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ABSTRACT 

PURPOSE: To assess the effects of cerebrospinal fluid (CSF) bidirectional motion in Chiari 

malformation type I (CMI), we monitored CSF velocity amplitudes on phase contrast MRI (PC- 

MRI) in patients before and after surgery; and in healthy volunteers.  

METHODS: 10 pediatric volunteers and 10 CMI patients participated in this study. CMI 

patients underwent PC-MRI scans before and approximately 14 months following surgery. Two 

parameters—amplitude of mean velocity (AMV) and amplitude of peak velocity (APV) of 

CSF—were derived from the data. Measurements were made at the mid-portion of the cerebral 

aqueduct; and anterior and posterior compartments of the spinal canal at the craniovertebral 

junction (CVJ). 

RESULTS: AMV and APV within the cerebral aqueduct were greater in preoperative 

assessments of the CMI patients compared to normal volunteers. Statistical significance was 

noted when comparing aqueductal AMV between the preoperative values and normal controls 

(p=0.03); and before and after surgery in the CMI patients (p=0.02). Lower values of AMV (p= 

0.02) were noted in the anterior CVJ compartment in the patients before and after surgery when 

compared to the normal volunteers. There were no significant correlations (p= 0.06) noted for the 

APV at the CVJ between the normal control and patients, before or after surgery. 

CONCLUSIONS: In pediatric CMI patients, AMV for CSF within the cerebral aqueduct and 

anterior CVJ subarachnoid space are significantly elevated preoperatively and normalize 

following surgery. Given the biphasic CSF motion, measuring amplitude accounts for cranial 

and caudal flow .It may offer an alternative parameter to assess postsurgical outcome. 

Key words: Cerebrospinal fluid; Chiari malformation; cerebral aqueduct; MRI phase contrast 

imaging. 
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INTRODUCTION 

Chiari malformation type I (CMI) is associated with abnormal cerebrospinal fluid (CSF) 

motion within the craniovertebral junction (CVJ) subarachnoid space (1,2). Cerebellar tonsillar 

position 5 mm or more below the foramen magnum is the most widely accepted imaging 

criterion for the diagnosis of CMI (3-5). For patients with symptomatic CMI, surgical 

decompression is the treatment of choice (6,7). However, in many cases the decision to 

recommend surgical treatment is not clear and a subset of patients who undergo surgical 

decompression surgery do not achieve symptomatic relief (8). We focused our studies to a 

cohort of pediatric patients, who form the single largest group of patients who undergo definitive 

decompression surgery for CMI. 

Given that an improved understanding of the CMI pathophysiology may lead to the 

identification of diagnostic tools that can more specifically predict the surgical outcome, the 

purpose of this study was to develop a parameter to better characterize the CSF flow alterations 

in pediatric patients presenting with CMI. Previous studies have focused on measurements at the 

foramen magnum, a location that is ill-defined after suboccipital craniectomy. Further, PC-MRI 

flow measurements at the CVJ can be complicated by velocity aliasing artifacts from the 

vertebral arteries. Studies have in the past focused on evaluation of mean or peak velocities and have 

not taken into consideration the bi-directional flow of CSF. In this study, we evaluated using the 

parameter of amplitude of the peak and mean flow, which appears to be more robust in assessing CSF 

flow.  We focused our attention on flow measurements at the cerebral aqueduct (AS), which is 

untouched and pristine following decompression surgery at the CVJ. Peak velocity measurement at 

the AS is free of aliasing artifacts from vascular structures and surgical alterations, and 

therefore has  attracted the attention of investigators such as Liu et al (9) and Wang et al (10), 

though with conflicting results. The former study showed increased cranial and caudal peak 
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velocities at the aqueduct in pre-surgical evaluations of adult CMI patients, and the latter study 

showed decreased cranial peak velocities and increased caudal peak velocities in a similar cohort. In 

this study, we hypothesized that the cranio-caudal amplitude of CSF flow can better characterize 

the CSF flow alterations in pediatric CMI patients than peak CSF velocities.  
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METHODS 

Approval of this study was granted by the Institutional Review Board. Written informed 

consent and parental assent, when required, were obtained from all subjects. 

Study Population 

Ten normal healthy pediatric volunteers were recruited via the University of Michigan’s 

ENGAGE website. Ten CMI patients were referred from the Department of Neurosurgery. The 

inclusion criteria for the patients were: worsening headache, symptoms altering daily life 

activities, and/or presence of spinal syrinxes, which were also the indications of Chiari 

decompression at our institution.  The exclusion criteria were: CMI patients with hydrocephalus, 

adult CMI patients above the age of 21 years, and patients with previous history of surgical 

decompression for CMI. PC-MRI CSF velocity measurements were not used by the surgeon to 

determine candidacy for surgical treatment. All CMI patients underwent suboccipital 

craniotomy with removal of the posterior arch of the C1 vertebra. Six patients had duraplasty 

with a patch graft. The tonsils were coagulated in five patients. All patients were prospectively 

followed with clinical and imaging assessments, and the outcome of the surgery was evaluated 

using the 16-point Chicago Chiari Outcome Scale (11). The CSF flow studies were repeated 

approximately 14 months after surgery in the CMI patients. 

 

Imaging Parameters 

Ten healthy volunteers were prospectively evaluated on a 3 Tesla MRI scanner (Philips 

Medical Systems, Eindhoven, Netherlands). The volunteers were not sedated. PC-MRI (CSF 

flow) scans were obtained using the following parameters: repetition time (TR) / echo time (TE) 

= 21/10.6 ms, # averages = 1, flip angle =10° , field of view = 250×180 mm
2
, matrix = 512×512, 

slice thickness = 5 mm, resolution= 0.49 mm, scan time = 2:00 minutes, readout bandwidth 
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=225 Hz/pixel, and parallel acceleration factor = 2. Fifteen timeframes were collected during 

each cardiac cycle (using a peripheral-pulse unit (PPU) signal with retrospective triggering), 

providing a temporal resolution of about 52.6 ms (for an average heart rate of 75 beats per 

minute (bpm)). The scans were obtained in the sagittal position (localization scans) and 

perpendicular to CSF flow direction (through-plane velocity-encoding PC-MRI scans) at the CVJ 

and also through the cerebral aqueduct. The scans were performed with the neck in neutral 

position. The chin was taped down and secured for imaging.  

Ten symptomatic CMI patients were scanned both pre- and post-operatively utilizing either 

1.5 or 3 Tesla MRI scanner. The same field strength scanner was used for all scans obtained on 

any given patient. The imaging parameters for the sequences on the 3T scanner were the same as 

previously described. The imaging parameters on the 1.5T scanner were: TR/TE = 19.2/ 7.7 ms, 

#averages = 1, flip angle = 15º, field of view = 208×145 mm
2
, matrix = 256×256, slice thickness = 

4 mm , scan time = 3.20 minutes and readout bandwidth = 184 Hz/pixel. Sixteen timeframes were 

collected during each cardiac cycle, providing a temporal resolution of about 50 ms (for an average 

heart rate of 75 bpm). The chin was taped down and secured for imaging. The patients were not 

sedated. 

The location, orientation, and region-of-interest (ROI) of the conducted scans are 

illustrated in Figures 1 and 2. CSF flow measurements at the aqueduct were carried in a similar 

manner in the patients and normal controls. Flow measurements within the AS were measured in 

a plane perpendicular to the midpoint of a line joining cranial and caudal ends of the aqueduct 

on sagittal images 

CSF flow at the CVJ in normal volunteers was measured in the axial plane corresponding 

to the McRae line. In order to have corresponding flow measurements in patients and normal 

volunteers, flow was measured at the CVJ in the patients by setting the imaging plane just below 
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the tip of the cerebellar tonsil. This also ensured that the flow measurements could be obtained 

posterior to the spinal cord and free from any confounding signals from the vertebral arteries or 

the descended tonsils. The selected axial plane was oriented such that the central cursor was 

parallel to the CSF space anterior to the spinal cord on a sagittal T1-weighted image. The scans 

were carefully monitored by two investigators (FL and JRB) for all studies and each time, to 

minimize variations in the scan plane selection. The two investigators worked together and 

corroborated the results.  In the patients, the location of the scan plane was replicated using the 

reference plane of the C2-C3 disc space and the length of the odontoid, given that the posterior 

arch of the C1 vertebra was not available in the post-operative evaluations.  

VENC Selection 

PC-MRI is based on manipulating the imaging pulse sequence with a bipolar gradient. 

Stationary tissues are not affected by the bipolar gradient as the phase gained by the spins during 

the positive lobe of the gradient is lost during the negative lobe. However, for moving spine, 

there will be a phase difference between the phase gained during the positive gradient lobe and 

that lost during the negative gradient lobe, such that the phase difference depends on the tissue 

velocity. The velocity-encoding (VENC) parameter is adjusted in the imaging protocol to be 

slightly higher than the maximum expected velocity, which ensures that the maximum 

accumulated phase does not exceed 2π, thus avoiding velocity aliasing artifacts. In this study, 

VENC was optimized for each subject and ranged from 5 to 12 cm/s in the through-plane R1-

direction perpendicular to the CSF flow direction. The smallest VENC value that does not cause 

aliasing was chosen for final analysis.  The aliasing  artifacts were avoided by reviewing  each 

scan immediately after acquisition and repeating the scan as necessary (e.g., at a higher VENC 

value with VENC changes increased in increments of 2 cm/s). Two authors (FJL and JRB) 

performed all measurements and image analysis, including ROI placement and closely 
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monitoring the studies. 

 

Flow Measurements and Analysis 

All CSF flow sequences were analyzed using the Medis Q-Flow software (Medis, Leiden, 

The Netherlands). This software prompts the user to define a ROI in the subarachnoid space in 

the phase images (Figure 2 b and c ). For CVJ CSF velocity measurement, elliptical ROIs were 

drawn in the axial imaging plane. Two ovoid compartments were identified, one anterior and 

one posterior to the visualized denticulate ligament. Particular care was taken to exclude pixels 

that included vessels (e.g., vertebral arteries). For the cerebral aqueduct CSF measurements, one 

circular-shaped ROI was drawn over the cross-section of the aqueduct.  All ROI’s were edited 

to include only CSF containing pixels. 

The Q-Flow software exported the results to an Excel spreadsheet (Microsoft Corp., 

Redmond, WA) with the following data for each phase of the cardiac cycle: 1) trigger delay; 2) 

flux (ml/s); 3) area; 4) pixel count; 5) mean velocity; 6) maximum velocity in the cephalic 

direction; 7) minimum velocity in the cephalic direction (i.e., maximum caudal velocity); 8) 

peak velocity; and 9) velocity standard deviation. Each PC-MRI scan produced 15 time points 

(measurements) for normal volunteers and 16 time points for patients. These time points were 

of two types, average or peak, where "average" refers to the average signal intensity of each 

pixel that comprises the ROI, and “peak” is the maximum signal intensity pixel within that 

ROI. The peak measurements define "jets" of the CSF motion, while the average measurements 

reduce them. Amplitude of mean velocity (AMV) was defined as the difference between cranial 

and caudal mean velocities within the entire ROI. Amplitude of peak velocity (APV) was 

defined as the difference between maximum numerical value of cranial versus caudal CSF 

velocity for any pixel within the ROI over the cardiac cycle (Figure 2 a). For each scan, CSF, 

APV, and AMV within a ROI were calculated. The results were compared in terms of the mean 
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and standard deviation for each group.  

 

Demographics 

Of the normal volunteers, 4 were males and 6 were females with a mean age of 11±2.4 years.  Of 

the 10 CMI patients, 6 were males and 4 were females. The CMI patients had preoperative MRI 

scans at a mean age of 13.5±4.5 years. The demographics by age of normal volunteers and 

patients at the time of their pre-operative and post-operative scans are shown in Table 3. The 

mean time interval between pre- and post-operative MRI scans was 19.5 months. The post-

operative studies were carried out approximately 14 months after surgery. 

Statistical Analysis 

Normalized cerebrospinal fluid flow in the post-surgical flow studies inpatients was analyzed as 

an outcome measure for evaluating improvement in patients’ symptoms following decompression 

surgery. Continuous variables were summarized as means and standard deviations. Baseline 

normalized CSF was compared between normal volunteers and CMI patients by using student’s t-

test.  A paired t-test was used to compare the pre- and post-surgery normalized flow for CMI 

patients.  A p value of 0.05 or smaller was considered significant for all hypothesis tests.  The 

above procedures were done in Excel (Microsoft Corp., Redmond WA 2010). 
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RESULTS 

Table 1 summarizes the CSF velocity measurements for the volunteers and CMI patients, 

including APV and AMV within the cerebral aqueduct and within CVJ subarachnoid space. 

The amplitudes of CSF velocities at the AS range from 8.8±3.4 cm/s (the highest 

preoperative APV) to 1.7 ± 2.4 cm/s (the lowest postoperative AMV). Within the cerebral 

aqueduct, APV trended higher, but not significant, in the CMI patients compared to the normal 

volunteers (8.8±3.4cm/s vs. 6.6±2.3 cm/s; p=0.11). The APV returned to 6.4±2.5 cm/s post-

operatively. Within the cerebral aqueduct, the AMV was significantly higher in preoperative 

CMI patients compared to the normal volunteers (3.8±1.4 cm/s vs. 2.6±0.9 cm/s; p=0.03). Post-

operatively, there was no statistical difference from the normal volunteers (p = 0.63)  (Table 2; 

Figure 3 ). 

Within the anterior CVJ subarachnoid space, preoperative CMI patients had a higher APV 

than volunteers (11.1±8.0 cm/s vs. 10.7±2.0 cm/s) that decreased to 8.5±4.2 cm/s after surgery, 

with neither differences being statistically significant. 

At the anterior CVJ subarachnoid space, the AMV was lower in the pre-operative CMI 

patients compared to normal volunteers (4.3±1.6 cm/s vs. 6.1±1.2 cm/s; p=0.01). Post-

operatively, AMV remained lower (1.2±5.7 cm/s). Within the posterior CVJ subarachnoid space, 

there was no statistically significant difference between the three groups for APV or AMV 

(Table 3). 

Nine patients presented with headache. One patient presented with right-arm weakness 

and pain. Four patients presented with complaints including snoring, right extremity 

weakness, facial weakness, and neck pain. Four patients had a syrinx. Headache completely 

resolved in 7 of 9 patients post-operatively; 2 patients complained of occasional, but 

substantially improved, headaches postoperatively. Of the 4 patients with syrinxes diagnosed 
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pre-operatively, one syrinx completely resolved post-operatively and 3 showed significant 

decrease in size. Post-operatively, all other neurological symptoms either resolved or were 

significantly improved. There were no post-operative complications. Using the Chicago 

Chiari Outcome Scale (11), 7 patients scored 16 and 3 patients scored 15. Table 4 

summarizes the clinical presentations, operations and surgical outcomes.  
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DISCUSSION 

 

MRI is the only technique available for non-invasive analysis of CSF movement (12). Net 

movement of CSF in the cerebral aqueduct over time is caudal due to CSF production in the brain 

ventricles and absorption in the subarachnoid space. Despite this net caudal movement, each 

pulse cycle generally has a period of cranial as well as caudal CSF movement within the cerebral 

aqueduct. Both phases may be combined as a single flow value for each cardiac cycle. In the 

reported measurements by the Q-flow software in this study, the net flow at the AS of every scan 

was 0 ml/s. In comparison, the range of values for the measurement of amplitudes offers a more 

illustrative and objective assessment of CSF motion.  It is not difficult to imagine a scenario 

where large changes in amplitude were coupled with no or only a minor change in net flow. In 

our study, statically significant changes in amplitude were seen without any change in net flow. 

Therefore, in this study, we chose to use amplitudes of flow (AMV and APV) to assess CSF 

hydrodynamics, which we believe represents a more robust measurement of bidirectional CSF 

motion (APV illustrates flow “jets” and AMV relates to mean velocity of the bidirectional motion 

of CSF fluid during a cardiac cycle (13)). 

The importance of aqueductal CSF velocities has been previously highlighted in the 

literature (14). We chose cerebral aqueduct CSF measurements as an independent prognostic 

marker to assess the CSF motion alterations before and after the CMI decompression surgery, 

because the aqueduct is not affected by surgical decompression which does change the morphology and 

geometry of the CVJ. 

From the data reported by Wang et al, we extrapolated and calculated the APV at the 

aqueduct in preoperative CMI patients to be 5.71 cm/s compared to 5.59 cm/s in volunteers, and 

5.68 cm/s after posterior fossa decompression. A similar decrease in amplitude is observed 

when the APVs are calculated from the data published by Liu et al (preoperative patients: 7.73 
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cm/s, volunteers: 4.24 cm/s). The apparent discordance between the findings by Wang et al. and 

by Liu et al. is reconciled when their APV values are compared. Similarly, our own data suggest 

a decreasing trend for APV at the AS after decompression (p=0.09). These observations 

strengthen our view that the amplitude of velocity is useful to help assess measurement of the 

CSF flow dynamics. In another review of CSF flow dynamics in CMI, (15) were no changes in 

APV at the AS after decompression. The highly variable APV observed by this group may be 

explained by their highly heterogeneous study population, with patients ranging from 3 to 80 

years of age. 

Critical evaluations of CSF flow in the cerebral aqueduct by previous investigators have 

demonstrated that the CSF velocity at the cerebral aqueduct varies with age (16-19). We have 

any bias that may be introduced in our study by limiting our study to an adolescent pediatric 

population, with as little variation in age as possible, to minimize age as a confounding factor. A 

larger cohort study is planned to assess aqueduct flow amplitudes over a wider age range in a 

pediatric cohort. 

The previously described observations for the tendency for peak velocities to increase 

from the rostral aspect to the caudal aspect of the cerebral aqueduct (18) was mitigated by 

standardizing our technique to measure the flow at the mid-point of the cerebral aqueduct.  

Analyses of the CSF amplitude parameters in the anterior CVJ subarachnoid space 

revealed statistically significant differences in the AMV measurements between normal 

volunteers and post-operative patients. It is important to note that the degree of reduction of the 

flow amplitude in this space closely resembles that of the cerebral aqueduct. Given the 

significant morphological alterations in the posterior subarachnoid space following 

decompression surgery, it is this anterior portion of the spinal subarachnoid space that is less 

likely to be affected by the surgical procedure, similar to the aqueduct. 
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Assessment of the posterior subarachnoid space at the CVJ revealed no significant 

differences in CSF flow amplitudes in this study. Complexity of the CSF flow in this space is 

governed by change in the geometry of the space and is less homogeneous compared to the 

cerebral aqueduct. Therefore, we believe that the CSF measurements in this space will yield 

ambiguous results. Additionally, the inherent pulsations of the spinal cord and cerebellar tonsils 

or their remnants during the cardiac cycle may obscure and possibly even negate any possible 

significant changes that might be attributed to velocity assessments of the subarachnoid space at 

the CVJ. 

Comparing pre-operative and post-operative hydrodynamics of a subarachnoid space 

that has been altered in morphology by interval surgery can be confounding. This is particularly 

true if one is only measuring net flow, which is usually close to zero. By assuming the apparent, 

generalized intracranial relationship of CSF motion, we were able to compare the dynamic 

amplitude of CSF motion of the unaltered (by the interval CVJ surgery) cerebral aqueduct to its 

pre-operative CSF motion with the assurance that whatever differences we observed were not 

due to local  anatomic post-operative changes. Since all CMI patients in this study were 

symptomatic, we do not know if this observed increase in amplitude of CSF motion occurs in 

asymptomatic CMI patients, or is only present in symptomatic CMI patients. However, we can 

state that in our study, the post-surgical group had both normal motion amplitudes and 

symptomatic improvement. 

At the CVJ, there was no significant change of either amplitude parameter comparing 

controls to pre- and post-operative groups in either the anterior or posterior subarachnoid 

spaces. Post-surgical APV non-significantly increased in the posterior space. This suggests that 

surgical intervention had no impact on CSF motion in these regions. We surmise that 

alterations of CSF flow in these subarachnoid spaces were obscured by changes related to the 
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interval decompression surgery and that measurements obtained from the aqueduct better reflect 

the true impact of surgery on CSF motion. 

Following surgery, there was no statistical differences between post-surgery and 

volunteer groups, thereby indicating “normalization” of flow amplitude postoperatively. While 

the decrease in CSF flow might be explained by an interval increase in the aqueduct diameter, 

this is unlikely, as the decompression surgery was performed at the CVJ. Alternatively, and more 

plausibly, we believe that surgery at the CVJ changes CSF dynamics, which alters intracranial 

compliance in a way that results in diminished aqueductal CSF flow. This is supported by the 

theory that the pulse-absorber characteristics of the cranio-spinal system (20-22) may play an 

important role in CSF hydrodynamics in CMI patients. 

The major limitation of our study is the small numbers of both volunteers and 

symptomatic patients.  In the future, larger patient and control cohorts will be necessary to 

emphatically validate our conclusions. 

 Another limitation of our study is that all CMI patients included in this analysis were 

symptomatic. All patients were considered to be surgical candidates pre-operatively and had 

good surgical outcomes. The results of this study might not apply to asymptomatic patients with 

low cerebellar tonsil position (23). We did not take into account any alterations in the cross-

sectional area in the posterior CVJ due to the difficulty of accurately selecting the ROI in the 

geometrically complex post-surgical subarachnoid space. Selection of a ROI at the CVJ can be 

problematic as the location of the foramen magnum, becomes obscured after suboccipital 

craniectomy. For this reason, we selected our ROI in the axial plane just below the tip of the 

cerebellar tonsil. Because the cerebellar tonsils are lower in CMI, the ROI is selected lower than 

in normal patients. The length of the odontoid and the C2-C3 disc space then served as a 

landmark to accurately place the plane of axial imaging for the phase contrast sequence in the post-
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surgical scans.  

 Surgical procedures were not uniform in this series; patients were treated, either with or 

without duraplasty which did not allow for comparison between these 2 “surgical” sub-groups.  

 There were necessary minor variations in the scan parameters between normal volunteers 

and patients that we believe did not influence the quantitative analysis. In this study, since all 

CMI patients had good post-operative outcomes, we are unable to definitively conclude that the 

high CSF flow indices observed within the aqueduct are a pre-operative indicator of surgical 

success.   A larger diverse cohort of pediatric patients will be needed  to  investigate whether 

aqueductal CSF velocity can identify CMI patients who may develop a spinal cord syrinx, will 

eventually develop certain specific symptoms, and/or respond positively to surgery. 

 While it is known that CSF flow at the craniovertebral junction is age dependent and 

evolves during the first 2 decades of life (possibly related to tonsillar ascent), the small size of 

our patient/volunteer group precluded evaluation of pre-operative versus post-operative flow 

changes as a function of patient age.  Similarly, while 4 of our patients had pre-operative 

cervical spinal cord syrinx cavities (all of which improved/resolved post-operatively), no 

conclusions can be reached or even suggested about the importance of these findings again due 

to the small size of our patient population.  However, we believe that using aqueductal 

velocities as opposed to CSF junction velocities obviates concerns about the effect of operative 

tonsillar coagulation. 

In conclusion, the amplitude of the mean and peak velocities (AMV and APV, 

respectively) within the CVJ subarachnoid space and within the cerebral aqueduct measured in a 

cohort of symptomatic CMI patients were generally higher in the CMI patients compared to 

healthy subjects. These parameters in CMI patients tended to revert to values similar to normal 

healthy subjects following clinically successful CVJ decompression surgery. As measurements at the 
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CVJ may be confounded by post-operative change, it appears that preoperative elevations of AMV 

CSF motion in the cerebral aqueduct may be the better parameter to identify abnormal CSF 

dynamics in symptomatic CMI patients who might ultimately benefit from decompressive 

surgery.  Further study of larger symptomatic and asymptomatic CMI patient groups is 

warranted.   
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TABLES 

 

 

 

Table 1: Average CSF APV and AMV (cm/sec± s.d.) 

Measurement Control  

(n=10) 

Pre-surgery 

(n=10) 

Post-surgery 

(n=10) 

Aqueduct APV 6.6 ± 2.3 8.8 ± 3.4 6.4 ± 2.5 

Aqueduct AMV 2.6 ± 0.9 3.8 ± 1.4 1.7 ± 2.4 

CVJ (Anterior) APV 10.7 ± 2.0 11.1 ± 8.0 8.5 ± 4.2 

CVJ (Anterior) AMV 6.1 ± 1.2 4.3 ± 1.6 1.2 ± 5.7 

CVJ (Posterior) APV 6.3 ± 2.0 7.3 ± 3.6 8.1 ± 1.7 

CVJ (Posterior) AMV 3.5 ± 1.3 2.3 ± 1.1 1.0 ± 4.7 

 

CSF = cerebrospinal fluid; CVJ = craniovertebral junction 
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Table 2: Significance tables (p-values) for flow parameters versus group (Student t-test). 

Measurement Control vs. Pre-

surgery 

Control vs. post-

surgery 

Pre- vs. post-

surgery 

Aqueduct APV 0.11 0.85 0.09 

Aqueduct AMV 0.03
S
 0.63 0.02

S
 

CVJ (Anterior) APV 0.88 0.17 0.20 

CVJ (Anterior) AMV 0.01
S
 0.02

S
 0.18 

CVJ (Posterior) APV 0.49 0.06 0.95 

CVJ (Posterior) AMV 0.09 0.17 0.35 

 

CVJ = craniovertebral junction; 
S
 = significant 
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Table 3:  Age of volunteers and patients included in the study 

 

 
 Volunteers Pre-Operative Post-Operative 

All 11.4 12.9 14.3 

Males 11.7 11.5 13.0 

Females 11.0 14.6 15.8 
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Table 4: Basic patients’ demographics and procedures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sl. No Age/Sex 

At time 

of 

surgery 

Chief 

complaint 

Syrinx Procedure Outcome on 

follow-up study 

1 

 

 

17M Headaches, 

snoring, 

difficulty in 

swallowing 

Cervico-thoracic 

 

Duraplasty  Syrinx 

Resolved. All 

symptoms 

resolved 

 

 

     

2 

 

19M Headache/ 

Vertigo 

Absent Duraplasty Complete 

resolution 

3 

 

13F Headache, 

Rt facial 

weakness 

Absent Duraplasty Symptoms 

resolved/ 

4 

 

8F Headache, 

ataxia 

Cervico-

thoracic/ 

Duraplasty Syrinx 

improved 

5 

 

13F Headache 

Sleep 

Apnea 

Cervical Duraplasty Headache  

resolved/syrinx 

improved/apnea 

controlled 

6 

 

7M Headaches absent Duraplasty 

 

Headache 

resolved 

7 

 

12F Headaches absent No 

Duraplasty 

Headache 

resolved 

8 

 

 

16M Headache 

and 

vomiting 

absent No 

Duraplasty 

Headache 

significantly 

improved 

9 

 

10M Asymmetric 

arm pain 

Cervical  Arm pain 

resolved/syrinx 

resolved 

10 

 

20F Headache absent Duraplasty Headaches 

substantially 

improved 
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Figure Legends 

Figure 1. Sagittal T1-weighted MRI of the head and cervical spine, with the neck in 

the neutral position. Annotations represent the axial plane of phase-contrast 

CSF flow measurements at the aqueduct and craniovertebral junction in a 

patient with CMI. 

Figure 2 a, b, c  Graphical representation of a Q flow output showing amplitude(a), ROI placed 

over the aqueduct (b) and the anterior/posterior compartments of the CVJ (c). 

Figure 3 a and b. Line graphs depicting the average amplitude of peak flow (3a) and 

amplitude of mean flow (3b) within the cerebral aqueduct, in normal 

controls and patients before and after decompression CVJ surgery. Note that 

flow normalizes following surgery. 
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Figure 1. Sagittal T1-weighted MRI of the head and cervical spine, with the neck in the neutral position. 
Annotations represent the axial plane of phase-contrast CSF flow measurements at the aqueduct and 

craniovertebral junction in a patient with CMI..  
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Figure 2 a, b, c  Graphical representation of a Q flow output showing amplitude(a), ROI placed over the 
aqueduct (b) and the anterior/posterior compartments of the CVJ (c).  

152x35mm (300 x 300 DPI)  
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