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Marginal screening is a widely applied technique to handily reduce the dimensionality of the data when
the number of potential features overwhelms the sample size. Due to the nature of the marginal screening
procedures, they are also known for their difficulty in identifying the so-called hidden variables that are jointly
important but have weak marginal associations with the response variable. Failing to include a hidden variable
in the screening stage has two undesirable consequences: (1) important features are missed out in model
selection; and (2) biased inference is likely to occur in the subsequent analysis. Motivated by some recent work
in conditional screening, we propose a data-driven conditional screening algorithm, which is computationally
efficient, enjoys the sure screening property under weaker assumptions on the model, and works robustly in
a variety of settings to reduce false negatives of hidden variables. Numerical comparison with alternatives
screening procedures are also made to shed light on the relative merit of the proposed method. We illustrate
the proposed methodology using a leukemia microarray data example.
Copyright c© 2012 John Wiley & Sons, Ltd.
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1. Introduction
1.1. Background
A popular approach for analyzing big data is to first apply a computationally expedient screening procedure to reduce
the dimensionality to a moderate size. More sophisticated but often more computationally intensive statistical methods,
such as penalized regression, can then be applied in the second stage. This practice has become routine in many fields
such as genomics and finance, where the number of available features in the data is often huge comparing to the
sample size.
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Fan and Lv (2008) proposed the sure independence screening (SIS) methodology for linear regression, which screens
variables by ranking their marginal correlations with the response variable. Under some regularity conditions, these
authors proved that sure independence screening has the ability to keep all the important variables with probability
tending to one. This desirable property is often referred to as the sure screening property. The marginal screening
procedure has been further developed in a series of recent papers for a variety of settings; see Hall and Miller (2009),
Fan and Song (2010), Bühlmann et al. (2010), Fan et al. (2011), Zhu et al. (2011), Li et al. (2012), Li et al. (2012),
Mai and Zou (2013), He et al. (2013), Liu et al. (2014), Shao and Zhang (2014), among others. A different screening
procedure is recently proposed by Wang and Leng (2015), which aims to target joint associations in a covariate space
in the dimension of the sample size.

1.2. False negatives in marginal screening
Naturally, the success of any marginal screening procedure depends on how well the marginal utility, correlation
coefficient between the response and each individual predictor, captures the importance of the predictors in a joint
model. A variable may be retained by the screening procedure when it is marginally important but not jointly important
(false positive); or a variable that is jointly important but not marginally important can be screened out, resulting in a
false negative.

False negatives have two potentially serious consequences. Firstly, important features may be screened out and
will not be reinstated by the second-stage analysis. Secondly, the false negatives can lead to bias in subsequent
inference. The risk of false negatives is widely recognized. An active variable can be hidden when the correlation
is estimated marginally. One illustrative example was given by Guyon and Elisseeff (2003, Section 3.3) for a
two-class classification problem, where individual variables have no separation power, but jointly the variables
provide good class separation. As another example, we consider the following model from Barut et al. (2016),
Y = b1X1 + · · ·+ bqXq − α(b1 + · · ·+ bq)Xq+1 + e, where q � p, b1, . . . , bq are nonzero constants, and e has a
standard normal distribution. The vector of covariates (X1, . . . , Xp)T has a multivariate normal distribution, and
the covariance matrix of which has an equally-correlated structure with the correlation coefficient α. In this case,
cov(Y,Xq+1) = 0 even if Xq+1 has a large coefficient. Hence, we expect that marginal screening will give little priority
to Xq+1.

Existing marginal screening procedures share the simplistic assumption that jointly important variables are also
marginally important. This assumption is critical to ensuring the sure screening property since if it is violated, false
negatives are likely to arise. To alleviate this problem, Fan and Lv (2008) suggested an iterative procedure (ISIS) by
repeatedly using the residuals from the previous iteration, which was subsequently adopted by many other marginal
screening procedures. For a generalized linear model version of ISIS is studied in Fan and Song (2010) and Fan et al.
(2009). Due to the iterative nature, the computational costs are higher and the statistical properties of the resulting
model are more difficult to analyze. Perhaps more importantly, the performance of the iterative sure independence
screening depends a lot on the underlying model. In some settings, particularly when the signal to noise ratio is not very
high, iterative sure independence screening can underperform sure independence screening, as shown in our empirical
comparisons.

Recently, Barut et al. (2016) proposed a conditional screening technique which uses the prior knowledge that a certain
set of predictors (denoted by C) are relevant to the response variable. Each remaining variable Xj , where Xj /∈ C, is
evaluated by fitting a regression model using Xj and the predictors in C. The variable Xj is considered important if the
magnitude of its coefficient in the above regression model exceeds a given threshold. They derived the sure screening
property and demonstrated the prior knowledge of a “good" set C can be very helpful for identifying hidden variables.
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However, the question remains how to select a good set C. Our simulation studies suggest that the performance of
such a procedure is sensitive to the choice of C.

Motivated by the work of Barut et al. (2016) and recent developments on sparse principal component analysis, we
propose a data-driven algorithm for conditional screening with generalized linear models. Our goal is to reduce false
negatives due to marginal screening without relying on a cherry-picked set of C on which the conditional screening is
based. To illustrate our proposed methodology, we analyzed the popular leukemia data (Golub et al., 1999). In this data
set, expression levels are measured on 7129 genes for each of the 72 patients. The classification task is to discriminate
acute lymphoblastic leukemia from acute myeloid leukemia. We compare the proposed method with several competing
procedures with respect to their abilities to select a small subset of genes to build an interpretable and effective
predictive model. This real data example demonstrates that subjective or random choice of the conditioning set often
leads to unstable performance. The proposed data-adaptive method produced meaningful and more reproducible results
in the analysis.

2. The Proposed 3-Step Method
2.1. Preliminaries
Throughout the paper, we assume that the conditional density of the response variable Y given the vector of predictors
X = x belongs to the following exponential family

f (y ; x, θ) = exp [yθ(x)− b{θ(x)}+ c(x, y)] , (1)

where b(·) and c(·, ·) are known functions and θ(x) is the canonical parameter. We write x = (x1, . . . , xp)T. The popular
generalized linear model assumes that there exists a (p + 1)-vector of parameters β = (β0, β1, . . . , βp)T such that
E(Y | X = x) = b′{θ(x)} = g−1(β0 + β1x1 + · · ·+ βpxp), where g(·) is the canonical link function, i.e., g = (b′)−1

and b′(θ) is the first derivative of b(θ) with respect to θ. In (1), no dispersion parameter is included since we focus on
the mean regression. Furthermore, we standardize the covariates so that they have mean zero and standard deviation
one. To emphasize the dependence of p on the sample size, we use p = pn in the remaining of the paper, and let
β∗ = (β∗0, β∗1, . . . , β∗pn)T be the vector of true parameter values. Furthermore, assume that β∗ is sparse in the sense
that the size of the set M∗ = {j : β∗j 6= 0, 1 ≤ j ≤ pn} is small relative to n even when pn is large.

In a nutshell, our new algorithm consists of three steps. First, we perform pre-cleaning by standard marginal regression
to reduce dimensionality of the problem. Second, we perform sparse principal component analysis on the variables
surviving the first step and obtain a set of variables corresponding to those having large loadings on the leading
eigenvectors. Finally, using the set of predictors obtained in Step 2, we perform conditional marginal screening. Each
step of the new algorithm is computationally fast. We will describe the details of the three steps later in this section.

Step 2 of the proposed method relies on the recent work on sparse principal component analysis. Recently, it has been
revealed by several authors, including Li (2007), Artemiou and Li (2009, 2013) and Ni (2011), that the response is
often highly correlated with the leading principal components of the covariate vector, and hence principal component
analysis is valuable for the purpose of finding a low dimensional summary of relevant predictors in the regression setting.
In Section 3, we demonstrate that with the assistance of the sparse principal component analysis, the proposed method
yields a robust variant of the conditional marginal screening and works well in a variety of settings to reduce false
negatives without relying on a pre-selected set of variables with a priori information to perform the conditional analysis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stat 2012, 00 1–13 3 Copyright c© 2012 John Wiley & Sons, Ltd.
Prepared using staauth.cls

This article is protected by copyright. All rights reserved.



Stat H. Hong, L. Wang and X. He

2.2. Step 1: Pre-cleaning
In some applications, the number of available predictors can be in the order of tens of thousands or more but the
sample size is limited. To expedite the computation, we first perform a pre-screening step. In this step, the number
of predictors we retain is allowed to be larger than the sample size, but usually significantly less than the candidate
number of predictors. Although the pre-cleaning is based on the marginal utility as the traditional marginal screening
methods, we do not require the assumption that jointly important variables are also marginally important to hold. It is
important to note that a variable that is screened out at this stage may still be identified in Step 3.

Let β̂j be the maximum likelihood estimator of the coefficient of Xj from fitting a marginal generalized linear model using
only the intercept and Xj . Denote (β̂0j , β̂j) = argmin

(β0,βj )

Pnl(β0 +Xjβj , Y ), where l(θ(x), Y ) = −
[
θ(x)Y − b{θ(x)}

]
,

and for a measurable function g, Png(X, Y ) = n−1
∑n

i=1 g(Xi , Yi). We retain the variables whose estimated marginal
magnitude is sufficiently large. For a given threshold γn, let

Mn1 = {j : |β̂j | > γn}

be the index set of the predictors that survive the pre-cleaning.

Define (β∗0j , β
∗
j ) = arg min(β0,βj ) E{l(β0 +Xjβj , Y )} as the population version of the marginal regression coefficients.

Assume that there exists An ⊂ {1, . . . , pn} such that minj∈An |β∗j | ≥ c1n−κ and supj∈Acn |β
∗
j | ≤ c2n−κ−δ, for some

0 < κ < 1/2, δ > 0 and some positive constants c1 and c2. Let qn = |An|, where |An| denotes the cardinality of
An. We assume that qn →∞ but qn = o(pn).

Proposition 2.1
Assume conditions 1-5 in Appendix are satisfied. For γn = c3n

−κ with c3 ≤ c1/2, there exist positive constants ξi > 0,
i = 1, 2, 3, such that pr(Mn1 = An) ≥ 1− pn{exp(−ξ1n1−2κk−2n K−2n ) + exp(−ξ2Kξ3n )}, for all n, where Kn and kn are
defined in conditions 2 and 5, respectively.

Remark 1
This result follows from a direct application of the exponential bound for the marginal maximum likelihood estimator
in the generalized linear model shown in Fan and Song (2010). Under relatively weak conditions the above probability
bound converges to 1 as n →∞.

2.3. Step 2: Sparse principal component analysis
Next, we apply sparse principal component analysis to the variables surviving the pre-cleaning to construct a subset of
covariates to condition on. Let XAn denote the subset of the components of X whose indice are in An. Let Σ be the
population covariance matrix of XAn , and consider its spectral decomposition Σ =

∑qn
j=1 λjuju

T
j , where λ1 ≥ · · · ≥ λqn

are eigenvalues, and u1, . . . , uqn ∈ Rqn constitute an orthonormal basis of the eigenvectors. For a given positive integer
k < qn, we consider the principal subspace spanned by the k leading eigenvectors of Σ, that is, the space spanned
by u1, . . . , uk . Our working assumption is that the leading eigenvectors are sparse in the sense that most of their
components are zero.

For a vector v , let supp(v) be the index set corresponding to non-zero entries of v . Then Bn = ∪kj=1supp(uj) represents
the collection of the indices of the predictors corresponding to the nonzero components of the first k eigenvectors. In
our numerical examples, a small positive integer k , say k = 1, 2, is found to work well. The set of predictors XBn is
what we will use in the conditional screening step.
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There are a number of different algorithms for sparse principal component analysis; we refer to Jolliffe et al. (2003), Zou
et al. (2006), Shen and Huang (2008), Witten et al. (2009), Johnstone and Lu (2009), Ma (2013), Vu and Lei (2013),
She (2014), and the references therein. We use the recently developed fantope projection and selection algorithm of Vu
et al. (2013) in our work. Unlike some of the alternatives, fantope projection and selection algorithm can be applied to
correlation matrices, and has proved theoretical guarantee for consistently identifying Bn. Let U = [u1, . . . , uk ]. Then
the projection matrix associated with the principal subspace is Π = UUT. Let Sn be the sample covariance matrix of
XMn1 . Vu et al. (2013) proposed to estimate Π by Ĥ = arg max{〈Sn, H〉 − ρ‖H‖1,1} subject to the |Mn1| × |Mn1| matrix
H ∈ F k , where F k = {H : 0 � H � I and tr(H) = k}, which is called the trace-k Fantope, ρ is a tuning parameter,
and 〈Sn, H〉 = tr(Sn

TH) is the trace inner product. The matrix (1,1)-pseudonorm ‖H‖1,1 = (‖H1∗‖1, . . . , ‖Hk∗‖1)1
with Hj∗ denoting the jth row of H, j = 1, . . . , k , that is ‖H‖1,1 is the L1 norm of the vector that consists of row-wise
L1 norms of H. We then estimate Bn by

Mn2 = supp{diag(Ĥ)},

which is the index set corresponding to the nonzero diagonal elements of Ĥ.

Proposition 2.2
Assume conditions 1-8 in Appendix are satisfied. Then pr(Mn2 = Bn) ≥ (1− 2qn

−2)
[
1− pn{exp(−ξ1n1−2κk−2n K−2n ) +

exp(−ξ2Kξ3n )}
]
, for all n.

Remark. This result follows directly from Theorem 2 on sparsistency of Lei and Vu (2015). The validity of this result
does not depend on any assumption on the joint model. Lei and Vu (2015) also showed that even without assuming
sparsity, fantope projection and selection method provides a sparse, linear dimension-reducing transformation that
is close to the best possible in terms of maximizing the predictive covariance. Vu et al. (2013) recommended to
dynamically update ρ after each iteration of their algorithm to keep the primal and dual residual norms within a
constant factor of each other.

2.4. Step 3: Conditional screening
In the last step, we perform the conditional screening of Barut et al. (2016) by conditioning on XMn2 . This step allows
us to include variables with large additional contributions, which may help recruit predictors that are missed in Step 1.
More specifically, for each j /∈ Mn2, let (η̂0j , η̂Mn2 , η̂j) = argmin

(η0j ,ηMn2 ,ηj )

Pnl(η0 +XTMn2
ηMn2 +Xjηj , Y ).

Conditioning on Mn2, we keep the variables in the following set

Mn3 = {j : |η̂j | > γ2, j ∈ Mc
n2}

for a given threshold γ2. Under weak conditions, it can be shown that Mn3 enjoys the sure screening property. In
practice, the threshold γ2 may need no prior specification if we choose to retain a fixed number of variables with the
largest coefficients |η̂j |. At the end of the algorithm, we keep the predictors in the set M̂n = Mn2 ∪Mn3.

Theorem 2.1
(Sure screening property) Assume conditions 1-11 in Appendix are satisfied. For the κ′ defined in
condition 9, let γ2 = a1n

−κ′ with a1 ≤ a2, where a1 > 0, a2 > 0 are constants. Then there exist
positive constants ξi , i = 4, 5, 6 such that pr(M∗ ⊂ M̂n) ≥

[
1− dn{exp(−ξ4n1−2κk ′−2n K−2n ) + n exp(−ξ5Kξ6n )}

]
(1−

2qn
−2)
[
1− pn

{
exp(−ξ1n1−2κk−2n K−2n ) + exp(−ξ2Kξ3n )

}]
for all n, where dn = |M∗| and k ′n are defined in condition

11.
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Remark. This result follows from Proposition 2 and Theorem 3 of Barut et al. (2016). For linear and logistic models,
the optimal order of Kn is a positive power of n1−2κ. It is easy to see the probability in Theorem 1 goes to one even
when pn is allowed to grow exponentially fast.

3. Monte Carlo studies
In the simulation studies, we compare the proposed 3-step method (denoted by 3S in Table 1) with the following
alternatives: (i) sure independence screening (SIS) of Fan and Lv (2008), (ii) iterative sure independence screening
(ISIS) of Fan et al. (2009), (iii) conditional sure independence screening (CSIS) of Barut et al. (2016) with different
choices of the conditioning set C, and (iv) high-dimensional ordinary least-squares projector (HOLP) of Wang and
Leng (2015). Sure independence screening and iterative sure independence screening are both implemented using the
R-package SIS on CRAN (version of 0.7-5). We fix ρ = 0.5, the tuning parameter in the fantope projection. In the
real analysis, we can determine a value of ρ by cross-validation.

We evaluate different screening methods on B simulations runs, where B = 200 for (p, n) = (1000, 100) and B = 100

for (p, n) = (10000, 200). Across B simulation runs, we compare the different methods according to two criteria: i)
true model inclusion ratio (TMR), the proportion of times when the first n variables retained from screening include all
the active variables; ii) average active variable ratio (AAR), the proportion of active variables in the set of n retained
variables after screening. Higher values of TMR and AAR indicate better screening procedures.

In this study, Examples 1–4 are adapted or modified from Barut et al. (2016) and Fan and Lv (2008) and Example 6
is used in Wang (2009) and Wang and Leng (2015). The random error ε follows N(0, σ2) with σ2 being adjusted to
achieve a pre-specified R2 defined as var(XTβ)/var(Y ).

Example 1. Y = XTβ + ε, where all covariates follow the standard normal distribution with equal correlation 0.5 and
β = (3, 3, 3, 3, 3,−7.5,0, . . . , 0)T. In this setting, X6 is the hidden active variable since cov(X6, Y ) = 0 although β6
has a large contribution to the response variable.

Example 2. The conditional distribution of Y given X = x follows the binomial distribution with pr(Y = 1 |
X = x) = exp(xTβ)/{1 + exp(xTβ)}, where X and β are the same as in Example 1.

Example 3. Y = XTβ + ε, where all the covariates except X1–X7 follow the independent standard normal
distribution and β = (10, 0, . . . , 0, 1)T. The first 7 covariates are normal with equi-correlation 0.9.

Example 4. Y = XTβ + ε, where β = (1,1.3,1,1.3,1,1.3,1,1.3,1,1.3,1,1.3,0, . . . , 0)T, Xj = εj , {εj}j=1,...,[p/3] are
independent and identically distributed standard normal variables,
{εj}j=[p/3]+1,...,[(2p)/3] are independent and identically distributed double exponential variables with location parameter
zero and scale parameter one, and {εj}j=[(2p)/3]+1,...,p are independent and identically distributed with a mixture
normal distribution with two components N(−1, 1) and N(1,0.5) of equal mixture proportion, where [x ] denotes the
integer part of x .

Example 5. Y = XTβ + ε, where all the covariates except X2–X50 are independent standard normal random
variables and β = (0.7,0.2,-0.2,-0.2, 0, . . . , 0)T. The covariates X2–X50 are normal with equi-correlation 0.9.

Example 6. Y = XTβ + ε, where each Xi follows a multivariate normal distribution with mean 0 and
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cov(Xi j1 , Xi j2) = 0.3|j1−j2| and β = (3, 0, 0, 1.5, 0, 0, 2, 0, . . . , 0)T.

Put Table 1 about here.

We summarize the simulation results from the above examples in Table 1, but note that Wang and Leng (2015) is
not developed for binary responses so is excluded in Example 2. The performance of conditional sure independence
screening depends on the prior knowledge of a conditioning set C. We consider the case when such an informative set
is available as well as the case where we do not have such knowledge. In Example 1, we consider two choices of the
conditioning sets, C1 = {1, 2} and C2 ={a random choice of 2 inactive variables}; in Examples 2–6 we consider the
choices C1 = {1} and C2 ={a random choice of 1 inactive variable}. Here, C1 is a favorable choice, but C2 is not. For
the proposed 3S method, we retain n covariates in the pre-cleaning step. Although the number of predictors kept in
this stage can be larger than the sample size, we did not observe significant gains from holding larger sets of covariates
such as sizes of 2n and 3n in the above examples. To control the effect due to the size of the conditioning set, we
let the size of Mn2 of our proposed procedure be the same as that of the conditioning set used for conditional sure
independence screening. We observe from Table 1 that

• The iterative sure independence screening tends to perform well when the signal-to-noise ratio is high (with
R2 = 0.9) but it does not always improve over sure independence screening. In more realistic setting with
R2 = 0.5 or lower, the iterative screening often performs worse, and sometimes substantially so (Examples 2, 5
and 6).
• The benefit of conditional sure independence screening is clear when a favorable choice of the conditioning set
is given, such as the case with C1. However, when the conditioning set is not well chosen, it becomes less robust
and its performance could degenerate easily.
• In all the examples, the proposed method 3S remains highly competitive. Often, it performs significantly better
than sure independence screening when the latter has difficulty selecting the hidden active variables (Examples 1–
3). When compared with conditional sure independence screening, it is much closer to the behavior of conditional
sure independence screening under a favorable conditioning set than that without a well-informed choice of the
conditioning set.
• High-dimensional ordinary least-squares projector is often a competitive method, however, it has very poor
performance in Example 5 and it has not been developed for binary regression (Example 2).

In summary, for a wide range of settings, the proposed method remains competitive. It can be viewed as a data-adaptive
version of the conditional sure independence screening. Our empirical work demonstrates the potential of the proposed
method to reduce the false negatives when hidden variables are present.

4. Real Data Example
We illustrate the proposed methodology using the widely analyzed leukemia microarray data set from Golub et al.
(1999). The data set contains measurements on specimens from bone marrow or peripheral blood samples taken from
72 patients, who had either acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Gene expression
levels were measured using Affymetrix high-density oligonucleotide arrays containing p =7129 human genes.

It is important to identify signature genes for distinguishing ALL and AML. We first split the data into 38 training
samples (27 ALL and 11 AML) and 34 testing samples (20 ALL and 14 AML) as done in the original investigation
(Golub et al., 1999), and then apply the proposed method to select genes and evaluate the performance of classification
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power. We standardize the gene expression data so that the arrays have mean 0 and variance 1 across genes, which
is a common pre-prcessing method used in expression data analysis. The predictive performance of the selected genes
on the training and testing data is assessed for several competing methods under consideration. They are

• SIS: using top three genes by marginal screening.
• ISIS: using top three genes by iterative screening.
• CSIS-i: the CSIS method conditional on C1 = {X95735, D26156}, two genes used in Barut et al. (2016) as
good choices.

• CSIS-ii: the CSIS method conditional on C2 = {X95735,M27783}, two top genes from marginal screening SIS.
• CSIS-iii: the CSIS method conditional on C3 which consists of two randomly chosen genes.
• 3S: the proposed 3-step screening method.

Put Table 2 about here.

The results on the mis-classification performance (evaluated on the testing data) are reported in Table 2, where the
misclassification rates are computed using two different approaches. The first one Test error1 uses the training data
to both select the genes and fit the logistic regression model which is then used for classification, while the second
one Test error2 uses the training data to select the genes and then use the full data to estimate the logistic model
coefficients for classification.

We retain three genes for SIS to compare directly with the results in Barut et al. (2016). For the CSIS-iii, the mis-
classification rates are averaged over 200 randomly chosen sets of C3. For our proposed method 3S, we choose the
tuning parameter ρ needed in Step 2 (the fantope projection) by cross-validation. The ρ value of 0.45 for the training
data set is used.

The proposed data-driven conditional screening method 3S identified genes D88422 (CYSTATIN A), X95735 (Zyxin)
in Step 2 and selected an additional gene M21624 (TCRD T-cell receptor, delta) in Step 3. We observe that the
three genes identified by the 3S procedure have satisfactory predictive power. In fact, the misclassification rates (Test
error1=2/34, Test error2=1/34) are the same as those for CSIS-i, where a knowledgeable choice of the conditioning
set based on information from the medical literature is used (Barut et al., 2016). The original paper of Golub et al.
(1999) used 50 genes to build a predictive model but only achieved correct classification on 29 of the 34 cases in
the testing data set. In comparison, the proposed 3S method achieve better classification performance with far fewer
genes.

It is also informative to see what happens when we apply different methods to the full data, that is, the full data are
used to select the genes, fit the model and evaluate the classification performance. When CSIS-i with the same C1 as
in Table 2 is applied to the full data, it selects an additional gene HG651-HT4201 and results in a misclassification rate
of 4/72. This is clearly not as favorable as the results in Table 2 and demonstrates that even though C1 (subjective
choice) gives good performance for the training data, it would lead to less favorable results on the full data. When
the proposed method S3 is used, we obtain C ={M27891 (Cystatin C)} for k = 1, and C ={M27891 (Cystatin
C), D88422 (Cystatin A)} for k = 2 in Step 2 using the fantope projection tuning parameter ρ = 0.49. In Step 3,
an additional gene U62136 (putative enterocyte differentiation promoting factor mRNA) is selected conditioning on
either {M27891, D88422} or {M27891}. In either case, the method identified a model with no misclassification on
the same data. Note that U62136 is removed in Step 1 of the 3S method due to its small marginal utility, but it is
retrieved in Step 3 by conditioning on the gene(s) selected in Step 2. Those three genes by 3S were all identified
as important in Golub et al. (1999). Previous studies (Dramiński, and Vannucci, 2008; Guan and Zhao, 2005) also
confirmed U62136 as one of the top-ranked reference genes for leukemia.
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With SIS, U62136 is ranked as 63 out of the total number of 7129 genes. Therefore, it can be easily missed by marginal
screening when only a small subset of genes are chosen in the final model. It is also missed by CSIS with the subjective
choice of C1 used by Barut et al. (2016). Overall, we conclude that the proposed 3S method with adaptive choice of
conditioning set provides reliable results in this example, whether the procedure is applied to the training data alone
or to the full data.

Appendix
A. Technical conditions

We first introduce some additional notation. Let βj = (β0j , βj)
T, Xj = (1, Xj)

T, β = (β0, β1, . . . , βpn)T and
X = (1, X1, . . . , Xpn)T. Let XBn be the subvector of X consisting of those components in Bn, where Bn is defined
in Section 2.3. For j /∈ Bn, let XBn j = (XTBn , Xj)

T. Let η = (η0, η1, . . . , ηpn)T. For j /∈ Bn, let ηBn j = (ηTBn , ηj)
T and

η∗Bn j = arg minηBnj El(X
T
Bn j
ηBn j , Y ). For a vector v ∈ Rk , ||v || denotes the Euclidean norm and ||v ||∞ = max1≤i≤k |vi |.

For a matrix A ∈ Rn×m, and index sets J1 ⊂ {1, . . . , n} and J2 ⊂ {1, . . . , m}, AJ1J2 denotes the submatrix
consists of rows in J1 and columns in J2. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, Ai j denotes the (i , j)th entry of A. The
matrix (2,∞)-norm ||A||2,∞ is defined as ||(||A1∗||, ||A2∗||), . . . , ||An∗||)||∞, where Ai∗ denotes the ith row of A,
i = 1, . . . , n. Let M∗Bn = M∗ ∩ Bn. Let EL(Xj |XBn) denote the best linear regression fit of Xj regressed on XBn . Let
CovL(Y,Xj |XBn) = E(Xj − EL(Xj |XBn))(Y − EL(Y |XBn)).

Condition 1. The marginal Fisher information Ij(βj) = E{b′′(XTj βj)XjXTj } is finite and positive definite at β∗j =

(β∗0j , β
∗
j )T, where (β∗0j , β

∗
j ) = arg min(β0,βj ) E{l(β0 +Xjβj , Y )} for j = 1, . . . , pn. Moreover, supβj∈B,||X||=1

||Ij(βj)1/2X||
is bounded from above, where || · || is the Euclidean norm, B = {βj : |β0j | ≤ B, |βj | ≤ B} is a sufficiently large set for
which β∗j is an interior point.

Condition 2. The second derivative of b(θ) is continuous and positive. There exists an ε1 > 0 such that for all
j = 1, . . . , pn, for some sufficiently large positive constant Kn, supβj∈B,||βj−β

∗
j ||≤ε1

∣∣Eb(XTj βj)I(|Xj | > Kn)
∣∣=o(n−1).

Condition 3. For all βj ∈ B, we have E(l(XTj βj , Y )− l(XTj β
∗
j , Y )) ≥ V ||βj − β∗j ||2, for some positive constant V ,

bounded from below uniformly over j = 1, . . . , pn.

Condition 4. There exist some positive constants m0, m1, s0, s1 and α, such that for sufficiently large t, P (|Xj | >
t) ≤ (m1 − s1) exp(−m0tα), for j = 1, . . . , pn, and that E

[
exp{b(XTβ∗ + s0)− b(XTβ∗)}

]
+ E

[
exp{b(XTβ∗ − s0)−

b(XTβ∗)}
]
≤ s1.

Condition 5. Let kn = b′(KnB + B) +m0K
α
n /s0. Assume that n1−2κ/(k2nK

2
n)→∞.

Condition 6. The matrix Σ defined in Section 2.3 satisfies the sparse principal subspace condition (SPS) in Lei and
Vu (2015) with some positive integer k and a support set J of size s; Σ also satisfies the limited correlation condition
(LCC) in Lei and Vu (2015) with a constant δ ∈ (0, 1]. The matrix Sn defined in Section 2.3 satisfies the maximum
error bound condition in Lei and Vu (2015) with a scaling constant σ.

Condition 7. Assume that s
√

log qn/n ≤ {δ(λk − λk+1)2}/{4σ(8λ1 + λk − λk+1)}. The tuning parameter ρ in
estimating Ĥ satisfies: ρ = σδ−1

√
log qn/n.

Condition 8. Either of the following two conditions holds:
(1) 4sσ

√
log qn/n < δ(λk − λk+1) minj∈J

√
Πj j , where Π is defined in Section 2.3;

(2) rank(sign(ΣJJ)) = 1 and 2σ
√

log qn/n < δmini∈J,j∈J Σi j .
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Condition 9. There exist c ′1 > 0 and 0 < k ′ < 1/2 such that covL(Y,Xj |XBn) ≥ c ′1n−κ
′
, ∀ j ∈ M∗Bn . Let φj =

{b′(XTBn jη
∗
Bn j

)− b′(XTBnη
∗
Bn

)}/(XTBn jη
∗
Bn j
− XTBnη

∗
Bn

). Assume that E(φjX
2
j ) ≤ c ′2 for some positive constant c2,

uniformly in j ∈ Bcn .

Condition 10. (i) The marginal Fisher information Ij(ηBn j) = E{b′′(XTBn jη
∗
Bn j

)XBn jX
T
Bn j
} is bounded. Moreover,

supβBnj∈B′,||XBnj ||=1
||Ij(ηBn j)1/2XBn j || is bounded, where || · || is the Euclidean norm, B′ = {ηBn j : |(ηBnj )l | ≤ B′, ∀ l ∈

Bn ∪ {j}} is a sufficiently large set for which η∗Bn j is an interior point, B′ is a sufficiently large positive constant, and
(ηBnj )l denotes the lth component of ηBnj .

(ii) There exists an ε′1 > 0 such that for all j ∈ Bcn , for the Kn specified in condition 2,
supηBnj∈B′,||ηBnj−η

∗
Bnj
||≤ε′1

∣∣Eb(XTBn jηBn j)I(|Xj | > Kn)
∣∣=o(n−1). The function l(xTβ, y) satisfies the Lipschitz

condition with positive constant kn, |l(xTβ, y)− l(xTβ′, y)|In(x, y) ≤ kn|xTβ − xTβ′|In(x, y), for β, β′ ∈ B, a
compact, convex parameter set, where In(x, y) = I{(x, y) ∈ Ωn} and Ωn = {(x, y) : ||x ||∞ ≤ Kn, |y | ≤ K∗n}, for some
positive constants Kn and K∗n = m0K

α
n /s0.

(iii) For all ηBn j ∈ B′, we have E(l(XTBn jηBn j , Y )− l(XTBn jη
∗
Bn j
, Y )) ≥ V ′||η∗Bn j − η

∗
Bn j
||2, for some positive constant V ′.

Condition 11. Let k ′n = b′(KnB(|Bn|+ 1)) +m0K
α
n /s0. Assume that n1−2κ

′
/(k ′2n K

2
n)→∞.

Remark. Conditions 1-5 are those that appear in Theorem 4 of Fan and Song (2010) for the exponential bound for
the marginal maximum likelihood estimator in the generalized linear model. As they have discussed, conditions 1-3 are
satisfied by many examples of generalized linear models; condition 4 ensures the tail of Y to be exponentially light;
condition 5 is necessary for the exponential inequality of the marginal MLE. Conditions 6-8 are those that appear in
Theorem 2 of Lei and Vu (2015). Conditions 9-11 are those that appear in Theorem 3 of Barut et al. (2016), which
are parallel to conditions 1-5 for the unconditional case.

B. Technical derivations

Proof of Proposition 1. It is embedded in the proof for Theorem 4(i) of Fan & Song (2010) that for γn = c3n
−κ

with c3 ≤ c1/2 there exist positive constants ξi > 0, i = 1, 2, 3, such that the marginal likelihood estimator satisfies

pr(|β̂j − β∗j | > γn) ≤ exp(−ξ1n1−2κk−2n K−2n ) + exp(−ξ2Kξ3n ), (2)

∀ 1 ≤ i ≤ pn. Consider the event En = {max1≤i≤pn |β̂j − β∗j | ≤ γn}. Note that on this event, we haveMn1 = An. Hence,
pr(Mn1 = An) ≥ pr(En) = 1− pr(Ecn ) and the result follows by an application of (2) and the union bound. 2

Proof of Proposition 2. Note that pr(Mn2 = Bn) ≥ pr(Mn2 = Bn|Mn1 = An)pr(Mn1 = An). By Theorem 2 of Lei and
Vu (2015), pr(Mn2 = Bn|Mn1 = An) ≥ 1− 2q−2n . The result then follows by an application of Proposition 1. 2

Proof of Theorem 1. Note that pr(M∗ ⊂ M̂n) ≥ pr(M∗ ⊂ M̂n|Mn2 = Bn)pr(Mn2 = Bn). By Theorem 3 of Barut et
al. (2016), pr(M∗ ⊂ M̂n|Mn2 = Bn) ≥

[
1− dn{exp(−ξ4n1−2κk ′−2n K−2n ) + n exp(−ξ5Kξ6n )}

]
. The result then follows by

an application of Proposition 2. 2
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Table 1. Comparison of true model inclusion and average active viable ratios by different screening methods.

(p, n) = (1000, 100) (p, n) = (10000, 200)

R2 = 50% R2 = 90% R2 = 50% R2 = 90%

Method TMR AAR TMR AAR TMR AAR TMR AAR

Example 1 SIS 0.00 0.60 0.00 0.77 0.00 0.59 0.00 0.80
(d = 6) ISIS 0.00 0.41 0.98 1.00 0.01 0.49 1.00 1.00

CSIS with C1 0.28 0.81 0.80 0.96 0.29 0.82 0.93 0.99
CSIS with C2 0.06 0.68 0.46 0.89 0.07 0.68 0.62 0.94
HOLP 0.06 0.67 0.58 0.91 0.14 0.69 0.77 0.96
3S 0.08 0.67 0.65 0.93 0.15 0.74 0.82 0.96

Example 2 SIS 0.00 0.48 0.00 0.63 0.00 0.40 0.00 0.64
(d = 6) ISIS 0.00 0.28 0.01 0.52 0.00 0.29 0.04 0.59

CSIS with C1 0.12 0.71 0.32 0.83 0.08 0.70 0.48 0.88
CSIS with C2 0.02 0.54 0.14 0.74 0.00 0.46 0.10 0.73
HOLP - - - - - - - -
3S 0.00 0.55 0.23 0.78 0.03 0.52 0.15 0.76

Example 3 SIS 0.13 0.56 0.22 0.61 0.13 0.56 0.19 0.60
(d = 2) ISIS 0.06 0.50 0.56 0.78 0.05 0.51 0.79 0.90

CSIS with C1 0.24 0.62 0.89 0.94 0.15 0.57 0.95 0.98
CSIS with C2 0.14 0.57 0.22 0.61 0.14 0.57 0.21 0.60
HOLP 0.15 0.57 0.34 0.67 0.13 0.56 0.22 0.61
3S 0.23 0.62 0.57 0.78 0.13 0.56 0.63 0.82

Example 4 SIS 0.00 0.66 0.07 0.84 0.00 0.69 0.24 0.91
(d = 12) ISIS 0.00 0.32 0.85 0.96 0.00 0.37 0.98 0.99

CSIS with C1 0.01 0.69 0.17 0.87 0.00 0.75 0.40 0.93
CSIS with C2 0.00 0.65 0.06 0.83 0.00 0.69 0.24 0.90
HOLP 0.00 0.64 0.13 0.86 0.02 0.69 0.30 0.92
3S 0.00 0.65 0.09 0.84 0.02 0.68 0.28 0.91

Example 5 SIS 0.33 0.63 0.51 0.76 0.50 0.73 0.74 0.91
(d = 4) ISIS 0.00 0.28 0.00 0.44 0.00 0.30 0.00 0.48

CSIS with C1 0.56 0.79 1.00 1.00 0.78 0.92 1.00 1.00
CSIS with C2 0.15 0.62 0.14 0.66 0.14 0.62 0.20 0.69
HOLP 0.00 0.25 0.00 0.26 0.02 0.30 0.06 0.48
3S 0.27 0.65 0.36 0.74 0.30 0.67 0.28 0.65

R2 = 30% R2 = 50% R2 = 30% R2 = 50%

Example 6 SIS 0.71 0.90 0.90 0.97 0.83 0.94 0.97 0.99
(d = 3) ISIS 0.33 0.70 0.79 0.92 0.37 0.73 0.93 0.94

CSIS with C1 0.83 0.94 0.99 0.99 0.83 0.94 1.00 1.00
CSIS with C2 0.72 0.90 0.89 0.96 0.70 0.89 0.97 0.99
HOLP 0.71 0.90 0.89 0.96 0.73 0.91 0.97 0.99
3S 0.72 0.90 0.91 0.97 0.87 0.96 1.00 1.00
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Table 2.Misclassification rates for the Leukemia data with training and testing samples.

Method Train Test Test
error error1 error2

1) SIS 0/38 5/34 3/34
2) ISIS 0/38 3/34 3/34
3) CSIS
i) informative C1={X95735, D26156} 0/38 2/34 1/34
ii) informative C2 ={X95735, M27783} 1/38 5/34 3/34
iii) non-informative C3={Two random choices} (0.1± 1.14)/38 (6.9± 3.42)/34 (6.1± 3.93)/34
4) Proposed
data-driven C ={D88422, X95735} 0/38 2/34 1/34
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