4: Estimation under correctly and incorrectly specified IV propensity score and outcome
models. n = 1, 000 and β = 1 for these simulations. Reported results have been
multiplied by 100.

Model Specification
P(Z) P(Y) Estimator % Bias MSE ASD ESD 95% CP

Correct Correct IV-MW -2.50 0.56 7.52 7.47 94.9
IV-MWDR -2.50 0.56 7.80 7.48 95.5

Correct Incorrect IV-MW -3.12 0.52 7.57 7.18 96.3
IV-MWDR -3.13 0.52 7.66 7.18 96.2

Incorrect Correct IV-MW 84.16 3.86 7.51 7.36 30.1
IV-MWDR -6.18 0.55 7.66 7.33 95.8

Incorrect Incorrect IV-MW 85.14 3.96 7.49 7.56 30.6
IV-MWDR 87.65 4.17 7.57 7.56 29.6

The simulations reported throughout this section demonstrate that the proposed

IV-MW estimator performs well compared with alternatives. It provided consistent

estimates, achieved the lowest MSE, and maintained approximately nominal coverage

in all scenarios reported. Both weighting estimators (IV-MW and IV-IPW) achieved

lower MSE than the matching estimator (IV-PSM), a result of allowing the full

data to contribute to estimation. The lower MSE for IV-MW compared with IV-

IPW could be because IV-IPW weights can “blow up” near probabilities of 0 or 1

(Li et al., 2014). While IV-MW weights are always bounded between 0 and 1, the

IV-IPW weights ranged from 1.05 to 20.5 in these simulations. Additionally, the IV-

MWDR estimator was able to protect against misspecification of the IV propensity

score model, providing consistent effect estimates if at least one of the IV propensity

score or outcome models were correctly specified. Both weighting estimators saw

computational benefits over IV propensity score matching as well. Using a MacBook

Pro with a 2 GHz Intel Core i7 processor, the following times (in seconds) were

observed to complete 1,000 simulations for n = 500, 1,000, and 2,000, respectively:

IV-MW - 6.3, 9.9, and 23.6, IV-IPW - 6.0, 9.4, and 21.4, IV-PSM - 65.4, 166.1,

and 547.9. While computing time was not a limiting factor in these simulations, it

quickly becomes one for matching estimators as sample size increases.



24

2.4 Data Example

We illustrate use of the methods of this chapter with data from the United States

Renal Data System (USRDS) to study the association between dialysis session length

and mortality among incident hemodialysis patients in the United States. Longer

dialysis sessions are thought to decrease mortality by reducing the risk of intradialytic

hypotension and better controlling volume excess and serum phosphorous (Daugir-

das, 2013), but this relationship is likely confounded. Shorter dialysis sessions are

often prescribed to smaller patients, and smaller patients tend to have higher mor-

tality rates, so direct comparisons would likely give biased effect estimates. Many

observational studies have found a significant increase in mortality in patients re-

ceiving shorter dialysis sessions (Flythe et al., 2013; Saran et al., 2006). A 2002

randomized trial, on the other hand, found no significant relationship between dial-

ysis session length and mortality (Eknoyan et al., 2002), and Brunelli et al. (2010)

found longer dialysis sessions to be associated with higher or lower mortality de-

pending on whether the treatment was considered time dependent. These conflicting

results suggest that unmeasured treatment-outcome confounding may be present and

an IV analysis may provide new and useful insight.

We obtained complete data on 319,168 adults initiating hemodialysis (HD) be-

tween January 1, 2010 and December 31, 2013 from the USRDS database. We

restricted the analysis to patients on a thrice-weekly dialysis schedule (98% of all

incident HD patients in the data were on a thrice-weekly dialysis schedule). We

conducted an intention-to-treat analysis, defined the treatment as being prescribed

dialysis sessions of four hours or longer, and defined the outcome as death within the

first year after initiating dialysis. Mean treatment usage in the hospital service area
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(HSA) from 2007 to 2009 was used as the IV (Figure 2.3). The HSA is a geographic

region representing a collection of zip codes with residents that receive most of their

healthcare within that region (Dartmouth, 2016). Preference-based instruments such

as this one are among the most common in health research (Garabedian et al., 2014),

and are thought to measure treatment preferences that are independent of patient

level confounders (Brookhart and Schneeweiss, 2007; Li et al., 2015).

Among the 3,336 HSAs in the data, mean treatment usage varied from 0 to 100%

with a mean of 74%. The correlation coefficient between the mean treatment usage

from 2007-2009 and mean treatment usage from 2010-2013 in an HSA was almost

90%. This indicates that preferences in an HSA are relatively stable through time,

and that mean treatment usage in an HSA from 2007-2009 is a strong instrument for

treatment in the 2010-2013 data. To fit the methods of this chapter, we dichotomized

the instrument by considering HSAs with above average treatment usage to be en-

couraging subjects toward longer dialysis sessions and HSAs with below average

usage to be encouraging their subjects toward shorter dialysis sessions.

The distribution of covariates by treatment and instrument groups is reported in

Table 2.5. Patients receiving longer dialysis sessions tend to have higher BMI and are

more likely to be male, black, and younger compared with patients receiving shorter

dialysis sessions. These patients are also more likely to receive dialysis at for profit

facilities in poorer, less educated areas. Comparing across instrument groups greatly

improves the balance of covariates. This is evidence that mean treatment usage in

an HSA may serve as a valid IV, although some imbalances remain in facility and

zip code level variables.

We first fit unadjusted and covariate adjusted logistic regression models to com-

pare with the IV methods of this chapter. These suggest a significant decrease in
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Figure 2.3: Distribution of longer dialysis session usage by hospital service area (HSA). Longer
dialysis sessions are defined as being prescribed dialysis sessions of four or more hours.

the odds of first year mortality among patients with longer dialysis sessions, with

estimated odds ratio and 95% confidence intervals of 0.86 (0.84, 0.87) and 0.95 (0.93,

0.97), respectively. Age, sex, race, ethnicity, BMI, number of comorbidities, access

type, profit status of the facility and median income in the zip code were included

in the covariate adjusted model. These logistic regressions will be biased if there are

confounders between the treatment and the outcome that are not included in the

model.

To implement the methods of this chapter, we begin by modeling the IV propen-

sity score, or the probability of being in an HSA with above average usage of longer

dialysis sessions. We specify a logistic regression model and include HSA level covari-

ates mean age, BMI, number of comorbidities, percentage of males, blacks, hispanics,

and patients without insurance, and median income, as well as patient level covari-

ates age, sex, race, and BMI. Using the estimated IV propensity score, a weight is

assigned to each subject for the IV-MW and IV-IPW procedures. For the IV-MW
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Table 2.5: Distribution of covariates across treatment (long vs short dialysis sessions) and instru-
ment groups (high vs low treatment usage at HSA level). Reported in the table is the
mean and absolute standardized difference, d, between groups. An absolute standardized
difference of more than 10 is generally considered to indicate an imbalance (Love, 2002).

Hours on Dialysis Usage in HSA
< 4 ≥ 4 d Low High d

Treatment
4+ hour sessions - - - 60.3% 88.8% 69.1
Outcome
Death w/in 1st year 23% 21% 6.2 22% 21% 0.8
Patient Level Covariates
Age 65.9 63.0 19.6 64.3 63.3 6.8
Male 51% 59% 16.7 57% 56% 2.1
BMI 28.0 30.4 28.2 29.4 30.1 8.3
Serum Creatinine 6.4 6.7 1.6 6.7 6.6 0.3
Hemoglobin 10.0 9.9 0.7 9.9 9.9 0.1
Black 23% 31% 16.6 26% 32% 12.4
Hispanic 17% 14% 8.4 17% 11% 10.9
Pre-ESRD 6+ Months 41% 44% 5.6 41% 45% 8.3
Employed 8.3% 9.1% 3.0 9.1% 8.8% 0.9
No Insurance 5% 8% 10.9 6% 8% 10.3
# Comorbidities 2.5 2.6 5.4 2.5 2.6 5.7
Facility Level Covariates
# Nurses 7.3 7.3 0.3 7.7 7.0 12.2
# Patient techs 8.9 8.8 1.1 9.1 8.5 8.1
# HD stations 20.8 21.7 10.2 21.2 21.7 5.7
For profit 81% 86% 14.9 82% 88% 16.5
Zip Code Level Covariates
Median income $54,551 $49,286 25.3 $53,358 $47,960 26.9
Bachelors degree + 25.5% 22.9% 18.0 24.6% 22.6% 14.9

procedure, this weight is given in (2.4). For the IV-IPW procedure the weight is

defined similar to (2.4), but with the numerator replaced with 1. For the IV-PSM

procedure, we specified a one-to-one optimal match on the IV propensity score with

a caliper of 0.05.

Table 2.6: Instrumental variable estimates and 95% confidence intervals for the effect of longer dial-
ysis sessions on first year mortality. Negative estimates suggest less first year mortality
among the patients receiving longer dialysis sessions.

λ̂ 95% CI
IV-MW -0.015 (-0.028, -0.002)
IV-IPW -0.006 (-0.018, 0.006)
IV-PSM -0.015 (-0.028, 0.001)

The results in Table 2.6 suggest a small protective effect of longer dialysis sessions.
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These IV results corroborate those found with the logistic regression models, although

the estimated effects appear smaller and are insignificant for the IV-IPW and IV-

PSM procedures. These estimates can be interpreted as follows; for λ̂ = −0.015, for

example, we expect 1.5 less deaths in the first year for every 100 patients that could

be encouraged to take long dialysis sessions. Note that IV-MW and IV-PSM gave

similar results, with IV-MW obtaining a narrower confidence interval. This agrees

with the idea that the IV-MW estimator is a more efficient approximation to the

IV-PSM process.

2.5 Future Work

The IV-MW estimator proposed in this chapter was developed for use with binary

outcomes. In this section, we present preliminary work on developing the IV-MW

estimator for use with time-to-event or survival data. Given the importance of sur-

vival data in public health and medical studies, this work has the potential for broad

applications in research. Few IV methods have been extended to survival data thus

far. Terza et al. (2008) discuss the use of two stage residual inclusion, an extension

of two stage least squares, with a Weibull regression for modeling survival data. Li

et al. (2015) develop a two stage estimator of causal effects assuming an additive

hazards model.

In this preliminary work, we modify the IV-MW procedure to estimate the dif-

ference in restricted mean survival between treatment groups in the presence of

unmeasured confounding. We develop the method under both independent and in-

formative censoring schemes. We report simulations to study its performance, and

apply it to the data example of Section 2.4.

Restricted mean survival is the expected survival time for an individual over a fixed
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period of time. While we currently focus on estimating the difference in restricted

mean survival, further work on estimating other parameters relevant to survival data

is warranted.

Methods

As in Section 2.2.2, define the IV-matching weight for subject i as

(2.15) Wi =
min(e(xi), 1− e(xi)

Zie(xi) + (1− Zi)(1− e(xi))
,

where e(xi) is the IV propensity score conditional on covariates xi. We assume that

we observe event times Yi = Ri ∧ Ci, where R represents the time to response and

C represents the time to censoring. Let δi = I(Ri < Ci) indicate observing the

response for subject i, and let tz1, t
z
2, ..., t

z
kz

be distinct event times for instrument

groups Z = 0, 1. Finally, let Di indicate treatment received for subject i.

IV-MW with Independent Censoring

We first present the estimator under the assumption that censoring times are

independently distributed. Define the weighted number of observed responses in

group Z at time tzj as

(2.16) dzj =
n∑
i=1

WiδiI(Yi = tzj , Zi = z)

and the weighted number of individuals at risk in group Z at time tzj as

(2.17) nzj =
n∑
i=1

WiI(Yi ≥ tzj , Zi = z).

Mean survival is then estimated as

(2.18) µ̂zY =

tkz∑
t=1

Ŝz(t),

where

(2.19) Ŝz(t) =
t∏

j=1

(
1−

dzj
nzj

)
.
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This is simply the area under a weighted, or adjusted, Kaplan-Meier curve (Kaplan

and Meier, 1958; Xie and Liu, 2005), where each individual is weighted by their

IV-matching weight, Wi.

Define the mean treatment usage in group Z as

(2.20) µ̂zD =
1

n

n∑
i=1

WiDiI(Zi = z).

Finally, define the estimate of interest as

(2.21) ∆̂IV-MW =
µ̂1
Y − µ̂0

Y

µ̂1
D − µ̂0

D

.

Similar to the estimator in (2.1), this represents the ratio of the instrument’s

effect on survival to the instrument’s effect on the treatment. Further research on

this estimate and how the assumptions of Section 2.2.2 apply here is needed.

IV-MW with Informative Censoring

Assuming that censoring times are distributed independently of survival times is

often unrealistic in practice. More often, there are covariates that affect both the

censoring and survival time distributions. This is known as informative censoring,

and if ignored can lead to biased effect estimates. Robins and Finkelstein (2000)

proposed inverse probability of censoring weighting to handle informative censoring.

In this section, we show how the estimator developed for independent censoring can

be easily extended for use under informative censoring schemes by combining the

IV-matching weight with inverse probability of censoring weights.

Assume that we measure covariates xc,i that affect the censoring and survival time

distributions. Define the inverse probability of censoring weights as

(2.22) WC
i,j =

1

ĜC(tj)
,
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where ĜC(tj) is a Cox regression model used to model the probability of being

censored, given as

(2.23) ĜC(tj) = λ̂C(tj)exp(β̂
′
CxC,i),

where λ̂C(tj) represents the baseline hazard at time tj. We fit separate Cox regression

models to the censoring times in the Z = 0 and Z = 1 groups. With these weights,

we redefine the weighted number of observed responses and individuals at risk in

group Z at time tzj as

(2.24) dzj =
n∑
i=1

WiW
C
i,jδiI(Yi = tzj , Zi = z)

and

(2.25) nzj =
n∑
i=1

WiW
C
i,jI(Yi ≥ tzj , Zi = z).

dzj and nzj in (2.24) and (2.25) are similar to those defined for the independent cen-

soring case in (2.16) and (2.17), though here individuals are weighted by the prod-

uct of their matching weight Wi and their censoring weight WC
i , rather than only

their matching weight, at each time point. With dzj and nzj appropriately redefined,

µ̂zY , Ŝ
z(tzj),, µ̂

z
D, and ∆̂IV-MW are estimated as before.

Simulation

In this section we report simulation results to investigate the performance of the

modified IV-MW estimator for estimating the difference in mean 5-year survival.

We generate 1,000 datasets, each with n subjects. Instrument Z is generated from a

Bernoulli distribution with

(2.26) logit(p(Z = 1)) = γ + 0.25x1 + 0.25x2,
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where γ, x1 and x2 are randomly generated from a N(0, 1) distribution. Covariates

x1 and x2 represent instrument-outcome confounders and will be used in a logistic

regression for modeling the IV propensity score. Treatment D is drawn from a

Bernoulli distribution as well, with

(2.27) logit(p(D = 1)) = −0.5 + Z + 0.5xu,

where xu ∼ N(0, 1) represents an unmeasured confounder between the treatment

and the survival time.

We simulate data under both independent and informative censoring schemes.

For independent censoring, censoring times are randomly drawn from a uniform

distribution between 1 and 1,825 days (5 years) and survival times are are drawn

from an exponential(λ/100) distribution with

(2.28) λ = −1.5 + βD + 0.25x1 + 0.25x2 + 0.5xu.

For informative censoring, censoring times are randomly drawn from an exponential(η/100)

distribution, with

(2.29) η = −3 + xc,

where xc ∼ N(0, σ2
c ). Survival times are then randomly drawn from an exponential(λ/100)

distribution with

(2.30) λ = −1.5 + βD + 0.25x1 + 0.25x2 + 0.5xu + 0.25xc.

Approximately 25% of individuals are censored under these settings.

We set β = 0 throughout these simulations, so that the treatment has no effect

on survival time. We compare estimation of the difference in 5-year restricted mean

survival using the following four procedures:
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IV-MW: Difference in restricted mean survival is calculated between instrument

groups, Z = 0, 1, and measured instrument-outcome confounders x1 and x2 are ad-

justed for using the IV-matching weight procedure proposed in this chapter. This

method is expected to overcome potential bias arising from both unmeasured con-

founder xu and measured instrument-outcome confounders x1 and x2.

IV-PSM: Difference in restricted mean survival is calculated between instru-

ment groups, Z = 0, 1, and measured instrument-outcome confounders x1 and x2

are adjusted for by first matching on the IV propensity score. Similar to IV-MW,

this method is expected to overcome potential bias arising from both unmeasured

confounder xu and measured instrument-outcome confounders x1 and x2.

IV: Difference in restricted mean survival is calculated between instrument groups,

Z = 0, 1. While this approach helps overcome bias arising from unmeasured con-

founder xu, it will fail to adjust for measured instrument-outcome confounders x1

and x2. This violates the assumption that the instrument is randomly assigned, and

therefore is expected to give biased estimates.

NAIVE: Difference in restricted mean survival is calculated between treatment

groups, D = 0, 1. This naive approach is expected to give biased estimates due to

unmeasured confounder xu.

Inverse probability of censoring weights are applied to each procedure for the infor-

mative censoring scenario, with covariate xc used in the Cox models for determining

the censoring weights. Confidence intervals are obtained through bootstrapping,

though further research related to variance estimation for the estimator is needed.

Simulation results in Table 2.7 show that the IV-MW estimator generally out-

performs each of the remaining three estimators. IV-MW and IV-PSM maintained

approximately nominal coverage rates, though IV-MW was less biased than IV-PSM
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Table 2.7: Estimation of difference in 5-year restricted mean survival (in days) and 95% coverage
probabilities for each method. Coverage probabilities are based on bootstrapped confi-
dence intervals with 500 bootstrap iterations. In simulated data, there was no effect of
treatment and no difference in mean survival is expected. Results are based on 1,000
simulations.

IV-MW IV-PSM IV NAIVE

Censoring ∆ n ∆̂ CP ∆̂ CP ∆̂ CP ∆̂ CP
Independent 0 500 -12 94.5 -18 95.5 -202 83.8 -96 53.6

1,000 -1 95.2 -18 94.1 -192 76.3 -98 23.1
2,000 -2 93.7 -20 94.2 -196 58.0 -98 4.5
5,000 -2 94.3 -24 93.6 -194 21.2 -98 0.1

Informative 0 500 15 94.3 -2 93.5 -178 84.1 -98 48.1
1,000 -9 94.5 -33 94.1 -201 73.2 -98 22.5
2,000 2 95.1 -30 94.4 -190 56.3 -97 2.9
5,000 1 95.2 -36 92.5 -192 22.8 -98 0.0

in seven of the eight scenarios compared. As expected, the IV and Naive procedures

found severely biased estimates and poor coverage rates. No major differences are

seen when comparing methods across the independent and informative censoring

scenarios, suggesting that the inverse probability of censoring weights are able to

overcome any problems arising from the informative censoring.

Data Example

We reexamine the data example of Section 2.4 using the methods of this section.

Previously, we compared mortality and dialysis session length using death within the

first year after initiating dialysis. In that analysis, we converted a survival outcome

(time to death) into a binary outcome (death within one year). Using the methods

of this section, we are able to study mortality and dialysis session length using the

original time to death outcome. We censor all individuals at either one, two, or five

years and estimate difference in restricted mean survival.

Results in Table 2.8 suggest that patients with longer dialysis sessions generally

have longer one-, two-, and five-year restricted mean survival times. The relatively

large estimates for the NAIVE procedure could be a result of unmeasured differences
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Table 2.8: Estimated difference in restricted mean survival (in days) between patients with longer
versus shorter dialysis sessions lengths. 95% confidence intervals were obtained through
bootstrapping with 500 bootstrap iterations.

1 Year 2 Year 5 Year

Model ∆̂ (95% CI) ∆̂ (95% CI) ∆̂ (95% CI)
IV-MW 5.2 (2.2, 8.2) 11.7 (3.3, 19.0) 28.9 (0.8, 53.7)
IV-PSM 5.6 (2.4, 9.4) 11.4 (3.6, 19.7) 27.1 (-2.8, 53.9)

IV 2.2 (-0.2, 4.4) 2.9 (-2.6, 9.2) -1.3 (-21.5, 14.4)
NAIVE 6.2 (5.5, 7.1) 17.0 (15.0, 19.0) 71.7 (65.4, 77.7)

between patients receiving longer or shorter dialysis sessions. The three IV models

found greatly attenuated effects, and in some cases estimates that are statistically

insignificant at the 0.05 level. The similar estimates for the IV-MW and IV-PSM

procedures, with IV-MW finding narrower 95% confidence intervals, confirms that

IV-MW is a more efficient approximation to the IV-PSM process. Qualitatively, the

results Table 2.8 agree with those of Section 2.4, which also suggested that patients

with longer dialysis sessions had decreased mortality.

2.6 Discussion

A key assumption in instrumental variable analyses is that the instrument is ran-

domly assigned, which requires that there are no unmeasured confounders between

the instrument and the outcome. Unfortunately, unless the instrument is based on

actual randomization, this assumption is unlikely to hold without conditioning on

a set of known, measured confounders. The researcher must then argue that the

instrument is distributed as good as random after controlling for these instrument-

outcome confounders. Garabedian et al. (2014) emphasize that the most commonly

used instruments have potential instrument-outcome confounders associated with

them and that failing to adjust for these confounders can bias estimation.

In this work we developed a weighted IV estimator based on the IV propensity

score to adjust for instrument-outcome confounders. The weights reflected the prob-
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ability that an individual would be selected into a one-to-one IV propensity score

match, and modified weights for approximating k:1 matching designs were provided

as well. We further presented a double robust version of the estimator that protects

against misspecification of the IV propensity score model. Though this required the

additional specification of an outcome model, the double robust estimator provided

consistent estimates if only one of the outcome or IV propensity score models was

correctly specified, but did not require both to be correct.

One-to-one IV propensity score matching involves pairing each encouraged sub-

ject to an unencouraged subject with a similar IV propensity scores, often within

a specified range. If a match cannot be found within this range, pairing the en-

couraged subject with an unencouraged subject with a substantially different IV

propensity score can bias estimation, whereas removing that subject from the anal-

ysis leads a loss of efficiency. The proposed estimator avoids these pitfalls, leading

to more efficient estimation as every individual contributes. Additional benefits over

matching include straightforward variance estimation and computational efficiency.

Through simulation, the proposed estimator was found to outperform alternatives,

being equally unbiased with uniformly smaller mean squared errors.

Preliminary work related to extending the IV-MW procedure of this chapter for

use with time-to-event or survival data suggested that the IV-MW procedure is useful

for obtaining consistent survival estimates in the presence of unmeasured confound-

ing. We discussed estimating the difference in restricted mean survival using the

IV-MW procedure and showed that it performed well in simulation. Further work

on this topic includes understanding how the assumptions of Section 2.2.2 apply in

this context, how to accurately estimate variance of the estimator, and the possibility

of estimating other parameters relevant to survival studies. Given the importance of
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survival data in public health and medical research, extending the IV-MW estimator

for use with these data can have broad applications.

Implementation of these methods were illustrated using USRDS data to study the

association between dialysis session length and first year mortality among hemodial-

ysis patients in the United States. While longer dialysis sessions are thought to

decrease risk of mortality, it is a difficult research question as the relationship be-

tween session length and mortality is likely confounded, as smaller patients with

higher mortality risk are more likely to be prescribed shorter dialysis sessions. This

might explain the lack of consensus among previous studies. Using the IV methods

of this article, a small protective effect of longer dialysis sessions was found, suggest-

ing 1.5 fewer first year deaths for every 100 dialysis patients encouraged to switch

from shorter to longer dialysis sessions. These findings corroborate the findings from

covariate adjusted logistic regression models, although estimates were smaller and

insignificant for some IV models. Applying the IV-MW estimator modified for use

with survival data similarly suggested that patients with longer dialysis sessions had

longer one-, two-, and five-year restricted mean survival times.

In the next chapter we focus on the strength of correlation between the instrument

and the treatment, and propose a method for increasing this strength. Instruments

with little influence over the treatment are termed weak instruments, and there are

several problems associated with them. They suffer from greater finite-sample bias

and variability in estimation. Additionally, results obtained using weak instruments

are less robust to unmeasured instrument-outcome confounders (Bound et al., 1995;

Small and Rosenbaum, 2008). These benefits have motivated methods for increasing

the strength of instrumental variables.



CHAPTER III

Strengthening Instrumental Variables Through Weighting

3.1 Motivation

The most common instrumental variables have potential confounders associated

with them that, when left unmeasured, violate the assumption that the instrument

is randomly assigned and can bias estimation. In the previous chapter we developed

an IV estimator that adjusted for measured confounders between the instrument and

the outcome. Adjusting for these confounders helps to argue that the instrument is

conditionally distributed “as good as random.”

Unfortunately, this assumption cannot be verified to hold and is likely to be

criticized even after controlling for a number of measured covariates. It is therefore

good to have results that are sufficiently robust to violations of it. One approach to

obtaining more robust results is to work with stronger instruments. The strength

of the instrument refers to the strength of the relationship between the instrument

and the treatment. Instruments that have low correlation with the treatment are

referred to as weak instruments and are known to have poor properties (Bound et al.,

1995; Small and Rosenbaum, 2008). They have more finite-sample bias and greater

variability in estimation. Additionally, results obtained using weak instruments are

particularly sensitive to violations of the assumption that the instrument is randomly

38
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assigned. These benefits have motivated recent methods for increasing the strength

of instrumental variables (Baiocchi et al., 2010, 2012). In this chapter, we propose a

novel weighting procedure for strengthening instrumental variables.

The literature relating to weak instrumental variables has primarily focused on

detailing the problems and limitations associated with using them. See, for exam-

ple, Bound et al. (1995), Staiger and Stock (1994), Angrist et al. (1996), Small and

Rosenbaum (2008) or Baiocchi et al. (2014). Variable selection methods to select

a strong subset among a pool of weak instruments have been proposed in Belloni

et al. (2010), Caner and Fan (2010), and Belloni et al. (2012). For working with a

single weak instrument, Baiocchi et al. (2010) proposed near-far matching, a novel

method to extract a smaller study with a stronger instrument from a larger study

(see also Baiocchi et al. (2012) or Zubizarreta et al. (2013)). This matching-based

IV methodology aims to construct pairs that are “near” on covariates but “far” in

the instrument. In other words, pairs consist of subjects with similar characteris-

tics who have received substantially different amounts of encouragement toward the

treatment, with a greater difference indicating a stronger instrument. This differ-

ence is increased in the near-far matching procedure through the use of penalties to

discourage individuals with similar instrument values from pairing, while allowing a

certain number of individuals to be removed from the analysis entirely. This results

in a stronger instrument across a smaller number of pairs. One limitation of near-far

matching is that it may strengthen the instrument at the cost of match quality.

We propose weighted IV-matching, an alternative for strengthening the instru-

ment within this IV-matching framework. Rather than using penalties to discourage

individuals that receive similar encouragement from pairing, we propose strengthen-

ing the instrument after matches have been formed through weighting, with a pair’s
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weight being a function of the instrument within that pair. A fundamental difference

between these two techniques is the stage at which the instrument is strengthened.

Weighted IV-matching strengthens the instrument after matches have been formed,

allowing the matching algorithm to focus on creating good matches with similar co-

variate values. Near-far matching, on the other hand, strengthens the instrument

and matches on covariates simultaneously, requiring the algorithm to share priority

between these two goals. This generally leads to better quality matches for weighted

IV-matching, a major benefit since failing to properly match on important covariates

may lead to bias in estimation.

We illustrate these methods with a comparison of hemodialysis (HD) and peri-

toneal dialysis (PD) on six-month mortality among patients with end stage renal

disease (ESRD) using data from the United States Renal Data System (USRDS).

PD has several benefits over HD, including cost benefits, an improved quality of

life, and the preservation of residual renal function (Marrón et al., 2008; Tam, 2009;

Goodlad and Brown, 2013). Despite this, PD remains underutilized in the United

States (Jiwakanon et al., 2010). One explanation for this may be a lack of consensus

regarding the effect of PD on patient survival. A randomized trial investigating this

question was stopped early due to insufficient enrollment (Korevaar et al., 2003).

Many observational studies have suggested that PD is associated with decreased

mortality, though results are often conflicting (Heaf et al., 2002; Vonesh et al., 2006;

Weinhandl et al., 2010; Mehrotra et al., 2011; Kim et al., 2014; Kumar et al., 2014).

Complicating comparisons of HD and PD patients is a strong selection bias, with

PD patients tending to be younger and healthier than HD patients. Studies have

dealt with this issue by measuring and controlling for important confounders, but

to our knowledge none have addressed the possibility of unmeasured confounding
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that likely remains. We define PD as the treatment and consider a binary outcome

for six-month survival. The focus on six-month survival is to study the influence

of initial dialysis modality on early mortality, which tends to be high for dialysis

patients. Studying early mortality can provide guidance for selecting the initial dial-

ysis modality in order to reduce this early mortality. See, for example, Noordzij and

Jager (2012), Sinnakirouchenan and Holley (2011), or Heaf et al. (2002).

A possible instrument in the data is the mean PD usage at the facility level.

Instruments based on mean treatment usage in a geographic region, facility, or other

group are often called preference-based instruments (Brookhart and Schneeweiss,

2007; Li et al., 2015), because it is believed that these groups may have preferences

that at least partially override both measured and unmeasured patient characteristics

when making treatment decisions. In other words, facilities with high PD usage are

more likely to “encourage” their patients towards PD than those with low usage.

Preference-based instruments are among the most commonly used instruments in

practice (Garabedian et al., 2014), and methods to improve them may have broad

applications.

The remainder of this chapter is organized as follows. In Section 3.2 we outline

the proposed weighted IV-matching procedure and briefly compare it to near-far

matching. Inference and sensitivity are discussed in Section 3.3. The finite sample

performance of these methods are compared in Section 3.4 through simulation, and

they are illustrated with a data analysis in Section 3.5. We conclude with a discussion

in Section 3.6.
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3.2 Methods

We begin this section with an outline of the IV matching framework presented in

Baiocchi et al. (2010, 2012) and then propose a weighting procedure for strengthening

the instrument within this framework. We briefly compare the proposed weighting

procedure with near-far matching and highlight key differences.

With a preference-based instrument, two rounds of matching are implemented

(Baiocchi et al., 2012). In the context of our motivating data example, an optimal

non-bipartite matching algorithm first pairs facilities (Derigs, 1988; Lu et al., 2011).

After facilities have been paired, the instrument is dichotomized into encouraging and

unencouraging. This is done by comparing instrument values within each facility pair

and considering the facility with the higher value to be an encouraging facility and

the other to be an unencouraging facility. An optimal bipartite matching algorithm

then pairs patients at the PD encouraging facility with patients in the other. This

results in I pairs of two subjects with similar patient and facility characteristics that

received different levels of encouragement toward PD. Instrument strength can be

assessed by the average difference, or separation, of this encouragement across pairs.

For example, the instrument is considered stronger in a study in which the average

encouraged and unencouraged subjects were treated at facilities with 85% and 30%

treatment usage compared to one with average treatment usage of 60% and 45%.

Creating a stronger instrument in this framework is thus equivalent to increasing

this separation. We propose increasing this separation by assigning more weight to

pairs that are more influenced by the instrument. Specifically, we propose weighting

by the probability that the encouraged subject receives the treatment while the

unencouraged subject receives the control. This can be thought of as the probability
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that a pair “complies” with encouragement, and giving more weight to pairs more

likely to comply creates a stronger instrument across all pairs. Without loss of

generality, assume that subject j in pair i was treated at the encouraging facility

and subject j′ at the unencouraging facility, with Zij = 1 indicating encouragement

and Zij′ = 0 indicating unencouragement. Let Dij indicate treatment received. The

weight for pair i is then defined as

(3.1) wi = P (Dij = 1|Zij = 1)P (Dij′ = 0|Zij′ = 0).

Similar to separation of the instrument, this probability is a measure of instrument

strength, though rather than an average across all pairs it is a measure of the influence

of the instrument within pair i. A stronger instrument is created when more weight

is given to pairs in which the instrument has more influence over treatment. This

has the effect of redistributing the data in a way that highlights “good” pairs that

are more influenced by the instrument and increasing separation of the instrument

in the process.

In practice, the probabilities in equation (3.1) are unlikely to be known but

will need to be estimated. Using facility level mean PD usage as the instrument,

P (Dij = 1|Zij = 1) is estimated by the mean PD usage at the encouraging facility,

while P (Dij′ = 0|Zij′ = 0) is estimated with one minus the mean PD usage at the

unencouraging facility. Weights can be standardized to maintain the effective sample

size and statistical power if necessary.

The near-far matching procedure of Baiocchi et al. (2010, 2012) forces separation

of the instrument in the matching process. This is done in the first round by adding a

penalty to the distance measure between facilities whose instrument values are within

a certain threshold, and allowing a certain number to be removed. This requires the

matching algorithm to pair facilities with similar covariates and enforce separation of
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encouragement simultaneously, and generates an implicit tradeoff. A large penalty

will dominate the distance used to reflect similarity on covariates, thereby increasing

instrument separation but at the expense of match quality, whereas a small penalty

may get overshadowed by the covariate distance, leading to better matches, but

with less separation. Removing a number of facilities serves to alleviate some of the

damage to match quality that arises when requiring the matching algorithm to share

priority between creating good matches and enforcing instrument separation.

A fundamental difference between weighted IV-matching and near-far matching is

the stage in which the instrument is strengthened. Weighted IV-matching strength-

ens the instrument after matches have been formed, which allows the matching algo-

rithm to focus solely on creating good matches with similar covariate values. Near-far

matching, on the other hand, strengthens the instrument in the matching process,

forcing the algorithm to balance creating good matches and enforcing separation of

the instrument. This difference highlights a theme that we will see when comparing

the performance of these two methods; in a tradeoff between match quality and in-

strument strength, weighted IV-matching tends to favor match quality while near-far

matching tends to favor instrument strength. Strength in either of these areas has

implications on the resulting analysis.

3.3 Inference

3.3.1 Notation

We return to the potential outcomes notation presented in Section 2.2 of Chapter

II for defining causal effects. Let Zij = 1 if subject j in pair i is encouraged toward

treatment, Zij = 0 otherwise. Let Dij(Zij) indicate treatment received for subject

j in pair i given their encouragement, and let Yij(Zij, Dij(Zij)) indicate mortality.

Dij(Zij) and Yij(Zij, Dij(Zij)) are referred to as a subjects “potential outcomes.”
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For encouraged subjects, with Zij = 1, we observe treatment Dij(1) and response

Yij(1, Dij(1)). Similarly for unencouraged subjects, we observe Dij(0) and response

Yij(0, Dij(0)). Our interest lies in estimating the parameter

(3.2) λ =

∑
i

∑
j (Yij(1, Dij(1))− Yij(0, Dij(0)))∑

i

∑
j (Dij(1)−Dij(0))

.

This parameter is often referred to as the local average treatment effect (Imbens

and Angrist, 1994; Angrist et al., 1996). In contrast to an average treatment effect,

which is applicable to the entire population, the local effect is interpreted as an

average treatment effect among a subgroup of the population known as “compliers.”

Depicted in Table 2.1, compliers are individuals that will take the treatment that

they are encouraged to take.

3.3.2 Assumptions

Unfortunately, subjects are never observed under both states of encouragement,

and we thus never observe both Yij(1, Dij(1)) and Yij(0, Dij(0)) or both Dij(1) and

Dij(0) and must estimate λ from the data. We impose the following five assumptions

to aid us in estimation (Angrist et al., 1996; Baiocchi et al., 2014). We list them

briefly here, but a more thorough discussion of these assumptions can be found in

Section 2.2.

A1. Stable Unit Treatment Value Assumption (SUTVA).

A2. Random assignment of the instrument.

A3. Exclusion Restriction.

A4. Nonzero association between instrument and treatment.

A5. Monotonicity.

Assumptions A1 and A2 allow for unbiased estimation of λ. Adding assumptions

it A3-A5 restricts the applicability of λ to the subgroup of compliers (Table 2.1).
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Further discussion of these assumptions can be found in Section 2.2, as well as

Imbens and Angrist (1994), Angrist et al. (1996), Baiocchi et al. (2014).

3.3.3 Estimation

Denote the observed response and treatment for subject j in pair i as Yij =

ZijY (1, Dij(1)) + (1 − Zij)Y (0, Dij(0)) and Dij = ZijDij(1) + (1 − Zij)Dij(0), re-

specively. Estimate λ as

(3.3) λ̂ =

∑I
i=1 ŵi

∑2
j=1 [ZijYij − (1− Zij)Yij]∑I

i=1 ŵi
∑2

j=1 [ZijDij − (1− Zij)Dij]
.

For inferences regarding λ, Baiocchi et al. (2010) developed an asymptotically

valid test for the null hypothesis H
(λ)
0 . H

(λ)
0 is true under many population distribu-

tions, and therefore is a composite null hypothesis. The size of a test for a composite

null is the supremum over all null hypotheses in the composite null, and a test is

considered valid if it has size less than or equal to its nominal level. Using statistics

T (λ0) =
1

I

I∑
i=1

ŵi

[
2∑
j=1

Zij(Yij − λ0Dij)−
2∑
j=1

(1− Zij)(Yij − λ0Dij)

]

=
1

I

I∑
i=1

Vi(λ0)

and

S2(λ0) =
1

I(I − 1)

I∑
i=1

[Vi(λ0)− T (λ0)]
2,

we can test H
(λ)
0 by comparing T (λ0)/S(λ0) to a standard normal cumulative distri-

bution for large I. Inverting this test and solving for T (λ0)/S(λ0) = 0 and ± 1.96

provides an estimate and 95% confidence interval for λ. A detailed discussion of this

statistic, its distribution, and related issues can be found in Baiocchi et al. (2010).

This inference procedure provides a confidence interval for the estimate but unfor-

tunately it does not provide a standard error. To obtain a standard error estimate, we
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implement the sandwich variance procedure of Section 2.2. In Sections 3.4 and 3.5,

intervals and coverage results will be based on the permutation inference procedure.

3.4 Simulation

In this section we compare the finite sample performance of three IV-matching

techniques through simulation. The standard IV-match (IVM) uses the full data

and makes no attempt to strengthen the instrument, while weighted IV-matching

(WIVM) and near-far matching (NFM) will strengthen the instrument as described

in section 3.2. For the NFM procedure, we add a penalty to the distance between

facilities if their instruments are within a distance equal to the interquartile range of

instrument values. As in Baiocchi et al. (2010), we specify a penalty function that

begins at 0 and increases exponentially a pairs instrument values become closer, and

allow 50% of facilities to be removed during the matching process.

3.4.1 Setup

One thousand datasets are generated containing i = 1, ..., 200 facilities with j =

1, ..., 40 subjects at each. Binary treatment D and binary outcome Y are randomly

assigned with

(3.4) P (Dij = 1) = logit−1(γi + αX1,i + δX2,ij + νij),

(3.5) P (Yij = 1) = logit−1(βDij + αX1,i + δX2,ij + εij).

γi ∼ N(0, 1) represents a facility effect. Standard normal covariates X1,i and X2,ij

represent observed confounders and are used for matching. X1,i is a facility level

confounder and X2,ij is a patient level confounder. Coefficients α, δ, and β represent

the effects of X1, X2, and D, respectively. Unobserved confounding is created by
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generating (νij, εij) as bivariate normal with correlation ρ = .75. The proportion of

treated individuals at each facilities serves as the instrument.

To obtain the “true” local average treatment effect that we wish to estimate, or

λ in (3.2), we need counterfactual treatments and responses for every individual.

These are not easily obtained under the current setup, since γ, not encouragement,

is in equation (3.4). Furthermore, we do not know which counterfactual state an

individual will be considered to have been observed in until after matching, since

subjects are determined to have been observed in an encouraging or unencouraging

facility by comparing instrument values within pairs. Despite this caveat, suitable

counterfactuals can be obtained in the following way.

Consider patients treated at facilities with γi > 0 to be observed in the encour-

agement state, while those at facilities with γi ≤ 0 to be observed in the unencour-

agement state. For individuals in the encouragement state, we have Dij = Dij(1)

and Yij = Yij(1, Dij(1)) from Equations (3.4) and (3.5). For counterfactuals, sam-

ple a γ from the unencouragement group and denote it γ∗. Dij(0) is then obtained

using equation (3.4) with P (Dij = 1) = P (Dij(0) = 1) = logit−1(γ∗i + αX1,i +

δX2,ij + νij) and Yij(0, Dij(0)) is obtained using equation (3.5) with P (Yij = 1) =

P (Yij(0, Dij(0))) = logit−1(βDij(0)+αX1,i+δX2,ij+εij). Counterfactuals for patients

observed in the unencouragement state can be obtained similarly. After obtaining

Dij(1), Dij(0), Yij(1, Dij(1)), and Yij(0, Dij(0)), these are plugged into Equation

(3.2) for the true effect, λ.

3.4.2 Results

Instrument Strength

The present work is motivated by the desire to strengthen the instrument by in-

creasing the separation of encouragement within pairs. Table 3.1 shows that both
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WIVM and NFM were able to do so, increasing the standardized difference in en-

couragement by approximately 25% and 65%, respectively. All things being equal,

the stronger instrument is preferred. Looking at match quality in the next section,

however, we will see that all things are not equal.

Table 3.1: Separation of encouragement within pairs. Reported is the mean treatment usage at un-
encouraging facilities (Z̄U ), encouraging facilities (Z̄E), and the standardized difference

between them, calculated as St Diff = 100(Z̄E − Z̄U )/
√
.5(s2ZE

+ s2ZU
), where s2ZE

and

s2ZU
are sample variances of mean treatment usage in each group. Results are based on

1,000 simulations.

(Z̄U , Z̄E) St Diff
IVM (37%, 62%) 141

WIVM (35%, 65%) 175
NFM (30%, 70%) 232

Match Quality

Table 3.2 reports balance of covariates X1 and X2 as indicated by the standardized

difference within pairs. The WIVM procedure produced consistently better covariate

balance than the NFM procedure. The particularly poor balance of facility level X1

under the NFM procedure shows that introducing penalties to the match negatively

impacted the ability to properly match on X1 in the first round.

Table 3.2: Covariate balance as reported by the standardized differences in covariates X1 and X2

within pairs. Results based on 1,000 simulations.

α δ IVM WIVM NFM
X1 0 0 0.01 0.01 0.34

0.25 0.25 0.15 0.14 18.01
0.50 0.50 0.14 0.16 36.10

X2 0 0 0.01 0.02 0.10
0.25 0.25 0.58 0.68 1.02
0.50 0.50 1.35 1.57 2.10

The pattern seen in Tables 3.1 and 3.2 shows a tradeoff of instrument strength

and match quality between WIVM and NFM. WIVM allows the matching algorithm

to focus entirely on matching on covariates, and strengthens the instrument through

weighting after the matches have been formed. NFM, on the other hand, incorpo-
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rates penalties into the match to enforce separation of the instrument, requiring the

matching algorithm to share priority between matching on covariates and strengthen-

ing the instrument. A large penalty might dominate the distance used for matching

and diminish the ability to properly match on covariates. In the tradeoff between

instrument strength and match quality, WIVM is willing to trade less instrument

strength for higher quality matches, while NFM is willing to trade lower quality

matches for a stronger instrument.

Estimation and Coverage

Table 3.3 presents estimation and coverage results under increasing magnitudes

of observed confounding. When α and δ are zero and matching on X1 and X2 is

trivial, each method is nearly unbiased and maintains nominal coverage. WIVM and

NFM achieved lower mean squared error than IVM, which is one benefit associated

with stronger instruments (Wooldridge, 2001). As α and δ increase and matching on

X1 and X2 becomes more important, the performance of IVM and WIVM remain

mostly unchanged. NFM, on the other hand, sees a large increase in bias and mean

squared errors and low coverage rates. The deterioration of performance for NFM

as α and δ increase can be attributed to its inability to properly match on X1.

Table 3.3: Bias, mean squared error (MSE), and 95% coverage probabilities (CP) for estimation of
λ. Bias and MSE are multiplied by 1,000. Coverage probabilities are based on confidence
intervals obtained using the permutation inference procedure Section 3.3 and Baiocchi
et al. (2010). Results are based on 1,000 simulations.

IVM WIVM NFM
α δ β λ Bias MSE CP Bias MSE CP Bias MSE CP
0 0 0.0 0.0 4.6 2.3 94.3 4.5 1.6 93.9 2.5 1.7 94.2

0.6 0.14 1.4 2.0 94.3 1.3 1.4 95.1 0.3 1.4 95.6
1.0 0.23 4.6 1.9 94.6 3.7 1.4 95.2 2.5 1.4 95.0

0.25 0.25 0.0 0.0 3.0 2.1 94.8 4.9 1.5 94.6 29.2 2.5 84.9
0.6 0.14 4.9 1.9 95.2 4.9 1.5 95.2 25.8 2.3 87.6
1.0 0.23 4.4 1.8 95.0 4.7 1.3 96.0 26.4 2.2 86.5

0.50 0.50 0.0 0.0 8.7 2.4 93.6 9.7 1.7 94.2 93.9 10.5 28.3
0.6 0.14 8.7 2.3 94.3 7.9 1.7 93.6 88.6 9.7 30.9
1.0 0.23 4.0 2.0 93.7 3.7 1.5 93.8 78.6 7.8 38.3
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3.5 Data Example

In this section we illustrate the use of IV-matching (IVM), weighted IV-matching

(WIVM), and near-far matching (NFM) with a study comparing mortality in the

first six months between patients receiving hemodialysis (HD) or peritoneal dialysis

(PD) as treatment for end stage renal disease. Complete information on 164,195

adults initiating dialysis for the first time between January 1, 2010 and December

31, 2013 was obtained from the United States Renal Data System. The analysis was

restricted to patients being treated at dialysis facilities with at least ten patients

that used both HD and PD during the study period. The analysis was conducted as

intention-to-treat, with treatment defined as the modality prescribed at the onset of

dialysis.

The instrument, facility mean PD usage, was calculated using data from 2007-2009

to avoid correlation with patient level confounders in the 2010-2013 period that was

used for the analysis. The instrument varied greatly across facilities, ranging from 0

to 100% with a mean of 9.8%. The correlation coefficient between a facilities 2007-

2009 and 2010-2013 PD usage was 0.68, indicating that facility preferences toward

PD are relatively stable through time, and that a facilities 2007-2009 PD usage is a

useful predictor of their 2010-2013 usage.

Figure 3.1 and Table B.1 of Appendix B confirm the belief that patients treated

with PD are generally healthier than those treated with HD. On average, they are six

years younger, receive more pre-ESRD care, suffer from less comorbidities, and are

more likely to be employed than HD patients. Additionally, facilities with higher PD

usage tend to be larger, as indicated by the higher number of nurses, social workers,

and hemodialysis stations. Since these factors could be related to unmeasured con-
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founders that affect patient outcomes, it is important to control for these variables

when matching.

We follow the two round matching procedure described in Section 3.2 for con-

structing matches. An optimal non-bipartite match first pairs facilities based on

facility level covariates. The facility in each pair with the greater mean PD usage is

considered to be an encouraging facility, while the other is considered unencouraging.

Within each of these pairs, an optimal bipartite match then pairs patients from the

encouraging facility with patients in the unencouraging facility.

For the first round facility level match, we defined the distance between facilities

using a Mahalanobis distance based on the facility covariates in Figure 3.1 and Tables

B.1 or B.2 of Appendix B. For the NFM procedure, a penalty was added to this

distance if facilities instrument values were within 14% of each other (the inter-

quartile range), and 50% of facilities were allowed to pair with sinks and be removed

from the analysis. For the second round patient level match, we matched on a

prognostic score based on the patient level covariates in Figure 3.1 and Tables B.1

or B.2 of Appendix B. For the WIVM procedure, a weight was assigned to each pair

based on Equation (3.1), where probabilities were estimated using the instrument,

facility mean PD usage from 2007-2009.

Of the 164,195 patients, 128,700 were paired using the IVM and WIVM procedure,

while 67,904 were paired using the NFM procedure. The average unencouraged and

encouraged patient was treated at a facility with PD usage from 2007-2009 of 4.7%

and 15.3% using the IVM procedure, 6.3% and 27.8% using the WIVM procedure,

and 3.8% and 25.3% using the NFM procedure. For WIVM and NFM, the increased

separation corresponds with roughly a 100% increase in the standardized difference

in encouragement, with neither procedure performing notably better than the other
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in terms of instrument strength.

Covariate balance after matching is presented in Figure 3.1 as well as Table B.2

of Appendix B. Covariate balance is improved compared with pre-matching under

each of the three methods. IVM and WIVM, however, generally resulted in better

balance than NFM, particularly for facility level covariates where NFM seems to

struggle. These results are similar to those seen in the simulations of Section 3.4.

Figure 3.1: Covariate balance before and after matching as indicated by the standardized differences
within pairs. Dashed grey lines are at ±10. Standardized differences larger than this
have been suggested to represent an imbalance (Normand et al., 2001).

Estimation results reported in Table 3.4 indicate that PD has a protective effect

on mortality in the first six months. For example, λ̂ = −0.09 suggests that for every

100 subjects that are encouraged to switch from HD to PD, there are nine fewer
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Table 3.4: Estimate and 95% confidence interval for the local average treatment effect. Estimated
effect represents the expected decrease in death for patients that could be encouraged
to switch from hemodialysis to peritoneal dialysis.

λ̂ 95% CI
IVM -0.09 (-0.14, 0.03)
WIVM -0.09 (-0.15, -0.06)
NFM -0.07 (-0.10, -0.04)

deaths in the first six months. Both WIVM and NFM decreased the width of the

confidence interval associated with λ compared to IVM, with NFM leading to the

narrowest interval.

3.6 Discussion

Weak instrumental variables present many problems to an IV analysis, including

greater finite-sample bias and greater variability in estimation. Results obtained

using weak instruments have also been shown to be less robust to unmeasured

instrument-outcome confounders that violate the assumption that the instrument

is randomly assigned (Bound et al., 1995; Small and Rosenbaum, 2008). These bene-

fits have motivated recent methods for strengthening the instrument (Baiocchi et al.,

2010, 2012).

In this chapter, we proposed a weighting procedure for building a stronger in-

strument in the IV-matching framework (Baiocchi et al., 2010, 2012). The key idea

is that the data can be redistributed through weighting to highlight pairs in a way

that increases the strength of the instrument. The proposed weights were based on

the probability that a pair complies with encouragement, or that the encouraged

subject in a pair receives the treatment while the unencouraged subject receives the

control. Other weights could be considered as long as more weight is assigned to

pairs that are more influenced by the instrument. In future work we are considering

the possibility of an “optimal” weight, perhaps subject to a constraint on covariate
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balance.

Compared with existing methods for strengthening the instrument, weighting is

able to strengthen the instrument without compromising match quality. This is

because weights are applied after matches have been formed, as opposed to meth-

ods that strengthen the instrument simultaneously with matching. This is a major

strength of the proposed method since failing to properly match on important co-

variates can bias estimation.

Using data from the United States Renal Data System, methods were illustrated

in a study comparing mortality in the first six months between patients receiving

hemodialysis or peritoneal dialysis as treatment for end state renal disease. The pro-

posed weighting procedure was able to strengthen the instrument while maintaining

good match quality. A protective effect of peritoneal dialysis was found, suggesting

that we expect nine fewer deaths for every 100 patients that could be encouraged to

switch from hemodialysis to peritoneal dialysis.

The methods discussed in this chapter have been motivated by the desire to

achieve the benefits associated with stronger instruments. These include decreased

finite-sample bias, greater efficiency, and improved robustness to violations of the

assumption that the instrument is randomly assigned. It has yet to be shown, how-

ever, that a strengthened instrument can provide the same benefits as an instrument

that naturally has high correlation with the treatment. We undertake this task in

the next chapter, where we investigate the performance of strengthened instrumental

variables to better understand their properties.



CHAPTER IV

Properties of Strengthened Instrumental Variables

4.1 Motivation

In the previous chapter we discussed methods for increasing the strength of an in-

strumental variable. Methods for strengthening the instrument have been motivated

by the desire to capitalize on the advantages of using stronger instruments. These

advantages include decreased finite-sample bias and greater efficiency in estimation

(Bound et al., 1995; Angrist et al., 1996; Wooldridge, 2001). Additionally, results

obtained using stronger instruments are more robust to violations of the assumption

that the instrument is randomly assigned (Small and Rosenbaum, 2008; Baiocchi

et al., 2010). It has yet to be shown, however, that strengthened instruments pro-

vide the same benefits as instruments that are naturally stronger. We use the term

“strengthened” to refer to an instrument whose correlation with the treatment has

been increased by the researcher and the term “naturally stronger” to refer to an in-

strument that is more highly correlated with the treatment without any effort made

by the researcher to increase this correlation. The focus of this chapter is to study

estimation with strengthened instruments to better understand their properties and

how they compare with instruments that are naturally stronger.

To illustrate the benefits of using stronger instruments, suppose that we wish to

56
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estimate β in the linear model

(4.1) Y = β0 + βD + ε.

If any unmeasured confounders exist between the treatment D and outcome Y they

will go into the error term, ε. This induces correlation between the treatment and

the error term, which then biases estimates of β when (4.1) is modeled directly. This

bias arising from unmeasured treatment-outcome confounding is the problem an IV

analysis hopes to overcome.

Now assume that we have an instrument, Z, that is related to the treatment as

(4.2) D = ψ0 + ψ1Z + ν,

where ψ1 6= 0 by assumption. Given a random sample {(Di, Yi, Zi) : i = 1, 2, ..., n},

the IV estimator of β is defined as

(4.3) β̂IV =

(
n−1

n∑
i=1

ZiDi

)−1(
n−1

n∑
i=1

ZiYi

)
.

From Bound et al. (1995) or Wooldridge (2001), the probability limit of this estimator

can be written as

(4.4) plim(β̂IV ) = β +
Corr(Z, ε)

Corr(Z,D)

σε
σD

,

where σε and σD are the standard deviations of the error and the treatment, respec-

tively. Equation (4.4) shows that correlation between the instrument Z and error

term ε biases the IV estimate of β.

An important insight from (4.4) is that stronger instruments, or those that have

greater correlation with the treatment, lessen the damage to estimation caused by

correlation between Z and ε. Correlation between Z and ε can arise in two ways.

It can be a finite-sample issue, since correlation is never exactly zero in any finite-

sample. It can also result from unmeasured instrument-outcome confounders. Just
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as unmeasured treatment-outcome confounders induce correlation between D and ε

that biases estimates of β when (4.1) is modeled directly, unmeasured instrument-

outcome confounders induce correlation between Z and ε that biases IV estimates of

β. Stronger instruments therefore decrease finite-sample bias and increase robustness

unmeasured instrument-outcome confounders that violate the assumption that the

instrument is randomly assigned (Bound et al., 1995; Angrist et al., 1996).

The improved robustness to unmeasured instrument-outcome confounders is es-

pecially important. Finite-sample bias deceases toward zero as sample size increases

and is often not a major issue in observational studies. Bias arising from unmeasured

instrument-outcome confounders, however, cannot be eliminated through increasing

sample sizes (Small and Rosenbaum, 2008). Additionally, we cannot guarantee that

unmeasured instrument-outcome confounders do not exist and the assumption may

face criticism. Stronger instruments are therefore one way to increase the credibility

of the results of an IV analysis.

Recent methods have been proposed for strengthening the instrument in IV-

matching designs (Baiocchi et al., 2010, 2012). It has been taken for granted, how-

ever, that strengthened instruments provide the same benefits as instruments that

are naturally stronger. In this chapter, we study estimation with strengthened in-

struments to determine their properties and how they compare with instruments

that are naturally stronger. The remainder of this chapter is organized as follows.

In Section 4.2 we introduce matching in IV analyses and discuss two recently pro-

posed methods for strengthening the instrument in IV-matching designs. Inference

is discussed in Section 4.3, along with a sensitivity analysis for assessing sensitiv-

ity to unmeasured instrument-outcome confounders. We study the performance of

strengthened instruments through simulations in Section 4.4, and conclude with a
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discussion in Section 4.5.

4.2 Methods

Throughout this section, we will assume that we measure covariates X, binary

treatment D, and response Y for each of n individuals. We further assume that we

measure a continuous instrument that can be dichotomized to indicate “enourage-

ment” toward the treatment. The term encouragement is used to mean that indi-

viduals with instrument Z = 1 are more likely to receive treatment than individuals

with Z = 0, and not necessarily that individuals received actual or physical encour-

agement.

Matching in an IV analysis with a binary instrument aims to pair individuals that

have been encouraged toward the treatment with individuals that look similar on rel-

evant covariates, but have been encouraged toward the control. After matching, the

match quality can be assessed through covariate balance (Love, 2002; Austin, 2009a)

and instrument strength can be assessed by the average difference, or separation,

of the instrument within pairs (Baiocchi et al., 2010, 2012). Stronger instruments

are associated with greater separation of the instrument. We therefore hope to pair

individuals that are similar on relevant covariates but received a large difference in

encouragement toward the treatment.

In the following sections we present three strategies for matching in an IV analysis:

a standard matching procedure which we refer to as IV-matching, the weighted IV-

matching procedure of Chapter III, and the near-far matching procedure of Baiocchi

et al. (2010, 2012). IV-matching involves matching on covariates X, but takes the

strength of the instrument as given and does not strengthen it. The other two pro-

cedures match on covariates X and increase the separation of the instrument within
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pairs, thereby strengthening the instrument. Weighted IV-matching increases sepa-

ration by assigning more weight to pairs that are more influenced by the instrument,

while near-far matching increases separation by discouraging individuals with similar

instrument values from ever pairing.

4.2.1 IV-Matching

IV-matching begins by defining a distance between each individual based on co-

variates X. An optimal nonbipartite match (Derigs, 1988; Lu et al., 2011) then pairs

individuals such that the sum of these distances over all pairs is minimized. After

matching, the instrument is dichotomized into encouragement by comparing instru-

ment values within each pair, and considering the individual in each pair with the

higher instrument value to have been encouraged toward treatment. Let i denote

pair and let j and j′ denote subjects within pair i. Assign Zij = 1 and Zij′ = 0 if

subject j in pair i had a higher instrument value than subject j′ 6= j. Assign Zij = 0

and Zij′ = 1 otherwise. Note that Zij + Zij′ = 1 for all i, so that each pair has one

encouraged and one unencouraged subject.

4.2.2 Weighted IV-Matching

Weighted IV-matching follows the same steps as IV-matching for constructing

pairs based on covariates X and assigning encouragement. To strengthen the instru-

ment, a weight is assigned to each pair after matching based on the influence of the

instrument within that pair. In Chapter III, we proposed weighting pair i by

(4.5) wi = P (Dij = 1|Zij = 1)P (Dij′ = 0|Zij′ = 0),

which is designed to reflect the probability that the encouraged subject receives the

treatment while the unencouraged subject receives the control. This is a measure

of the instrument’s influence over the treatment within pair i, and a strengthened
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instrument is created when more weight is assigned to pairs in which the instru-

ment has more influence over the treatment. This strategy for strengthening the

instrument effectively redistributes the data through weights to highlight portions

associated with greater instrument strength. This weight, as well as the weighted

IV-matching procedure, is discussed throughout Chapter III.

4.2.3 Near-far Matching

The near-far matching procedure of Baiocchi et al. (2010, 2012) strengthens the

instrument with a modification to the matching phase of the IV-matching process.

When defining the distance between individuals based on covariates X, a penalty is

added to the distance between individuals whose instrument values are within a pre-

specified range of each other. This penalty discourages the matching algorithm from

pairing those individuals. As a result, pairs are more likely to consist of individuals

with instrument values suitably far apart. In addition to these penalties, sinks are

added to the match to allow a pre-specified number of individuals to be optimally

removed from the analysis (Lu et al., 2001). This alleviates some of the damage

to match quality caused by adding penalties to the distances used for matching.

The instrument is again dichotomized into encouragement by comparing instrument

values within each pair, and considering the individual in each pair with the higher

instrument value to have been encouraged toward treatment.

After implementing one of these three matching procedures, we have I pairs that

were matched on covariates X. One subject in each pair is considered to have been

encouraged toward the treatment and the other toward the control. In the next

section, we discuss estimating an effect of treatment. We also present a sensitivity

analysis for assessing robustness to unmeasured instrument-outcome confounders

that violate the assumption that the instrument is randomly assigned.
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4.3 Inference

4.3.1 Estimation

We implement the estimation and inference procedures of Section 3.2 for estimat-

ing the local average treatment effect, defined here as

(4.6) βIV =

∑
i

∑
j (Yij(1, Dij(1))− Yij(0, Dij(0)))∑

i

∑
j (Dij(1)−Dij(0))

,

where Yij(1, Dij(1)) and Yij(0, Dij(0)) denote the potential responses for subject j

in pair i and Dij(1) and Dij(0) denote the potential treatments. Under assumptions

A1-A5 of Section 2.2, this parameter is interpreted as an average treatment effect

among the subgroup of the population known as compliers (Table 2.1). Compliers

are individuals that can be encouraged to switch treatment states and are often

referred to as “marginal patients.” More discussion of this parameter can be found

in Chapter II, as well as Imbens and Angrist (1994), Angrist et al. (1996), or Baiocchi

et al. (2014).

Let Yij = ZijYij(1, Dij(1)) + (1− Zij)Yij(0, Dij(0)) be the observed response and

Dij = ZijDij(1) + (1−Zij)Dij(0) the observed treatment for subject j in pair i. We

estimate βIV after matching as

(4.7) β̂IV =

∑I
i=1 ŵi

∑2
j=1 [ZijYij − (1− Zij)Yij]∑I

i=1 ŵi
∑2

j=1 [ZijDij − (1− Zij)Dij]
,

where ŵi = 1 for the IV-matching and near-far matching procedures. We follow the

permutation inference procedure of Baiocchi et al. (2010), outlined in Section 3.2,

for obtaining confidence intervals for β̂IV .

4.3.2 Sensitivity Analysis

The improved robustness to violations of the assumption that the instrument

is randomly assigned is a key benefit of working with stronger instruments and has
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been the primary motivation behind methods for strengthening the instrument. Ran-

dom assignment of the instrument implies that there are no unmeasured instrument-

outcome confounders. Unfortunately, this assertion cannot be verified and is often

criticized. Being robust to unmeasured instrument-outcome confounders can there-

fore increase the credibility of the results from an IV analysis.

In this section we discuss a sensitivity analysis that provides guidance as to how

robust estimates are to violations of this assumption. This sensitivity analysis is out-

lined in Rosenbaum (2002) and applied in instrumental variable settings in Baiocchi

et al. (2010, 2012). The goal of this analysis is to determine how far an instrument

can deviate from being randomly assigned before the qualitative results of the study

are altered. We can think of this as determining how large or how strong an unmea-

sured instrument-outcome confounder would need to be to explain what appears to

be a significant treatment effect.

Following Rosenbaum (2002), we assume that within pair i matched on covariates

X, subjects j and j
′

differ in their odds of receiving encouragement by at most a

factor of Γ ≥ 1, where

1

Γ
≤ πij(1− πij′)
πij′(1− πij)

≤ Γ for all i, j, j′ with Xij = Xij′(4.8)

and πij = P (Zij = 1|Xij). When the instrument is randomly assigned and each

subject has equal odds of receiving encouragement, πij = πij′ and Γ = 1. As random

assignment of the instrument is increasingly violated, these probabilities diverge and

Γ increases.

The sensitivity analysis is conducted by using Γ in inference procedures to obtain

bounds on the p-value associated with testing the hypothesis that βIV = 0. For

matched pairs with a continuous response, we can do this using Wilcoxon’s signed

rank test for testing the association between encouragement and the outcome (Small
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and Rosenbaum, 2008). This involves taking the difference in response values be-

tween encouraged and unencouraged subjects for each of the I pairs, ranking these

differences, and summing the ranks for pairs in which the encouraged subject had

the higher response value. This sum is then compared to two normal distributions

with expectation pI(I + 1)/2 and variance p(1 − p)I(I + 1)(2I + 1)/6 to obtain p-

values, where p = 1/(1 + Γ) is used for obtaining a lower bound and p = Γ/(1 + Γ)

is used for an upper bound. This is repeated for increasing values of Γ. The largest

deviation from random assignment that can be sustained is given by the largest Γ

value in which the upper bound for the p-value remains less than 0.05, with larger

deviations indicating results that would require a larger unmeasured instrument-

outcome confounder to explain them. Notice that when Γ = 1 the expectation and

variance reduce to the usual expectation and variance for Wilcoxon’s signed-rank

test (Lehmann, 1975). For applications of this sensitivity analysis with other test

statistics, see Rosenbaum (2002), Baiocchi et al. (2010, 2012).

The parameter Γ has the advantage of being a univariate measure for quantifying

a deviation from random assignment, but its magnitude is not easily interpreted in

the context of the problem. To help with interpretations, Rosenbaum and Silber

(2009) present a mapping of Γ to two components as

(4.9) Γ =
∆Λ + 1

∆ + Λ
,

where ∆ represents the effect of an unmeasured confounder on the instrument and

Λ the effect of that unmeasured confounder on the response. For example, an un-

measured confounder that triples the odds of receiving encouragement (∆ = 3) while

doubling the odds of having the higher response value (Λ = 2) corresponds with a Γ

value of (3 · 2 + 1)/(3 + 2) = 1.4. This mapping of Γ allows the sensitivity analysis

to remain relatively simple while allowing the researcher to better understand and
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interpret the results in a meaningful way and in the context of the problem.

4.4 Simulations

4.4.1 Setup

In this section we report simulation results to study the properties of strengthened

instruments. We compare estimation under four matching procedures. Two involve

pairing individuals using the IV-matching procedure of Section 4.2.1, matching on

covariates without strengthening the instrument. One of these matches will use a

relatively weak instrument (IVM-I) while the other will use an instrument that is

naturally stronger (IVM-II), allowing for comparisons when all else is equal except

the strength of the instrument. The remaining two matches will use the relatively

weak instrument but strengthen it, one using the weighted IV-matching (WIVM)

procedure described in Section 4.2.2 and one using the near-far matching (NFM)

procedure described in Section 4.2.3. We refer to these four matches as using weaker

(IVM-I), stronger (IVM-II), and strengthened (WIVM, NFM) instruments.

We generate 1,000 datasets from

Yi = βDi +Xi + εYi + αUi,(4.10)

logit(P (Di = 1)) = Z1i + Z2i + εDi ,(4.11)

Z1i = γ1i + αUi,(4.12)

Z2i = γ2i,(4.13)

where Y represents the response and D the treatment for each of i = 1, ..., 4, 000

individuals. Covariate X and random effects γ1 and γ2 are randomly generated from

standard normal distributions. Errors (εY , εD) are generated from a bivariate nor-

mal with correlation 0.75 to represent unmeasured treatment-outcome confounding.

Unmeasured instrument-outcome confounder U is generated from a Bernoulli distri-
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bution with probability 0.5. The parameter α is used to control the strength of U

and is varied from 0 to 1. When α > 0, the presence of U in the generating equations

for Y and Z violates the assumption that the instrument is randomly assigned. We

estimate the effect of the treatment on the response, β, which we set to 0 throughout

these simulations.

To represent the weaker instrument for IVM-I, the instrument is defined as Zi =

Z1i = γ1i + αUi. For IVM-II, the stronger instrument is defined as Zi = Z1i + Z2i =

γ1i + γ2i + αUi. These two instruments capture approximately 10% and 22% of

the variation in the treatment, respectively, while holding everything else constant.

WIVM and NFM will use the weaker instrument but strengthen it via the meth-

ods described in Sections 4.2.2 and 4.2.3. This setup allows for a comparison of

weaker instruments (IVM-I) with instruments that are naturally stronger (IVM-II)

and instruments that have been strengthened by the researcher (WIVM, NFM).

4.4.2 Results

Instrument Strength

Figure 4.1 reports instrument strength as indicated by separation of the in-

strument. Greater separation is considered to correspond with greater instrument

strength. Results confirm that IVM-II, WIVM, and NFM are using a stronger in-

strument than IVM-I as expected. Both WIVM and NFM were able to strengthen

the weak instrument, with NFM achieving separation of the instrument roughly

equivalent to that of IVM-II. Separation of the instrument increases slightly as un-

measured instrument-outcome confounding increases, a result of the the instrument

taking more extreme values as α increases.
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Figure 4.1: Separation of the instrument for each method by magnitude of unmeasured instrument-
outcome confounding. Displayed is the average difference in instrument values between
encouraged and unencouraged individuals. Greater differences are considered to corre-
spond with greater instrument strength.

Estimation

Figure 4.2 reports estimates of β (top), the width of 95% confidence intervals

(middle), and 95% coverage probabilities (bottom) for each method. Since β is set

to 0, estimates of β can also be considered the bias in estimation. Note that the lines

for IVM-I, WIVM, and NFM are overlapping in the plot of the estimates. We see that

as the level of unmeasured instrument-outcome confounding increases, as measured

by α, the bias increases as well for each method. The bias for IVM-II is decreased

compared with the bias for IVM-I at every level of α > 0. WIVM and NFM, on the

other hand, are equally biased compared with IVM-I. The decreased bias for IVM-II

allows it to maintain higher 95% coverage probability than either of the remaining

three methods, though each method has coverage decreasing to 0% as unmeasured

instrument-outcome confounding increases. The plot of confidence interval widths

shows that IVM-II, WIVM, and NFM were more efficient than IVM-I, with IVM-II

leading to the narrowest intervals of the four methods.

These results reveal an important difference between strengthened (WIVM, NFM)
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Figure 4.2: Estimation of β, width of confidence intervals, and 95% coverage probabilities under an
increasing magnitude (α) of unmeasured instrument-outcome confounding. Note that
the lines for IVM-I, WIVM, and NFM are overlapping in the top plot.

and naturally stronger instruments (IVM-II). Theoretical results suggest that greater

correlation between the instrument and the treatment decreases the bias arising from

unmeasured instrument-outcome confounding and increases efficiency in estimation.

IVM-II had both of these properties while using the naturally stronger instrument.

WIVM and NFM, however, provided for more efficient estimation but failed to de-

crease the bias caused by unmeasured instrument-outcome confounder U .

We investigate this issue further by estimating the ratio of the correlation between

the instrument and unmeasured instrument-outcome confounder U to the correlation

between the instrument and the treatment. This ratio is displayed by α in Figure

4.3. Notice that the lines for IVM-I, WIVM, and NFM are again overlapping, while

that for IVM-II is decreased. The overlapping of WIVM and NFM with IVM-I indi-

cates that although WIVM and NFM were able to increase the correlation between
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the instrument and the treatment, the correlation between the instrument and the

unmeasured instrument-outcome confounder U was increased proportionally. This

proportional increase in the correlation between the instrument and U explains why

WIVM and NFM did not see a decrease in bias in Figure 4.2 like IVM-II did.

Figure 4.3: Ratio of the correlation between the instrument and unmeasured instrument-outcome
confounder U to the correlation between the instrument and the treatment. Note that
lines for IVM-I, WIVM, and NFM are overlapping.

The increase in the strength of unmeasured instrument-outcome confounding re-

sulting from methods that strengthen the instrument has thus far been overlooked

in the literature. When doing so, results from the sensitivity analysis presented in

the following section can be misinterpreted to suggest improved robustness to un-

measured instrument-outcome confounding when, as Figures 4.2 and 4.3 make clear,

there is no improvement. We believe this to be why strengthened instruments have

previously been suggested to be more robust to unmeasured instrument-outcome

confounders.

Sensitivity

Figure 4.4 displays the results of the sensitivity analysis of Section 4.3.2. The

vertical axis, Γ, measures the deviation from random assignment that our estimates
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are considered robust to. Γ can be related to the size of an unmeasured instrument-

outcome confounder as in (4.9), telling us how large one would need to be to explain

what appears to be a significant effect of the treatment.

Results suggest that estimates obtained using WIVM and NFM would require a

larger unmeasured instrument-outcome confounder to explain them compared with

IVM-I, while estimates obtained using IVM-II would require a smaller one. These

results need to be interpreted with caution. Applications of this sensitivity anal-

ysis typically consider larger values of Γ to correspond with more robust results

(Rosenbaum, 2002; Small and Rosenbaum, 2008; Baiocchi et al., 2010, 2012), but we

see here that this is not always true. This sensitivity analysis tells us how strong

an unmeasured instrument-outcome confounder would need to be to explain a sig-

nificant effect. This is often used interchangeably with robustness to unmeasured

confounders but it is quite different. Consider, for example, the sensitivity results

for WIVM and NFM. Both methods found larger Γ values in the sensitivity analysis,

suggesting that estimates obtained using WIVM and NFM would require a stronger

unmeasured instrument-outcome confounder to explain them compared to estimates

obtained using IVM-I or IVM-II. While this sounds like improved robustness, results

in Figure 4.3 showed that WIVM and NFM actually increased the strength of un-

measured instrument-outcome confounder U , and results in Figure 4.2 showed that

results were no less biased in the presence of U . If the increase in the strength of U

caused by the WIVM and NFM procedures is ignored, Γ can easily be misinterpreted

to suggest improved robustness when there is none.
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Figure 4.4: Results of sensitivity analysis for assessing robustness to unmeasured instrument-
outcome confounding as measured by Γ. A larger Γ indicates that a larger unmea-
sured instrument-outcome confounder would be required to explain a significant effect
estimate.

4.5 Discussion

Instrumental variable methods are increasingly used in health and medical re-

search. Unfortunately, instrumental variable analyses rely on assumptions that are

difficult to verify and often criticized. One way to increase the credibility of the

results of an instrumental variable analysis is to work with stronger instruments, or

instruments that are highly correlated with the treatment. Benefits of using stronger

instruments include a decrease in finite-sample bias, increased efficiency in estima-

tion, and improved robustness to unmeasured instrument-outcome confounders that

violate the assumption that the instrument is randomly assigned. Motivated by the

desire to capitalize on these benefits, recent methods have been proposed to increase

the strength of a weak instrumental variable. It has been taken for granted, however,

that a weak instrument that has been strengthened provides these same benefits.

In this chapter, we investigated estimation with strengthened instruments to bet-

ter understand their properties and how they compare with instruments that are

naturally stronger. Our findings revealed important differences between the two.
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Specifically, we found that while strengthened instruments are able to increase ef-

ficiency in estimation, they do not lead to a decrease in finite-sample bias or im-

prove the robustness to unmeasured instrument-outcome confounders. We found

that methods for strengthening the instrument additionally strengthen the relation-

ship between the instrument and any unmeasured instrument-outcome confounders,

which offsets any potential decrease in bias or improved robustness.

The increase in the strength of unmeasured instrument-outcome confounding that

results from methods that strengthen the instrument is an important finding that

has been overlooked in the literature thus far. Ignoring this issue leads to mis-

leading sensitivity results, and is likely why strengthened instruments have been

suggested to improve robustness to unmeasured instrument-outcome confounders in

the same way that naturally stronger instruments do. This is a major shortcoming

of strengthened instruments, since improved robustness to unmeasured instrument-

outcome confounding is arguably the most important benefit of working with stronger

instruments. These findings suggests that strengthened instruments should not be

considered equal to instruments that are naturally stronger.

Results of this work can give guidance for future research related to strength-

ening instrumental variables. One important takeaway from these findings is that

improving robustness to unmeasured instrument-outcome confounders via strength-

ening the instrument will require the development of methods that do not increase

the strength of unmeasured instrument-outcome confounding in the process. These

findings highlight that strengthened instruments appear most useful for decreasing

the variability in estimation. If future research on strengthening the instrument is

framed in the context of decreasing variability rather than improving robustness to

unmeasured instrument-outcome confounding, this may pave the way for the devel-
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opment of more efficient IV methods.



CHAPTER V

Conclusion

In observational studies, unmeasured differences between treatment groups often

confound the relationship of interest. Instrumental variable (IV) methods can give

consistent effect estimates in the presence of this unmeasured confounding, and are

becoming increasingly popular in health and medical research. This dissertation

has focused on the development of new IV methods, with applications to studies

comparing mortality among patients receiving dialysis as treatment for end stage

renald disease.

In Chapter II, we developed a weighted IV estimator that adjusts for measured

instrument-outcome confounders through the IV propensity score. The weights were

designed to reflect the probability of being selected into a one-to-one match. Advan-

tages of weighting over matching include increased efficiency, straightforward vari-

ance estimation, and ease of computation. Through simulation, the estimator was

shown to be more efficient than both matching and alternative weighted estimators.

Use of the estimator was illustrated in a study comparing the relationship between

mortality and dialysis session length among hemodialysis patients. Future work re-

lated to applying this estimator to time-to-event or survival data was also presented.

In Chapter III, we developed a weighting procedure for increasing the strength of

74
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the instrument when matching. Compared with existing methods, this weighting pro-

cedure strengthened the instrument without compromising match quality. This is a

major advantage of the proposed method, as poor match quality can bias estimation.

Methods were illustrated with a study comparing early mortality in hemodialysis and

peritoneal dialysis patients.

In Chapter IV, we compared estimation with strengthened instruments to esti-

mation with instruments that are naturally stronger. Methods for strengthening the

instrument have been motivated by the benefits of using stronger instruments, in-

cluding decreased finite-sample bias, increased efficiency, and results that are more

robust to unmeasured instrument-outcome confounders. We found that strengthened

instruments were unable to provide these same benefits, as has been previously sug-

gested. Our findings indicated that while strengthened instruments provide for more

efficient estimation, they do not lead to a decrease in finite-sample bias or improve the

robustness to unmeasured instrument-outcome confounders. We found that methods

for strengthening the instrument inadvertently strengthen unmeasured instrument-

outcome confounders in the process. This important issue has thus far been over-

looked in the literature, which has led to the misbelief that strengthened instruments

improve robustness to unmeasured instrument-outcome confounders. These findings

give guidance for future research related to strengthening the instrument.
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APPENDIX A

Asymptotic equivalence of IV-MW and IV-PSM estimators

In this section we show that the IV-MW and IV-PSM estimators have the same

limit as n → ∞. Following Li and Greene (2013), we will assume that the IV

propensity score takes finitely many values ck for k = 1, ..., K with ck ∈ (0, 1).

This assumption is to allow exact matching on the IV propensity score and avoid

unnecessary complications of working with other matching algorithms. For the IV-

PSM estimator we assume one-to-one exact matching without replacement on the

IV propensity score. Additionally, we simplify the notation of section 2.2, letting

Y (1, Di(1)) = Y 1
i , Yi(0, Di(0)) = Y 0

i , Di(1) = D1
i , Di(0) = D0

i , Yi = ZiY
1
i + (1 −

Zi)Y
0
i , Di = ZiD

1
i + (1−Zi)D0

i , and ei(xi) = ei. We further denote P (ei = ck) = τk,

with
∑

k τk = 1.

We begin with the IV-MW estimator, defined as

λIV-MW =

∑
iWiZiYi/

∑
iWiZi −

∑
iWi(1− Zi)Yi/

∑
iWi(1− Zi)∑

iWiZiDi/
∑

iWiZi −
∑

iWi(1− Zi)Di/
∑

iWi(1− Zi)

≡ A/F −B/G
C/F −D/G

.
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The limit for A is

n−1
∑
i

WiZiYi →p E{WiZiY
1
i }

= E

{
E(
min(ei, 1− ei)

ei
I(Zi = 1)Y 1

i |xi)
}

= E{min(ei, 1− ei)E(Y 1
i |xi)}.

Similarly, the limits for B, C, and D are given by

n−1
∑
i

Wi(1− Zi)Yi →p E{min(ei, 1− ei)E(Y 0
i |xi)},

n−1
∑
i

WiZiDi →p E{min(ei, 1− ei)E(D1
i |xi)},

n−1
∑
i

Wi(1− Zi)Di →p E{min(ei, 1− ei)E(D0
i |xi)}.

Taking the limit of F and G gives

n−1
∑
i

WiZi →p E{WiZi}

= E

{
min(ei, 1− ei)

ei
I(Zi = 1)

}
= E{min(ei, 1− ei)}

and

n−1
∑
i

Wi(1− Zi) →p E{min(ei, 1− ei)}

Combining these and reducing, the limit of the IV-MW as n→∞ is given as

λ̂IV-MW →p
E{min(ei, 1− ei)(E(Y 1

i |xi)− E(Y 0
i |xi))}

E{min(ei, 1− ei)(E(D1
i |xi)− E(D0

i |xi))}
.

Next we consider the IV-PSM estimator, which we write as

λ̂IV-PSM =

{∑
k

∑
i YiI(i∈S1k)∑

k

∑
i I(i∈S1k)

}
−
{∑

k

∑
i YiI(i∈S0k)∑

k

∑
i I(i∈S0k)

}
{∑

k

∑
iDiI(i∈S1k)∑

k

∑
i I(i∈S1k)

}
−
{∑

k

∑
iDiI(i∈S0k)∑

k

∑
i I(i∈S0k)

} ≡ A/F −B/G
C/F −D/G

,
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where S1k and S0k represent the sets of encouraged and unencouraged subjects

matched at ck, respectively. The limit of A is then

n−1
∑
k

∑
i

YiI(i ∈ S1k) = n−1
∑
k

∑
i

Y 1
i I(i ∈ S1k)

→p E

{∑
k

Y 1
i I(i ∈ S1k)

}

= E

{
E(Y 1

i |xi)E(
∑
k

I(i ∈ S1k)|xi)

}

= E

{
E(Y 1

i |xi)
∑
k

τkei
min(ei, 1− ei)

ei

}
= E{min(ei, 1− ei)E(Y 1

i |xi)}.

Similarly, the limits for B, C, and D are given as

n−1
∑
k

∑
i

YiI(i ∈ S0k)→p E{min(ei, 1− ei)E(Y 0
i |xi)},

n−1
∑
k

∑
i

DiI(i ∈ S1k)→p E{min(ei, 1− ei)E(D1
i |xi)},

n−1
∑
k

∑
i

DiI(i ∈ S0k)→p E{min(ei, 1− ei)E(D0
i |xi)}.

Finally, for F we have

n−1
∑
k

∑
i

I(i ∈ S1k) →p E

{∑
k

I(i ∈ S1k)

}

= E

{
min(ei, 1− ei)

∑
k

τk

}
= E{min(ei, 1− ei)},

and similarly for G

n−1
∑
k

∑
i

I(i ∈ S0k) →p E{min(ei, 1− ei)}.

Combining everything and reducing, the limit of the IV-PSM estimator as n→∞

is found to be

λ̂IV-PSM →p=
E{min(ei, 1− ei)(E(Y 1

i |xi)− E(Y 0
i |xi))}

E{min(ei, 1− ei)(E(D1
i |xi)− E(D0

i |xi))}
,
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which is the same as that of the IV-MW estimator.
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APPENDIX B

Full list of covariates used in data example of Chapter III

Table B.1. Summary of covariates before matching. Patient level covariates are compared
across dialysis modality and facility level covariates are compared across first
and fourth quartile of the PD usage.

Patient Covariates HD PD St Diff

N 142,737 21,458 -
Outcome
Death w/in 6 months 14% 4% 35.7
Covariates
Age 64 58 37.7
Male 57% 55% 3.8
Bmi 29.6 29.5 1.9
6+ months pre-ESRD care 45% 69% -49.3
# of comorbidities 2.4 1.9 44.1
Hemoglobin 9.9 10.6 -4.2
Serum creatinine 6.6 6.4 1.0
No insurance 7% 8% -6.9
White 68% 71% -5.1
Black 26% 22% 8.7
Asian 4% 5% -7.4
Hispanic 13% 12% 2.2
Employed 9% 26% -45.2

Facility Covariates Q 1 Q 4 St Diff

Instrument
PD usage 3% 30% -208
Covariates
For profit 85% 86% -3.3
# of nurses 6.7 8.7 -43.3
# of technicians 8.2 8.1 2.0
# of social workers 0.8 1.1 -36.4
# of HD stations 20.3 21.9 -19.1
Median income $51,086 $50,850 1.2
Bachelors degree + 23.7% 23.4% 4.5
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Table B.2. Summary of covariates after matching, by matching algorithm. U and E correspond to patients
considered to have been treated at PD unencouraging (U) and PD encouraging (E) facilities.

IVM (64,350 pairs) WIVM (64,350 pairs) NFM (33,702 pairs)
U E St Diff U E St Diff U E St Diff

Instrument
Facility % PD 2007-09 4.7% 15.3% -96.3 6.3% 27.8% -194.8 3.8% 25.3% -195.2
Treatment
PD 10.0% 16.3% -18.7 11.5% 23.5% -35.7 9.0% 23.8% -44.1
Outcome
Died w/in 6 months 11.9% 11.3% 1.7 11.7% 10.7% 3.3 11.8% 10.8% 3.1
Patient Covariates
Age 62.8 62.7 0.5 62.6 62.1 3.5 63.0 62.2 5.0
Male 57.0% 56.9% 0.2 57.3% 56.7% 1.3 57.0% 56.7% 0.6
BMI 30.5 30.4 0.5 30.5 30.2 1.0 31.0 31.2 -0.7
6+ mos pre-ESRD care 47.8% 50.3% -5.1 50.2% 53.1% -5.7 50.4% 53.2% -5.6
# of comorbidities 2.5 2.4 1.8 2.5 2.4 2.1 2.6 2.4 10.1
Hemoglobin 9.9 10.0 -0.4 9.9 10.0 -0.5 10.0 9.9 1.0
Serum Creatinine 6.6 6.5 0.4 6.7 6.5 0.6 6.5 6.5 0.2
No insurance 7.1% 6.9% 0.9 6.8% 7.5% -2.7 6.1% 7.4% -4.9
White 68.6% 65.9% 5.7 68.9% 63.9% 10.6 68.8% 64.1% 10.1
Black 25.3% 28.1% -6.2 25.1% 29.2% -9.4 26.7% 29.4% -6.1
Asian 3.8% 3.8% 0.4 4.1% 3.8% 1.7 2.6% 4.2% -8.4
Hispanic 13.8% 12.6% 3.7 13.4% 12.4% 3.1 9.9% 12.2% -7.0
Employed 11.4% 12.4% -3.1 12.3% 13.7% -4.2 11.6% 13.6% -6.3
Facility Covariates
For profit 84.3 84.3 0.1 81.1 81.1 0.0 83.3 83.4 -0.3
# of nurses 9.1 9.2 -2.0 10.0 10.2 -3.8 9.2 10.7 -26.5
# of technicians 9.8 9.9 -0.5 9.7 9.8 1.2 9.0 9.7 -10.6
# of social workers 1.1 1.3 -13.9 1.1 1.4 -16.8 1.1 1.3 -10.4
# of HD stations 24.0 24.0 -0.5 24.2 24.4 -1.2 23.5 24.6 -10.9
Median income $50,874 $51,343 -2.32 $50,618 $50,496 0.6 $50,470 $51,368 -4.5
Bachelors degree + 23.4 25.0 -10.8 24.0 25.1 -8.2 23.5 25.7 -15.4
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