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ABSTRACT

Statistical Network Analysis: Beyond Block Models
by

Yuan Zhang

Co-Chairs: Professor Elizaveta Levina and Professor Ji Zhu

Network data represent connections between units of analysis and lead to many inter-
esting research questions with diverse applications. In this thesis, we focus on inferring the
structure underlying an observed network, which can be thought of as a noisy random real-
ization of the unobserved true structure. Different applications focus on different types of
underlying structure; one question of broad interest is finding a community structure, with
communities typically defined as groups of nodes that share similar connectivity patterns.
One common and widely used model for describing a community structure in a network
is the stochastic block model. This model has attracted a lot of attention because of its
tractable theoretical properties, but it is also well known to oversimplify the structure ob-
served in real world networks and often does not fit the data well. Thus there has been a
recent push to expand the stochastic block model in various ways to make it closer to what
we observe in the real world, and this thesis makes several contributions to this effort.

We first study the problem of detecting communities in the presence of additional node
features. Many existing methods detect communities based only on the observed edges be-
tween nodes, but in many networks, additional information on node features is available.
Recent methods for community detection that incorporate node features typically either
depend heavily on correct model specification, which is hard to verify, and/or do not at-
tempt to perform feature selection. Including features related to communities can improve
community detection, but including unrelated features amounts to adding noise to the data
and can lead to substantial reductions in accuracy. In this thesis, we propose a model-free
joint criterion for community detection with node features, with the ability to select only
relevant features. We show that the underlying new community detection criterion has ap-
propriate theoretical performance guarantees and the method is effective on both simulated
and real networks.

Another direction we explore in this thesis is modeling and detecting overlapping com-
munities. While community detection is commonly formulated as a partition problem, in
practice communities in networks tend to overlap. Developing a good model for over-
lapping communities has been a challenge, due to identifiability issues and computational
costs, although a number of special cases have been addressed. We propose a novel over-
lapping model that generalizes the stochastic block model and includes many of the previ-
ously studied overlapping models as special cases. The model is flexible and general but
maintains identifiability and interpretability of parameters. We propose a fast algorithm to
fit this model, establish its consistency, and demonstrate the method outperforms a large
number of benchmarks on both simulated and real data examples.

The final contribution of this thesis is a novel method to estimate edge probabilities
from a single observed network, a task closely related to the so-called graphon estima-

viii



tion problem. The stochastic block model is able to infer this underlying edge probabil-
ity matrix from a single observation by assuming the underlying probability function (the
graphon) consists of constant blocks; we deal with the much more general case of piece-
wise Lipschitz continuous functions. Our estimator leverages a core technique of classical
nonparametric statistics, neighborhood averaging, solving the challenge of defining suit-
able neighborhoods on networks. The method is fast and accurate, and adapts to a large
range of different graphon families. We also show that it achieves the best theoretical error
rate among currently known polynomial time methods for this problem.
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CHAPTER 1

Introduction

This thesis focuses on statistical network analysis. Network-structured data arise in a wide
range of areas; examples include social networks, communications, gene regulatory net-
works, brain imaging, recommender systems and so on. Analysis of network data plays
an important role in many applications, including understanding social structures, disease
diagnosis, marketing, and even design of parallel computing algorithms. I investigated
several inference problems in statistical network analysis.

Community detection in networks
Communities are groups of nodes that have similar patterns of connection to other

nodes. In many networks, nodes from the same community have a higher level of con-
nectivity within themselves than average. Communities are present in many real world
networks and usually carry meaningful interpretations, corresponding, for example, to real-
life social circles, or genes and proteins with similar functions (Resnick et al., 1997; Zhang,
2009; Chamberlain, 1998). My work in this area focused on expanding the capabilities of
community detection methods along two directions: utilizing additional node information
and detecting overlapping communities.

Community detection using node features
Most existing methods detect communities based only on the observed edges between

nodes, but in many networks, additional information on node features is available (Steglich
et al., 2006; Snijders et al., 2006; Hummon et al., 1990). The question then arises whether
we can combine these two sources of data to improve community detection. Many models
that describe the network and the node features jointly have been proposed (Yang et al.,
2013; Xu et al., 2012; Newman and Clauset, 2015), but their effectiveness typically relies
heavily on correct model specification. Model-free algorithmic methods, such as those
proposed by Viennet (2012); Binkiewicz et al. (2014) and Cheng et al. (2011), are usually
based on the simple intuition that nodes in the same community have similar feature (net-
work homophily). However, most existing methods ignore the fact that along with node
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features helpful for community detection many datasets include many irrelevant ones, and
including nuisance features usually jeopardizes community detection.

In Zhang et al. (2015a), we proposed a novel model-free criterion for community de-
tection in weighted networks. To incorporate node features, we model edge weights as
Wijz = W (fi, fj; β), where fi is the feature of node i and β is a vector of coefficient
that controls the influence of individual node features on community detection. We al-
low different communities to have different βs, and thus some features may be relevant
in the formation of some communities but not others, and we learn the weights β from
data simultaneously with estimating the community structure. We proved the consistency
of our estimator and demonstrated its excellent empirical performance on simulated and
data examples. As an example, in a lawyer friendship network (Lazega, 2001), our method
discovered that type of practice (litigation or corporate), age, and years with the firm are
more relevant to the lawyers social circles than gender and the law school from which they
graduated.

Overlapping community detection
While community detection is commonly formulated as a partition problem, in practice

communities in networks commonly overlap. For example, in a social network people may
become friends because they are neighbors, classmates, colleagues, and so on; these are
examples of overlapping communities. Developing a good model to describe overlapping
communities has long been a challenge, for a number of reasons; in general, it is difficult to
disentagle whether a connection between two results from the large number of communities
they have in common, or from a higher status of a node that results in higher probability
of connections to all the nodes. Most existing models (Airoldi et al., 2008; Latouche et al.,
2009; Ball et al., 2011) address special cases, and even then identifiability is sometimes a
challenge. Algorithmic methods (Lancichinetti et al., 2010; Gregory, 2010; Wang et al.,
2011; Gillis and Vavasis, 2014) usually rely on local searches for significant communities
and may perform poorly in presence of high degree nodes. The computational cost is
another commonly encountered obstacle for many methods in both categories.

2
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Figure 1.1: Political blog networks. Red: conservative; blue: liberal. The pie charts rep-
resent the tendency towards each community. The size of the node is proportional to log-
degree.

In Zhang et al. (2014), we proposed a novel overlapping community model, with the
goal of keeping it flexible, identifiable, interpretable, and computationally efficient. In our
model, each node is mapped to a latent space position and communities correspond to clus-
ters in the latent space. We let the nonnegative weighted linear combinations of cluster
centers represent overlapping community memberships, with weights corresponding to the
degree of association with a particular community. Our model is flexible in that it allows
continuous community memberships, so that we can estimate whether a node belongs to
a community strongly or weakly. Our model is identifiable under weak conditions and al-
lows for heterogeneous node degrees. Our model can be seen as a generalization of several
existing overlapping community models, including Latouche et al. (2009) and Karrer and
Newman (2011), and the random dot-product model (Nickel, 2007; Young and Scheiner-
man, 2007), but none of them have as much flexebility while retaining intepretability. We
also designed an efficient algorithm to fit the model, employing a variant of regularized
spectral clustering (Von Luxburg, 2007; Qin and Rohe, 2013) to find cluster centers and
replacing the commonly used K-means clustering with K-medians clustering, resulting in
an asymptotically unbiased estimator for the overlapping model. Figure 1.1 shows our esti-
mates of overlapping community memberships for the political blog network (Adamic and
Glance, 2005).

Network edge probability estimation
While communities are useful in representing many real networks, more general ques-
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tions about the underlying mechanism that generated the network and identifying probable
missing or incorrectly recorded links are of interest, and are increasingly drawing the at-
tention of statisticians. In this project, we designed a general estimator for network edge
probabilities for a network with a more general underlying structure than typical commu-
nity models allow.

Aldous (1981) and Hoover (1979) showed that in exchangeable networks (those where
the order of nodes carries no information), edge probabilities can be represented by

Pij = f(ξi, ξj) (1.0.1)

where ξi ∼ Uniform[0, 1]’s and f is a function called the network graphon. The network
adjacency matrix A is then assumed to have independent Bernoulli entries with P (Aij =

1) = Pij the probability of an edge between nodes i and j. Problem (1.0.1) can be viewed
as nonparametric regression with unknown design (Gao et al., 2014), with regularity in P
induced by imposing smoothness conditions on f . The difficulty is that f and ξi’s are in
general unidentifiable (Diaconis and Janson, 2007) – bit it is still possible, and much more
meaningful in practice, to estimate the probability matrix P . In this chapter, we focused on
estimating P under the assumption that f is piecewise Lipschitz.

Several approaches have been proposed to estimate f and/or P . Step-functions ap-
proximations, including Wolfe and Olhede (2013); Olhede and Wolfe (2014); Choi and
Wolfe (2014); Choi (2015) and Gao et al. (2014), usually achieve good error rates but re-
quire optimization over all possible node partitions, which is NP-hard in principle. The
“sort-and-smooth” (SAS) methods such as Chan and Airoldi (2014) and Yang et al. (2014),
focus on graphons with strictly monotone expected node degrees and depend crucially on
this rather strong condition. The universal singular value thresholding (USVT) (Chatterjee,
2014), a general matrix completion and denoising tool, can also be used to estimate P with
a comparatively loose error bound. Our key insight is that the effectiveness of most meth-
ods depends on choosing a good neighborhood for each node, so that averaging over Ai′j′’s
for i′ and j′ in the neighborhood of i and j yields a good estimator for Pij . The question is
how to define a good neighborhood that both leads to a good error rate and can be learned
efficiently.

Our recent paper (Zhang et al., 2015b) proposes a novel neighborhood smoothing
method for estimating P with a general structure. We define the neighborhood for each
node based on the `2 distance between the “graphon slices” of nodes, represented by the
rows of A. This dissimilarity measure is distinct from the distance between the latent
ξi’s, and, for example, for networks generated from the stochastic block model, represents

4



a more meaningful difference between nodes. We designed an efficient algorithm to se-
lect the neighborhood for each node among its neighbors according to the graphon slice
distance. Our method is almost tuning-free, numerically robust, computationally efficient,
and allows parallelization. We showed that our estimator achieves the best error rate among
existing methods that do not rely on optimizing over all node partitions and are thus compu-
tationally feasible. Our method can accurately estimate a wide variety of network structures
and predict missing edges well when applied to the link prediction problem.
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CHAPTER 2

Community detection in networks with node
features

2.1 Introduction

Community detection is a fundamental problem in network analysis, extensively studied in
a number of domains – see Rogers and Kincaid (1981) and Schlitt and Brazma (2007) for
some examples of applications. A number of approaches to community detection are based
on probabilistic models for networks with communities, such as the stochastic block model
Holland et al. (1983), the degree-corrected stochastic block model Karrer and Newman
(2011), and the latent factor model Hoff (2007). Other approaches work by optimizing a
criterion measuring the strength of community structure in some sense, often through spec-
tral approximations. Examples include normalized cuts Shi and Malik (2000), modularity
Newman and Girvan (2004b); Newman (2006), and many variants of spectral clustering,
e.g., Qin and Rohe (2013).

Many of the existing methods detect communities based only on the network adjacency
matrix. However, we often have additional information on the nodes (node features), and
sometimes edges as well, for example, Steglich et al. (2006), Snijders et al. (2006) and
Hummon et al. (1990). In many networks the distribution of node features is correlated
with community structure McAuley and Leskovec (2012), and thus a natural question is
whether we can improve community detection by using the node features. Several gener-
ative models for jointly modeling the edges and the features have been proposed, includ-
ing the network random effects model Hoff (2003), the embedding feature model Zanghi
et al. (2010), the latent variable model Handcock et al. (2007), the discriminative approach
Yang et al. (2009), the latent multi-group membership graph model M. Kim (2012), the so-
cial circles model for ego networks McAuley and Leskovec (2012), the communities from
edge structure and node attributes (CESNA) model Yang et al. (2013), the Bayesian Graph
Clustering (BAGC) model Xu et al. (2012), the topical communities and personal interest
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(TCPI) model Hoang and Lim (2014) and the modified stochastic block model Newman
and Clauset (2015). The latter paper was written after this work was completed, and while
its goals are somewhat similar to ours by also learning the relationship between the fea-
tures and the network from data, it is very different in that it postulates a model connecting
them in a particular way. Most of these models are designed for specific feature types, and
their effectiveness depends heavily on the correctness of model specification. Model-free
approaches include weighted combinations of the network and feature similarities Viennet
(2012); Binkiewicz et al. (2014), attribute-structure mining Silva et al. (2012), simulated
annealing clustering Cheng et al. (2011), and compressive information flow Smith et al.
(2014). Most methods in this category use all the features in the same way without de-
termining which ones influence the community structure and which do not, and lack flex-
ibility in how to balance the network information with the information coming from its
node features, which do not always agree. Including irrelevant node features can only hurt
community detection by adding in noise, while selecting features that by themselves cluster
strongly may not correspond to features that correlate with the community structure present
in the adjacency matrix.

In this chapter, we propose a new joint community detection criterion that uses both
the network adjacency matrix and the node features. The idea is that by properly weighing
edges according to feature similarities on their end nodes, we strengthen the community
structure in the network thus making it easier to detect. Rather than using all available
features in the same way, we learn which features are most helpful in identifying the com-
munity structure from data. Intuitively, our method looks for an agreement between clusters
suggested by two data sources, the adjacency matrix and the node features. Numerical ex-
periments on simulated and real networks show that our method performs well compared
to methods that use either the network alone or the features alone for clustering, as well as
to a number of benchmark joint detection methods.

2.2 The joint community detection criterion

Our method is designed to look for assortative community structure, that is, the type of
communities where nodes are more likely to connect to each other if they belong to the
same community, and thus there are more edges within communities than between. This is
a very common intuitive definition of communities which is incorporated in many commu-
nity detection criteria, for example, modularity Newman (2006). Our goal is to use such a
community detection criterion based on the adjacency matrix alone, and add feature-based
edge weights to improve detection. Several criteria using the adjacency matrix alone are
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available, but having a simple criterion linear in the adjacency matrix makes optimization
much more feasible in our particular situation, and we propose a new criterion which turns
out to work particularly well for our purposes. Let A denote the adjacency matrix with
Aij = 0 if there is no edge between nodes i and j, and otherwise Aij > 0 which can be ei-
ther 1 for unweighted networks or the edge weight for weighted networks. The community
detection criterion we start from is a very simple analogue of modularity, to be maximized
over all possible label assignments e:

R(e) =
K∑
k=1

1

|Ek|α
∑
i,j∈Ek

Aij . (2.2.1)

Here e is the vector of node labels, with ei = k if node i belongs to community k, for
k = 1, . . . , K, Ek = {i : ei = k}, and |Ek| is the number of nodes in community k. We
assume each node belongs to exactly one community, and the number of communities K
is fixed and known. Rescaling by |Ek|α is designed to rule out trivial solutions that put
all nodes in the same community, and α > 0 is a tuning parameter. When α = 2, the
criterion is approximately the sum of edge densities within communities, and when α = 1,
the criterion is the sum of average “within community” degrees, which both intuitively
represent community structure. This criterion can be shown to be consistent under the
stochastic block model by checking the conditions of the general theorem in Bickel and
Chen (2009).

The ideal use of features with this criterion would be to use them to up-weigh edges
within communities and down-weigh edges between them, thus enhancing the community
structure in the observed network and making it easier to detect. However, node features
may not be perfectly correlated with community structure, different communities may be
driven by different features, as pointed out by McAuley and Leskovec (2012), and features
themselves may be noisy. Thus we need to learn the impact of different features on com-
munities as well as balance the roles of the network itself and its features. Let fi denote the
p-dimensional feature vector of node i. We propose a joint community detection criterion

(JCDC),

R(e, β;wn) =
K∑
k=1

1

|Ek|α
∑
i,j∈Ek

AijW (fi, fj, βk;wn) (2.2.2)

where α is a tuning parameter as in (2.2.1), βk ∈ Rp is the coefficient vector that defines the
impact of different features on the kth community, and β := {β1, . . . , βK}. The criterion
is then maximized over both e and β. Having a different βk for each k allows us to learn
the roles different features may play in different communities. The balance between the
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information from A and F := {f1, . . . , fn} is controlled by wn, another tuning parameter
which in general may depend on n.

For the sake of simplicity, we model the edge weight W (fi, fj, βk;wn) as a function of
the node features fi and fj via a p-dimensional vector of their similarity measures φij =

φ(fi, fj). The choice of similarity measures in φ depends on the type of fi (for example, on
whether the features are numerical or categorical) and is determined on a case by case basis;
the only important property is that φ assigns higher values to features that are more similar.
Note that this trivially allows the inclusion of edge features as well as node features, as long
as they are converted to some sort of similarity. To eliminate potential differences in units
and scales, we standardize all φij along each feature dimension. Finally, the function W
should be increasing in 〈φij, β〉, which can be viewed as the “overall similarity” between
nodes, and for optimization purposes it is convenient to take W to be concave. Here we
use the exponential function,

wijk = W (fi, fj, βk;wn) = wn − e−〈φij ,βk〉 (2.2.3)

One can use other functions of similar shapes, for example, the logit exponential function,
which we found empirically to perform similarly.

2.3 Estimation

The joint community detection criterion needs to be optimized over both the community
assignments e and the feature parameters β. Using block coordinate descent, we optimize
JCDC by alternately optimizing over the labels with fixed parameters and over the param-
eters with fixed labels, and iterating until convergence.

2.3.1 Optimizing over label assignments with fixed weights

When parameters β are fixed, all edge weights wijk’s can be treated as known constants. It
is infeasible to search over all nK possible label assignments, and, like many other commu-
nity detection methods, we rely on a greedy label switching algorithm to optimize over e,
specifically, the tabu search Glover (1986), which updates the label of one node at a time.
Since our criterion involves the number of nodes in each community |Ek|, no easy spectral
approximations are available. Fortunately, our method allows for a simple local approxi-
mate update which does not require recalculating the entire criterion. For a given node i
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considered for label switching, the algorithm will assign it to community k rather than l if

Skk + 2Si↔k
(|Ek|+ 1)α

+
Sll
|El|α

>
Skk
|Ek|α

+
Sll + 2Si↔l
(|El|+ 1)α

, (2.3.1)

where Skk is twice the total edge weights in community k, and Si↔k is the sum of edge
weights between node i and all the nodes in Ek. When |Ek| and |El| are large, we can ignore
+1 in the denominators, and (2.3.1) becomes

Si↔k
|Ek|

· |Ek|
1−α

|El|1−α
>
Si↔l
|El|

, (2.3.2)

which allows for a “local” update for the label of node i without calculating the entire
criterion. This also highlights the impact of the tuning parameter α: when α = 1, the
two sides of (2.3.2) can be viewed as averaged weights of all edges connecting node i to
communities Ek and El, respectively. Then our method assigns node i to the community
with which it has the strongest connection. When α 6= 1, the left hand side of (2.3.2)
is multiplied by a factor (|Ek|/|El|)1−α. Suppose |Ek| is larger than |El|; then choosing
0 < α < 1 indicates a preference for assigning a node to the larger community, while
α > 1 favors smaller communities. A detailed numerical investigation of the role of α is
provided in the Supplemental Material.

The edge weights involved in (2.3.2) depend on the tuning parameter wn. When β = 0,
all weights are equal to wn−1. On the other hand, wijk ≤ wn for all values of β. Therefore,
wn/(wn−1) is the maximum amount by which our method can reweigh an edge. When wn
is large, wn/(wn− 1) ≈ 1, and thus the information from the network structure dominates.
When wn is close to 1, the ratio is large and the feature-driven edge weights have a large
impact. See the Supplemental Material for more details on the choice of wn.

While the tuning parameter wn controls the amount of influence features can have on
community detection, it does not affect the estimated parameters β for a fixed community
assignment. This is easy to see from rearranging terms in (2.2.2):

R(e, β;wn) = wn

K∑
k=1

1

|Ek|α
∑
i,j∈Ek

Aij − g(e, A, β, φ) (2.3.3)

where the function g does not depend on wn. Note that the term containing wn does not
depend on β.
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2.3.2 Optimizing over weights with fixed label assignments

Since we chose a concave edge weight function (2.2.3), for a given community assignment
e the joint criterion is a concave function of βk, and it is straightforward to optimize over
βk by gradient ascent. The role of βk is to control the impact of different features on each
community. One can show by a Taylor-series type expansion around the maximum (details
omitted) and also observe empirically that for our method, the estimated β̂k’s are correlated
with the feature similarities between nodes in community k. In other words, our method
tends to produce a large estimated β̂(`)

k for a feature with high similarity values φ(`)
ij ’s for

i, j ∈ Ek. However, in the extreme case, the optimal β̂(`)
k can be +∞ if all φ(`)

ij ’s are positive
in community k or −∞ if all φ(`)

ij ’s are negative (recall that similarities are standardized,
so this cannot happen in all communities). To avoid these extreme solutions, we subtract a
penalty term λ‖β‖1 from the criterion (2.2.2) while optimizing over β. We use a very small
value of λ (λ = 10−5 everywhere in the chapter) which safeguards against numerically
unstable solutions but has very little effect on other estimated coefficients.

2.4 Consistency

The proposed JCDC criterion (2.2.2) is not model-based, but under certain models it is
asymptotically consistent. We consider the setting where the network A and the features
F are generated independently from a stochastic block model and a uniformly bounded
distribution, respectively. Let P(Aij = 1) = ρnPcicj where ρn is a factor controling the
overall edge density and c = (c1, . . . , cn) is the vector of true labels. Assume the following
regularity conditions hold:

1. There exist global constants Mφ and Mβ , such that ‖φij‖2 ≤ Mφ and ‖βk‖2 ≤ Mβ

for all k, and the tuning parameter wn satisfies logwn > MφMβ .

2. Let Ck := {i : ci = k}. There exists a global constant π0 such that |Ck| ≥ π0n > 0

for all k.

3. For all 1 ≤ k < l ≤ K, 2(K − 1)Pkl < min(Pkk, Pll).

Condition 1 states that node feature similarities are uniformly bounded. This is a
mild condition in many applications as the node features are often themselves uniformly
bounded. In practice, for numerical stability the user may want to standardize node fea-
tures and discard individual features with very low variance, before calculating the cor-
responding similarities φ. Condition 2 guarantees communities do not vanish asymptot-
ically. Condition 3 enforces assortativity. Since the estimated labels e are only defined
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up to an arbitrary permutation of communities, we measure the agreement betwee e and c
by d(e, c) = minσ∈PK

1
n

∑n
i=1 1(σ(ei) 6= ci), where PK is the set of all permutations of

{1, . . . , K}.

Theorem 1 (Consistency of JCDC). Under conditions 1, 2 and 3, if nρn → ∞, wnρn →
∞, and the parameter α satisfies

maxk,l 2(K − 1)Pkl
mink,l(Pkk, Pll)

≤ α ≤ 1 (2.4.1)

then we have, for any fixed δ > 0,

P
(
d

(
arg max

e
(max

β
R(e, β;wn)), c

)
> δ

)
→ 0 . (2.4.2)

The proof is given in the Supplemental Material.

2.5 Simulation studies

We compare JCDC to three representative benchmark methods which use both the ad-
jacency matrix and the node features: CASC (Covariate Assisted Spectral Clustering,
Binkiewicz et al. (2014)), CESNA (Communities from Edge Structure and Node Attributes,
Yang et al. (2013)), and BAGC (BAyesian Graph Clustering, Xu et al. (2012)). In addi-
tion, we also include two standard methods that use either the network adjacency alone
(SC, spectral clustering on the Laplacian regularized with a small constant τ = 1e − 7,
as in Amini et al. (2013)), or the node features alone (KM, K-means performed on the
p-dimensional node feature vectors, with 10 random initial starting values). We generate
networks with n = 150 nodes andK = 2 communities of sizes 100 and 50 from the degree-
corrected stochastic block model as follows. The edges are generated independently with
probability θiθjp if nodes i and j are in the same community, and rθiθjp if nodes i and j are
in different communities. We set p = 0.1 and vary r from 0.25 to 0.75. We set 5% of the
nodes in each community to be “hub” nodes with the degree correction parameter θi = 10,
and for the remaining nodes set θi = 1. All resulting products are thresholded at 0.99 to
ensure there are no probability values over 1. These settings result in the average expected
node degree ranging approximately from 22 to 29.

For each node i, we generate p = 2 features, with one “signal” feature related to
the community structure and one “noise” feature whose distribution is the same for all
nodes. The “signal” feature follows the distribution N(µ, 1) for nodes in community 1 and
N(−µ, 1) for nodes in community 2, with µ varying from 0.5 to 2 (larger µ corresponds
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Figure 2.1: Performance of different methods measured by normalized mutual information
as a function of r (out-in probability ratio) and µ (feature signal strength).

to stronger signal). For use with CESNA, which only allows categorical node features, we
discretize the continuous node features by partitioning the real line into 20 bins using the
0.05, 0.1, . . . , 0.95-th quantiles. For the JCDC, based on the study of the tuning parameters
in the Supplemental Material, we use α = 1 and compare two values of wn, wn = 1.5 and
wn = 5. Finally, agreement between the estimated communities and the true community
labels is measured by normalized mutual information, a measure commonly used in the
network literature which ranges between 0 (random guessing) and 1 (perfect agreement).
For each configuration, we repeat the experiments 30 times, and record the average NMI
over 30 replications.

Figure 2.1 shows the heatmaps of average NMI for all methods under these settings,
as a function of r and µ. As one would expect, the performance of spectral clustering (c),
which uses only the network information, is only affected by r (the larger r is, the harder
the problem), and the performance of K-means (d), which uses only the features, is only
affected by µ (the larger µ is, the easier the problem). JCDC is able to take advantage
of both network and feature information by estimating the coefficients β from data, and
its performance only deteriorates when neither is informative. The informative features
are more helpful with a larger value of w (a), and conversely uninformative features affect
perfomance slightly more with a lower value of w (b), but this effect is not strong. CASC
(e) appears to inherit the sharp phase transition from spectral clustering, which forms the
basis of CASC; the sharp transition is perhaps due to different community sizes and hub
nodes, which are both challenging to spectral clustering; CESNA (f) and BAGC (g) do not

13



perform as well overall, with BAGC often clustering all the hub nodes into one community.

2.6 Data applications

2.6.1 The world trade network

The world trade network De Nooy et al. (2011) connects 80 countries based on the amount
of trade of metal manufactures between them in 1994, or when not available for that year,
in 1993 or 1995. Nodes are countries and edges represent positive amount of import and/or
export between the countries. Each country also has three categorical features: the conti-
nent (Africa, Asia, Europe, N. America, S. America, and Oceania), the country’s structural
position in the world system in 1980 (core, strong semi-periphery, weak semi-periphery,
periphery) and in 1994 (core, semi-periphery, periphery). Figures 2.2 (a) to (c) show the
adjacency matrix rearranged by sorting the nodes by each of the features. The partition by
continent (Figure 2.2(a)) clearly shows community structure, whereas the other two fea-
tures show hubs (core status countries trade with everyone), and no assortative community
structure. We will thus compare partitions found by all the competing methods to the con-
tinents, and omit the three Oceania countries from further analysis because no method is
likely to detect such a small community. The two world position variables (’80 and ’94)
will be used as features, treated as ordinal variables.

The results for all methods are shown in Figure 2.2, along with NMI values comparing
the detected partition to the continents. All methods were run with the true value K = 5.

Table 2.1: Feature coefficients β̂k estimated by JCDC with w = 5. Best match is deter-
mined by majority vote.

Community Best match Position ’80 Position ’94

blue Europe 0.000 0.143
red Asia 0.314 0.127
green Europe 0.017 0.204
cyan N. America 0.107 0.000
purple S. America 0.121 0.000

The result of spectral clustering agrees much better with the continents than that of
K-means, indicating that the community structure in the adjacency matrix is closer to the
continents that the structure contained in the node features. JCDC obtains the highest NMI
value, CASC performs similarly to spectral clustering, whereas CESNA and BAGC both
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Figure 2.2: (a)-(c): the adjacency matrix ordered by different node features; (d) network
with nodes colored by continent (taken as ground truth); blue is Africa, red is Asia, green is
Europe, cyan is N. America and purple is S. America. (e)-(k) community detection results
from different methods; colors are mated to (d) in the best way possible.

fail to recover the continent partition. Note that no method was able to estimate Africa well,
likely due to the disassortative nature of its trade seen in Figure 2.2 (a). Figure 2.2 (e) indi-
cates that JCDC estimated N. America, S. America and Asia with high accuracy, but split
Europe into two communities, since it was run with K = 5 and could not pick up Africa
due to its disassortative structure. Table 2.1 contains the estimated feature coefficients, sug-
gesting that in 1980 the “world position” had the most influence on the connections formed
by Asian countries, whereas in 1994 world position mattered most in Europe.
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2.6.2 The lawyer friendship network

The second dataset we consider is a friendship network of 71 lawyers in a New England
corporate law firm Lazega (2001). Seven node features are available: status (partner or
associate), gender, office location (Boston, Hartford, or Providence, a very small office
with only two non-isolated nodes), years with the firm, age, practice (litigation or corporate)
and law school attended (Harvard, Yale, University of Connecticut, or other). Categorical
features with M levels are represented by M − 1 dummy indicator variables. Figures 2.3
(a)-(g) show heatmap plots of the adjacency matrix with nodes sorted by each feature, after
eliminating six isolated nodes. Partition by status (Figure 2.3(a)) shows a strong assortative
structure, and so does partition by office (Figure 2.3(c)) restricted to Boston and Hartford,
but the small Providence office does not have any kind of structure. Thus we chose the
status partition as a reference point for comparisons, though other partitions are certainly
also meaningful.

Communities estimated by different methods are shown in Figure 2.3 (i)-(o), all run
withK = 2. Spectral clustering andK-means have equal and reasonably high NMI values,
indicating that both the adjacency matrix and node features contain community informa-
tion. JCDC obtains the highest NMI value, with wn = 5 performing slightly better than
wn = 1.5. CASC improves upon spectral clustering by using the feature information, with
NMI just slightly lower than that of JCDC with wn = 1.5. CESNA and BAGC have much
lower NMI values, possibly because of hub nodes, or because they detect communities
corresponding to something other than status.

The estimated feature coefficients are shown in Table 2.2. Office location, years with
the firm, and age appear to be the features most correlated with the community structure of
status, for both partners and associates, which is natural. Practice, school, and gender are
less important, though it may be hard to estimate the influence of gender accurately since
there are relatively few women in the sample.

Table 2.2: Feature coefficients β̂k, JCDC with wn = 5.

Comm. gender office years age practice school

partner 0.290 0.532 0.212 0.390 0.095 0.000
associate 0.012 0.378 0.725 0.320 0.118 0.097
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Figure 2.3: (a)-(g): adjacency matrix with nodes sorted by features; (h): network with
nodes colored by status (blue is partner, red is associate); (i)-(n): community detection
results from different methods.
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2.7 Discussion

Our method incorporates feature-based weights into a community detection criterion, im-
proving detection compared to using just the adjacency matrix or the node features alone,
if the cluster structure in the features is related to the community structure in the adjacency
matrix. It has the ability to estimate coefficients for each feature within each community
and thus learn which features are correlated with the community structure. This ability
guards against including noise features which can mislead community detection. The com-
munity detection criterion we use is designed for assortative community structure, with
more connections within communities than between, and benefits the most from using fea-
tures that have a similar clustering structure.

This work can be extended in several directions. Variation in node degrees, often mod-
eled via the degree-corrected stochastic block model Karrer and Newman (2011) which
regards degrees as independent of community structure, may in some cases be correlated
with node features, and accounting for degree variation jointly with features can potentially
further improve detection. Another useful extension is to overlapping communities. One
possible way to do that is to optimize each summand in JCDC (2.2.2) separately and in par-
allel, which can create overlaps, but would require careful initialization. Statistical models
that specify exactly how features are related to community assignments and edge probabil-
ities can also be useful, though empirically we found no such standard models that could
compete with the non-model-based JCDC on real data. This suggests that more involved
and perhaps data-specific modeling will be necessary to accurately describe real networks,
and some of the techniques we proposed, such as community-specific feature coefficients,
could be useful in that context.
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CHAPTER 3

Detecting overlapping communities in networks
using spectral methods

3.1 Introduction

The problem of community detection in networks has been actively studied in several dis-
tinct fields, including physics, computer science, statistics, and the social sciences. Its
applications include understanding social interactions of people (Zachary, 1977; Resnick
et al., 1997) and animals (Lusseau et al., 2003), discovering functional regulatory networks
of genes (Bolouri and Davidson, 2010; Zhang, 2009) and even designing parallel comput-
ing algorithms (Chamberlain, 1998; Hendrickson and Kolda, 2000). Community detection
is in general a challenging task. The challenges include defining what a community is
(commonly taken to be a group of nodes that have more connections to each other than to
the rest of the network, although other types of communities are not unusual), formulating
realistic and tractable statistical models of networks with communities, and designing fast
scalable algorithms for fitting such models.

In this paper, we focus on network models with overlapping communities, with nodes
potentially belonging to more than one community at a time. This is common in real-world
networks (Palla et al., 2005; Pizzuti, 2009), and yet most literature to date has focused on
partitioning the network into non-overlapping communities, with some notable exceptions
discussed below. Our goal is to design an overlapping community model that is flexible, in-
terpretable, and computationally feasible. We will thus focus on models which can be fitted
by spectral methods, one of the most scalable tools for fitting non-overlapping community
models available to date.

We start with a brief review of relevant work in community detection for non-overlapping
communities, which mainly falls into one of two broad categories: algorithmic methods,
based on optimizing some criterion reflecting desirable properties of a partition over all
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possible partitions (see Fortunato (2010) for a review), and model fitting, where a genera-
tive model with communities is postulated for the network and its parameters are estimated
from the observed adjacency matrix (see Goldenberg et al. (2010) for a review). Perhaps the
most popular and best studied generative model for community detection is the stochastic
block model (SBM) (Holland and Leinhardt, 1981; Holland et al., 1983). The SBM views
the n × n network adjacency matrix A, defined by Aij = 1 if there is an edge between
i and j and 0 otherwise, as a random graph with independent Bernoulli-distributed edges.
The Bernoulli probabilities for the edges depend on the node labels ci which take values
in {1, . . . , K}, and the K × K matrix B containing the probabilities of edges forming
between different communities. The node labels can be represented by an n × K binary
community membership matrix Z with exactly one “1” in each row, Zik = 1[ci = k] for
all i, k. Then the probabilities of edges are given by W ≡ E(A) = ZBZT . Thus in
this model, a node’s label determines its behavior entirely, and thus all nodes in the same
community are “stochastically equivalent”, and in particular have the same expected de-
gree. This is known to be often violated in practice, due to commonly present “hub” nodes
with many more connections than other nodes in their community. The degree-corrected
stochastic block model (DCSBM) (Karrer and Newman, 2011) was proposed to address
this limitation, which multiplies the probability of an edge between nodes i and j by the
product of node-specific positive “degree parameters” θiθj . Both SBM and DCSBM can be
consistently estimated by maximizing the likelihood (Bickel and Chen, 2009; Zhao et al.,
2012), but directly optimizing the likelihood over all label assignments is not computation-
ally feasible. A number of faster algorithms for fitting these models have been proposed in
recent years, including pseudo-likelihood (Amini et al., 2013), belief propagation (Decelle
et al., 2011), spectral approximations to the likelihood (Newman, 2013; Le et al., 2014),
spectral clustering on eigenvector ratios to fit DCSBM (Jin, 2015), and generic spectral
clustering (Von Luxburg, 2007), used by many and analyzed, for example, in Rohe et al.
(2011) and Sarkar and Bickel (2013). It was further shown that regularization improves
on spectral clustering substantially (Amini et al., 2013; Chaudhuri et al., 2012), and its
theoretical properties have been further analyzed by Qin and Rohe (2013) and Joseph and
Yu (2013). While for specific likelihoods one can develop methods that are both fast and
more accurate than spectral clustering, such as the pseudo-likelihood (Amini et al., 2013),
in general spectral methods remain the most scalable option available.

While the majority of the existing models and algorithms for community detection
focus on discovering non-overlapping communities, there has been a growing interest in
exploring the overlapping scenario, although both extending the existing models to the
overlapping case and developing brand new models remain challenging. Like methods for
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non-overlapping community detection, most existing approaches for detecting overlapping
communities can be categorized as either algorithmic or model-based methods. For a com-
prehensive review, see Xie et al. (2013). Model-based methods focus on specifying how
node community memberships determine edge probabilities. For example, the overlapping
stochastic block model (OSBM) (Latouche et al., 2009) extends the SBM by allowing the
entries of the membership matrix Z to be independent Bernoulli variables, thus allow-
ing multiple “1”s in one row, or all “0”s. The mixed membership stochastic block model
(Airoldi et al., 2008) draws membership vectors Zi· from a Dirichlet prior. The member-
ship vector is drawn again to generate every edge, instead of being fixed for the node, so the
community membership for node i varies depending on which node j it is interacting with.
The “colored edges” model (Ball et al., 2011), sometimes referred to as the Ball-Karrer-
Newman model or BKN, allows continuous community membership by relaxing the binary
Z to a matrix with non-negative entries (with some normalization constraints for identifia-
bility), and discarding the matrix B. The Bayesian nonnegative matrix factorization model
(Psorakis et al., 2011) is related to the model but with notable differences.

Algorithmic methods for overlapping community detection mostly rely on local greedy
searches and intuitive criteria. Current approaches include detecting each community sep-
arately by maximizing a local measure of goodness of the estimated community (Lanci-
chinetti et al., 2011) and updating an initial estimate of the community membership by
neighborhood vote (Gregory, 2010). Local methods typically rely heavily on a good start-
ing value. Global algorithmic approaches include computing a non-negative matrix factor-
ization approximation to the adjacency matrix and extracting a binary membership matrix
from one of the factors (Wang et al., 2011; Gillis and Vavasis, 2014). Many heuristic meth-
ods do not take heterogeneous node degrees into account, and we found empirically they
can perform poorly in the presence of hubs (see Section 3.5).

In this chapter, we propose a new generative model for overlapping communities, the
overlapping continuous community assignment model (OCCAM). It allows a node to be-
long to different communities to a different extent, via the membership vector Zi· with
non-negative entries which represent how strongly a node is associated with various com-
munities. We also allow arbitrary degree distributions in a manner similar to the DCSBM,
and retain the K ×K matrix B which allows to interpret connections between communi-
ties and compare them. All the model parameters (membership vectors, degree corrections,
and community-level connectivity) are identifiable under certain constraints which we will
state explicitly. We also develop a fast spectral algorithm to fit OCCAM. Typically, spectral
clustering projects the adjacency matrix or its Laplacian onto the K leading eigenvectors
representing the nodes’ latent positions, and performs K-means in that lower-dimensional
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space to estimate community memberships. Our key insight here is that when the nodes
come from a mixture of clusters (as they would with multiple community memberships),
K-means has no chance of recovering the cluster centers correctly; but as long as there are
enough pure nodes in each community, K-medians will still be able to identify the clus-
ter centers correctly by ignoring the “mixed” nodes on the boundaries. We show that our
method produces asymptotically consistent parameter estimates as the number of nodes
grows as long as there are enough pure nodes and the network is not too sparse. We also
employ a simple regularization scheme, since it is by now well known that regularizing
spectral clustering substantially improves its performance, especially in sparse networks
(Chaudhuri et al., 2012; Amini et al., 2013; Qin and Rohe, 2013). We provide an explicit
rate for the regularization parameter, implied by our consistency analysis, and show that the
overall performance is robust to the choice of the constant multiplier in the regularization
parameter as long as the rate is specified correctly.

The rest of the chapter is organized as follows. We introduce the model and discuss
parameter identifiability in Section 3.2, present the two-stage spectral clustering algorithm
in Section 3.3, and state consistency results and describe the choice of the regularization
parameter in Section 3.4. Some simulation results are presented in Section 3.5, where we
investigate robustness of our method to the choice of regularization parameter and compare
it to a number of benchmark methods for overlapping community detection. We apply the
proposed method to a large number of real social ego-networks (networks consisting of all
friends of one or several users) from Facebook, Twitter, and GooglePlus in Section 3.6.
Section 3.7 concludes the chapter with a brief discussion of contributions, limitations, and
future work. All proofs are given in the supplemental materials.

3.2 The overlapping continuous community assignment model

3.2.1 The model

Recall that we represent the network by its n× n adjacency matrix A, a binary symmetric
matrix with {Aij, i < j} independent Bernoulli variables and W ≡ E(A). We will assume
that W has the form

W = αnΘZBZTΘ . (3.2.1)

We call this formulation the Overlapping Continuous Community Assignment Model (OC-
CAM). The factor αn is a global scaling factor that controls the overall edge probability,
and the only component that depends on n. As is commonly done in the literature, for
theoretical analysis we will let αn → 0 at a certain rate, otherwise the network becomes
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completely dense as n → ∞. The n × n diagonal matrix Θ = diag(θ1, . . . , θn) contains
non-negative degree correction terms that allow for heterogeneity in the node degrees, in
the same fashion as under the DCSBM. We will later assume that θi’s are generated from
a fixed distribution FΘ which does not depend on n. The n ×K community membership
matrix Z is the primary parameter of interest; the i-th row Zi· represents node i’s propen-
sities towards each of the K communities. We assume Zik ≥ 0 for all i, k, and ‖Zi·‖2 = 1

for identifiability. Formally, a node is “pure” if Zik = 1 for some k. Later, we will also
assume that the rows Zi·’s are generated independently from a fixed distribution FZ that
does not depend on n. Finally, the K × K matrix B represents (scaled) probabilities of
connections between pure nodes of all communities. Since we are already using αn and
Θ, we constrain all diagonal elements of B to be 1 for identifiability. Other constraints are
also needed to make the model fully identifiable; we will discuss them in Section 3.2.2.

Note that the general form (3.2.1) can, with additional constraints, incorporate many
of the other previously proposed models as special cases. If all nodes are pure and Z has
exactly one “1” in each row, we get DCSBM; if we further assume all θi’s are equal, we
have the regular SBM. If the constraint ‖Zi·‖2 = 1 is removed and the entries of Z are
required to be 0 or 1, and all θi’s are equal, we have the OSBM of Latouche et al. (2009).
Alternatively, if we set B = I , we have the “colored edges” model of Ball et al. (2011).
Our model is also related to the random dot product model (RDPM) (Nickel, 2007; Young
and Scheinerman, 2007), which stipulates W = X0X

T
0 for some (usually low-rank) X0.

This is true for our model if B is semi-positive definite, since then we can uniquely define
X0 =

√
αnΘZB1/2. OCCAM is thus more general than all of these models, and yet is

fully identifiable and interpretable.

3.2.2 Identifiability

The parameters in (3.2.1) obviously need to be constrained to guarantee identifiability of
the model. All models with communities, including the SBM, are considered identifiable
if they are identifiable up to a permutation of community labels. To show the interplay
between the model parameters, we first state identifiability conditions treating all of αn, Θ,
Z, and B as constant parameters, and then discuss what happens if Θ and Z are treated
as random variables as we do in the asymptotic analysis. The following conditions are
sufficient for identifiability:

I1 B is full rank and strictly positive definite, with Bkk = 1 for all k.

I2 All Zik ≥ 0, ‖Zi·‖2 = 1 for all i = 1, . . . , n, and there is at least one “pure” node
in every community, i.e., for each k = 1, . . . , K, there exists at least one i such that
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Zik = 1.

I3 The degree parameters θ1, . . . , θn are all positive and n−1
∑n

i=1 θi = 1.

Theorem 2. If conditions (I1), (I2) and (I3) hold, the model is identifiable, i.e., if a given

probability matrix W corresponds to a set of parameters (αn,Θ,Z,B) through (3.2.1),
these parameters are unique up to a permutation of community labels.

The proof of Theorem 2 is given in the supplemental materials. In general, identifi-
ability is non-trivial to establish for most overlapping community models, since, roughly
speaking, an edge between two nodes can be explained by either their common member-
ships in many of the same communities, or the high probability of edges between their
two different communities, a problem that does not occur in the non-overlapping case.
Among previously proposed models, the OSBM was shown to be identifiable (Latouche
et al., 2009), but their argument does not extend to our model since they only considered
Z with binary entries. The identifiability of the BKN model was not discussed by Ball
et al. (2011), but it is relatively straightforward (though still non-trivial) to show that it is
identifiable as long as there are pure nodes in each community.

While Theorem 2 makes the model in (3.2.1) well defined, it is also common practice
in the community detection literature to treat some of the model components as random
quantities. For example, Holland et al. (1983) treat community labels under the SBM as
sampled from a multinomial distribution, and Zhao et al. (2012) treat the degree parame-
ters θi’s in DCSBM as sampled from a general discrete distribution. For our consistency
analysis, treating θi’s and Zi·’s as random significantly simplifies conditions and allows for
an explicit choice of rate for the tuning parameter τn, which will be defined in Section 3.3.
We will thus treat Θ and Z as random and independent of each other for the purpose of
theory, assuming that the rows of Z are independently generated from a distribution FZ
on the unit sphere, and θi’s are i.i.d. from a distribution FΘ on positive real numbers. The
conditions I2 and I3 are then replaced with the following two conditions, respectively:

RI2 FZ = πpFp + πoFo is a mixture of a multinomial distribution Fp on K categories
for pure nodes and an arbitrary distribution Fo on {z ∈ RK : zk ≥ 0, ‖z‖2 = 1} for
nodes in the overlaps, and πp > 0.

RI3 FΘ is a probability distribution on (0,∞) satisfying
∫∞

0
t dFΘ(t) = 1.

The distribution Fo can in principle be any distribution on the positive quadrant of
the unit sphere. For example, one could first specify that with probability πk1,...,km , node
i belongs to communities {k1, . . . , km}, and then set Zik = 1√

m
1(k ∈ {k1, . . . , km}).

24



Alternatively, one could generate values for the m non-zero entries of Zi· from an m-
dimensional Dirichlet distribution, and set the rest to 0.

Here we emphasize that the conditions guaranteeing identifiability is an indispensable
part of our model. Ideas similar to (3.2.1) previously appeared in the literature, see, for
example, Appendix C of Ball et al. (2011). However, without proper identifiability condi-
tions, the parameters are not meaningful.

3.3 A spectral algorithm for fitting the model

The primary goal of fitting this model is to estimate the membership matrix Z from the
observed adjacency matrix A, although other parameters may also be of interest. Since
computational scalability is one of our goals, we focus on algorithms based on spectral de-
compositions, one of the most scalable approaches available. Recall that spectral clustering
typically works by first representing all data points (the n nodes) by an n×K matrix X con-
sisting of leading eigenvectors of a matrix derived from the data, which we call G for now,
and then applying K-means clustering to the rows of X . For example, under the SBM, the
matrix G should be chosen to have eigenvectors X that approximate the eigenvectors X0

of W = E(A) as closely as possible, since the eigenvectors of W are piecewise constant
and contain all the community information. A naive choice G = A is intuitively appeal-
ing, though it has been shown in practice and in theory (Sarkar and Bickel, 2013) that the
graph Laplacian of A, i.e., L = D−1/2AD−1/2, where D = diag(A1), is a better choice,
or, for sparse graphs, different regularized versions of L (Amini et al., 2013; Chaudhuri
et al., 2012; Qin and Rohe, 2013; Joseph and Yu, 2013). An additional step of normalizing
the rows of X before performing K-means is often appropriate if the underlying model is
assumed to be the degree-corrected stochastic blockmodel (Qin and Rohe, 2013).

Regardless of the matrix chosen to estimate the eigenvectors of W , the key difference
between the regular SBM under which spectral clustering is usually studied and our model
is that under the SBM there are only K unique rows in X0, and thus K-means can be
expected to accurately cluster the rows of X , which is a noisy version of X0. Under
our model, the rows of X0 are linear combinations of the “pure” rows corresponding to
“centers” of the K communities. Thus even if we could recover X0 exactly, K-means is
not expected to work, and it is in fact straightforward to show that the K-means algorithm
does not recover the positions of pure nodes correctly unless non-pure nodes either vanish
in proportion or converge to pure nodes’ latent positions as n grows (proof omitted here
as it is not needed for our main argument). The key idea of our algorithm is to replace
K-means with K-medians clustering: if the proportion of pure nodes is not too low, then
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the latent positions of the cluster centers can still be recovered correctly, and therefore the
coefficients of mixed nodes can be estimated accurately by projecting onto the pure nodes.
Other details of the algorithm involve regularization and normalization that are necessary
for dealing with sparse networks and heterogeneous degrees.

Our algorithm for fitting the OCCAM takes as input the adjacency matrix A and a
regularization parameter τn > 0 which we use to regularize the estimated latent node posi-
tions directly. This is easier to handle technically than regularizing the Laplacian, and we
will give an explicit rate for τn that guarantees asymptotic consistency in Section 3.4. The
algorithm proceeds as follows:

1. Compute ÛAL̂AÛ
T
A , where L̂A is the K × K diagonal matrix containing the K

leading eigenvalues of A, and ÛA is the n×K matrix containing the corresponding
eigenvectors. While the true W = E(A) is positive definite, in practice some of
the eigenvalues of A may be negative; if that happens, we truncate them to 0. Let
X̂ ≡ ÛAL̂

1/2
A be the estimated latent node positions.

2. Compute X̂∗, a normalized and regularized version of X̂ , the rows of which are
given by X̂∗

i· =
1

‖X̂i·‖2+τn
X̂i·.

3. Perform K-medians clustering on the rows of X̂∗ and obtain K estimated cluster
centers s1, . . . , sK ∈ RK , i.e.,

{s1, . . . , sK} = arg min
s1,...,sK

1

n

n∑
i=1

min
s∈{s1,...,sK}

∥∥∥X̂∗
i· − s

∥∥∥
2

(3.3.1)

Form theK×K matrix Ŝ with rows equal to the estimated cluster centers ŝ1, . . . , sK .

4. Project the rows of X̂∗ onto the span of s1, . . . , sK , i.e., compute the matrix X̂∗Ŝ−1

and normalize its rows to have norm 1 to obtain the estimated community member-
ship matrix Ẑ.

This algorithm can also be used to obtain other types of community assignments. For
example, to obtain binary rather than continuous community membership, we can threshold
each element of Ẑ to obtain Ẑ0

ik = 1(Ẑik > δK) (see Section 3.5 and Section 3.6). To
obtain assignments to non-overlapping communities, we can set ĉi = arg max1≤k≤K Ẑik.
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3.4 Asymptotic consistency

3.4.1 Main result

In this section, we show consistency of our algorithm for fitting the OCCAM as the num-
ber of nodes n and possibly the number of communities K increase. For the theoretical
analysis, we treat Z and Θ as random variables, as was done by Zhao et al. (2012). We
first state regularity conditions on the model parameters.

A1 The distributionFΘ is supported on (0,Mθ), and for all δ > 0 satisfies δ−1
∫ δ

0
dFΘ(t) ≤

Cθ, where Mθ > 0 and Cθ > 0 are global constants.

A2 Let λ0 and λ1 be the smallest and the largest eigenvalues of E[θ2
iZ

T
i·Zi·B], respec-

tively. Then there exist global constantsMλ0 > 0 andMλ1 > 0 such thatKλ0 ≥Mλ0

and λ1 ≤Mλ1 .

A3 There exists a global constant mB > 0 such that λmin(B) ≥ mB.

A key ingredient of our algorithm is the K-medians clustering, and consistency of K-
medians requires its own conditions on clusters being well separated in the appropriate
metric. The sample loss function for K-medians is defined by

Ln(Q;S) =
1

n

n∑
i=1

min
1≤k≤K

‖Qi· − Sk·‖2

where Q ∈ Rn×K is a matrix whose rows Qi· are vectors to be clustered, and S ∈ RK×K

is a matrix whose rows Sk· are cluster centers.
Assuming the rows of Q are i.i.d. random vectors sampled from a distribution G, we

similarly define the population loss function for K-medians by

L(G;S) =

∫
min

1≤k≤K
‖x− Sk·‖2dG.

Finally we define the Hausdorff distance, which is used here to measure the dissimilarity
between two sets of cluster centers. Specifically, for S,T ∈ RK×K , let DH(S,T ) =

minσ maxk ‖Sk· − Tσ(k)·‖2, where σ ranges over all permutations of {1, . . . , K}.
Define Xi· = θiZi·B

1/2 and X∗
i· = ‖Xi·‖−1

2 Xi· = ‖Zi·B
1/2‖−1

2 Zi·B
1/2, and let F de-

note the distribution of X∗
i·. If the distribution F of these linear combinations puts enough

probability mass on the pure nodes (rows of B1/2), the rows of B1/2 will be recovered by
K-medians clustering and then the Zi·’s be recovered via projection. Bearing this in mind,
we assume the following condition on F holds:
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B Let SF = arg minS L(F ;S) be the global minimizer of the population K-medians
loss function L(F ;S). Then SF = B1/2 up to a row permutation. Further, there ex-
ists a global constantM such that, for all S,L(F ;S)−L(F ;SF) ≥MK−1DH(S,SF).

Condition B essentially states that the population K-medians loss function, which is
determined by F , has a unique minimum at the right place and there is curvature around
the minimum.

Theorem 3 (Main theorem). Assume that the identifiability conditions I1, RI2, RI3 and

regularity conditions A1-A3, B hold. If n1−α0αn → ∞ for some 0 < α0 < 1, K =

O(log n), and the tuning parameter is set to

τn = Cτ
α0.2
n K1.5

n0.3
(3.4.1)

where Cτ is a constant, then the estimated community membership matrix Ẑ is consistent

in the sense that

P
(

1√
n
‖Ẑ −Z‖F ≤ C(n1−α0αn)−

1
5

)
≥ 1− P (n, αn, K) (3.4.2)

where C is a global constant, and P (n, αn, K)→ 0 as n→∞.

Remark: The condition n1−α0αn → ∞ is slightly stronger than nαn → ∞, which
was required for weak consistency of non-overlapping community detection with fixed
K using likelihood or modularities by Bickel and Chen (2009), Zhao et al. (2012), and
others, and which is in fact necessary under the SBM (Mossel et al., 2014). The rate
at which K is allowed to grow works out to be K = (nαn)δ for a small δ (see details
in the supplemental materials), which is slower than the rates of K allowed in previous
work that considered a growing K (Rohe et al., 2011; Choi et al., 2012). However, these
results are not really comparable since we are facing additional challenges of overlapping
communities and estimating a continuous rather than a binary membership matrix.

3.4.2 Example: checking conditions

The planted partition model is a widely studied special case which we use to illustrate our
conditions and their interpretation. Let B = (1 − ρ)IK + ρ11T , 0 ≤ ρ < 1, where IK is
the K × K identity matrix and 1 is a column vector of all ones. Then B1/2 is a K × K
matrix with diagonal entires K−1

(√
(K − 1)ρ+ 1 + (K − 1)

√
1− ρ

)
and off-diagonal
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entires K−1
(√

(K − 1)ρ+ 1−
√

1− ρ
)

. We restrict the overlap to two communities at
a time and generate the rows of the community membership matrix Z by

Zi· =

ek, 1 ≤ k ≤ K w. prob. π(1) ,

1√
2
(ek + el), 1 ≤ k < l ≤ K w. prob. π(2) ,

(3.4.3)

where ek is a row vector that contains a one in the kth position and zeros elsewhere, and
Kπ(1) + 1

2
K(K − 1)π(2) = 1. We set θi ≡ 1 for all i, therefore conditions RI2 and RI3

hold.
For a K ×K matrix of the form (a − b)IK + b11T , a, b > 0, the largest eigenvalue is

a+(K−1)b and all other eigenvalues are a−b. Thus λmax(B) = 1+(K−1)ρ, λmin(B) =

1 − ρ, and conditions I1 and A3 hold. To verify condition A2, note E[θ2
iZ

T
i·Zi·B] =

E[ZT
i·Zi·]B, and since

ZT
i·Zi· =

eTk ek, 1 ≤ k ≤ K w. prob. π(1),

1
2
(ek + el)

T (ek + el), 1 ≤ k < l ≤ K w. prob. π(2),

we have E[ZT
i·Zi·] =

(
π(1) + K−2

2
π(2)
)
IK + π(2)

2
11T . Therefore,

λmax(E[ZT
i·Zi·]) = π(1) + (K − 1)π(2) ≤ 2

K

λmin(E[ZT
i·Zi·]) = π(1) +

K − 2

2
π(2) ≥ 1

2K

Since λmax(E[ZT
i·Zi·]B) ≤ λmax(E[ZT

i·Zi·])λmax(B) and λmin(E[ZT
i·Zi·]B) ≥ λmin(E[ZT

i·Zi·])λmin(B),
condition A2 holds.

It remains to check condition B. Given x ∈ RK with ‖x‖2 = 1, for any S, let s(x) and
sF(x) be the best approximations to x in `2 norm among the rows of S and SF respectively.
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Then we have

L(F ;S)− L(F ;B1/2) =

{
π(1)DH(S,B1/2) +

∫
x6=(B1/2)k·,1≤k≤K

‖x− s(x)‖2dF
}

−
{∫

x6=(B1/2)k·,1≤k≤K
‖x− sF(x)‖2dF

}
≥ π(1)DH(S,B1/2)−

∫
x6=(B1/2)k·,1≤k≤K

‖s(x)− sF(x)‖2dF

≥ π(1)DH(S,B1/2)−
∫
x6=(B1/2)k·,1≤k≤K

DH(S,B1/2)dF

=

(
π(1) − K(K − 1)

2
π(2)

)
DH(S,B1/2)

=
(
(K + 1)π(1) − 1

)
DH(S,B1/2) (3.4.4)

We then see that in order for B to hold, i.e., for the RHS of (3.4.4) to be non-negative and
equal to zero only when DH(S,SF) = 0, we need

π(1) >
1

K + 1

(
1 +

M

K

)
. (3.4.5)

This gives a precise condition on the proportion of pure nodes for this example. In general,
the proportion of pure nodes cannot always be expressed explicitly other than through
condition B.

3.5 Evaluation on synthetic networks

Our experiments on synthetic networks focus on two issues: the choice of constant in
the regularization parameter τn, and comparisons of OCCAM to other overlapping com-
munity detection methods. Since many other methods only output binary membership
vectors, we use a performance measure based on binary overlapping membership vectors.
Following Lancichinetti et al. (2009), we measure performance by an extended version
of the normalized variation of information (exNVI). Consider two binary random vectors
Γ = (Γ1, . . . ,ΓK) and Γ̂ = (Γ̂1, . . . , Γ̂K), which indicate whether a node belongs to com-
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munity k in the true and estimated communities, respectively. Define

H̄(Γ̂l|Γk) =
H(Γ̂l|Γk)
H(Γ̂k)

, where

H(Γk) = −
∑
z

P(Γk = z) logP(Γk = z),

H(Γ̂l|Γk) = H(Γk, Γ̂l)−H(Γk), and

H(Γk, Γ̂l) = −
∑
z,ẑ

P(Γk = z, Γ̂l = ẑ) logP(Γk = z, Γ̂l = ẑ). (3.5.1)

where H(Γk), H(Γ̂l|Γk) and H(Γk, Γ̂l) are commonly called individual, conditional and
joint entropies. It can be seen that H̄(Γ̂l|Γk) takes values between 0 and 1, with 0 cor-
responding to Γ̂l and Γk being independent and 1 to a perfect match. We then define the
overall exNVI between Γ and Γ̂ to be

H̄(Γ, Γ̂) = 1−min
σ

1

2K

K∑
k=1

[
H̄(Γ̂σ(k)|Γk) + H̄(Γk|Γ̂σ(k))

]
(3.5.2)

where σ ranges over all permutations on {1, . . . , K}. We also define the sample versions
of all the quantities in (3.5.1) with probabilities replaced with frequencies, e.g., Ĥ(Γk) =

−
∑1

z=0 |{i : Γik = z}|/n · log (|{i : Γik = z}|/n), etc.

3.5.1 Choice of constant for the regularization parameter

The regularization parameter τn is defined by (3.4.1), up to a constant, as a function of n,
K, and the unobserved αn. Absorbing a constant factor into Cτ , we estimate αn by

α̂n =

∑
i 6=j Aij

n(n− 1)K
(3.5.3)

and investigate the effect of the constant Cτ empirically.
For this simulation, we generate networks with n = 500 or 2000 nodes with K = 3

communities. We consider two settings for θi’s: (1) θi = 1 for all i (no hubs), and (2)
P(θi = 1) = 0.8 and P(θi = 20) = 0.2 (20% hub nodes). We generate Z as follows: for
1 ≤ k1 < . . . < km ≤ K, we assign n · πk1···km nodes to the intersection of communities
k1, . . . , km, and for each node i in this set we set Zik = m−1/21(k ∈ {k1, . . . , km}). Let
π1 = π2 = π3 = π(1), π12 = π13 = π23 = π(2), π123 = π(3) and set (π(1), π(2), π(3)) =

(0.3, 0.03, 0.01). Finally, we choose αn so that the expected average node degree d̄ is either
20 or 40. We vary the constant factor Cτ in (3.4.1) in the range {2−12, 2−10, . . . , 210, 212}.
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To use exNVI, we convert both the estimated Ẑ and Z to a binary overlapping community
assignment by thresholding its elements at 1/K. The results, shown in Figure 3.1, indicate
that the performance of OCCAM is stable over a wide range of the constant factor (2−12 −
25), and degrades only for very large values of Cτ . Based on this empirical evidence, we
recommend setting

τn = 0.1
α̂0.2
n K1.5

n0.3
. (3.5.4)

(a) ρ = 0.1, n = 500 (b) ρ = 0.1, n = 2000

(c) ρ = 0.25, n = 500 (d) ρ = 0.25, n = 2000

Figure 3.1: Performance of OCCAM measured by exNVI as a function of Cτ .

3.5.2 Comparison to benchmark methods

To compare OCCAM to other methods for overlapping community detection, we fix n =

500 and use the same settings forK, Z, θi’s and αn as in Section 3.5.1. We setBkk′ = ρ for
k 6= k′, with ρ = 0, 0.05, 0.10, . . . , 0.5, and set (π(1), π(2), π(3)) to be either (0.3, 0.03, 0.01)

or (0.25, 0.07, 0.04). The regularization parameter τn is set to the recommended value
(3.5.4), and detection performance is measured by exNVI.
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We compare OCCAM to both algorithmic methods and model-based methods that can
be thought of as special cases of our model. Algorithmic methods we compare include
the order statistics local optimization method (OSLOM) by Lancichinetti et al. (2011),
the community overlap propagation algorithm (COPRA) by Gregory (2010), the nonneg-
ative matrix factorization (NMF) on A computed via the algorithm of Gillis and Vavasis
(2014), and the Bayesian nonnegative matrix factorization (BNMF) (Psorakis et al., 2011).
Model-based methods we compare are two special cases of our model, the BKN over-
lapping community model (Ball et al., 2011) and the overlapping stochastic blockmodel
(OSBM) (Latouche et al., 2009). For methods that produce continuous community mem-
bership values, thresholding was applied for the purpose of comparisons. For OCCAM and
BNMF, where the membership vector is constrained to have norm 1, we use the threshold
of 1/K; for NMF, where there are no such constraints to guide the choice of threshold, we
simply use a small positive number 10−3; and for BKN, we follow the scheme suggested
by the authors and assign node i to community k if the estimated number of edges between
i and nodes in community k is greater than 1. For each parameter configuration, we repeat
the experiment 200 times. Results are shown in Figure 3.2.

As one might expect, all methods degrade as (1) the between-community edge proba-
bility approaches the within-community edge probability (i.e., ρ increases); (2) the overlap
between communities increases; and (3) the average node degree decreases. In all cases,
OCCAM performs best, but we should also keep in mind that the networks were generated
from the OCCAM model. BKN and BNMF perform well when ρ is small but degrade
much faster than OCCAM as ρ increases, possibly because they require shared community
memberships for nodes to be able to connect, thus eliminating connections between pure
nodes from different communities; NMF requires this too. OSLOM detects communities
by locally modifying initial estimates, and when ρ increases beyond a certain threshold,
the connections between pure nodes blur the “boundaries” between communities and lead
OSLOM to assign all nodes to all communities. COPRA, a local voting algorithm, is
highly sensitive to ρ for the same reasons as OSLOM, and additionally suffers from nu-
merical instability that sometimes prevents convergence. OSBM performs well under the
homogeneous node degree setting (when all θi = 1), where OSBM correctly specifies the
data generating mechanism, but its performance degrades quickly in the presence of hubs.
Overall, in this set of simulations OCCAM has a clear advantage over its less flexible com-
petitors.
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(a) A, d = 20, with hub nodes (b) A, d = 40, with hub nodes

(c) B, d = 20, with hub nodes (d) B, d = 40, with hub nodes

(e) A, d = 20, no hub nodes (f) A, d = 40, no hub nodes

(g) B, d = 20, no hub nodes (h) B, d = 40, no hub nodes
Figure 3.2: A: (π(1), π(2), π(3)) = (0.3, 0.03, 0.03); B:(π(1), π(2), π(3)) = (0.25, 0.07, 0.04)
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3.6 Application to SNAP ego-networks

The ego network datasets (Leskovec and Mcauley, 2012) contain more than 1000 ego-
networks from Facebook, Twitter and GooglePlus. In an ego network, all the nodes are
friends of one central user, and the friendship groups or circles (depending on the platform)
set by this user can be used as ground truth communities. This dataset was introduced by
Leskovec and Mcauley (2012), who also proposed an algorithm for overlapping commu-
nity detection, which we will refer to as ML. We did not include this method in simulation
studies because it uses additional node features which all other algorithms under compar-
ison do not; however, we include it in comparisons in this section. Before comparing the
methods, we carried out some pre-processing to make sure the test cases do in fact have a
substantial community structure. First, we “cleaned” each network by (1) dropping nodes
that are not assigned to any community; (2) dropping isolated nodes; (3) dropping commu-
nities whose pure nodes are less than 10% of the network size. Note that step (3) is done
iteratively, i.e., after dropping the smallest community that does not meet this criterion, we
inspect all remaining communities again and continue until either all communities meet the
criterion or only one community remains. After this process is complete, we select cleaned
networks that (a) contain at least 30 nodes; (b) have at least 2 communities; and (c) have
Newman-Girvan modularities (Newman and Girvan, 2004a) on the true communities of
no less than 0.05, indicating some assortative community structure is present. These three
rules eliminated 19, 45 and 28 networks respectively of the 132 GooglePlus networks, 455,
236 and 99 networks respectively out of 973 Twitter networks, and (b) eliminated 3 out of
10 Facebook networks. The remaining 40 GooglePlus networks, 183 Twitter networks, and
7 Facebook networks were used in all comparisons, using exNVI to measure performance.

To get a better sense of what the different social networks look like and how different
characteristics potentially affect performance, we report the following summary statistics
for each network: (1) density

∑
ij Aij/(n(n − 1)), i.e., the overall edge probability; (2)

average node degree d; (3) the coefficient of variation of node degrees (the standard de-
viation divided by the mean) σd/d, which measures the amount of heterogeneity in the
node degrees; (4) the proportion of overlapping nodes ro; (5) Newman-Girvan modularity.
Even though modularity was defined for non-overlapping communities, it still reflects the
strength of the community structure in the networks in this dataset, which only have a mod-
est amount of overlaps. We report the means and standard deviations of these measures for
each of the social networks in Table 3.1. Note that Facebook and Gplus networks tend to
be larger than Twitter networks, while Twitter networks tend to be denser, with more ho-
mogeneous degrees as reflected by σd/d, though their smaller size makes these measures
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less reliable.
To compare methods, we report the average performance over each of the social plat-

forms and the corresponding standard deviation in Table 3.2. We also report the mean
pairwise difference between OCCAM and each of the other methods, along with its stan-
dard deviation in Table 3.3.

Table 3.1: Mean (SD) of summary statistics for ego-networks

#Networks n K Density d σd/d ro Modularity
Facebook 7 224 3.3 0.137 28 0.644 0.030 0.418

- (221) (0.8) (0.046) (29) (0.145) (0.021) (0.148)
Gplus 40 414 2.3 0.170 53 1.035 0.057 0.171

- (330) (0.5) (0.109) (34) (0.471) (0.077) (0.109)
Twitter 183 62 2.8 0.264 15 0.595 0.036 0.204

- (31) (0.9) (0.264) (8) (0.148) (0.055) (0.119)

Table 3.2: Mean (SD) of exNVI for all methods.

OCCAM OSLOM COPRA NMF BNMF BKN OSBM ML
Facebook 0.576 0.212 0.394 0.314 0.500 0.474 0.473 0.133

(0.116) (0.068) (0.115) (0.079) (0.094) (0.107) (0.114) (0.033)
Gplus 0.503 0.126 0.114 0.293 0.393 0.357 0.333 0.175

(0.038) (0.017) (0.036) (0.036) (0.046) (0.030) (0.039) (0.023)
Twitter 0.451 0.208 0.232 0.212 0.437 0.346 0.348 0.200

(0.021) (0.012) (0.023) (0.013) (0.021) (0.017) (0.017) (0.010)

Table 3.3: Mean (SD) of pairwise differences in exNVI between OCCAM and other meth-
ods.

vs OSLOM vs COPRA vs NMF vs BNMF vs BKN vs OSBM vs ML
Facebook 0.363 0.182 0.261 0.075 0.101 0.102 0.443

(0.093) (0.082) (0.071) (0.072) (0.053) (0.032) (0.134)
Gplus 0.377 0.389 0.210 0.110 0.146 0.171 0.328

(0.037) (0.037) (0.040) (0.038) (0.020) (0.028) (0.042)
Twitter 0.243 0.219 0.239 0.014 0.105 0.103 0.251

(0.020) (0.019) (0.016) (0.012) (0.012) (0.011) (0.024)

As in simulation studies, we observe that OCCAM outperforms other methods. Gplus
networks on average have the most heterogeneous node degrees and thus are challenging
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for COPRA and OSBM, while OCCAM is relatively robust to node degree heterogeneity.
Further, Gplus networks tend to have higher proportions of overlapping nodes than Face-
book networks; this creates difficulties for all methods. Empirically, we also found that
OSLOM and COPRA are prone to convergence to degenerate community assignments, as-
signing all nodes to one community. NMF, BNMF and BKN often create substantial over-
laps compared to other methods, likely because they do not allow connections between pure
nodes from different communities. The results suggest that OCCAM works well when the
overlap is not large even when modularity is relatively low, while other methods are more
sensitive to modularity, which measures the strength of an assortative community struc-
ture. On the other hand, large overlaps between communities cause the performance of
OCCAM to deteriorate, which is consistent with our theoretical results. ML is not readily
comparable to others since it uses both network information and node features when fitting
the model, and one would expect it do to better since it makes use of more information;
however, using node features that are uncorrelated with the community structure can in
fact worsen community detection, which may explain its poor performance on some of the
networks.

A fair comparison of computing times is difficult because the methods compared here
are implemented in different languages. Qualitatively, we can say that the most expensive
part of OCCAM is theK-medians clustering, which involves gradient descent, and is about
one order of magnitude slower than NMF. The computational cost of OCCAM is compara-
ble to that of BNMF, BKN and COPRA, and is at least two orders of magnitude less than
that of OSLOM, OSBM and ML.

3.7 Discussion

This chapter makes two major contributions, the model and the algorithm. The model we
proposed for overlapping communities, OCCAM, is identifiable, interpretable, and flexible;
it addresses limitations of several earlier approaches by allowing continuous community
membership, allowing for pure nodes from different communities to be connected, and
accommodating heterogeneous node degrees. Our goals in designing an algorithm to fit
the model were scalability and of course accuracy, and therefore we made a number of
modifications to spectral clustering to deal with the overlaps, most importantly replacing
K-means with K-medians. Empirically we found the algorithm is a lot faster than most
of its competitors, and it performs well on both synthetic and real networks. We also
showed estimation consistency under conditions that articulate the appropriate setting for
our method – the overlaps are not too large and the network is not too sparse (the latter
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being a general condition for all community detection consistency, and the former specific
to our method).

In addition to its many advantages, our method has a number of limitations. The upper
bound on the amount of overlap is a restriction, expressed by implicit condition B, which
may not be easy to verify except in special cases. It is clear, however, that some limit
on the amount of overlap is necessary for any model to be identifiable. Like all other
spectral clustering based methods, OCCAM works best when communities have roughly
similar sizes; this is implied by condition B which implicitly excludes communities of size
o(n/K) as n and K grow. Further, our model only applies to assortative communities, in
other words, requires the matrix of probabilities B to be positive definite. This constraint
seems to be unavoidable if the model is to be identifiable.

Like the vast majority of existing community detection methods, we assume that the
number of communities K is given as input to the algorithm. There has been some very
recent work on choosing K by hypothesis testing (Bickel and Sarkar, 2015) or a BIC-type
criterion (Saldana et al., 2014) for the non-overlapping case; testing these methods and
adapting them to the overlapping case is a topic for future work which is outside the scope
of this manuscript but is an interesting topic. Another interesting and difficult challenge is
detecting communities in the presence of “outliers” that do not belong to any community,
considered by Zhao et al. (2011) and Cai and Li (2015). Our algorithm may be able to
do this with additional regularization. Finally, incorporating node features when they are
available into overlapping community detection is another challenging task for future, since
the features may introduce both additional useful information and additional noise.
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CHAPTER 4

Estimating network edge probabilities by
neighborhood smoothing

4.1 Introduction

Statistical network analysis spans a wide range of disciplines (network science, statistics,
physics, computer science, sociology, and others) and an equally wide range of applications
and analysis tasks (community detection, link prediction, etc). In this chapter, we study
the problem of inferring the generative mechanism of an undirected network based on a
single realization of the network. The data consist of the network adjacency matrix A ∈
{0, 1}n×n, where n is the number of nodes, and Aij = Aji = 1 if there is an edge between
nodes i and j. We assume the observed adjacency matrixA is generated from an underlying
probability matrix P , so that for i ≤ j,Aij’s are independent Bernoulli(Pij) trials, and Pij’s
are edge probabilities

It is obviously impossible to estimate P from a single realization of A unless one as-
sumes some form of structure in P . When the network is expected to have communities, ar-
guably the most popular assumption is that of the stochastic block model, where each node
belongs to one ofK blocks and the probability of an edge between two nodes is determined
by the blocks the nodes belong to. In this case, the n × n matrix P is parametrized by the
K×K matrix of within- and between-block edge probabilities, and thus it is possible to es-
timate P from a single realization. The main challenge in fitting the stochastic block model
is estimating the blocks themselves, and that has been the focus of the literature, see for ex-
ample Bickel and Chen (2009); Rohe et al. (2011); Amini et al. (2013); Saade et al. (2014)
and a technical report by Guédon and Vershynin (arXiv:1411.4686) . Once the blocks are
estimated, P can be estimated efficiently by a plug-in moment estimator. Many extensions
and alternatives to the stochastic block model have been proposed to model networks with
communities, see Hoff (2008); Airoldi et al. (2008); Karrer and Newman (2011); Cai and
Li (2015) and a technical report by Zhang et al (arXiv:1412.3432) , but their properties are
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generally only known under the correctly specified model with communities, and here we
are interested in estimating P for more general networks.

A general representation for the matrix P for unlabeled networks, where any permu-
tation of nodes defines the same network goes back to Aldous (1981) and Hoover (1979).
Formally, a network is exchangeable, that is, for any permutation π of the set {1, . . . , n},
the distribution of edges is invariant under permutations of node labels. That is, if the adja-
cency matrix A = [Aij] is drawn from the probability matrix P as described above (which
we write as A ∼ P ), then for any permutation π,

[
Aπ(i)π(j)

]
∼ P . (4.1.1)

Aldous and Hoover showed that an exchangeable network always admits the following
representation:

Definition 4 (Aldous-Hoover representation). For any network satisfying (4.1.1), there

exists a function f : [0, 1] × [0, 1] → [0, 1] and a set of i.i.d. random variables ξi ∼
Uniform [0, 1], such that

Pij = f(ξi, ξj) . (4.1.2)

Following the literature, we call f the graphon function. Unfortunately, f in this
representation is neither unique nor identifiable, see a technical report by Diaconis and
Janson (arXiv:0712.2749), since for any measure-preserving one-to-one transformation
σ : [0, 1] → [0, 1], both f(σ(·), σ(·)) and f(·, ·) yield the same distribution of A. An
identifiable and unique canonical representation can be defined if one requires g(u) =∫ 1

0
f(u, v)dv to be non-decreasing (Bickel and Chen, 2009), and it was shown that f and

ξi’s are jointly identifiable when g(u), which can be interpreted as expected node degree,
is strictly monotone , see Chan and Airoldi (arXiv:1402.1888) . This assumption is strong
and excludes the stochastic block model.

In practice, the main purpose of estimating the function f is to estimate P , and thus
identifiability of f or lack thereof may not matter as long as P itself can be estimated. On
the other hand, in practice people care more about P than f . It is shown that the measure-
preserving map σ is the only source of non-identifiability (Hoover (1979) and Diaconis and
Janson (arXiv:0712.2749)) . A technical report by Wolfe and Ohlede (arXiv:1309.5936)
and Choi and Wolfe (2014) proposed estimating f up to measure-preserving transformation
σ via step-function approximations based on fitting the stochastic block model with a larger
number of blocks K. This approximation does not assume the network itself follows the
block model, and some theoretical guarantees have been obtained under more general mod-
els. In related work, Olhede and Wolfe (2014) proposed to approximate the graphon with
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“network histograms”, that is, stochastic block models with many blocks of equal size,
akin to histogram bins. Another method to compute a network histogram was proposed
in a technical report by Amini and Levina (arXiv:1406.5647) , as an application of their
semi-definite programming approach to fitting block models with equal size blocks. Quite
recently, Gao et al. (2014) established the minimax error rate for estimating P and proposed
a least squares type estimator to achieve this rate, which obtains the estimated probability
P by averaging the adjacency matrix elements within a given block partition. A similar
estimator was proposed in a technical report by Choi (arXiv:1507.06352) , applicable also
to non-smooth graphons. However, these methods are in principle computationally infea-
sible since they require an exhaustive enumeration of all possible block partitions. Also
Newman and Peixoto (2015) proposed to estimate the latent node positions using an EM
method. Despite the lack of identifiabiliaty, we conjecture that such a method may pro-
duce a good stochastic blockmodel approximations under proper conditions. A technical
report by Cai et al (arXiv:1412.2129) proposed an iterative algorithm to fit a stochastic
blockmodel and approximate the graphon, but the error rate of this method is unknown for
general graphons. A Bayesian approach using block priors proposed in a technical report
by Gao et al (arXiv:1506.02174) achieves the minimax error rate adaptively, but it still
requires evaluating the posterior likelihood over all possible block partitions to obtain the
posterior mode or the expectation for the probability matrix.

Other recent efforts on graphon estimation focus on the case of monotone node degrees,
which make the graphon identifiable. The sort and smooth methods as in a technical report
by Chan and Airoldi (arXiv:1402.1888) and Yang et al. (2014) estimate the graphon under
this assumption by first sorting nodes by their degrees and then smoothing the matrix A
locally to estimate edge probabilities. The monotone degree assumption is crucial for the
success of these methods, and as we later show in this chapter the sort and smooth methods
perform poorly when it does not hold. Finally, general matrix denoising methods can be
applied to this problem if one considersA to be a noisy version of its expectation P ; a good
general representative of this class of methods is the universal singular value thresholding
approach of Chatterjee (2014). Since this is a general method, we cannot expect its error
rate to be especially competitive for this specific problem, and indeed its mean squared
error rate is slower than the cubic root of the minimax rate.

In this thesis, we propose a novel computationally efficient method for probability ma-
trix estimation based on neighborhood smoothing, for piecewise Lipschitz graphon func-
tions. The key to this method is adaptive neighborhood selection, which allows us to avoid
making strong assumptions such as monotone node degrees. A node’s neighborhood con-
sists of nodes with similar rows in the adjacency matrix, which intuitively correspond to
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nodes with similar values of the latent node positions ξi.To the best of our knowledge, our
estimator achieves the best error rate among existing computationally feasible methods.
Computationally, the estimator allows easy parallelization. The size of the neighborhood
is controlled by a tuning parameter, similar to bandwidth in nonparametric regression; the
rate of this bandwidth parameter is determined from theory, and we show empirically the
method is robust to the choice of the constant. Experiments on synthetic networks demon-
strate our method performs very well under a wide range of graphon models, including
low rank and full rank, with monotone degrees and without, and so on . We also test the
performance of our method on the link prediction problem, using both synthetic and real
networks.

4.2 The neighborhood smoothing estimator and its error
rate

4.2.1 Neighborhood smoothing for edge probability estimation

Our goal is to estimate the probabilities Pij from the observed network adjacency matrix
A, where Aij is drawn from Bernoulli(Pij) and all Aij’s are independent. While Pij =

f(ξi, ξj), where ξi’s are latent, our goal is to estimate P for the single realization of ξi’s
that gave rise to the data, rather than the function f . We think of f as a fixed unknown
smooth function on [0, 1]2, with formal smoothness assumptions to be stated later on. Let
eij = eij(Pij) denote the Bernoulli error and omit its dependence on P . We can then write

Aij = Pij + eij = f(ξi, ξj) + eij. (4.2.1)

Formulation (4.2.1) resembles a nonparametric regression problem, but with the impor-
tant difference that ξi’s are not observed. This has important consequences, for exam-
ple, assuming further smoothness in f beyond order one does not improve the minimax
error rate when estimating P (Gao et al., 2014). The idea of our method is to apply
neighborhood smoothing, which would be a natural approach had the latent variables ξi’s
been observed. Intuitively, if we had a set Ni of neighbors of a node i, in the sense that
Ni = {i′ : Pi′· ≈ Pi·}, where Pi· represents the i-th row of P , then we could estimate Pi·
by averaging Ai′· over i′ ∈ Ni. Postponing the question of how to select Ni until Section
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4.2.2, we can define a general form of the neighborhood smoothing estimator by

P̂ij =
1

2

(∑
i′∈Ni Ai′j

|Ni|
+

∑
j′∈Nj Aij′

|Nj|

)
. (4.2.2)

It is immediately evident that P̂ is symmetric if A is symmetric, although it can be ap-
plied to either directed or undirected networks. For simplicity, in this chapter we focus on
undirected networks. A natural alternative is to average over Ni × Nj , but (4.2.2) allows
vectorization and is thus more computationally efficient. Our estimator can also be viewed
as a relaxation of step function approximations such as Olhede and Wolfe (2014). In step
function approximations, the neighborhood for each node is the nodes from its block, so
the neighborhoods for two nodes from the same block are very similar, and the blocks
have to be estimated first; in contrast, neighborhood smoothing provides for more flexi-
ble neighborhoods that are different from node to node, and an efficient way to select the
neighborhood, which we will discuss next.

4.2.2 Neighborhood selection

Selecting the neighborhoodNi in (4.2.2) is at the core of our method. Since we estimate Pi·
by averaging over Ai′· for i′ ∈ Ni, good neighborhood candidates i′ should have f(ξi′ , ·)
close to f(ξi, ·), which implies Pi′· close to Pi·. We use the `2 distance between graphon
slices to quantify this, defining

d(i, i′) = ‖f(ξi, ·)− f(ξi′ , ·)‖2 =

{∫ 1

0

|f(ξi, v)− f(ξi′ , v)|2 dv
}1/2

(4.2.3)

While one may consider more general `p or other distances, the `2 distance is particularly
easy to work with when it comes to theory. For the purpose of neighborhood selection,
it is not necessary to estimate d(i, i′); it suffices to provide a tractable upper bound. For
integrable functions g1 and g2 defined on [0, 1], define 〈g1, g2〉 =

∫ 1

0
g1(u)g2(u)du. Then

we can write

d2(i, i′) = 〈f(ξi, ·), f(ξi, ·)〉+ 〈f(ξi′ , ·), f(ξi′ , ·)〉 − 2〈f(ξi, ·), f(ξi′ , ·)〉. (4.2.4)

The third term in (4.2.4) can be estimated by 2〈Ai·, Ai′·〉/n, where Ai· and Ai′· are nearly
independent (up to a single duplicated entry due to symmetry). The first two terms in (4.2.4)
are more difficult since 〈Ai·, Ai·〉/n is not a good estimator for 〈f(ξi, ·), f(ξi, ·)〉. Here we
present the intuition and provide a full theoretical justification in Theorem 6. For simplicity,
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assume for now f is Lipschitz with a Lipschitz constant of 1. The idea is to use nodes with
graphon slices similar to i and i′ to make the terms in the inner product distinct graphon
slices. With high probability, for each i, we can find ĩ 6= i such that |ξĩ − ξi| ≤ en, where
en = o(1) is the error rate to be specified later. Then we have ‖f(ξi, ·) − f(ξĩ, ·)‖2 ≤ en,
and we can approximate 〈f(ξi, ·), f(ξi, ·)〉 by 〈f(ξi, ·), f(ξĩ, ·)〉, where the latter can now
be estimated by 〈Ai·, Aĩ·〉/n. The same technique can be used to approximate the second
term in (4.2.4), but all these approximations depend on the unknown ξ’s. To deal with this,
we rearrange the terms in (4.2.4) as follows:

d2(i, i′) = 〈f(ξi, ·)− f(ξi′ , ·), f(ξi, ·)〉 − 〈f(ξi, ·)− f(ξi′ , ·), f(ξi′ , ·)〉

≤ |〈f(ξi, ·)− f(ξi′ , ·), f(ξĩ, ·)〉|+ |〈f(ξi, ·)− f(ξi′ , ·), f(ξĩ′ , ·)〉|+ 2en

≤ 2 max
k 6=i,i′

|〈f(ξi, ·)− f(ξi′ , ·), f(ξk, ·)〉|+ 2en (4.2.5)

The inner product on the right side of (4.2.5) can be estimated by

d̃2(i, i′) = max
k 6=i,i′

|〈Ai· − Ai′·, Ak·〉|
/
n . (4.2.6)

Intuitively, the neighborhood Ni should consist of i′s with small d̃(i, i′). To formalize this,
let qi(h) denote the h-th sample quantile of the set

{
d̃(i, i′) : i′ 6= i

}
, where h is a tuning

parameter, and set
Ni =

{
i′ 6= i : d̃(i, i′) ≤ qi(h)

}
(4.2.7)

where for notational simplicity we suppress the dependence of Ni on h. Thresholding
at a quantile rather than at some absolute value is convenient since real networks vary in
their average node degrees and other parameters, which leads to very different values and
distributions of d̃. Empirically, thresholding at a quantile shows significant advantage in
stability and performance compared to an absolute threshold. The choice of h will be
guided by both theory in Section 4.2.3 , which suggests the order of h, and empirical
performance which suggests the constant factor. See Appendix for more details.

An important feature of this definition is that the neighborhood admits nodes with sim-
ilar graphon slices, but not necessarily similar ξ’s. For example, in the stochastic block
model, all nodes from the same block would be equally likely to be included in each other’s
neighborhoods, regardless of their ξ’s. Even though we use ξi and ξi′ to motivate (4.2.5),
we always work with the function values f(ξi, ξj)’s and never attempt to estimate the ξi or
f by themselves. This sharply contrasts with the approaches of Chan and Airoldi 2014
(arXiv:1402.1888) and Yang et al. (2014), and gives us a substantial computational advan-
tage as well as much more flexibility in assumptions.
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4.2.3 Consistency of the neighborhood smoothing estimator

We study the theoretical properties of our estimator for a family of piecewise Lipschitz
graphon functions, defined as follows.

Definition 5 (Piecewise Lipschitz graphon family). For any δ, L > 0, let Fδ;L denote

a family of piecewise Lipschitz graphon functions f : [0, 1]2 → [0, 1] such that: (i)

there exists an integer K ≥ 1 and a sequence 0 = x0 < . . . < xK = 1 satisfy-

ing min0≤s≤K−1(xs+1 − xs) ≥ δ, and (ii) both |f(u1, v)− f(u2, v)| ≤ L|u1 − u2| and

|f(u, v1)− f(u, v2)| ≤ L|v1 − v2| hold for all u, u1, u2 ∈ [xs, xs+1], v, v1, v2 ∈ [xt, xt+1]

and 0 ≤ s, t ≤ K − 1.

Then we have the following error rate bound.

Theorem 6. Assume that L is a global constant and δ = δ(n) depends on n, satisfying

limn→∞ δ/
(

logn
n

)1/2 →∞. Then the estimator P̂ defined in (4.2.2), with neighborhoodNi
defined in (4.2.7) and h = C

(
logn
n

)1/2
for any global constant C ∈ (0, 1], satisfies

max
f∈Fδ;L

pr

{
1

n2
‖P̂ − P‖2

F ≥ C1

(
log n

n

)1/2
}
≤ n−C2 (4.2.8)

where C1 and C2 are global constants.

To the best of our knowledge, this is the best error rate available to date among non-
combinatorial cost graphon estimation methods. The minimax error rate log n/n estab-
lished by Gao et al. (2014) has (so far) only been achieved by methods that require com-
binatorial optimizations or evaluations, including Gao et al. (2014), Klopp et al. (2015)
and a technical report by Klopp et al (arXiv:1507.04118) . The rate (log n/n)1/2 was
also previously only achieved by combinatorial methods, including Wolfe and Ohlede
(arXiv:1309.5936) and Olhede and Wolfe (2014). Among computationally efficient meth-
ods, the best error rate we are aware of is achieved by singular value thresholding pro-
posed in Chatterjee (2014) at n−1/3 (Theorem 2.7). Additionally, the sort-and-smooth
method proposed by Chan and Airoldi 2014 (arXiv:1402.1888) achieves the minimax
error rate under the strong assumption that f has strictly monotone expected node degrees
df (v) =

∫ 1

0
f(u, v)du,

45



4.3 Probability matrix estimation on synthetic networks

4.3.1 Comparison with benchmarks

In this section we evaluate the performance of our estimator on two tasks, estimating the
probability matrix and link prediction, using synthetic networks. We generate the networks
from the four graphons listed in Table 4.1, selected to have different features in different
combinations (monotone degrees or not, low rank or not, etc). These graphons (represented
by the corresponding probability matrix P ) are also pictured in the first panels of Figures
4.1 – 4.4. For all networks, we use n = 2000 nodes to generate P from the function f .

Table 4.1: Synthetic graphons

Graphon Function f(u, v) Monotone degrees Rank Local structure
1 k/(K + 1) if u, v ∈ ((k − 1)/K, k/K), Yes blog nc No

0.3/(K + 1) otherwise; K = blog nc
2 sin (5π(u+ v − 1) + 1) /2 + 0.5 No 3 No

3 1−
[
1 + exp

{
15
(
0.8|u− v|

)4/5 − 0.1
}]−1

No Full No

4 (u2 + v2) /3 cos (1/ (u2 + v2)) + 0.15 No Full Yes

In this experiment, we compare the performance of a number of popular benchmarks
for estimating P . From the general matrix denoising methods, we selected the widely
used method of universal singular value thresholding (Chatterjee, 2014) to include in the
comparison. We also compare to the sort and smooth methods of Chan and Airoldi 2014
(arXiv:1402.1888) and Yang et al. (2014). These two methods are similar, with the differ-
ence that the latter method employs singular value thresholding to denoise the network as
a pre-processing step. We also include two step function approximations based on fitting
a stochastic block model. One is the oracle stochastic blockmodel, where the blocks are
formed based on the actual values of the latent ξi’s. This is obviously not a method that
can be implemented in practice, but we use it as the gold standard of what can be achieved
with an stochastic blockmodel-based step function approximation. The practical version
of this we compare to is step function approximation based on a stochastic blockmodel fit
by regularized spectral clustering (Qin and Rohe, 2013). Any other algorithm for fitting
the stochastic blockmodel can be used to estimate the blocks; for example, Olhede and
Wolfe (2014) used a local updating algorithm initialized with spectral clustering to com-
pute their network histograms. Here we chose regularized spectral clustering because of
its speed and good empirical performance. For both stochastic blockmodel-based approx-
imations, we set the number of blocks to n1/2, as proposed by Olhede and Wolfe (2014).
A recent independent method proposed in a technical report by Airoldi in 2015, which
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we shall cite as “Airoldi (2015)”, proposes a stochastic blockmodel approximation, which
is an evolution of the method in Airoldi et al. (2013) in that it works with a single adja-
cency matrix as input. It defined a dissimilarity measure between each node pair (i, i′) as∑

k 6=i,i′ |〈Ai· − Ak·, Ak·〉|, which coincides that in an earlier version of our work. Then it
builds blocks in a collective fashion by starting with one not-yet-clustered node and admit-
ting all nodes whose dissimilarity measures with the node is below a threshold ∆. Under
this approach, nodes from the same block can be viewed as neighbors to each other, and
the dissimilarity measure that our method uses (4.2.6) leads to a better guaranteed error
rate than that in Airoldi (2015). The strategy of thresholding by quantile of our method is
also advantageous in efficiency and stability, whereas choosing a proper threshold ∆ can
be challenging in practice.
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Figure 4.1: Estimated probability matrices for Graphon 1.

Figure 4.1 shows the results for Graphon 1. The network contains blog nc = 7 blocks
with different within-block edge probabilities, which all dominate the low between-block
probability. The best results are obtained by our method and the two stochastic blockmodel
methods (one of which is the oracle), which is expected given that the data are in fact gen-
erated from a stochastic block model. The two sort-and-smooth methods correctly estimate
the main blocks because the blocks have different expected degrees, but they suffer from
boundary effects due to smoothing over the entire region. In contrast, our method, which
determines smoothing neighborhoods based on similarities of graphon slices, does not suf-
fer from such boundary effects at all. Chatterjee (2014) does a good job on blocks with
larger expected degrees, but thresholds away sparser blocks; this defect is inherited by the
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method of Yang et al. (2014), which relies on Chatterjee (2014) as pre-processing. Airoldi
(2015) performs similarly to our method but with a slightly lower resolution at sparser
blocks, perhaps due to the dissimilarity measure it uses.
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Figure 4.2: Estimated probability matrices for Graphon 2.

Figure 4.2 shows the estimation results for Graphon 2. This graphon lacks node degree
monotonicity, and thus sort-and-smooth methods do not work here at all. Spectral cluster-
ing also performs poorly since the n1/2 eigenvectors it uses turn out to be too noisy. Airoldi
(2015) and stochastic blockmodel oracle method gives a grainy but reasonable approxima-
tion to P , and the best results are obtained by our method and by Chatterjee (2014), which
is expected to work well here since this is a low rank matrix.

Figure 4.3 shows the estimation results for Graphon 3. Here the probabilities drop off
sharply away from the diagonal, and our method captures the main structures but suffers
some boundary effects due to smoothing. Nonetheless, it still provides the best approxima-
tion, apart from the oracle. Chatterjee (2014) does not perform well because this is not a
low rank matrix; spectral clustering, on the other hand, does fine, because there are many
non-zero eigenvalues and the n1/2 eigenvectors used in spectral clustering contain mean-
ingful information. Airoldi (2015) roughly recovers the region of high values but misses
its smooth boundaries. The sort and smooth methods fail since all node expected degrees
are almost the same and the sorting produces nothing but noise.

Finally, graphon 4 shown in Figure 4.4 is difficult to estimate for all methods. The
graphon is full rank but with eigenvalues at different scales, and the adjacency matrix tends
to have a spectrum very different from the probability matrix. Therefore, this is a very
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Figure 4.3: Estimated probability matrices for Graphon 3.
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Figure 4.4: Estimated probability matrices for Graphon 4.

difficult setting for singular value thresholding and spectral clustering. The degrees are
monotone for nodes with ξ ∈ [0.5, 1] but not for ξ ∈ [0, 0.5], so this graphon is also
difficult for the sort and smooth methods, which completely miss the structure in the top
left corner of the matrix. Our method successfully picks up the global structure, including
non-monotone degrees, though it misses the local variations in the top left corner, as do
all other methods except for the oracle approximation. This illustrates a limitation of our
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method resulting from selecting neighbors based on global similarity of graphon slices,
which may miss their local differences.

Table 4.2 shows the mean squared errors of all methods on the four graphons. Our
method is among the top two performs with all graphons, even taking the stochastic block-
model oracle method into account.

Table 4.2: Mean squared errors (×10−3)
30 experiments, top two performers are bolded

Graphon 1 Graphon 2 Graphon 3 Graphon 4
Our method 0.229(0.002) 0.709(0.003) 1.075(0.008) 1.004(0.008)

Chan & Airoldi (2014) 7.693(0.112) 116.388(0.281) 8.858(0.009) 1.992(0.007)
Yang et al (2014) 9.019(0.153) 116.407(0.406) 9.146(0.009) 3.218(0.003)

stochastic blockmodel spectral 0.276(0.014) 110.49(0.621) 1.238(0.018) 7.811(0.111)
stochastic blockmodel oracle 3.009(0.000) 2.617(0.001) 0.210(0.001) 0.111(0.002)

Chatterjee (2014) 1.677(0.001) 0.353(0.003) 6.351(0.004) 3.211(0.002)
Airoldi (2015) 0.320(0.048) 9.148(0.26) 3.124(0.779) 4.313(0.234)

Overall, the results in this section show that various previously proposed methods can
perform very well when their assumptions hold (which may be monotone degrees or low
rank or an underlying block model), but they fail when these assumptions are not satisfied.
Our method is the only one among those compared that can perform well in a large range
of scenarios, because it learns the structure from data via neighborhood selection instead
of imposing a priori structural assumptions.

4.4 Application to link prediction

Evaluating the performance of probability matrix estimation methods on real networks di-
rectly is difficult, since the true probability matrix is unknown. To assess the practical utility
of our method, we apply it to the link prediction problem, a practical task that relies on es-
timating the probability matrix. In this context, we think of the true adjacency matrix Atrue

as unobserved, with binary edges drawn independently according to the probability matrix
P , also unobserved. The observed adjacency matrix is defined by Aobs

ij = MijA
true
ij , where

unobserved independent Mij’s ∼ Bernoulli(1− p) indicate whether edges are missing and
p is the unknown missing rate. A link prediction method usually produces a nonnegative
score matrix Â, whose elements represent the estimated propensity of a node pair to form
an edge.

We measure link prediction performance by the receiver operating characteristic (Re-
ceiver operating characteristic) curve defined as follows. For each t > 0, we define the
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false positive rate rFP and the true positive rate rTP by

rFP(t) =
∑
ij

1
[
Âij > t,Atrue

ij = 0,Mij = 0
]/∑

ij

[
Atrue
ij = 0,Mij = 0

]
and

rTP(t) =
∑
ij

1
[
Âij > t,Atrue

ij = 1,Mij = 0
]/∑

ij

1
[
Âij = 1,Mij = 0

]
. Then varying t we obtain the Receiver operating characteristic curve.

In this section we include three additional benchmark methods that produce score ma-
trices rather than estimated probability matrices. One standard benchmark is to use the
Jaccard index 〈Ai·, Aj·〉

/
{(
∑

k Aik)(
∑

k Ajk)} as the score, see for example Lichtenwalter
et al. (2010). The method proposed in a technical report by Zhao et al (arXiv:1301.7047)
solves an optimization problem to obtain Âij which encourages similar node pairs to have
similar predicted scores. The PropFlow algorithm proposed by Lichtenwalter et al. (2010)
uses the probability for a random walk starting at one node to reach another node within a
certain number of steps as the propensity score. We first compare all methods on simulated
networks generated from the graphons in Table 4.1. We set n = 2000 and p = 10%.

Figure 2 in the Appendix shows the Receiver operating characteristic curves for four
graphons. Most differences between the methods compared in Section 4.3.1 can be un-
derstood from Figures 4.1 to 4.4. Overall, the methods based on graphon estimation out-
perform score-based methods. Our method outperforms all other methods on this task,
producing an Receiver operating characteristic curve very close to that based on the true
probability matrix P .
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Figure 4.5: Receiver operating characteristic curve for link prediction on the political blogs
network. 10% of edges are missing at random.
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We also applied our method to the political blogs network (Adamic and Glance, 2005)
and compared it to benchmarks. This network consists of 1222 blogs, manually labeled as
586 liberal blogs and 636 conservative blogs, and the network clearly shows two commu-
nities corresponding to these two groups. It also has quite heterogeneous node degrees ,
that is, some nodes are hubs. We removed 10% of edges at random and then calculated the
Receiver operating characteristic curve for predicting the missing links, shown in Figure
4.5. Again, methods based on estimating the probability matrix performed much better than
the scoring methods, and our method had the best overall performance. Sort and smooth
methods slightly outperformed spectral clustering and Chatterjee (2014), perhaps due to
the presence of hubs.

4.5 Discussion

In this chapter, we proposed a computationally feasible method to estimate the matrix of
edge probabilities from a single network realization under the assumption of a piecewise
Lipschitz graphon, with a competitive mean squared error rate and good empirical perfor-
mance. The main advantage of our method is the adaptive neighborhood choice which
allows for good performance under many different conditions; it is also computationally
efficient, very easy to implement, and essentially tuning free. The main limitation of our
method is in the piecewise Lipschitz condition, which may lead it to miss small-scale local
structures and over-smooth occasionally. Our method does not achieve the minimax error
rate, and whether this rate can be achieved by any polynomial time method is, to the best of
our knowledge, an open problem. Going forward, a major challenge is to relax the unreal-
istic assumption of independent edges and resulting exchangeability, extending the model
to better describe real world networks.
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CHAPTER 5

Future work

I am interested in further exploring the network edge probability estimation problem. Cur-
rently, a gap remains between the best error rate achieved by polynomial time methods
(Zhang et al., 2015b) and the statistical minimax error rate (Gao et al., 2014). The question
whether this gap can be closed remains open, without even a plausible conjecture at this
point. Known results for related topics conflict: for the problem of detecting a small hidden
block of nodes with elevated edge probabilities in a network, a computational barrier exists
that prevents the minimax rate from being achieved by any polynomial time algorithm (Ma
and Wu, 2015; Cai et al., 2015), while for the community detection problem, a rate-optimal
algorithm has been proposed (Gao et al., 2015). These results provide motivation but are
not directly applicable to the edge probability estimation problem.

While my projects so far have focused on static networks, I am becoming interested
in exploring dynamic networks. Many models have been proposed to describe the mech-
anisms for dynamic formation of networks (Durante et al., 2015; Sewell and Chen, 2014;
Perry and Wolfe, 2013), but most of them are context-specific. One fundamental question
is whether a general model, like the Aldous-Hoover representation for static networks, can
be established. I am currently working on extending the Aldous-Hoover representation to
dynamic settings, which is difficult due to more complicated identifiability issues. It is also
of interest to understand the asymptotic properties of parameter estimation in dynamic net-
works. In static networks, many network parameters can be consistently estimated under
appropriate modeling assumptions as the number of nodes grows to infinity (Zhao et al.,
2012); while in dynamic networks, sometimes the network size does not grow, but more
network snapshots can be observed over time (Sarkar et al., 2012). New tools and insights
are needed to explore the interplay between the number of nodes and the number of time
points in parameter estimation. Finally, a number of nonparametric tests and estimation
procedures have been developed for static networks (Bickel and Chen, 2009; Lei, 2014),
but hardly any dynamic analogues exist. In another ongoing project, I am studying the
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problem of testing and estimating the dependence between network edges observed at dif-
ferent time points. Snapshots of the network at different time points are often assumed
independent, but this assumption is unrealistic in practice. So far I have developed a non-
parametric test for dependence between two networks which share the same set of nodes;
in general the problem is more difficult.

In the future, I will continue to focus on developing useful new methods, understanding
their theoretical behaviors, and applying them to realistic and important practical prob-
lems. My goal is to develop methods that are versatile and adaptive in general settings,
with a focus on computational efficiency. I am also interested in developing applied and
interdisciplinary collaborations.
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APPENDIX A

Appendix for “Community detection in networks
with node features”

A.1 Choice of tuning parameters

The JCDC method involves two user-specified tuning parameters, α andwn. In this section,
we investigate the impact of these tuning parameters on community detection results via
numerical experiments.

First we study the impact of α, which determines the algorithm’s preference for larger
or smaller communities. We study its effect on the estimated community size as well as
on the accuracy of estimated community labels. We generate data from a stochastic block
model with n = 120 nodes and K = 2 communities of sizes n1 and n2 = n − n1. We set
the within-community edge probabilities to 0.3 and between-community edge probabilities
to 0.15, and vary n1 from 60 to 110. Since α is not related to feature weights, we set
features to a constant, resulting in unweighted networks. The results are averaged over 50
replications and shown in Figure A.1.

55



1
1

1

1

1 1 1 1 1 1 1

0.6 0.8 1.0 1.2 1.4

0
20

40
60

80
10

0
12

0

α

La
rg

er
 c

om
m

un
ity

 s
iz

e

2
2

2

2

2

2

2 2 2 2 2

3

3

3
3

3
3

3
3

3 3 3

4

4
4

4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6

1

23

4

5

6

1
2
3
4
5
6

n1=110
n1=100
n1=90
n1=80
n1=70
n1=60 1

1 1

1 1 1 1 1 1 1 1

0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

2

2

2

2
2

2
2 2 2 2 2

3

3

3
3

3

3

3

3
3 3

3

4

4

4
4 4 4

4

4
4

4
4

5
5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6

1

2

3

4

56

Size of the larger estimated community Community detection accuracy

Figure A.1: (a) The size of the larger estimated community as a function of the tuning
parameter α. (b) Estimation accuracy measured by NMI as a function of the tuning param-
eter α. Solid lines correspond to JCDC and horizontal dotted lines correspond to spectral
clustering, which does not depend on α.

We report the size of the larger estimated community in Figure A.1(a), and the accuracy
of community detection as measured by normalized mutual information (NMI) in Figure
A.1(b). For comparison, we also record the results from spectral clustering (horizontal
lines in Figure A.1), which do not depend on α. When communities are balanced (n1 =

n2 = 60), JCDC performs well for all values of α, producing balanced communities and
uniformly outperforming spectral clustering in terms of NMI. In general, larger values of
α in JCDC result in more balanced communities, while smaller α’s tend to produce a large
and a small community. In terms of community detection accuracy, Figure A.1(b) shows
that the JCDC method outperforms spectral clustering over a range of values of α, and
this range depends on how unbalanced the communities are. For simplicity and ease of
interpretation, we set α = 1 for all the simulations and data analysis reported in the main
manuscript; however, it can be changed by the user if information about community sizes
is available.

Next, we investigate the impact of wn, which controls the influence of features. To
study the trade-off between the two sources of information (network and features), we
generate two different community partitions. Specifically, we consider two communities of
sizes n1 and n2, with n1 + n2 = n = 120. We generate two label vectors cA and cF , with
cAi = 1 for i = 1, . . . , n1 and cAi = 2 for i = n1 + 1, . . . , n, while the other label vector has
cFi = 1 for i = 1, . . . , n2 and cFi = 2 for i = n2 + 1, . . . , n. Then the edges are generated
from the stochastic block model based on cA, and the node features are generated based on
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cF . We generate two node features: one feature is sampled from the distribution N(µ, 1)

if cFi = 1 and N(0, 1) if cFi = 2; the other feature is sampled from N(0, 1) if cFi = 1

and N(−µ, 1) if cFi = 2. We fix µ = 3 and set α = 1, as discussed above. We set the
within- and between-community edge probabilities to 0.3 and 0.15, respectively, same as
in the previous simulation, and vary the value of wn from 1.1 to 10. Finally, we look at
the the agreement between the estimated communities ê and cA and cF , as measured by
normalized mutual information. The results are shown in Figure A.2.
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Figure A.2: MNI between the estimated community structure ê and the network community
structure cA (solid lines) and the feature community structure cF (dotted lines). Note that
when n1 = n2 = 60, cA = cF , so the solid and dotted lines coincide.

As we expect, smaller values of wn give more influence to features and thus the es-
timated community structure agrees better with cF than with cA. As wn increases, the
estimated ê becomes closer to cA. In the manuscript, we compare two values of wn, 1.5
and 5.

A.2 Proofs

We start with summarizing notation. Let E1, . . . , EK be the estimated communities corre-
sponding to the label vector e, and C1, . . . , CK the true communities corresponding to the
label vector c. Recall we estimate e by maximizing the criterion R over e and β, where

R(e, β;wn) =
K∑
k=1

1

|Ek|α
∑
i,j∈Ek

AijW (φij, βk;wn) ,
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and define
ê = arg max

e

(
max
β

R(e, β;wn)

)
,

where ê and the corresponding β̂ are defined up to a permutation of community labels.
Recall that we assumed A and F are conditionally independent given c and defined R0, the
“population version” of R, as

R0(e, β;wn) =
K∑
k=1

1

|Ek|α
∑
i,j∈Ek

ρnPcicjE[W (φij, βk;wn)] .

The expectation in R0 is taken with respect to the distribution of node features, which
determine the similarities φij .

Lemma 7. Under conditions 1 and 2, if wnρn →∞ and 0 < α ≤ 2, we have

max
e,β

|R(e, β;wn)−R0(e, β;wn)|
wnρnn2−α = Op

(
1

√
wnρn

)
.

Proof of Lemma 11. We first bound the difference between R and R0 for fixed e and β. By
Hoeffding’s inequality and the fact that 2[n/2] ≥ n − 1, where [x] is the integer part of x,
we have

P

{∣∣∣∣∣ 1

|Ek|2
∑
i,j∈Ek

(
AijW (φij, βk;wn)− ρnPcicjE[W (φij, βk;wn)]

)∣∣∣∣∣ > t

}
≤ 2 exp

(
−(|Ek| − 1)t2

)
.

Taking t = wnρnn
2−α|Ek|α−2δ and applying the union bound, we have

P
(
|R(e, β;wn)−R0(e, β;wn)|

wnρnn2−α > Kδ

)
≤

K∑
k=1

P

{∣∣∑
i,j∈Ek

(
AijW (φij, βk;wn)− ρnPcicjE [W (φij, βk;wn)]

) ∣∣
wnρn|Ek|αn2−α ≥ δ

}

≤
K∑
k=1

2 exp
{
−(|Ek| − 1)w2

nρ
2
nn

4−2α|Ek|2α−4δ2
}
≤ 2K exp

{
−(π0n− 1)w2

nρ
2
nδ

2
}
.

Next, we take the uniform bound over β. Consider the set

Bε =

{(
s1ε√
p
, . . . ,

spε√
p

)
, s1, . . . , sp ∈

{
0,±1, . . . ,±

[
Mβ
√
p

ε

]
,±

Mβ
√
p

ε

}}
.

It is straightforward to verify thatBε is an ε-net on [−Mβ,Mβ]p, the space of βk’s. For each
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βk, let β(βk, Bε) be the best approximation to βk in Bε. Then

max
βk
|W (φij, βk;wn)−W (φij, β(βk, Bε);wn)|

≤max
βk

∣∣∣∣∂W∂βk (φij, βk;wn)

∣∣∣∣ |βk − β(βk, Bε)|

≤2MφMβ exp(MφMβ)ε ≤ 2MφMβwnε

Therefore, choosing ε = ρnδ
4MφMβ

, we have

P
(

max
β

|R(e, β;wn)−R0(e, β;wn)|
wnρnn2−α > Kδ

)

≤
K∑
k=1

P

max
βk

∣∣∣∑i,j∈Ek(Aij − ρnPcicj)W (φij, βk;wn)
∣∣∣

wnρn|Ek|αn2−α > δ


≤

K∑
k=1

P
{

max
βk

∑
i,j∈Ek |Aij − ρnPcicj ||W (φij, βk;wn)−W (φij, β(βk, Bε);wn)|

wnρn|Ek|αn2−α >
δ

2

}

+
K∑
k=1

P

max
β0∈Bε

∣∣∣∑i,j∈Ek

(
Aij − ρnPcicj

)
W (φij, β0;wn)

∣∣∣
wnρn|Ek|αn2−α >

δ

2


≤KP

(
|Ek|2−α · 2MφMβε

ρnn2−α ≥ δ

2

)
+ 2K|Bε| exp

{
−(π0n− 1)w2

nρ
2
nδ

2/4
}

≤0 + 2K

(
4MφM

2
β

√
p

ρnδ
+ 3

)p
exp

{
−(π0n− 1)w2

nρ
2
nδ

2/4
}
,

where the first term becomes 0 because of the choice of ε and |Ek| < n. Finally, taking a
union bound over all possible community assignments, we have

P
(

max
e,β

|R(e, β;wn)−R0(e, β;wn)|
wnρnn2−α > Kδ

)
≤2Kn+1

(
4MφM

2
β

√
p

ρnδ
+ 3

)p
exp

{
−(π0n− 1)w2

nρ
2
nδ

2/4
}

≤2K exp
[
−π0nw

2
nρ

2
nδ

2/8 + n logK + p log{C1/(ρnδ)}
]

where C1 := 4MφM
2
β

√
p. Taking δ = 1/

√
wnρn completes the proof of Lemma 11.

We now proceed to investigate the “population version” of our criterion, R0. Define
U ∈ RK×K by Ukl =

∑n
i=1 1[ei = k, ci = l]/n, and let D be a diagonal K × K matrix

with π1, . . . , πK on the diagonal, where πk =
∑n

i=1 1[ci = k]/n is the fraction of nodes in
community Ck. Roughly speaking, U is the confusion matrix between e and c, andU = DO
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for a permutation matrix O means the estimation is perfect. Define

g(U) =
K∑
k=1

∑K
l=1

∑K
l′=1 UklUkl′Pll′(∑K
a=1 Uka

)α .

Each estimated community assignment e induces a unique U = U(e). It is not difficult to
verify that

g (U(e)) =
K∑
k=1

∑
i,j∈Ek Pcicj
|Ek|αn2−α .

Lemma 8. Under conditions 1 and 2, there exists a constant C2 such that

max
e,β

∣∣∣∣R0(e, β;wn)

wnρnn2−α − g (U(e))

∣∣∣∣ ≤ C2

wn
.

Proof of Lemma 12. By definition, we have

max
e,β

∣∣∣∣R0(e, β;wn)

wnρnn2−α − g (U(e))

∣∣∣∣ = max
e

K∑
k=1

max
βk

∑
i,j∈Ek

Pcicj
E[exp(−〈φij, βk〉)]
|Ek|αwnn2−α

≤max
e

K∑
k=1

∑
i,j∈Ek

exp(MφMβ)

|Ek|αwnn2−α max
kl

Pkl ≤
K exp(MφMβ)

wnπ
2−α
0

max
kl

Pkl =
C2

wn
,

where C2 := Kπα−2
0 exp(MφMβ) maxkl Pkl, and the two inequalities follow from condi-

tions 1 and 2, respectively.

Lemma 9. Under condition 3, if α ∈ [max1≤k<l≤K 2(K − 1)Pkl/min(Pkk, Pll), 1], then

for allU satisfying
∑K

k=1 Ukl = πl for 1 ≤ k ≤ K, g(U) is uniquely maximized atU = DO

for O ∈ OK , where OK denotes the set of K ×K permutation matrices.

Proof of Lemma 9. We have

g(D)− g(U)

=
K∑
l=1

(
K∑
k=1

Ukl

)2−α

Pll −
K∑
k=1

∑K
l=1 U

2
klPll +

∑K
l=1

∑
l′ 6=l UklUkl′Pll′(∑K

a=1 Uka

)α
=

K∑
l=1


(

K∑
k=1

Ukl

)2−α

−
K∑
k=1

U2
kl(∑K

a=1 Uka

)α
Pll −

K∑
k=1

K∑
l=1

∑
l′ 6=l

 UklUkl′(∑K
a=1 Uka

)α
Pll′

(A.2.1)
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For 0 < α ≤ 1, since Ukl ≥ 0 for all k and l, we have
(∑K

k=1 Ukl

)2−α
≥
∑K

k=1 U
2−α
kl . By

mid-value theorem, there exists ξkl ∈
(

0,
∑

a6=l Uka

)
, such that

(
K∑
a=1

Uka

)α

− Uα
kl = α

(∑
a6=l

Uka

)
/
(
Ukl + ξkl

)1−α ≥ α

(∑
a6=l

Uka

)
/

(
K∑
a=1

Uka

)1−α

.

(A.2.2)
Finally, we will need the following inequality: for 0 < α ≤ 2 and x, y ≥ 0 satisfying
x+ y ≤ u,

x2−α(u− x) + y2−α(u− y) ≥ xyu1−α . (A.2.3)

For x = y = 0, equality holds. To verify (A.2.3) when 0 < x + y ≤ u, dividing by u3−α

we have

x2−α(u− x) + y2−α(u− y)− xyu1−α

u3−α =
(x
u

)2−α (
1− x

u

)
+
(y
u

)2−α (
1− y

u

)
− xy

u2

≥
(x
u

)2 (
1− x

u

)
+
(y
u

)2 (
1− y

u

)
− xy

u2
=

{(x
u

)2

+
(y
u

)2

− xy

u2

}(
1− x+ y

u

)
≥ 0 .

The first inequality above implies that a necessary condition for equality to hold in (A.2.3)
is xy = 0.

We now lower bound the first term on the right hand side of (A.2.1).

K∑
l=1


(

K∑
k=1

Ukl

)2−α

−
K∑
k=1

U2
kl(∑K

a=1 Uka

)α
Pll

≥
K∑
l=1

K∑
k=1

U2−α
kl

{(∑K
a=1 Uka

)α
− Uα

kl

}
(∑K

a=1 Uka

)α Pll

≥
K∑
l=1

K∑
k=1

U2−α
kl

(∑
a6=l Uka

)
∑K

a=1 Uka
αPll ≥

K∑
l=1

K∑
k=1

U2−α
kl

(∑
a6=l Uka

)
∑K

a=1 Uka

∑
l′ 6=l

2Pll′

=
K∑
k=1


K∑
l=1

∑
l′ 6=l

U2−α
kl

(∑
a6=l Uka

)
Pll′∑K

a=1 Uka
+

K∑
l′=1

∑
l 6=l′

U2−α
kl′

(∑
a6=l′ Uka

)
Pll′∑K

a=1 Uka


=

K∑
k=1

K∑
l=1

∑
l′ 6=l

U2−α
kl

(∑
a6=l Uka

)
+ U2−α

kl′

(∑
a6=l′ Uka

)
∑K

a=1 Uka
Pll′

≥
K∑
k=1

K∑
l=1

∑
l′ 6=l

UklUkl′(∑K
a=1 Uka

)αPll′ , (A.2.4)
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where the last equality is obtained by applying (A.2.3) with x = Ukl, y = Ukl′ and u =∑K
a=1 Uka. Plugging (A.2.4) into (A.2.1), we have

g(D)− g(U) ≥ 0 .

It remains to show that equality holds only if U = DO for someO ∈ OK . Note that the
last inequality in (A.2.4) is obtained from (A.2.3), where equality holds only when xy = 0.
The corresponding condition for equality to hold in (A.2.4) is thus UklUkl′ = 0 for all k, l
and l′. Therefore, for each k, there is only one l such that Ukl 6= 0, i.e., U = DO for some
O ∈ OK .

Proof of Theorem 1. By Lemma 11 and Lemma 12, we have

max
e,β

∣∣∣∣{R(e, β;wn)

wnρnn2−α − g (U(e))

}∣∣∣∣ = Op

(
1

√
wnρn

)
. (A.2.5)

It is straightforward to verify that, for any e, 2d(e, c) = minO∈OK ‖U(e) − DO‖1, where
‖Q‖1 =

∑K
k=1

∑K
l=1 |Qkl|. Take a sequence of decreasing positive numbers xn → 0 and

define
yn = max

U :g(D)−g(U)≤xn
min
O∈OK

‖U −DO‖1 (A.2.6)

We now show, by contradiction, that xn → 0 implies yn → 0. First, note that yn is
non-increasing. Now if y0 = limn→∞ yn > 0, by compactness of the set Uy0 = {U :

minO∈OK ‖U −DO‖1 ≥ y0} and continuity of the function g, the supremum of g(U) over
U ∈ Uy0 , which equals g(D), is attained in Uy0 . This contradicts Lemma 9.

Now let xn = 1/ 4
√
wnρn. By assumption of Theorem 1, xn → 0, which yields yn → 0.

Also xn/
(
1/
√
wnρn

)
= 4
√
wnρn →∞, so by (A.2.5) we have

P

[{∣∣∣∣∣R(ê, β̂;wn)

wnρnn2−α − g (U(ê))

∣∣∣∣∣ > xn
2

}⋃{∣∣∣∣R(c, β;wn)

wnρnn2−α − g (D)

∣∣∣∣ > xn
2

}]
→ 0 .

(A.2.7)

Now, the event∣∣∣∣∣R(ê, β̂;wn)

wnρnn2−α − g (U(ê))

∣∣∣∣∣ ≤ xn
2

and
∣∣∣∣R(c, β;wn)

wnρnn2−α − g (D)

∣∣∣∣ ≤ xn
2
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implies that g(D)− g(U(ê)) ≤ R(c,β;wn)
wnρnn2−α − R(ê,β̂;wn)

wnρnn2−α + xn ≤ xn. So we have

P (g(D)− g(U(ê)) ≤ xn)→ 1 (A.2.8)

and

2d(ê, c) = min
O∈OK

‖U(ê)−DO‖1 ≤ max
U :g(D)−g(U)≤xn

min
O∈OK

‖U −DO‖1 = yn → 0.
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APPENDIX B

Appendix for “Detecting overlapping
communities in networks using spectral

methods”

B.1 Appendix

B.1.1 Proof of identifiability

Proof of Theorem 2. We start with stating a Lemma of Tang et al. (2013):

Lemma 10 (Lemma A.1 of Tang et al. (2013)). Let Y1,Y2 ∈ Rn×d, d < n, be full rank

matrices and G1 = Y1Y
T

1 , G2 = Y2Y
T

2 . Then there exists an orthonormal O such that

‖Y1O − Y2‖F ≤
√
d‖G1 −G2‖(

√
‖G1‖+

√
‖G2‖)

λmin(G2)
(B.1.1)

where λmin(·) is the smallest positive eigenvalue.

Lemma 10 immediately implies

Claim 1. For two full rank matrices H1, H2 ∈ Rn×K satisfying H1H
T
1 = H2H

T
2 , there

exists an orthonormal matrix OH such that H1OH = H2.

Suppose parameters (αn,1,Θ1,Z1,B1) and (αn,2,Θ2,Z2,B2) generate the same W .
Then by Lemma 1, there exists an orthonormal matrix O12 such that

αn,1Θ1Z1B
1/2
1 O12 = αn,2Θ2Z2B

1/2
2 (B.1.2)

We then show that the indices for “pure” rows in Z1 and Z2 match up. More precisely, for
1 ≤ k ≤ K, let Ik := {i : rowi(Z1) = ek}. We show that rowj(Z2), j ∈ Ik are also pure
nodes, i.e., there exists k′ such that {j : rowj(Z2) = ek′} = Ik. It suffices to show that

64



there exists i ∈ Ik such that rowi(Z2) is pure, then the claim follows from the fact that all
rows in Z2 with indices in Ik equal each other, since their counterparts in Z1 are equal. We
prove this by contradiction: if {rowi(Z2), i ∈ Ik} are not pure nodes, then for any i ∈ Ik,
there exists {i1, . . . , iK} ⊂ {1, . . . , n} − Ik and ω1, . . . , ωK ≥ 0 such that

rowi(Z2) =
K∑
k=1

ωkrowik(Z2) (B.1.3)

By (B.1.2), this yields

rowi(Z1) =
K∑
k=1

ωk
αn,1(Θ1)ikik
αn,2(Θ2)ikik

rowik(Z1) (B.1.4)

i.e. the ith row of Z1 can be expressed as a non-negative linear combination of at most K
rows outside Ik, and thus rowi(Z1) is not pure. Essentially we have shown the identifia-
bility for all pure nodes. To show identifiability for the rest, take one pure node from each
community as representative, i.e., let Ĩ := {j1, . . . , jK}, where jk ∈ Ik, 1 ≤ k ≤ K.
Let ZK

1 be the submatrix induced by concatenating rows of Z1 with indices in Ĩ , similarly
define ZK

2 , and let Θ̃1 and Θ̃2 be the corresponding submatrices of Θ1 and Θ2. Note ZK
1

and ZK
2 are both order K permutations, which is an ambiguity allowed by our definition

of identifiability, so we take ZK
1 = ZK

2 = I . By (B.1.2),

αn,1Θ̃1B
1/2
1 O12 = αn,2Θ̃2B

1/2
2 . (B.1.5)

By condition I1, both B
1/2
1 O12 and B

1/2
2 have rows of norm 1, so αn,1·(Θ̃1)kk = ‖rowk(αn,1ΘK

1 B
1/2
1 O12)‖2 =

‖rowk(αn,2ΘK
2 B

1/2
2 )‖2 = αn,1·(Θ̃2)kk and therefore αn,1Θ̃1 = αn,2Θ̃2. Then from (B.1.5)

we have
B

1/2
1 O12 = B

1/2
2 (B.1.6)

Thus B1 = B
1/2
1 O12(B

1/2
1 O12)T = B2, and (B.1.2) implies αn,1Θ1 = αn,2Θ2 since all

rows of Z1 and Z2 are normalized. This in turn implies αn,1 = αn,2 by condition I3 and
thus Θ1 = Θ2. Finally, plugging all of this back into (B.1.2) we have Z1 = Z2.

B.1.2 Proof of consistency

Proof outline: The proof of consistency of Ẑ follows the steps of the algorithm: we
first bound the difference between X̂∗

τn and the row-normalized version of the true node
positions X∗ with high probability (Lemma 11); then bound the difference between Ŝ and
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the true community centers S = B1/2 (Lemma 12) with high probability; these combine
to give a bound on the difference between Ẑ and Z (Theorem 3).

Lemma 11. Assume conditions A1, A2 and A3 hold. When logn
nαn
→ 0 and K = O(log n),

there exists a global constant C1, such that with the choice τn = α0.2
n K1.5

n0.3 , for large enough

n, we have

P

(
‖X̂∗

τnOX̂ −X∗‖F√
n

≤ C1K
4
5

(nαn)
1
5

)
≥ 1− P1(n, αn, K) (B.1.7)

where P1(n, αn, K)→ 0 as n→∞, and OX̂ is an orthonormal matrix depending on X̂ .

Proof of Lemma 11. Define the population version of X̂∗
τn as X∗

τn ∈ Rn×K , where rowi(X∗
τn) :=

Xi·
‖Xi·‖2+τ

. We first bound ‖X̂∗
τnOX̂ −X∗

τn‖F for a certain orthonormal matrix OX̂ and then
the bias term ‖X∗

τn −X∗‖F . Then the triangular inequality gives (B.1.7).
We now bound ‖X̂∗

τnOX̂ −X∗
τn‖F . For any orthonormal matrix O,

‖rowi(X̂∗
τnO −X∗

τn)‖2 = ‖rowi(X̂∗
τn)O − rowi(X∗

τn)‖2

=
∥∥∥ X̂i·O

‖X̂i·‖2 + τn
− Xi·

‖Xi·‖2 + τn

∥∥∥
2

=
∥∥∥ X̂i·O

‖X̂i·O‖2 + τn
− Xi·

‖Xi·‖2 + τn

∥∥∥
2

=
‖X̂i·O(‖Xi·‖2 − ‖X̂i·O‖2) + ‖X̂i·O‖2(X̂i·O −Xi·) + τn(X̂i·O −Xi·)‖2

(‖X̂i·O‖2 + τn)(‖Xi·‖2 + τn)

≤(2‖X̂i·O‖2 + τn)‖X̂i·O −Xi·‖2

(‖X̂i·O‖2 + τn)(‖Xi·‖2 + τn)
≤ 2‖X̂i·O −Xi·‖2

‖Xi·‖2 + τn
≤ 2‖X̂i·O −Xi·‖2

τn
.

Then

‖X̂∗
τnOX̂ −X∗

τn‖F ≤

√√√√ n∑
i=1

(
2

τn

)2

‖X̂i·OX̂ −Xi·‖2
2 =

2‖X̂OX̂ −X‖F
τn

.
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By Lemma 10, there exists an orthonormal matrix OX̂ , such that

‖X̂∗
τnOX̂ −X∗

τn‖F ≤
2
√
K‖X̂X̂T −XXT‖

(√
‖X̂X̂T‖+

√
‖XXT‖

)
τnλmin(XXT )

≤
2
√
K‖X̂X̂T −XXT‖

(√
‖X̂X̂T −XXT‖+ 2

√
‖XXT‖

)
τnλmin(XXT )

=
2
√
K‖A−W ‖

(√
‖A−W ‖+ 2

√
‖W ‖

)
τnλmin(W )

(B.1.8)

where ‖ · ‖ denotes the operator norm. We then bound each term on the RHS of (B.1.8).
To bound ‖A −W ‖, we mostly follow Tang et al. (2013). Let U and U be n × K

matrices of the leading K eigenvectors of A and W respectively, and define PA := ÛÛT

and PW := UUT , then W = XXT = PWXXTPW = PWWPW , and similarly
A = PAAPA. We have

‖A−W ‖ =‖PAAPA −PWWPW ‖

≤‖PA(A−W )PA‖+ ‖(PA −PW )WPA‖+ ‖PAW (PA −PW )‖

+ ‖(PA −PW )W (PA −PW )‖

≤‖A−W ‖+ 2‖PA −PW ‖‖W ‖+ ‖PA −PW ‖2‖W ‖ . (B.1.9)

By Appendix A.1 of Lei and Rinaldo (2013), we have

‖PA −PW ‖ ≤ ‖PA −PW ‖F ≤
2
√

2K‖A−W ‖
λmin(W )

. (B.1.10)

By Theorem 5.2 of Lei and Rinaldo (2013), when log n/(nαn)→ 0 and θi’s are uniformly
bounded by a constant Mθ, there exists constant Cr,Mθ

depending on r, such that with
probability 1− n−r

‖A−W ‖ ≤ Cr
√
nαn . (B.1.11)

Since Mθ is a global constant in our setting, we write Cr := Cr,Mθ
.

In order to bound ‖X̂∗
τnOX̂ −X∗

τn‖F , it remains to bound the maximum and minimum
eigenvalues of W . We will show that the eigenvalues of (nαn)−1W converge to those of
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E[θ2
1Z

T
1·Z1·]B, which is strictly positive definite: for any v ∈ RK ,

vTE[Z1·Z
T
1·] ≥

K∑
k=1

P(1 ∈ Ck) · vTekeTk v ≥ 0 ,

where Ck denotes the set of nodes in community k and ek denotes the vector the kth element
equal to 1 and all others being 0. Equality holds only when all vTekeTk v = v2

k = 0, i.e.
v = 0.

Claim 2. Assume that θi > 0 for all i, and both Z and B are full rank. Let λ0 and λ1

denote the smallest and largest eigenvalues of E[θ2
1Z

T
1·Z1·]B. Then

P
(∣∣∣λmax(W )

nαn
− λ1

∣∣∣ > ε

)
≤ 2K2 exp

(
−

1
2
nε2

M4
θK

3 + 1
3
M2

θK
√
Kε

)
(B.1.12)

P
(∣∣∣λmin(W )

nαn
− λ0

∣∣∣ > ε

)
≤ 2K2 exp

(
−

1
2
nε2

M4
θK

3 + 1
3
M2

θK
√
Kε

)
(B.1.13)

Proof of Claim 2. For k = 1, . . . , K, let λk denote the kth largest eigenvalue of W , then

λk

(
W

nαn

)
= λk

(
ΘZBZTΘ

n

)
= λk

(
B1/2ZTΘ2ZB1/2

n

)
= λk

(
ZTΘ2ZB

n

)
= λk

(
1

n

n∑
i=1

θ2
iZ

T
i·Zi·B

)

where the second equality is due to the fact that XXT and XTX share the sameK leading
eigenvalues (X =

√
αnΘZB1/2). The third equality holds because B1/2 is full rank. To

show (B.1.13), it suffices to show that

P

(∥∥∥ 1

n

n∑
i=1

θ2
iZ

T
i·Zi·B − E[θ2

1Z
T
1·Z1·B]

∥∥∥ > ε

)
≤ 2 exp

(
−

1
2
nε2

M4
θK

3 + 1
3
M2

θK
√
Kε

)
(B.1.14)

For any k, l ∈ {1, . . . , K}, {θ2
i (Z

T
i·Zi·B)kl}i are an iid sequence uniformly bounded by

M2
θ

√
K with mean

(
E[θ2

i (Z
T
i·Zi·B)]

)
kl

. By Bernstein’s inequality,

P

(∣∣∣( 1

n

n∑
i=1

θ2
iZ

T
i·Zi·B − E[θ2

1Z
T
1·Z1·B]

)
kl

∣∣∣ > ε

)
≤ 2 exp

(
−

1
2
nε2

M4
θK + 1

3
M2

θ

√
Kε

)
.
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By the union bound and ‖A‖ ≤ ‖A‖F , we have

P

(∥∥∥ 1

n

n∑
i=1

θ2
iZ

T
i·Zi·B − E[θ2

1Z
T
1·Z1·B]

∥∥∥ > Kε

)
≤ 2K2 exp

(
−

1
2
nε2

M4
θK + 1

3
M2

θ

√
Kε

)
.

Replacing ε by ε/K completes the proof of Claim 2.

We now return to the proof of Lemma 11 and complete the bound on ‖X̂∗
τnOX̂ −

X∗
τn‖F . Taking ε to be λ1

2
and λ0

2
respectively in (B.1.12) and (B.1.13), by Claim 2, ‖W‖ ≤

3
2
nαnλ1 ≤ 3

2
Mλ1nαnK and λmin(W ) ≥ 1

2
nαnλ0 ≥ 1

2
Mλ0nα hold with probability:

1− 2K2 exp

(
−

1
8
nλ2

0

M4
θK

3 + 1
6
M2

θK
√
Kλ0

)
+ 2K2 exp

(
−

1
8
nλ2

1

M4
θK

3 + 1
6
M2

θK
√
Kλ1

)

≥1− 4K2 exp

(
−

1
8
nMλ0

2

M4
θK

5 + 1
6
M2

θK
5/2Mλ0

)

Plugging this, together with (B.1.10) and (B.1.10), back into (B.1.9), we have

‖X̂X̂T −XXT‖ ≤ ‖A−W ‖

(
1 +

4
√

2K‖W ‖
λmin(W )

+
8K‖A−W ‖‖W ‖

(λmin(W ))2

)

≤ Cr
√
nαn

(
1 +

12
√

2KMλ1

Mλ0

+
48K2CrMλ1

Mλ0
2√nαn

)
(B.1.15)

with probability at least 1−4K2 exp
(
−

1
8
nMλ0

2

M4
θK

5+ 1
6
M2
θK

5/2Mλ0

)
−n−r. Then plugging (B.1.15)

and Claim 2 into (B.1.8), we have
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‖X̂∗
τnOX̂ −X∗

τn‖F

≤2
√
K

τn

‖X̂X̂T −XXT‖
(√
‖X̂X̂T −XXT‖+ 2

√
‖XXT‖

)
λmin(XXT )

≤2
√
K

τn

Cr
√
nαn

(
1 +

12
√

2KKMλ1

Mλ0
+

48K2CrMλ1

Mλ0

√
nαn

)
nαn

Mλ0

2K

·

[Cr√nαn(1 +
12
√

2KKMλ1

Mλ0

+
48K2CrMλ1

Mλ0

√
nαn

)] 1
2

+
√

6Mλ1nαn


=

4Cr
√
K

τnMλ0

(
1 +

12
√

2Mλ1K
√
K

Mλ0

+
48CrMλ1K

2

Mλ0
2√nαn

)

·

[Cr( 1
√
nαn

+
12
√

2Mλ1

Mλ0

K
√
K

√
nαn

+
48CrMλ1

Mλ0
2

K2

nαn

)] 1
2

+
√

6Mλ1

 (B.1.16)

By assumption K = O(log(n)), we have K3

nαn
→ 0, thus for large enough n, the follow-

ing inequalities that simplify (B.1.16) hold:

(24− 12
√

2)Mλ1K
√
K

Mλ0

− 1 ≥ 48CrMλ1K
2

Mλ0
2√nαn

(3−
√

6)
√
Mλ1 ≥

[
Cr

(
1

√
nαn

+
12
√

2Mλ1

Mλ0

K
√
K

√
nαn

+
48CrMλ1

Mλ0
2

K2

nαn

)] 1
2

,

and we have
RHS of (B.1.16) ≤ C̃r ·

K2

τn
(B.1.17)

where the constant C̃r :=
288CrMλ1

3/2

Mλ0
2 , which for simplicity we will continue to write as Cr.

This completes the bound on ‖X̂∗
τnOX̂ −X∗

τn‖F .
The second part of the proof requires a bound on ‖X∗

τn −X∗‖F . From the defintion of
X∗

τn , we can write

‖X∗
τn −X∗‖2

F =
n∑
i=1

(
τn/
√
αn

‖Xi·‖2/
√
αn + τn/

√
αn

)2

. (B.1.18)

Since ‖X·‖2√
αn

= θi‖Zi·B
1/2‖2 = θi

√
Zi·BZT

i· ≥ θi
√
λmin(B) ≥ θi

√
mB > 0, by assump-
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tion, for ε ∈ (0, ε0), we have P
(
‖Xi·‖2√

αn
< ε
√
mB

)
≤ P(θi < ε) ≤ Cθε. Therefore, for any

ε ∈ (0, ε0), we have

E

[(
τn/
√
αn

‖Xi·‖2/
√
αn + τn/

√
αn

)2
]
≤ Cθε+ (1− Cθε)

(
τn/
√
αn

ε
√
mB + τn/

√
αn

)2

(B.1.19)

By assumption, τn/
√
αn → 0, so for large enough n such that τn/

√
αn < ε

3/2
0 , taking

ε := (τn/
√
n)2/3 < ε0, we have

LHS of (B.1.19) ≤ Cθ(τn/
√
αn)2/3 + (1− Cθ(τn/

√
αn)2/3)

(
(τn/
√
αn)1/3

mB + (τn/
√
αn)1/3

)2

≤
(
Cθ +m−1

B

)
(τn/
√
αn)2/3

Then for any δ > 0, we have

P
(
‖X∗

τn −X∗‖2
F

n
− (Cθ +m−1

B )(τn/
√
αn)2/3 > δ

)
≤P
(
‖X∗

τn −X∗‖2
F

n
− E

[
‖X∗

τn −X∗‖2
F

n

]
> δ

)
≤ exp

(
−

1
2
δ2n

1 + 1
3
δ

)
(B.1.20)

where the second inequality is Bernstein’s inequality plus the fact that each summand in
the numerator of (B.1.18) is uniformly bounded by 1 with an expectation bounded by(
Cθ +m−1

B

)
(τn/
√
αn)2/3.

We can now complete the proof of Lemma 11. Combining (B.1.17) and (B.1.20) yields

P

(
‖X̂∗

τnOX̂ −X∗‖F√
n

≤ CrK
2

τn
√
n

+ δ + (Cθ +m−1
B )(τn/

√
αn)2/3

)
≥1− P1(n, αn, K; r) (B.1.21)

The optimal τn that minimizes the RHS of the inequality inside the probability is τn =
α0.2
n K1.5

n0.3 – here for simplicity we drop the constant factor in τn, the effect of which we
evaluated empirically in Section 3.5. Plugging this into (B.1.21) and taking δ = K(nαn)−

1
5

and denote C1 :=
(

2
3
(Cθ +m−1

B )C
2
3
r

) 3
5

+1+
(

3
2
Cr(Cθ +m−1

B )
3
2

) 2
5

and P1(n, αn, K; r) :=

n−r−4 exp

(
−

1
8
Mλ0

2n

M4
θK

5+ 1
6
M2
θMλ0

K
5
2

)
−2 exp

(
−

1
2
K

8
5 n

3
5 α
− 2

5
n

1+ 1
3
K

4
3 (nαn)

1
5

)
, we obtain Lemma 11. Note

that since we are free to choose and fix r, we can drop the dependence on it from P1, as we
did in the statement of Lemma 11.

The next step is to show the convergence of the estimated cluster centers Ŝ to the
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population cluster centers SF .

Lemma 12. Recall that F denotes the popualtion distribution of the rows of X∗ and let

Ŝ ∈ arg minS Ln(X̂∗
τn ;S) and SF ∈ arg minS L(F ;S). Assume that conditions A1, A2,

A3 and B hold. Then if logn
nαn
→ 0 and K = O(log n), for large enough n we have

P

(
DH(ŜOX̂ ;SF) ≤ C2K

9
5

(nαn)
1
5

)
≤ 1− P1(n, αn, K)− P2(n, αn, K) (B.1.22)

where C2 is a global constant, P2(n, αn, K) → 0 as n → ∞ and DH(·, ·) is as defined in

condition B.

Proof of Lemma 12. Since the rows of X̂∗
τn and X∗ have l2 norms bounded by 1, the sam-

ple space of F is uniformly bounded in the unit l2 ball. Following the argument of Pollard
et al. (1981), we show that all cluster centers estimated byK-medians fall in the l2 ball cen-
tered at origin with radius 3, which we denote asR. Otherwise, if there exists an estimated
cluster center s outsideR, it is at least distance 2 away from any point assigned to its clus-
ter. Therefore, moving s to an arbitrary point inside the unit ball yields an improvement in
the loss function since any two points inside the unit ball are at most distance 2 away from
each other.

We first show the uniform convergence of Ln(X̂∗
τnOX̂ ;S) to L(F ;S) and then show

the optimum of Ln(X̂∗
τnOX̂ ;S) is close to that of L(F ;S). Let

ŜOX̂ := arg min
S
Ln(X̂∗

τnOX̂ ;S)

We start with showing that

sup
S⊂R
|Ln(X̂∗

τnOX̂ ;S)− Ln(X∗;S)| ≤
‖X̂∗

τnOX̂ −X∗‖F√
n

. (B.1.23)

To prove (B.1.23), take any s ∈ R. For each i, let ŝ and s be (possibly identical) rows in
S that are closest to (X̂∗

τnOX̂)i· and X∗
i· respectively in l2 norm. We have

‖X∗
i· − s‖2 − ‖(X̂∗

τnOX̂)i· − ŝ‖2 ≤ ‖(X̂∗
τnOX̂)i· −X∗

i·‖2

and similarly, ‖(X̂∗
τnOX̂)i·−ŝ‖2−‖X∗

i·−s‖2 ≤ ‖X∗
i·−(X̂∗

τnOX̂)i·‖2. Thus |‖(X̂∗
τnOX̂)i·−

ŝ‖2 − ‖X∗
i· − s‖2| ≤ ‖(X̂∗

τnOX̂)i· −X∗
i·‖2. Combining this inequalities for all rows, we
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have

|Ln(X̂∗
τnOX̂ ;S)− Ln(X∗;S)| =

∣∣∣ 1
n

n∑
i=1

(
‖(X̂∗

τnOX̂)i· − ŝ‖2 − ‖X∗
i· − s‖2

) ∣∣∣
≤

√√√√ 1

n

n∑
i=1

‖(X̂∗
τnOX̂)i· −X∗

i·‖2
2 =

1√
n
‖X̂∗

τnOX̂ −X∗‖F . (B.1.24)

Then since that (B.1.24) holds for any S, the uniform bound (B.1.23) follows.
For simplicity, we introduce the notation “S ⊂ R”, by which we mean that the rows

of a matrix S belong to the set R. We now derive the bound for supS⊂R |Ln(X∗;S) −
L(F ;S)|, which, without taking the supremum, is easily bounded by Bernstein’s inequal-
ity. To tackle the uniform bound, we employ an ε-net (see, for example, Haussler and
Welzl (1986)). There exists an ε-net Rε, with size |Rε| ≤ CR

K
ε

log K
ε

, where CR is a
global constant. For any S̃ ⊂ Rε, S̃ ∈ RK×K , notice that min1≤k≤K ‖X∗

i· − S̃k·‖2 is a
random variable uniformly bounded by 6 with expectation L(F ; S̃) for each i. Therefore,
by Bernstein’s inequality, for any δ > 0 we have

P(|Ln(X∗; S̃)− L(F ; S̃)| > δ) ≤ exp

(
−

1
2
nδ2

4R2
M + 2

3
RMδ

)
= exp

(
− nδ2

72 + 4δ

)
(B.1.25)

The number of all such S̃ ⊂ Rε is bounded by

∣∣∣{S̃ : S̃ ⊂ Rε}
∣∣∣ =

(
CR

K
ε

log K
ε

K

)
≤
(
CR

K

ε
log

K

ε

)K
By the union bound, we have

P

(
sup
S̃∈Rε

∣∣∣L(X∗; S̃)− L(F ; S̃)
∣∣∣ > δ

)
<

(
CR

K

ε
log

K

ε

)K
exp

(
− nδ2

72 + 4δ

)
(B.1.26)

The above shows the uniform convergence of the loss functions for S̃ from the ε-net
Rε. We then expand it to the uniform convergence of all S ⊂ R. For any S ⊂ R, there
exists S̃ ⊂ Rε, such that both Ln(·;S) and L(·;S) can be well approximated by Ln(·; S̃)

and L(·; S̃) respectively. To emphasize the dependence of S̃ on S, we write S̃ = S̃(S).
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Formally, we now prove the following.

sup
S⊂R
|Ln(X∗;S)− Ln(X∗; S̃(S))| < ε (B.1.27)

sup
S⊂R
|L(F ;S)− L(F ; S̃(S))| < ε (B.1.28)

To prove (B.1.27) and (B.1.28), for any S ⊂ R, let S̃ ⊂ Rε be a matrix formed by
concatenating the points in Rε that best approximate the rows in S. Notice that S̃ formed
such way may contain less than K rows. In this case, we arbitrarily pick points in Rε to
enlarge S̃ to K rows. For any x ∈ RK , let s0 be the best approximation to x among the
rows of S and s̃0 be the best approximation to s0 among the rows of S̃; let s̃1 be the best
approximation to x among the rows of S̃ and let s1 be the point among the rows of S that
is best approximated by s̃1. Since ‖x − s0‖2 ≤ ‖x − s1‖2 ≤ ‖x − s1‖2 + ‖s1 − s̃1‖2 ≤
‖x− s̃1‖2 + ε, and similarly, ‖x− s̃1‖2 ≤ ‖x− s̃0‖2 ≤ ‖x− s0‖2 + ε, we have∣∣∣ min

1≤k≤K
‖x− Sk·‖2 − min

1≤k≤K
‖x− S̃k·‖2

∣∣∣ =
∣∣∣‖x− s0‖2 − ‖x− s̃1‖2

∣∣∣ ≤ ε (B.1.29)

which implies (B.1.27) and (B.1.28).
Combining (B.1.23), (B.1.26), (B.1.27) and (B.1.28), we have shown that with proba-

bility P2(n, ε, δ) := 1−
(
CR

K+2
ε

log K+2
ε

)K
exp

(
− nδ2

72+4δ

)
,

sup
S⊂R

∣∣∣L(X̂∗
τnOX̂ ;S)− L(F ;S)

∣∣∣
≤ sup
S⊂R
|L(X̂∗

τnOX̂ ;S)− L(X∗;S)|+ sup
S⊂R
|L(X∗;S)− L(X∗; S̃(S))|

+ sup
S̃⊂Rε

∣∣∣L(X∗; S̃)− L(F ; S̃)
∣∣∣+ sup

S⊂R
|L(F ;S)− L(F ; S̃(S))|

≤
‖X̂∗

τnOX̂ −X∗‖F√
n

+ δ + 2ε (B.1.30)

Finally, we use (B.1.30) to bound DH(Ŝ,SF). Note that

L(F ; ŜOX̂)− L(F ;SF) ≤ |L(F ; ŜOX̂)− L(X̂∗
τnOX̂ ; ŜOX̂)|

+ (L(X̂∗
τnOX̂ ; ŜOX̂)− L(X̂∗

τnOX̂ ;SF)) + |L(X̂∗
τnOX̂ ;SF)− L(F ;SF)|

≤ 2 sup
S⊂R

∣∣∣L(X̂∗
τnOX̂ ;S)− L(F ;S)

∣∣∣ .
Taking δ = ε = K

4
5

(nαn)
1
5

, define P2(n, αn, K) := P2(n, ε, δ) with plug-in values of δ and ε.
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To summarize, we have that with probability at least 1 − P1(n, αn, K; r) − P2(n, αn, K),
the following holds:

DH(ŜOX̂ ,SF) ≤ (MK−1)−1(L(F , ŜOX̂)− L(F ,SF))

≤ 2K/M sup
S⊂R

∣∣∣L(X̂∗
τnOX̂ ;S)− L(F ;S)

∣∣∣
≤ 2K/M

(
‖X̂∗

τnOX̂ −X∗‖F√
n

+ δ + 2ε

)

≤ (C1 + 3)K
9
5

M(nαn)
1
5

=:
C2K

9
5

M(nαn)
1
5

where we let C2 := (C1 + 3)/M . This concludes the proof of Lemma 12

Proof of the main result (Theorem 3). Without loss of generality, we assume that the rows
of Ŝ and SF are aligned in the sense that ‖ŜOX̂ − SF‖2 = DH(ŜOX̂ ,SF). We denote
the unnormalized projection coefficients of X̂∗

τn onto Ŝ by Ŷ and X∗ onto SF = B1/2 by
Y . We have:

Y = X∗(B1/2)TB−1 = X∗ST
F(SFS

T
F)−1 (B.1.31)

Ŷ = X̂∗
τnŜ

T (ŜŜT )−1 = X̂∗
τnOX̂(ŜOX̂)T (ŜOX̂(ŜOX̂)T )−1 (B.1.32)

Recall that Xi· = Zi·SF , thus X∗
i· =

Zi·SF
‖Zi·SF‖2

, and

‖Yi·‖2 = X∗
i·S

T
F(SFS

T
F)−1 =

‖Zi·‖2

‖Zi·SF‖2

=
1

‖
∑K

i=1 Zik(SF)k·‖2

≥ 1∑K
k=1 |Zik|‖(SF)k·‖2

=
1∑K

k=1 |Zik|
≥ 1

‖Zi·‖2

√
K

=
1√
K
.

The difference between the row-normalized projection coefficients Z and Ẑ can be bounded
by the difference between Y and Ŷ , since

‖Ẑi· −Zi·‖2 =
∥∥∥ Ŷi·‖Yi·‖2 − Yi·‖Ŷi·‖2

‖Ŷi·‖2‖Yi·‖2

∥∥∥
2
≤ 2‖Ŷi· − Yi·‖2

‖Yi·‖2

. (B.1.33)
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Then we have

‖Ẑ −Z‖2√
n

≤ 2‖Ŷ − Y ‖F
√
K√

n

=2

√
K

n
‖X̂∗

τnOX̂(ŜOX̂)T (ŜOX̂(ŜOX̂)T )−1 −X∗ST
F(SFS

T
F)−1‖F

≤2

√
K

n

{
‖X̂∗

τnOX̂(ŜOX̂)T
(
ŜOX̂(ŜOX̂)T )−1 − (SFS

T
F)−1

)
‖F

+ ‖X̂∗
τnOX̂((ŜOX̂)T − ST

F)(SFS
T
F)−1‖F

+ ‖
(
X̂∗

τnOX̂ −X∗
)
ST
F(SFS

T
F)−1‖F

}
=: I1 + I2 + I3 , (B.1.34)

where

I1 := 2

√
K

n
‖X̂∗

τnOX̂(ŜOX̂)T
(

(ŜOX̂(ŜOX̂)T )−1 − (SFS
T
F)−1

)
‖F

≤2

√
K

n

(
‖X∗‖F + ‖X̂∗

τnOX̂ −X∗‖F
)

·
(
‖SF‖F + ‖ŜOX̂ − SF‖F

)
‖(ŜOX̂(ŜOX̂)T )−1 − (SFS

T
F)−1‖F ,

I2 := 2

√
K

n
‖X̂∗

τnOX̂((ŜOX̂)T − ST
F)(SFS

T
F)−1‖F

≤ 2

√
K

n

(
‖X∗‖F + ‖X̂∗

τnOX̂ −X∗‖F
)
‖ŜOX̂ − SF‖F‖(SFST

F)−1‖F

I3 := 2

√
K

n
‖
(
X̂∗

τnOX̂ −X∗
)
ST
F(SFS

T
F)−1‖F

≤ 2

√
K

n
‖X̂∗

τnOX̂ −X∗‖F‖SF‖F‖(SFST
F)−1‖F

The term ‖(ŜOX̂(ŜOX̂)T )−1 − (SFS
T
F)−1‖F is bounded by the following claim.

Claim 3. For two K ×K matrices V1 and V2 such that ‖V2‖F =
√
K, ‖V1 − V2‖2 ≤ ε,

and λmin(V2) > 0, we have

‖(V1V
T

1 )−1 − (V2V
T

2 )−1‖F ≤ K2
(
λmin(V2V

T
2 )−K(2 + ε)ε

)−1

· (λmin(V2V
T

2 ))−1(2 + ε)ε (B.1.35)
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Proof of Claim 3. First,

‖V1V
T

1 − V2V
T

2 ‖F ≤ ‖V1(V1 − V2)T + (V1 − V2)V T
2 ‖F

≤ (‖V1‖F + ‖V2‖F )‖V1 − V2‖F ≤ (‖V1 − V2‖F + 2‖V2‖F )‖V1 − V2‖F
≤ (
√
Kε+ 2

√
Kε)
√
Kε = (2 + ε)Kε .

Then we have

‖(V1V
T

1 )−1 − (V2V
T

2 )−1‖F ≤ ‖(V1V
T

1 )−1‖F‖(V2V
T

2 )−1‖F‖V1V
T

1 − V2V
T

2 ‖F
≤
√
K(λmin(V1V

T
1 ))−1

√
K(λmin(V2V

T
2 ))−1‖V1V

T
1 − V2V

T
2 ‖F

≤K
(
λmin(V2V

T
2 )− ‖V1V

T
1 − V2V

T
2 ‖F

)−1
(λmin(V2V

T
2 ))−1‖V1V

T
1 − V2V

T
2 ‖F

≤K(λmin(V2V
T

2 )−K(2 + ε)ε)−1(λmin(V2V
T

2 ))−1K(2 + ε)ε

We are now ready to bound I1+I2+I3. For large enough n such that max{C1, C2} K
13
10

(nαn)
1
5
<

1
2

and C2K
9
5

(nαn)
1
5
< min{1, mB

6K
}, with probability at least 1− P1(n, αn, K; r)− P2(n, αn, K),

we have:

I1 ≤ 2
√
K
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1 +

C1K
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5

(nαn)
1
5

)(
√
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C2K
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5
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(
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C2K
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√
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√
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(B.1.36)

where CI1 := 27C2

m2
B

, and

I2 ≤ 2
√
K

(
1 +

C1K
4
5

(nαn)
1
5

)
· C2K

9
5

(nαn)
1
5

√
K

mB

≤ 2
√
K · 3

2
· C2K

9
5

(nαn)
1
5

√
K

mB

=
CI2K

14
5

(nαn)
1
5

(B.1.37)

where CI2 := 3C2

mB
, and

I3 ≤ 2
√
K · C1K

4
5

(nαn)
1
5

·
√
K ·
√
K

mB

=
CI3K

23
10

(nαn)
1
5

. (B.1.38)
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where CI3 := 2C1

mB
. Plugging (B.1.36), (B.1.37) and (B.1.38) back to (B.1.34), we have

‖Ẑ − Z‖F√
n

≤ (CI1 + CI2 + CI3)
K

43
10

(nαn)
1
5

≤ C3(n1−α0αn)−
1
5 (B.1.39)

with probability at least 1 − P (n, αn, K; r), where P (n, αn, K; r) := P1(n, αn, K; r)

− P2(n, αn, K), and C3 := (CI1 + CI2 + CI3)
/(

supnK
43
10n−α0

)
. This completes the

proof.
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APPENDIX C

Appendix for “Estimating network edge
probabilities by neighborhood smoothing”

C.1 Choosing the constant factor for the bandwidth

First, we need to choose the quantile cut-off parameter h which controls neighborhood
selection. Theorem 6 gives the order of h, and the following numerical experiments em-
pirically justify our choice of the constant factor. Figure C.1 shows the mean squared error
curves for networks with n = 2000 nodes generated from the four graphons in Table 4.1,
with the constant factor C varying in the range {2−3, 2−2, . . . , 23}.
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Figure C.1: Mean squared error of our method as a function of the constant C in the tuning

parameter h = C
√

logn
n

.

Figure C.1 demonstrates that C in the range from 2−2 to 2 works equally well for all
these very different graphons. This suggests empirically that the method is robust to the
choice of C, and therefore we set C = 1 for the rest of the paper.
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C.2 Receiver operating characteristic curves for link pre-
diction simulations in Section 4.4
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Figure C.2: ROC curves for link prediction of different methods under Graphons 1 to 4.

C.3 Proofs

of Theorem 6. For convenience, we start with summarizing notation and assumptions made
in the main paper. Let 0 = x0 < x1 < . . . < xK = 1, Ik := [xk−1, xk) for 1 ≤ k ≤ K − 1

and IK = [xK−1, XK ]. Assume the graphon f is a bi-Lipschitz function on each of Ik × I`
for 1 ≤ k, ` ≤ K. Let L denote the maximum piece-wise bi-Lipschitz constant. Assume
the number of pieces K may grow with n, as long as mink |Ik|

/(
logn
n

)1/2 →∞.
For any ξ ∈ [0, 1], let I(ξ) denote the Ik that contains ξ. Let Si(∆) = [ξi − ∆, ξi +

∆] ∩ I(ξi) denote the neighborhood of ξi in which f(x, y) is Lipschitz in x ∈ Si(∆) for
any fixed y. Finally, recall our estimator is defined by

P̂ij =
1

2

(∑
i′∈Ni Ai′j

|Ni|
+

∑
j′∈Nj Aij′

|Nj|

)

We begin the proof of the main theorem with the following decomposition of the mean
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squared error:

1

n2

∑
ij

(P̂ij − Pij)2 =
1

4n2

∑
ij

{∑
i′∈Ni(Ai′j − Pij)
|Ni|

+

∑
j′∈Nj(Aij′ − Pij)
|Nj|

}2

≤ 1

n2

∑
ij

[
1

2

{∑
i′∈Ni((Ai′j − Pi′j) + (Pi′j − Pij))

|Ni|

}2

+
1

2

{∑
j′∈Nj((Aij′ − Pij′) + (Pij′ − Pij))

|Nj|

}2 ]
(C.3.1)

Next, we show how to bound the first term in (C.3.1); the second term can be handled
similarly. Note that

1

2

[∑
i′∈Ni {(Ai′j − Pi′j) + (Pi′j − Pij)}

|Ni|

]2

≤
{∑

i′∈Ni(Ai′j − Pi′j)
|Ni|

}2

+

{∑
i′∈Ni(Pi′j − Pij)
|Ni|

}2

= J1(i, j) + J2(i, j) (C.3.2)

Our goal is to bound 1
n2

∑
ij {J1(i, j) + J2(i, j)}. First, we prove a lemma which estimates

the proportion of nodes in a diminishing neighborhood of ξi’s.

Lemma 13. For arbitrary global constants C1, C̃1 > 0, define

∆n =

(
C1 +

√
C̃1 + 4

)(
log n

n

)1/2

. For n large enough so that
{

(C̃1+4) logn
n

}1/2

≤ 1 and ∆n < mink |Ik|/2, we have

pr

{
min
i

|{i′ 6= i : ξi′ ∈ Si(∆n)}|
n− 1

≥ C1

(
log n

n

)1/2
}
≥ 1− 2n−

C̃1
4 . (C.3.3)

of Lemma 13. For any 0 < ε ≤ 1 and n large enough to satisfy the assumptions, by Bern-
stein’s inequality we have, for any i,

pr

(∣∣∣∣ |{i′ 6= i : ξi′ ∈ Si(∆n)}|
n− 1

− |Si(∆n)|
∣∣∣∣ ≥ ε

)
≤2 exp

{
−

1
2
(n− 1)ε2

1 + 1
3
ε

}
≤ 2 exp

(
−1

4
nε2
)
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Taking a union bound over all i’s gives

pr

(
max
i

∣∣∣∣ |{i′ 6= i : ξi′ ∈ Si(∆n)}|
n− 1

− |Si(∆n)|
∣∣∣∣ ≥ ε

)
≤ 2n exp

(
−1

4
nε2
)
.

Letting ε =
{

(C̃1+4) logn
n

}1/2

, we have

pr

max
i

∣∣∣∣ |{i′ 6= i : ξi′ ∈ Si(∆n)}|
n− 1

− |Si(∆n)|
∣∣∣∣ ≥

{
(C̃1 + 4) log n

n

}1/2
 ≤ 2n−

C̃1
4 .

(C.3.4)
Next we claim that either [ξi−∆n, ξi] ⊆ I(ξi) or [ξi, ξi + ∆n] ⊆ I(ξi) holds for all i. If

for some i the claim does not hold, by the definition of I(ξi), we have I(ξi) ⊂ [ξi−∆n, ξi+

∆n]. So we have |I(ξi)| ≤ 2∆n, but this contradicts the condition ∆n < mink |Ik|/2. The
claim yields that |Si(∆n)| ≥ ∆n. Finally, by (C.3.4), with probability 1− 2n−

C̃1
4 , we have

min
i

|{i′ 6= i : ξi′ ∈ Si(∆n)}|
n− 1

≥ |Si(∆n)| −

{
(C̃1 + 4) log n

n

}1/2

≥ ∆n −

{
(C̃1 + 4) log n

n

}1/2

≥ C1

(
log n

n

)1/2

This completes the proof of Lemma 13.

We now continue with the proof of Theorem 6. Recall that we defined a measure of
closeness of adjacency matrix slices in Section 4.2 as

d̃(i, i′) = max
k 6=i,i′

|〈Ai· − Ai′·, Ak·〉|
/
n = max

k 6=i,i′

∣∣(A2/n)ik − (A2/n)jk
∣∣ .

The neighborhoodNi of node i consists of nodes (i′)’s with d̃(i, i′) below the h-th quantile
of {d̃(i, k)}k 6=i. The next lemma shows two key properties of Ni.

Lemma 14. Suppose that we select the neighborhoodNi by thresholding at the lower h-th

quantile of {d̃(i, k)}k 6=i, where we set h = C0

(
logn
n

)1/2
with an arbitrary global constant

C0 satisfying 0 < C0 ≤ C1 for the C1 from Lemma 13. Let C2, C̃2 > 0 be arbitrary global

constants and assume n ≥ 6 is large enough so that

(i) All conditions on n in Lemma 13 are satisfied;

(ii)
{

(C2+2) logn
n

}1/2

≤ 1;
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(iii) C1 (n log n)1/2 ≥ 4; and

(iv) 4
n
≤
{(

C2 + C̃2 + 2
)1/2

− (C2 + 2)1/2

}(
logn
n

)1/2
.

Then the neighborhood Ni has the following properties:

1. |Ni| ≥ C0 (n log n)1/2.

2. With probability 1− 2n−
C̃1
4 − 2n−

C2
4 , for all i and i′ ∈ Ni, we have

‖Pi′·−Pi·‖2
2/n ≤

[
6L

{
C1 +

(
C̃2 + 4

)1/2
}1/2

+ 8
(
C2 + C̃2 + 2

)1/2
](

log n

n

)1/2

of Lemma 14. The first claim follows immediately from the choice of h and the definition
ofNi. To show the second claim, we start with concentration results. For any i, j such that
i 6= j, we have

∣∣∣(A2/n
)
ij
−
(
P 2/n

)
ij

∣∣∣ =

∣∣∣∣∣∑
k

(AikAkj − PikPkj)

∣∣∣∣∣/n
≤
|
∑

k 6=i,j(AikAkj − PikPkj)|
n− 2

· n− 2

n
+
|(Aii + Ajj)Aij|+ |(Pii + Pjj)Pij|

n

≤
|
∑

k 6=i,j(AikAkj − PikPkj)|
n− 2

+
4

n
(C.3.5)

By Bernstein’s inequality, for any 0 < ε ≤ 1 and n ≥ 3 we have

pr

( |∑k 6=i,j(AikAkj − PikPkj)|
n− 2

≥ ε

)
≤ 2 exp

{
−

1
2
(n− 2)ε2

1 + 1
3
ε

}
≤ 2 exp

(
−1

4
nε2
)
.

Taking a union bound over all i 6= j, we have

pr

{
max
i,j:i 6=j

|
∑

k 6=i,j(AikAkj − PikPkj)|
n− 2

≥ ε

}
≤ 2n2 exp

(
−1

4
nε2
)
.

Then setting ε =
{

(C2+2) logn
n

}1/2

with n large enough so that ε ≤ 1, we have

pr

{
max
i,j:i 6=j

|
∑

k 6=i,j(AikAkj − PikPkj)|
n− 2

≥
{

(C2 + 2) log n

n

}1/2
}
≤ 2n−

C2
4 (C.3.6)
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Combining (C.3.5) and (C.3.6), with probability 1− 2n−
C2
4 , the following holds

max
i,j:i 6=j

∣∣∣(A2/n
)
ij
−
(
P 2/n

)
ij

∣∣∣ ≤ {(C2 + 2) log n

n

}1/2

+
4

n
≤

{
(C2 + C̃2 + 2) log n

n

}1/2

(C.3.7)
for n large enoug to satisfy ((iv)).

Next, we prove a useful inequality. For all i and any ĩ such that ξĩ ∈ Si(∆n), we have

∣∣(P 2/n
)
ik
−
(
P 2/n

)
ĩk

∣∣ = |〈Pi·, Pk·〉 − 〈Pĩ·, Pk·〉|/n ≤ ‖Pi· − Pĩ·‖2‖Pk·‖2/n ≤ L∆n

(C.3.8)
for all k, where the last inequality follows from

|Pi′` − Pi`| = |f(ξi′ , ξ`)− f(ξi, ξ`)| ≤ L|ξi′ − ξi| ≤ L∆n

for all `, and ‖Pk·‖2 ≤ n1/2 for all k. Note that this holds for all k, including k = i or
k = ĩ.

We are now ready to upper bound d̃(i, i′) for i′ ∈ Ni. We bound d̃(i, i′) via bounding
d̃(i, ĩ) for ĩ with ξĩ ∈ Si(∆n). By (C.3.7) and (C.3.8), with probability 1− 2n−

C2
4 , we have

d̃(i, ĩ) = max
k 6=i,̃i
|(A2/n)ik − (A2/n)ĩk|

≤max
k 6=i,̃i
|(P 2/n)ik − (P 2/n)ĩk|+ 2 max

i,j:i 6=j
|(A2/n)ij − (P 2/n)ij|

≤L∆n + 2

{
(C2 + C̃2 + 2) log n

n

}1/2

(C.3.9)

Now since the fraction of nodes contained in
∣∣{̃i : ξĩ ∈ Si(∆n)}

∣∣ is at least h, this puts
an upper bound on d̃(i, i′) for i′ ∈ Ni, since nodes inNi have the lowest h fraction of values
in {d̃(i, k)}k. Setting ∆n as in Lemma 13, by Lemma 13 and (C.3.7), with probability
1 − 2n−

C̃1
4 − 2n−

C2
4 , for all i, at least C1

(
logn
n

)1/2
fraction of nodes ĩ 6= i satisfy both

ξĩ ∈ Si(∆n) and

d̃(i, ĩ) ≤ L∆n + 2

{
(C2 + C̃2 + 2) log n

n

}1/2

. (C.3.10)

Recall that i′ ∈ Ni have the smallest h = C0

(
logn
n

)1/2 ≤ C1

(
logn
n

)1/2
fraction of d̃(i, i′)’s.
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Then (C.3.10) yields that

d̃(i, i′) ≤ L∆n + 2

{
(C2 + C̃2 + 2) log n

n

}1/2

(C.3.11)

holds for all i and all i′ ∈ Ni simultaneously with probability 1− 2n−
C̃1
4 − 2n−

C2
4 .

We are now ready to complete the proof of the second claim of Lemma 14. By Lemma
13, (C.3.7), (C.3.8) and (C.3.11), with probability 1−2n−

C̃1
4 −2n−

C2
4 , the following holds.

For n large enough such that mini |{i′ : ξi′ ∈ Si(∆n)}| ≥ C1 (n log n)1/2 ≥ 4 (by Lemma
13), for all i and i′ ∈ Ni we can find ĩ ∈ Si(∆n) and ĩ′ ∈ Si′(∆n) such that i, i′, ĩ and ĩ′

are different from each other. Then we have

‖Pi· − Pi′·‖2
2/n = (P 2/n)ii − (P 2/n)i′i + (P 2/n)i′i′ − (P 2/n)ii′

≤
∣∣(P 2/n)ii − (P 2/n)i′i

∣∣+
∣∣(P 2/n)i′i′ − (P 2/n)ii′

∣∣
≤
∣∣(P 2/n)ĩi − (P 2/n)i′ ĩ

∣∣+
∣∣(P 2/n)i′ ĩ′ − (P 2/n)iĩ′

∣∣+ 4L∆n

≤
∣∣(A2/n)ĩi − (A2/n)i′ ĩ

∣∣+
∣∣(A2/n)i′ ĩ′ − (A2/n)iĩ′

∣∣+ 4

{
(C2 + C̃2 + 2) log n

n

}1/2

+ 4L∆n

≤2 max
k 6=i,i′

∣∣(A2/n)ik − (A2/n)i′k
∣∣+ 4

{
(C2 + C̃2 + 2) log n

n

}1/2

+ 4L∆n

=2d̃(i, i′) + 4

{
(C2 + C̃2 + 2) log n

n

}1/2

+ 4L∆n ≤ 8

{
(C2 + C̃2 + 2) log n

n

}1/2

+ 6L∆n

=

[
6L

{
C1 +

(
C̃2 + 4

)1/2
}1/2

+ 8
(
C2 + C̃2 + 2

)1/2
](

log n

n

)1/2

This completes the proof of Lemma 14.

We are now ready to bound 1
n2

∑
ij{J1(i, j) + J2(i, j)}, which will complete the proof

of Theorem 6. Note that we cannot simply bound each individual J1(i, j)’s by Bernstein’s
inequality since Ai′j is not independent of the event i′ ∈ Ni. Instead, we work with the
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sum 1
n

∑
j J1(i, j) and decompose it as follows.

1

n

∑
j

J1(i, j) =
1

n|Ni|2
∑
j

{∑
i′∈Ni

(Ai′j − Pi′j)

}2

=
1

n|Ni|2
∑
j

{∑
i′∈Ni

(Ai′j − Pi′j)2 +
∑
i′∈Ni

∑
i′′ 6=i′,i′′∈Ni

(Ai′j − Pi′j)(Ai′′j − Pi′′j)

}
.

(C.3.12)

The first term in (C.3.12) satisfies∑
j

(Ai′j − Pi′j)2/n = ‖Ai′· − Pi′·‖2
2/n ≤ 1 (C.3.13)

where the inequality is due to |Ai′j − Pi′j| ≤ 1 for all j. The second term in (C.3.12) can
be bounded by

1

n|Ni|2
∑
j

∑
i′∈Ni

∑
i′′ 6=i′,i′′∈Ni

(Ai′j − Pi′j)(Ai′′j − Pi′′j) ≤

≤ 1

|Ni|2
∑

i′,i′′∈Ni:i′ 6=i′′

∣∣∣∣∣ 1n∑
j

(Ai′j − Pi′j)(Ai′′j − Pi′′j)

∣∣∣∣∣
≤ 1

|Ni|2
∑

i′,i′′∈Ni:i′ 6=i′′

{
1

n− 2

∣∣∣∣∣ ∑
j 6=i′,i′′

(Ai′j − Pi′j)(Ai′′j − Pi′′j)

∣∣∣∣∣ · n− 2

n

+
|(Ai′i′′ − Pi′i′′)| |(Ai′i′ − Pi′i′ + Ai′′i′′ − Pi′′i′′)|

n

}

≤ 1

|Ni|2
∑

i′,i′′∈Ni:i′ 6=i′′

{
1

n− 2

∣∣∣∣∣ ∑
j 6=i′,i′′

(Ai′j − Pi′j)(Ai′′j − Pi′′j)

∣∣∣∣∣+
2

n

}
. (C.3.14)

To bound the first term in (C.3.14), for any i1 6= i2 and ε > 0, by Bernstein’s inequality we
have

pr

{
1

n− 2

∣∣∣∣∣ ∑
j 6=i1,i2

(Ai1j − Pi1j) (Ai2j − Pi2j)

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

{
−

1
2
(n− 2)ε2

1 + 1
3
ε

}
≤ 2n2e−

nε2

4 .

Let C3, C̃3 > 0 be arbitrary global constants and let n be large enough so that 1

C0(n logn)1/2
+

2
n
≤
{(

C3 + C̃3 + 8
)1/2

− (C3 + 8)1/2

}(
logn
n

)1/2
. First, taking ε =

{
(C3+8) logn

n

}1/2

and
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a union bound over all i1 6= i2, we have

pr

[
max

i1,i2,i1 6=i2

1

n− 2

∣∣∣∣∣ ∑
j 6=i1,i2

(Ai1j − Pi1j) (Ai2j − Pi2j)

∣∣∣∣∣ ≥
{

(C3 + 8) log n

n

}1/2
]
≤ 2n−

C3
4 .

(C.3.15)
Then plugging (C.3.13), (C.3.14) and (C.3.15) into (C.3.12) and combining with claim 1
of Lemma 14, with probability 1 − 2n−

C̃1
4 − 2n

C2
4 − 2n−

C3
4 , for all i simultaneously, we

have

1

n

∑
j

J1(i, j) ≤ 1

|Ni|2
∑
i′∈Ni

[
1 + (|Ni| − 1)

({
(C3 + 8) log n

n

}1/2

+
2

n

)]

≤ 1

|Ni|
+

{
(8 + C3) log n

n

}1/2

+
2

n
≤ 1

C0 (n log n)1/2
+

2

n
+

{
(C3 + 8) log n

n

}1/2

≤

{
(C3 + C̃3 + 8) log n

n

}1/2

. (C.3.16)

We now bound 1
n2

∑
ij J2(i, j). By Lemma 14, with probability 1− 2n−

C̃1
4 − 2n

C2
4 , we

have

1

n2

∑
ij

J2(i, j) =
1

n

∑
i

{
1

n

∑
j

J2(i, j)

}
=

1

n

∑
i

{
1

n

∑
j

(∑
i′∈Ni(Pi′j − Pij)
|Ni|

)2
}

≤ 1

n

∑
i

{∑
i′∈Ni

∑
j(Pi′j − Pij)2/n

|Ni|

}
=

1

n

∑
i

{∑
i′∈Ni ‖Pi′· − Pi·‖

2
2/n

|Ni|

}

≤

[
6L

{
C1 +

(
C̃2 + 4

)1/2
}1/2

+ 8
(
C2 + C̃2 + 2

)1/2
](

log n

n

)1/2

, (C.3.17)

where the first inequality is the Cauchy-Schwartz inequality and the second inequality fol-
lows from claim 2 of Lemma 14.

Combining (C.3.16) and (C.3.17) completes the proof of Theorem 6.
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