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I. INTRODUCTION

A mathematical model has been formulated to compute

the hydrodynamic forces acting on a barge and tugboat

flotilla as it maneuvers around a curve of constant radius.

The forces and moments considered include the longitudinal

and transverse drag and yaw moment due to the flotilla's

own motion through the water, as well as the applied forces

of the propeller, rudder and bow thruster. These forces are

then used to predict the motion of the flotilla, in surge,

sway and yaw, under the prevailing conditions of rudder

angle and propeller revolutions per minute. As the flotilla

progresses through the curve, its proximity to the channel

boundaries is computed, and the rudder angle and propeller

speed are adjusted to keep the flotilla within the confines

of the channel. 'The mathematical model thus makes possible

a prediction of the time requited for a flotilla Lo negotiate

a series of one or more maneuvers through a restricted

channel.

The analytical aspects of the mathematical model

have been incorporated into a FORTRAN program to permit

evaluation of the relationships by means of a high speed

digital computer. The computer program has been structured

to facilitate engineering evaluation and comparison of a

variety of flotilla configurations, in a wide range of
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channel widths, bend radii and current speeds. The data

input requirements have been kept as simple as possible,

consistent with the goal of accomodating a broad range

of conditions. A default option can be selected to assign

values to certain input variables, and on multi-case runs,

only those data values which differ from the preceding

case must be re-entered. Three solution options are

available, to suit differing user requirements, and the

solution is printed out in both detailed and summary form

along with the input data values, to facilitate review and

analysis of the results. The FORTRAN programming is

arranged in a rational, modular fashion, with each discrete

portion of the solution handled by a separate subroutine.

In formulating this computer simulation, the objective

was primarily to develop the overall structure of the

solution. The degree to which the mathematical represent-

ation actually approximated the physical process was of a

lesser priority. Thus, certain aspects of the mathematical

modelling are acknowledged to be somewhat crude at this

stage of development. However, the modular structure of

the solution permits refinements to be easily incorporated

into the model. 'Subroutines to supplement or replace the

existing program modules can be developed and integrated,

with a minimum amount of re-programming, into the present

model.
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II. BACKGROUND

One of the more troublesome aspects of operating a

flotilla of river barges and a tugboat is the difficulty

of maneuvering the long, wide flotilla around small radius

bends in a narrow channel. This situation can be aggravated

by adverse currents and, for a light-condition tow, strong

winds. The traditional approach to this problem has been

to reduce speed while maneuvering, thereby increasing the

time required to execute a maneuver, and incurring an added

penalty while decelerating before and accelerating after

the maneuver.

With the availability of propulsive devices with improved

efficiency, the use of towboats with increased shaft horse-

power, and the introduction of auxiliary maneuvering devices

such as bow thruster units integrated into the front of the

tow, operators are now finding it possible to maintain

higher forward speeds, and still keep the barge safely with-

in the confines of the channel. This higher average speed

results in shorter transit times for a given route, and a

corresponding increase in productivity for each unit of

labor and equipment. Clearly, this increased productivity

can be expected to result in increased revenue to the barge

operator. However, to realize this greater level of

productivity, the owner/operator must first make an added

3



capital investment to improve the maneuvering capability

of his equipment.

How much should an owner invest to improve the

maneuverability of his equipment? Certainly the expected

yield from an incremental investment in new technology

must be as great as the rate of return realized on equip-

ment operated at the present level of technology; for if it

is not, the owner is better advised to continue his operations

at the present level of technology. The difficulty in

implementing this decision philosophy arises from the inability

to predict quantitatively the improvement in productivity

that results from a specific technological change. The

improvement in average speed along a route (and therefore

increased productivity and revenue) must be balanced against

the increased cost required to attain that speed to determine

whether or not the additional investment is warranted.

The cost associated with introducing a particular

technological change can usually be estimated with reason-

able accuracy, and scale model tests are often undertaken

to ensure that the change will result in a performance

improvement. However, there is no presently available

model that can be used to predict the net improvement to be

realized by a specific change to a particular barge and

tugboat operating over a specified route. Yet this is

'



precisely the information needed to assess the economic'
*
1

impact of a technological improvement. Some managers with-

in the barge industry have expressed interest in the

development of a means by which an investigator can quantify

the improvement that can be realized by implementing a

technological change on a hardware system operating on a

specified trade route. With this capability, an owner/

operator would have a better basis for decisions involving

development or acquisition of new equipment, and may also

be able to improve the utilization of equipment already

on hand. Furthermore, the same sort of analysis could be

performed on a parametric basis, to identify general trends

between certain hardware combinations and their level of

performance in different types of maneuvers of varying

severity. Such parametric analysis may give an investigator

new insights into areas where greater performance improve-

ment can be achieved.

*
Superscripts refer to references at the end of the report.
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III. DISCUSSION

PROBLEM STATEMENT

In response to the needs identified in the preceeding

section, an investigation has been undertaken to formulate

a general solution to the problem: What is the time required

for a barge, tugboat and bowthruster combination to traverse

the distance between two points along an inland waterway

route?

In treating this problem a primary objective was to

keep the solution applicable to as wide a range of

configurations as possible. The motivation was to develop

a method that would give, reasonable treatment to a broad

spectrum of cases, rather than rigorous treatment to a

single restricted case. However, the final solution has

been structured to permit subsequent investigators to

readily adapt any portion of the model to treat the

peculiarities of a particular application, while retaining

the basic structure of the original solution.

It is assumed that the tugboat, barges and bowthruster

are of rather conventional configuration; that is, with

the tugboat fixed to the stern of a rectangular array of

barges, and the (optional) bowthruster either integrated

into the flotilla or fixed to the leading edge. Figure 1

illustrates two typical arrangements. The tugboat and barge

6
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array are each described in terms of their gross character-

istics; principal dimensions, block coefficient and mass

distribution parameters. The characteristics of the tug-

boat are further described in terms of its shaft horsepower,

propeller dimensions and rudder area. The physical

characteristics of the bowthruster are assumed to be

included in the gross properties of the barge array, there-

fore it is described only in terms of its net performance

characteristics (i.e. net thrust vs. speed).

The channel, or route, along which the flotilla moves

during the solution, is described by a piecewise-continuous

series of segments. The solution recognizes three segment

types, and describes each in terms of its appropriate

characteristics. The three segment types are:

curved; constant radius bend with uniform
width and some specified angular
extent,

straight; section has negligible curvature
and uniform width throughout some
specified distance,

delay; represents a fixed time delay such
as encountered when passing through
locks.

These segments may be combined serially in any order to

approximate the characteristics of an inland waterway

channel. Figure 2 shows one possible representation of

a typical section along a barge route.

For any prescribed combination of flotilla and route,

the model predicts the time required to move through each

8
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segment of the route, and to travel along the entire route,

using a specified rudder and propeller control criteria.

The various solution options available are discussed in the

following section.

SOLUTION OPTIONS

The fundamental elements of the mathematical model are:

- computation of hydrodynamic forces acting

on the .barge flotilla,

- prediction of accelerations resulting from
those forces,

- integration of those accelerations over
time, to determine the motion and position

of the flotilla,

- control of rudder position and propeller
speed to keep the flotilla within the
confines of the channel.

The result of the combination of these four elements is

referred to as integration of the barge maneuvering equations

of motion.

There are three solution options that can be selected

to determine the time required for a barge to traverse a

route. One option is simply a straight forward application

of the integration of the barge maneuvering equations of

motion. This direct integration option entails integrating

the equations of motion continuously along the entire length

of the specified route to determine the complete time history

of the journey. At the start of each segment of the route,

initial conditions compatible with the end of the preceeding

10



segment are assumed, and the propeller speed is allowed to

increase to maximum. These initial conditions will lead to

a minimum elapsed time for each segment. If, during the

solution, the barge violates the boundary constraints of a

channel segment, the solution "back-tracks" and attempts.

to complete the maneuver'at reduced initial forward speed

and/ or different propeller speed.

The direct integration option is valuable in that it

provides a detailed time history of the barge motion through-

out each maneuver. However, the execution time required

(see SectionVII) for the integration can be substantial,

particularly if an iterative process is required to negotiate

the more restricted channel segments. Furthermore, the

results obtained are applicable only to the route over which

the integration was performed. Therefore, this option is

best suited to intensive investigation of performance through

relatively short distances.

To improve the versatility and efficiency of the model,

two other options are offered. They can be exercised inde-

pendently or serially, and make it feasible to predict the

time required to traverse a route of virtually any length.

The first of these options involves integration of the

equations of motion, but along a family of curves of various

radii, width and angular extent, rather than along a specific

route. This parametric integration option constructs a three

11



dimensional array of elapsed time versus curve radius,

channel width and angular extent. As in the direct

integration option, initial forward speed and maximum

propeller speed for each segment are controlled to

determine the minimum elapsed time required for each seg-

ment. This parametric integration option facilitates the

assessment of the maneuverability of a flotilla in curves

of varying degrees of severity.

The final solution option is the interpolation option,

and it is this feature that allows the mathematical model

to be applied economically to routes with large numbers of

curved segments. The interpolation option utilizes an array

of elapsed time versus curve characteristics (radius, channel

width, angular extent), such as produced by the parametric

integration option. This array is unique to each barge

flotilla; it may be generated internally by the parametric

integration option, or it may be constructed externally with

data from any source, then entered as an input. Then, for

any specified route, the elapsed time for each segment of

the route is determined by interpolation within the array,

based on the characteristics of that segment. Having once

determined the elapsed time versus curve characteristics

array for a flotilla, the time required for that flotilla

to traverse many different routes, with large numbers of

segments, may be estimated with a reasonably small execution

time (see Section VII). The combination of parametric

12



integration and interpolation give the model great versatility

and efficiency in investigating large numbers of alternative

systems in different operating conditions.

RESULTS AND CONCLUSIONS

The mathematical model has been evaluated for a number of

test cases. The numerical results indicate that the model

predictions are consistent with the observed behavior of

'river tows. Inspection of the solution at intermediate

stages of the integration of the equations of motion indicates

that the rudder angle commands generated by the model are

appropriate to steer the flotilla successfully along the

channel. The algorithm for computing the propeller speed

commands and varying the initial' conditions to allow the

flotilla to negotiate a small radius curve is likewise

observed to function in the manner intended.

The parametric integration option has been exercised

and the results obtained demonstrate the potential utility

of this feature. The elapsed time for a flotilla to traverse

a given route, as predicted by the interpolation option

.using the results of the parametric integration, agrees

substantially with the results of direct integration of the

equations of motion along the same route. However, having

once performed the parametric integration for a particular

flotilla, its transit time along any route can be estimated

by interpolation at a cost of less than 20 of that required

13



to integrate the equations of motion along the route.

The results obtained indicate that the methods used in

the maneuvering simulation have the potential to realistically

predict the transit time required for a flotilla to proceed

along an inland waterway. More development is required,

particularly in the modelling of the hydrodynamic forces

including shallow water and side wall effects, to improve

the accuracy of the motion predictions. However, the interim

results at this stage of development are encouraging and

indicate that the overall structure of the model is

satisfactory to accomplish the final objective.
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IV. MATHEMATICAL MODEL DESCRIPTION

The most significant portion of the mathematical

model is the set of equations and analytical relationships

governing the motion of the barge, tugboat and bowthruster

through a curved channel. Other elements include techniques

for interpolation, curve fitting, and determining important

geometrical relationships. These are all derived and their

interrelationships discussed in the following subsections.

All relationships in this Section are expressed in terms of

algebraic symbols; a cross reference to the associated

FORTRAN variables used in the computer program is included

in APPENDIX H.

COORDINATE AXIS SYSTEM

The motion of a barge flotilla passing through a curved

channel is simulated in three degrees of freedom in

the horizontal plane. The systems of coordinate axes

describing this motion are shown in Figure 3. The boundaries

'of the channel are fixed in a global reference system which

has its origin at the center of curvature of the constant

width segment. The position of the center of gravity of the

flotilla within this global reference system is given in

terms of its radial distance from the origin, R, and its

angular progress, a, around the curve. The orientation of

the barge flotilla is given by its yaw angle, $, relative

.15



i.

RR

0J

R

R = Radius of curve, to center 01 channel

01

S= Angular extent of curve,+

R = Radius to center of gravity of flvtilla

S= Angular position or' center of gravity of flotilla

R= Radial velocity of flotilla

Rr= Tangrent.~ia~l vo loci tv 0 flo tilla

V' = Magnitude of flotilla velocity vector

'= Yaw angle, relative to tangential vector,

+from tangent to heading

S = Orientation of heading, relative to velocity vector,

+from velocity to heading

y = Orientation ot velocity vector, relative to tangent,

+i from tangent to velocity

S= Rudder angle, +

Note: In determing the hydrodynamic forces when a current
is present, the flotilla velocity vector represents
the velocity relative to the crevailing current.

:igure 3. Coordinate axis system.
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to a vector in the tangential direction through the center

of gravity.

The hydrodynamic forces acting on the barge are most

conveniently determined in terms of a local coordinate system

which moves with the flotilla. The origin of this local

system is at the center of gravity of the flotilla. The

longitudinal and transverse axes move and rotate with the

barge. A detailed view of the local coordinate system is

given in Figure 4, which shows the characteristic dimensions

of the barge and tugboat.

The position of the center of gravity of the flotilla

is computed from the individual characteristics of the

barge array and the tugboat. The displacement of the barges

and tugboat are given by,

and

t Pg Cbt t BtHt

,= Pg C , LBb Hb

(la)

(Ib)

where

g =

C =-b-
L =

B=

H =

and subscript

subscript

fluid density, lb-sec2/ft

acceleration of gravity, ft/sec2

block coefficient, V/LBH

length overall, ft

beam, ft

draft, ft

't' refers to the barge (or tow),

'b' refers to the tugboat (or boat).

17
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Then, taking moments about the stern of the barge array,

the position of the center of gravity is given by,

aft_ At cgt - Ab (Lb '- cgb))(2
" aft-(

At + Ob)

where
cgt = the distance from the stern of the

barge array forward to the center of
gravity of the array,

cgb = the distance from the stern of the
tugboat forward to the center of
gravity of the boat,

CG = the distance from the net flotilla
center of gravity aft to the stern

of the barge array.

Then,

CGfwdLt - CGaft (3)

where
CG fwd the distance from the net flotilla

center of gravity forward to the bow
of the barge array.

In a similar manner, the composite moment of inertia about

the flotilla's center of gravity can be expressed, in terms

of the inertia characteristics of the barge array and

tugboat individually, as,

(4)

Ab 2 CG2+At 2 2
I _=A---- + (CG + b-cg )2 + ---- K2 + (cg -CG )2
z gg( C aft b g t t aft

where Kb = the gyradius of the tugboat, ft,

K = the gyradius of the barge array, ft.

19



EQUATIONS.OF MOTION

Referring to the global coordinate system on Figure 3

the kinetic 'energy of the barge flotilla may be written,

T = j2I (a&-)2 + -3m{(R &)2+(R)2} (5)

From Lagrange's Equations for a conservative system,2

dt (34.i) 3qi i (6)

where
i = a, p ,R

and Q. is a generalized force in the i-h direction.

Then the equations governing the motion of the flotilla

may be derived as follows:

for i = a;

=+ (R a) +mR_0
as z =0

3Taa-)" ~ - + mR 2a + 2mRR& = Qa (7)

for i =;

da(T - (a.='.(8

for i = R ;

a T 3T __ .2
aRR

dt37R mRaR *2= R (9)

20



Rearranging equations (7), (8), and (9) gives:

Q Q 2Rcx

d t=---f+ - - (10a)
mR mR R

d(a = & (10b)
dt

Q Qa Q 2Rot
+i + - (loc)

Id- mR mR R
z

ddt (10d)

d(R' -- SR . 2R =----- + Ra (10e)
dt m

dt (1of)

where

Qa is a force acting tangent to the curve,

at a distance tRI from the center of

curvature. It thus represents a moment

moving the flotilla around the curve.

Q is a moment about the center of gravity

of the flotilla, influencing the heading

of the flotilla.

QR is a radial force acting through the

center of gravity of the flotilla.

These six simultaneous first-order differential equations

can be integrated from a= 0 to a= a, to obtain the

transit time through a curve. The method by which these

equations are' solved is discussed in APPENDIX.A.
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HYDRODYNAMIC FORCES

The three generalized hydrodynamic forces, Qa,' Q

QR, represent the forces and moments resulting from

the action of the water against the hull, including its

various control surfaces. These forces are the result

of the relative motion between the hull and the water, and

are thus assumed to be functions of parameters describing

that motion. However, since the hydrodynamic forces are

to be computed in the local coordinate system, and the

generalized forces Q. ,QOQR are in the global coordinate
s

system, a simple transformation is required.

This is given by,

Qa= R(X cos $P- Y sinP) (11a)

Q*= N (11b)

QR= X sin@+ Y cos 1 (1c)

where

X = surge (longitudinal) force

Y = sway (lateral) force

N = yaw moment

R = radius

S= heading

The generalized forces can be expressed in terms of the

conventional hydrodynamic effects of surge, sway and yaw.

A convenient representation for the yaw moment, sway force

and surge force respectively, in a manner similar to that

used by Eda, is;

22



N' = a1 + a2 y' + aY ' + ak' + a5 2g ''+a6 ,,2 + a~y3

a1 1 (6) + a1 2 (J) + a1 3 (B)

+" a 8x ' + a Y + a 1 y ' + 2 ---
89 10 Phi 3v

'P (12a)

Y' = b + b2y' + b3 + b x' + b*f'~ '.+ b6y ' ' + b7y '

b (6) + b (J) + b (B)
+ bg' + b '' + by + 11 122U 13

U (12b)

X'=c + + 2. . 2 . 3X' = c1 + c 2y' + c3 T' + C4x,+ c'y' 2'P + c6y ''P + c7 yr

c1 1 (6) + c1 2 (J) +c 1 (B)
+ c8 x' + c9V'+ c 1y' + 2U2+- -8 C 1 yjLU2

(12c)

where
= (T i - &), the true yaw rate in the global

reference system,

T_ = (. - (), the true yaw acceleration in the
global reference system,

and primes denote dimensionless forms of a quantity.

Table 1 illustrates the conversion of the parameters to

dimensionless form, and Table 2 defines each coefficient.

Terms not listed in Table 2 are not considered, and their

values are taken as zero in this model.

This formulation neglects the effects of side wall

forces resulting from. the proximity of the barge to the

boundaries of the channel. In practice, the separation

between the side of the barge and the channel wall may

range from a few feet to several barge widths. Often in

maneuvering situatijns, there is considerable variation in

separation diste sce along the length of the barge, with the

bow being ver- close to one bank, and the stern very close

23



QUANTITY SYMBOL DIMENSIONLESS FORM

yaw moment

sway force

surge force

yaw rate

sway velocity

surge velocity

yaw acceleration

sway acceleration

surge acceleration

N

Y

X

x

N'

Y'

'tY'

x

= N/~ L U

= Y/{ L 2U2

= X/}- L2U

= e/

= f/U

= x/U

= "L 2/U2

= Y/TI2
y 5L 

/U
2

. T

Vr

.

4.

y

x

Table 1 . Dimensionless Forms of Parameters
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COEFFICIENT VALUE INTERPRETATION

a1

a2

a3

a5

a6

a7

a9

a1 1

a (B)

b1

b3

b5
b6

b7

b1 0

b (6
10)

b (B)

c13

c11

c 1 2 (J)

c 13(B)

N =

N .t' =
y

N.2. =
.y Y

yiI

N.3 =
- y

N..'-I t=
i z

N /}LOU2  constant, yaw moment
0

N./}oL U yaw moment due to sway
y

N./-9pL U yaw damping

N.2. U/4OL 4

N. .'2 U/}p L 5  higher order terms

yy
N .J U/}1p L

(N....I )/}p L5 added moment of inertia
T z

function describing rudder induced
yaw moment

function describing bowthruster induced
yaw moment

Y

Y

Y..
Y

Y = Y / -LU constant, sway forceo 0

Y.' = Y./}p L2U sway damping
Y y

Y.= Y./}oL 3 U sway force due to yaw

.2. = Y.2. U/}p L3

.2 = Y . .2U/ 4
yp L higher order terms

Y.3. = Y.3 U/}pL 2

Y y

.' -m'=(Y..) L 3 added mass in sway
y

function describing rudder induced
sway force

function describing bowthruster induced
sway force

X ' = R /}pL 2 U2  smooth water resistanceo t

function describing rudder induced
drag force

function describing propeller thrust

function describing bowthruster thrust

Table 2. Hydrodynamic Coefficients
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to the opposite bank. In other cases, the channel boundary

may, rot be a steep bank, but rather a long irregular slope,

which may produce little or no side force on the barge.

Because of the wide variety of situations involved, the

consideration of sidewall forces is beyond the scope of this

work. However, the model has been structured to permit

sidewall forces to be incorporated with a minimum of diffi-

culty if a suitable representation is developed in the

future.

The values of the coefficients a - a1 3 , b - b and

c - c can be specified in several ways. By default, the

model uses a first-order approximation of all terms, as

given in equations (17) and (20) , based on the gross characteris

of the flotilla, neglecting shallow water effects. The two-

dimensional damping and added mass properties of the barge

and tug are used in this approximation. The sectional

characteristics shown in Table 3 can be used in the approx-

imation or other values for these sectional characteristics

can be specified. As an alternative to this first-order

approximation, values may be specified for the coefficients

a1 , a2 , a3, a3, a6, a7 and a9 and b , b2, b , b5, b6, b and b10'

based on independent computations or model tests, taking

shallow water effects into consideration as appropriate.
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CHARACTERISTIC SYMBOL VALUE

Sectional damping Cdt 1.5

coefficient for

barge array

Sectional damping Cdb 0.5

coefficient for

tugboat

Sectional added C at 0.45

mass coefficient

for barge array

Sectional added Cab 0.45

mass coefficient

for tugboat

Surge added mass Cas 0.0

coefficient for

flotilla

Table 3. Default Values for Sectional Characteristics
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Constant, Yaw Moment and Sway Force

The coefficients and b1 represent forces caused

by port/starboard asymmetry. This asymmetry may be due to

non-uniform draft within the barge flotilla, or propeller

torque effects in the case of a single or triple screw tug-

boat. Thd default value of both coefficients is zero.

Damping Forces

The damping force on a body can be expressed in terms

of a non-dimensional damping coefficient by the function,

Df
C = 1 or D =41p CdAU2 (13)
d -pAUK f d

where
Cd = a damping coefficient

D = the damping force

p = the fluid density

A = the projected area; draft x length, HL

U = speed.

Then the damping force per unit speed is

f _ PCdAU4=P CdUHL (14)

and the damping force per unit speed per unit length, or the

sectional damping factor, Sd, can be expressed

Sd=;}P CdUH(15)

28 .



Referring to Figure 5, the damping force on a section

at x = x1 is the product of the damping factor, Sd, and the

velocity of the section. The moment contribution of that

section is merely the product of the force on the section and

the distance of the section from the center of gravity.

Then the damping forces and moments due to yaw and sway are

b b
yN = -f ySdx dx = -y fSdx dx (16a)

s s

b 2 b 2
YN = f V'Sdx dx = -'' fSdx dx (16b)

s s

b b
yY = -f ?Sd dx = -y fSd dx (16c)

s s

b b
Y =-f iSdx dx = - p fSdx dx (16d)

s s

where the limits of integration are s=stern to b=bow.

After evaluating the integrals over the entire length of

the flotilla using proper values of Sd in each interval

and substituting equation (15), the coefficients a2 , a3 ,

b2, and b can be written,

N Cdbbb(aCGft+ Lb dtHtL t(CGfwd 4 t

a2 P(LbU ( + Lt) 3

(17a)

NT - CdbHb (CGaft+Lb)3-CGaft

a3 pLU (L + L )
b t) (17b)

CdtH (CGaft3+CGfwd

(Lb + Lt) 4
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Figutre 3. sectional damping f.Drce.
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Y.

b 2 v2LU

- (CdbHbLb) + (CdtH Lt)

(Lb +L ) (17c)

(17d)
Y.

b ==3 a

S pL 3 U 2

where the symbols are as shown in Figure 4, and

the values of Cdb and Cdt are given in Table 3.

Added Mass and Added Moment of Inertia

The added mass associated with a body accelerating in

a fluid is generally expressed as a fraction of the mass

of the fluid displaced by the body. That fraction is

referred to as an..added mass coefficient, Ca, where the

total added mass is given by 2pC LBHC Then the added mass
2ab

per unit length, or sectional added mass factor, Sa, can

be written,

S = P C B H Cb
a a b

(18)

where

C
a

p

B

H

Cb

Then, in a manner

moment due to the

to the added mass

= added mass coefficient

= fluid density

= beam

= draft

= block coefficient

similar to equations (16b) and (16c), the

added moment of inertia and the force due

in sway may be written

b b 2
-- 2 a'(--.- I )=- 'S x dx=- TfS a x dx

s s

(19a)

(19b)
b b

y(Y..- m .) =-f Y S dx = - fS dx
y 5s a
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where the limnits of integration are s=stern to b=bow.

After evaluating the integrals over the entire length of the

flotilla using proper values of S in each interval and

substituting equation (18), the coefficients a and b10 may

be written,

N.- I - (CbVb (OG ftL)-CG 3 /3)
a _l z (ab b (Caf t+b -Caf t 3a = -. =. +

9 .?pL5  (Lb +t (20a)

(Cat Vt(CGaft 3 +CGfwd3)/3)

(Lb + Lt)

Y..-m - (CaV) + (CaV )
b == ab b at t (20b)10 _ pL 3  (Lb + L) 3

where

Vb = HbBbLbCbb = displaced volume of tugboat

Vt = tB L Cbt = displaced volume of barge array

Cbb= block coefficient of tugboat

Cbt= block coefficient of barge array

and other symbols are as in Figure 4 and Table 3.

Higher Order Terms

The coefficients a5 , a6 , a7 ,- b5 , b6 , b7 have no clear

physical interpretation, and are most likely to arise during

the course of fitting a polynomial to the results of a scale

model test. *Thus, the default values of these coefficients

are taken to be zero in the model, but the coefficients are

explicitly included to offer compatibility with conventional

methods of presenting model test results.
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Smooth Water Resistance and Longitudinal Motion Terms

The process that this mathematical model represents

is the motion of a barge flotilla in a bounded waterway,

and the objective is to determine the time required to

execute a series of maneuvers. Small lateral and rotational

motions (sway and yaw) are significant due to the constraints

imposed by the necessity to remain within the channel.

However, small perturbations of the longitudinal motion

(surge) are essentially parallel to the centerline of the

channel, and thus have negligible impact on the lateral

position of the barge within the channel. The primary

influence on the maneuvering problem of motion in the

longitudinal direction is due to the quasi-steady-state

forward speed. Furthermore, the transit time through a

maneuver is determined almost entirely by the quasi-

steady forward speed; small surge fluctuations tend to

average out to no net effect when integrated over a long

period of time. Thus, the mathematical model considers

only the gross effects of longitudinal motion. Coefficients

c2 - cio are defined to be zero, and the terms corresponding

to them are not included in the model. Similarly, due to

the assumption of port/starboard symmetry the x and x

dependent coefficients a4, a8, b and b8 are also defined to

be zero, and are therefore not included in the model.
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The remaining hydrodynamic effect in the longitudinal

direction is the resistance to forward motion of the hull.

It is assumed that longitudinal accelerations will be small,

and that the flow will be essentially steady at any time.

Then the drag force (resistance) can be approximated by a

representation of the steady-state smooth water resistance

of a barge flotilla. The representation used for the

4mathematical model is adapted from Baier, where the resistance

of a barge train is given by;

184 V 1.86 T 2.86
RT = _21 )

H2B4 9 B} Kd

where
RT = resistance in pounds

H = average barge draft, feet

V = forward speed, feet/second
x

B = overall beam of flotilla, feet

T = displacement, short tons

Kd = a constant, based on length.

The constant, Kd, is related to the effective length of the

flotilla by the approximation,

K = a1L 2 + a L * + a3Le25(22)

where, for L e < 400,

a1= 1.723578

a2 = 5.520842 x 10-3

a3=_-2.542 x 10-6
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and, for L > 400,

a = 2.63833

a2= 2.21667 x 10-3

a3 = 0.0
:3

and L is the effective length of the flotilla, in feet.

The effective length of the flotilla is given by,

B
L L + L b23
e t b B (23)

t

where
Lt = length of barge array, feet

Lb = length of tugboat, feet

Bt = beam of barge array, feet

Bb = beam of tugboat, feet.

Rudder Force

The rudder force term in equations (12a) (12b) and (Zc)

and in Table 2 is represented by the coefficients, a11 (6),

b1 1 (6), c1 1 (6). Unlike the coefficients discussed previously.,

however, the rudder force coefficients are not constant; they

are influenced by the rudder angle, 6, and hence vary with

time as does 6. Hence, a1 1 (6), b1 1 (6), c1 1 (6) are represented

as functions, rather than as constant coefficients.

To compute its lift and drag forces, the rudder(s) is

modelled as a lifting surface inclined at an angle of attack

in a flow field. The effect of the flanking rudders, positioned

on each side ahead of the propeller(s) is ignored because they

are used only when the direction of propeller rotation is

reversed. This condition is not considered in the present

model. The rudder(s) is assumed to be positioned directly

35



behind the propeller(s), in line -with the centerline of the

shaft(s). The speed of the flow behind the propeller is the

forward speed of the barge, modified by the speed of the

propeller race. The net speed behind the propeller can be

given by,5

2T
V = p + V (24)
p pAx

p

where
T = propeller thrust, pounds
p

p= fluid density

A 2
p = disc area of propeller, nD /4,

p
V = forward speed of flotilla, U cosy (see

figure 3).

The lateral component of the flotilla's speed, U sins ,

is ignored, thus V is assumed to be directed straight aft.

The lift and drag forces due to the rudder are, respectively,

b1 1() = 6 pES + s26 2 + E 6 ArVp2 (25a)

and

cl1(6) = E 6 E +26 2 + E 46 ArVp2  (25b)

and the rudder induced moment is,

all(6) = (CGaft + Lb)b 1(6). (25c)

where
6 = rudder angle, radians

Ar= rudder area (chord length x height)

V = flow speed, as given in equation (24)
p
and the quantities in brackets, {}, represent

lift and drag coefficients of the rudder.
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While the terms E - E6 are all included in the model, the

presently assumed values of 2 through E6 are all zero. The

value assumed for E is 2.

Propeller Force

The coefficients describing the propeller forces, like

those of the rudder forces, are actually functions whose

values will change with time. The propeller force is assumed

to be a simple thrust longitudinally, therefore a1 2 (J) and

b 1 2 (J) are identically zero for all time. The longitudinal

thrust coefficient, c12 (J), is determined from open water

propeller characteristics, such as presented by VanLammeran,6

based on propeller characteristics and the advance coefficient,

J. The advance coefficient is defined as,

S(1-w) V (6
J _= x(26)

p
where

w = wake fraction
V = forward speed, feet/second
x

n = propeller revolutions per second
D = propeller diameter, feet.
p

The propeller thrust and torque are then given by,

T = K Pn2 D (1-t) (27a)
p t p

and

Q =K pn2 D (27b)
-p q p

where
t = thrust deduction factor

and K and K are thrust and torque coefficients.
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The thrust and torque coefficients are represented as higher

order polynomial functions of the advance coefficient, the

pitch/diameter ratio, and the blade area ratio. The value

of c1 2 (J) is given at any time by equation (27a).

Bowthruster Force

The bowthruster unit is a non-standard piece of equip-

ment in river barge usage. The units in use are often

one-of-a kind items that have been constructed for evaluation

purposes. As such, they can not be assumed to have any

particular physical attributes; therefore an attempt to

model a bowthruster based on a description of its physical

properties would be either severely restrictive in the

variety of configurations treated, or prohibitively complex

in order to accommodat-e a multitude of alternative physical

arrangements.

Furthermore, since the bowthruster is often built for

evaluation purposes, it is assumed that the builder/designer

should have data regarding the predicted or measured

performance of the unit. Alternatively, in evaluating an

as-yet unbuilt bowthruster one might hope to determine

either a minimum or optimum level of performance to use as a

design goal.

Thus, the most expedient as well as potentially useful

means of modelling a bowthruster is to model its net perform-

ance characteristics directly. To achieve this, it was
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assumed that the net thrust (or drag) of the bowthruster is

known, as a function of forward speed. It was further

assumed that the configuration allowed this thrust to be

directed in any direction within ±90 of dead aft.

The bowthruster performance is specified by a number

of pairs of coordinates describing the shape of the thrust

versus forward speed curve. At any stage of the solution,

the forward speed of the flotilla is known and the maximum

bowthruster thrust at that speed is found by interpolation.

Using relationships developed in the next Section (Steering

and Control Criteria), the maximum thrust to be directed

laterally, TBLIM, is determined. Then, for TBT < TBLIM '

a 3 (B) = (CGfd + dBT TBT TBL(28a)

b 3 (B) = T TBLIM (28b)
1 3 BT ITBLIM1

c1 3 (B) = 0.0 (28c)

and, for TBT TBLIM

a1 3 (B) = (CGfwd + dBT) TBLIM (29a)

b 1 3 (B) =TBLIM (29b)

c1 3 (B) =/TBT - TBLIM2  (29c)

where
TBT = maximum bowthruster output at given speed

TBLIM = lateral thrust command

dBT = distance of bowthruster forward of the

leading edge of the flotilla.
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STEERING AND CONTROL CRITERIA

The objective of the steering and control elements of

the mathematical model is to generate rudder position and

propeller speed commands that will cause the barge flotilla

to execute a given maneuver in a minimum period of time.

Three functions must be coordinated to accomplish that

objective;

1) determine at all times the position of
the flotilla within the channel,

2) based on the present position and

orientation, generate an appropriate
rudder and bowthruster command,

3) based on previous unsuccessful attempts,
restrict propeller speed and/or flotilla
forward speed.

In formulating the steering and control elements of the

mathematical model, an attempt was made to construct a

mathematical analog of the decision criteria which seemed by

personal observation to be used by tugboat helmsmen. The

parameters used by the model are the same inputs that are

available to the helmsman; lateral clearances along the

length of the barge,. yaw rate, and knowledge of the geometry

of the upcoming section of the channel. Similarly, the

variables controlled by the model are the same as those

controlled by the helmsman; rudder angle, propeller speed,

bowthruster angle, and speed upon entering a curve.



The primary difference, however, is that a helmsman

(hopefully) knows from experience how fast to enter a curve,

and at what speed the propellers should be set. The model has

no such preconceived notion; and, because it seeks to minimize

elapsed time, it always attempts to negotiate each curve with

the maximum propeller speed, and the fastest initial forward

speed compatible with the immediately preceeding maneuver.

If the maneuver is successful under these conditions,

minimum elapsed time will be realized. If not, the maneuver

is restarted with different, successively slower, combinations

of maximum propeller speed and initial forward speed.

When a maneuver through a curved segment is completed,

,the motions at the end of the curve become the initial

conditions for the next segment. If a curved segment is

preceeded by a straight or delay segment, the initial conditions

for the curved segment are defined in accordance with arbitrary

initial conditions which are input to the model. These

initial conditions may be changed, as described above, to

permit the flotilla to complete a maneuver. If the initial

forward speed at which the flotilla enters a curve is reduced,

then a penalty is added to the elapsed time for the preceeding

segment, to correct for the increased time required to

decelerate to the new initial speed for the curved segment.

While decelerating, the only force assumed to act on the

flotilla is the drag due to its resistance to forward motion.
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The time and distance necessary to decelerate to the reduced

initial speed is determined, and compared to the time required

to traverse that distance at the (constant) former initial

speed. The difference between these two times is the penalty

assigned to the segment preceeding the curve.

Position of Flotilla within Channel

The position of the flotilla within the channel is

determined by the lateral clearance between the channel

boundary and the extremities of the barge and tugboat.

Figure 6 illustrates a flotilla midway through a curve and

the relationship between the various lateral clearances.

Based .on these clearances, four parameters are selected to

express the position of the barge and tugboat relative to

the channel boundaries; These four parameters are:

cxi = the minimum of (dl, d3 , d5 , d7  the

the minimum clearance to the inside

wall of the channel,

Lx. = the longitudinal position of the section

corresponding to cx.,

cx 0 = the minimum of (d2 , d4 , d6 ); the

minimum clearance to the outside wall

of the channel,,

Lx 0= the longitudinal position of the section
00corresponding to cx.

The lateral clearances at the extremities, d - d6

are computed from the law of cosines as shown in Figure 7.

42



cx

Lxc

S1

d..

Fig-ure 6. Lateral clearance parameter:.
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Figure 7. Distance from the origin to the

extremities of the flotilla.
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For any point, P, in the global coordinate system, a triangle

can be constructed' with one side along the line from the

origin to the point P, the second side along the line from

the origin to the center of gravity of the flotilla, and the

third side along the line through P parallel to the center.

line of the flotilla. If P is at the point (a,b) in the

local coordinate system, the triangle has sides do, R', and

L as shown in Figure 7. The length of each side is given by,

b
R' = R + (30)

cosp

L e = a - b tan (31)

d = RI + L - 2 R' L cos ( n+) (32)
o e

where

a = the longitudinal position of P

b = the lateral offset of P from the center-

line.

The radial clearance, d., of the point (a,b) is then simply,

d. = + d - R - 'W = + d - R + 1}W (33)
1 - o+ o+W -do+ 0 0

where
R0 = the radius of the curved segment

W0 = the width of the segment

d. = d. through d6.
1 I 6

and upper signs give clearance from inside wall,

lower signs give clearance from outside wall.

Table 4 summarizes the values used in equations (30)through (33)

for determining d1 through d6 from Figure 6.
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a b

d2

d3

CGfwd

CGfwd

-CGf

CGaft

1

sign in

equation (-33)

upper

lower

upper

lower

upperd5 -CGaft Lb

-CGaft 
Lb

lower

Note: signs for 'b' values are for counter clockwise (+)
curve; for clockwise (-) curve, reverse signs for

all 'b' values.

Table 4. Values Used in Computing Lateral Clearances
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The distance d7 represents the clearance between the

inner wall of the ,channel and the inner edge of the barge,

at the point where the edge of the barge is parallel to a

tangent to the channel wall. The longitudinal position of

the point of tangency is given by,

L0 = R cos ( n+ + ) = -R sin P (34)

where
R = the radial position of the center of

gravity of the flotilla.

$P = the yaw angle.

Now if L > CGfwd or L < (-CGaft b), the point of tangency

is beyond the extremities of the flotilla and the minimum

clearance will be at one of the extremities. If

CGf > L > (-CGaft-Lb) , the point of tangency is along

the length of the flotilla. The clearance at this point

is then,

d7 = Rjcos i - B - Ro + to (35)

where
B = Bb for (-CGft)>L>(-CG-aft )

or B =Bt for CGfwd>L >(-CGaft).

For the case shown in Figure 8, where the ends of the

flotilla extend into the adjacent segment of the channel,

the results of equations (30) - (35) must be modified.

For each section of the flotilla corresponding to d1 - d7,

the overlap of that section is computed by,
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X = (R a +a cosh, -do)- (36)

where
R = radial position of the center of gravity

of the flotilla

a = angular position of the center of gravity

of the flotilla

a = as given in Table 4

1y= the yaw angle

d = arc length of the curve (see below).c

The arc length of the curve, dc, refers to the distance from

the beginning of the curve to the point where the flotilla

begins to overlap the adjoining segment. Thus, if the overlap

is into the next segment, d is R W . If the overlap is into
c 00o

the preceeding segment, do is 0. If, for any section along

the flotilla forward of the center of gravity, the value of

Xs>0, or aft of the center of gravity, the value of Xs<0,

then that section does not overlap into another segment.

Otherwise, the radial clearance of that section must be

adjusted to account for the different radius, channel width

or sign of the segment in which the section lies.

Referring to Figure 8, the apparent channel radius, Rapp,

at the leading edge of the barge is given by the radius, R ,

of the segment in which the center of gravity is positioned;

Rapp=R + }W(37)

where
. + gives the radius of the outer wall of the channel

- gives the radius of the inner wall of the channel.
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The actual radius, however, is,

R =R + ZW (38)
act o -

where
R the radius of the adjoining segment

0

W the width of the adjoining segment
0

and the sign (+) is as in equation (37) if

the adjoining segment curves in the same

direction; if the curvature is in the

opposite direction, + gives R of the
act

inner wall, and-- gives R of the outer
act

wall of the channel.

The error in the. radial clearance which results from

applying equations (30) through (35) to the case shown in Fig. 8

is due to the difference between the actual and apparent

radii. At a distance X away from the junction of the
s

segments, the error due to the different curvature of the

channel walls can be calculated from,

R R 2 239-X (39a)
app app s

and

* 2 2
R - R -X (39b
act act s

There is also an error due to any difference in channel

widths given by,
W -W

W (40OW= °2 (4o)
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The net correction to be added to the radial clearance,

d --- d,, computed from equations (30) through (35) is,

Ad = +( + e ) + AW (41a)

when the adjoining curve has curvature in

the opposite direction, and

Ad = ± (e- + Aw (41b)

when the adjoining curve has curvature in

the same direction,

where
+ applies to d2, d4 and d6

- applies to d1 , d3 , d5 and d7 .

Rudder and Bow Thruster Commands

The rudder and bowthruster commands are based on the

difference between the actual lateral clearance, cxi, and

a desired or target lateral clearance, ct., between the

flotilla and the inner boundary of the channel. The target

lateral clearance, as a function of a, describes a path that

the flotilla seeks to follow as it progresses through a curve.

It varies with a in a manner that will position the flotilla

at the end of a curved segment in the proper orientation to

begin the next segment. Therefore, the nature of the

function defining ct . depends on the relative characteristics

(type, channel width, curve radius and angular extent)

of the curved segment and the next segment of the route.

The derivation of the functions describing ct. is given

in Appendix B.
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Having the target lateral clearance at any time, the

rudder command is then given by,

6S=6 +6 + 6 +5s(-
o b $ s (42)

where
6 = the rudder command

6 = command based on clearance to inside
0

wall of channel

6b = command based on longitudinal position

of point closest to wall

6 = command based on yaw rate feedback

6 = command based on clearance to outside
s

wall of channel.

Figure 9 illustrates the parameters considered in generating

the four components of the rudder position command.

The difference between the actual lateral clearance,

cxi, and the target lateral clearance, ct., gives rise to

the first component of the rudder command through the relation-

ship

8 = ( cx. - ct.) 0-"-- (43)o 1 1 lao

where
S = a specified command parameter, in

radians/foot,

for cx.>ct.; S = S., the rate at which the rudder is
1 1 1

applied to turn the bow of the barge

toward the inside bank,

for cxi<c ; S = 5, the rate at which the rudder is

applied to turn the bow of the barge

away from the inside bank.
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Fig'ure 9. Parameter influeric ing rudder command.
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A check is made to insure the rudder command, is within the

maximum rudder angle limits,

6 maxi (44)

A condition can exist such that the barge is close to

the inside bank, so that 6 indicates a rudder angle to

steer the bow away from the .bank, Yet if the closest point

is near the stern, the appropriate rudder command would be

to move the bow in, thus pushing the stern out away from the

bank. The correction based on the longitudinal location of

the closest point, Lx., is, for Lx<(CGfwd SbL),

b = (CGfd-SbL..Lx.) Sc -' (45)

where
Sb = a fraction of the length, aft from the

bow, beyond which the correction is

applied

SC = the rate, in radians per foot, at which

the rudder correction is applied.

Again, a test similar to equation (44) is applied.

Because the barge response lags the rudder command, a

feedback loop based on yaw rate is required. The amount of

feedback is controlled by a specified gain constant, RG,

in the following:

-L
s = RG e a o (46)

a R |aol(

A test similar to equation (44) is again applied.
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Finally, if the stern of the flotilla moves too near

the edge of the outer bank, a correction is applied to move

the stern away; for (cx < ct .) and (Lx <0),o 1 o

Sca
= (cx -ct.) 00 (47)

s o i 21x01

As before, a test similar to equation (44) is applied.

The bowthruster command is generated in a manner sim-

ilar to that by which the rudder commands are developed.

The lateral clearance between the leading edge of the flotilla

and the inner wall of the channel, d in Figure 6, is com-

pared to the target lateral clearance, ct.. The difference

represents a lateral clearance error. This error generates

a lateral thrust command which will orient the bowthruster

force in a direction that tends to reduce the lateral clear-

ance error. The lateral thrust command is given by,

(ct .-d ) a

T - T T10 (48)
BLIM BMAX G ct.a (

where
TG = the lateral thrust gain parameter

d = the bow clearance, equations (30) through (33).

Using this command, the lateral and longitudinal components

of the bowthruster force are determined from equations

(28) and (29).
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Propeller Speed Control
*2 . '

On the initial attempt to negotiate a curve, the propeller

speed is allowed to increase without restriction. Thus,

the shaft horsepower is the only limit on propeller speed.

At each step of the solution, the required shaft horsepower,

hp, is computed by

hp = w n Qp / 275 (49)

where
n = revolutions per second

Q = propeller torque from equation (27b)

If the required horsepower is less than the available horse-

power, shp, then the propeller speed is increased in increments

of 5 revolutions per minute until the available shp is

exceeded. The rpm is then reduced to the next lower 5 rpm

increment.

If the barge speed is excessive for a curve (i.e. the

barge hits the channel wall), the solution "steps back" in

time and restricts the propeller speed by the relationship

rpmlimit = rpm - rpmmx /1.0. (50)
where

rpmlimit = maximum rpm, command

rpm = propeller speed when barge hit channel

wall

rpm = maximum rpm possible for system.

The rpm is reduced in this manner each time the solution

fails to complete a curve.
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However, when

rpmmarpm'limit r 
(51)

the solution restarts the curve from the beginning, with

the initial forward speed reduced by 1.0 foot per second.

The iteration of reduced rpm and reduced initial forward

speed is continued until the solution is successful (or a

finite number of tries is made).

57



OTHER RELATIONSHIPS

The relationships discussed in the preceeding parts of

this Section are fundamental to the formulation of the

mathematical model. In addition, there are several relation-

ships that serve to enhance the utility of the mathematical

model, particularly in the context of determining numerical

results. The more significant of these, discussed in this

Section, are the curve fitting and interpolation techniques

and a convenient means of checking the input data describing

a river channel. Discussion of other relationships is

included in the Subroutine Descriptions in APPENDIX F.

Interpolation and Curve Fitting

To implement the third solution option (see Section III),

solution by interpolation, a three dimensional interpolation

technique using cubic curve fitting was developed. This

permits the elapsed time for a given route segment to be

interpolated from an array of data for segments of various

radii, channel width and angular extent. The same inter-

polation technique is used to determine the net thrust of the

bowthruster, at various speeds., from discrete data points of

thrust versus forward speed.

The data used in the interpolation option is structured

as an array of elapsed times, T, versus curve radius, R,

channel width, W, and angular extent, a.
0 A

58



The size of the array is at least 3, but no more than 7, in

each dimension. A, value of T is assigned to each element in

the array, and the array is arranged such that

R1< R2 < R3 ---- <R7 (52)

W < W3-7 (53)
a1<a2< a 3 ---- <a 7 (34)

To determine the value of T corresponding to a particular

segment, with characteristics R, W, a, it is first necessary

to determine the elements bounding R, W, a, in the array.

Starting with i=j=k=1, each parameter of the array is tested

to determine the values of i, j, k which satisfy,

R.< R <R. (55)i- i+1

W.< W <W. (56)

a k< a <ak+1 (57)

The eight elements, (R.Wk.,ak)....(R. +. ak+1)i +1 )+' +

are the nearest in each direction to R W a. The next

closest value for each. parameter is then selected and satisfies

either,

R. 1<R.< R < R. (58)
i-i i +1

or

R. < R < R. < R.
1 -+1 +29)

and similarly for W and ac.
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The low, intermediate and high values of each parameter

(R1, R, R; W* W.W; a m'a ') correspond to 27 elements of

the array in the vicinity of R, W, a. For each combination

of radius and width (R W ; R W ; ---.;R W) the elapsed1 1' 1 m' n n

time is represented as a function of a. These nine functions

are denoted, respectively

For R1 W1 ; T = F1 1 (a1 ' mm6acn) (60a).

For R 1 Wm; T= F (a1ac an) (60b)
, 1 m , lm V'm n

For R W ; T = Fnn(alaman) (60i)

Then each function is evaluated at a , and for each value of

W the values of F (a) are represented as a function of R,

For W1; T = G1 (R 1 R)R) (61a)

For Wn; T = G (R*R ,RR) (61c)

Then each function is evaluated at R, and the values of G

(R) are represented as a function of W,

T = H (W 9 Wm'Wn) (62)

Finally, H (W) is evaluated to determine the value of T

corresponding to T (R, W, a).

In each case above, equations (60) through (62) , the three

data points associated with each function are fit to a curve
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of the form

f(x) = ax + bx2 + cx 3 . (63)

Three simultaneous equations in three unknowns (the

coefficients a, b and c) are evaluated at the three

data points. These equations are then solved by

evaluating determinants to determine the values of

the coefficients a, b and c.

This interpolation and curve fitting scheme is also

used to determine the net thrust of the bowthruster at any

given forward speed. The bowthruster performance curve,

typically as shown in Figure 10, is described by a set of

up to seven coordinates. To determine the thrust at speeds

other than those corresponding to the given points, three

data points are selected as in equations (58) and (59).

The thrust, TBTi at each point is transformed by subtracting

from the zero speed thrust, TBMAX'

BTi = TBMAX TBTi (64a)

Equation (63) is then fit through the three transformed

points, and the transformed thrust, TBT, is obtained by

evaluating the polynomial at the desired speed. The actual

thrust is then found from the reverse transformation,

TBT =T - TBT. (64b)
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Figure 10. Typical bowthruster performance curve.
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Input Data Checking

The route, along which the transit time for a flotilla

is to be predicted, is described in terms of a finite number

of segments. Each segment represents a distance along the

channel, and possibly a change in its direction. For a

route with a large number of segments, it may be difficult to

check the input data, to verify that the radii and angles of

all the segments correctly approximate a specific route. To

aid in checking the overall length and direction specified

by a series of segments, compared to the known length and

direction of the route the segments are to represent, the

following relationships are given.

A curved segment of radius R0 and angle a o, in the

auxiliary coordinate system X', Y' is shown in Figure 11a.

Starting at the origin, and moving along the curve through

the angle a o, the distance travelled along the curve is

R a * The change in heading of a tangent to the curve is

a as the point of tangency moves similarly along the curve.

The coordinates of the point Q are (X4, Y ) with

ao
X' = R - sin a (65a)

Q ol a o o

and
a o

Y'=R - --- (1 - cos a ) (65b)

a o
where - keeps the sign appropriate for the case of

ao < O.0, when the center of curvature then

is at (0, - R)
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Now, if the location and orientation of the X' Y system is

known with respect to a global system, .X Y, then the coordinates

of Q may be determined in the X Y system by the axis trans-

formation

X = X' cose - I' sine + XB (66a)

and

Y =-Y' cose + X sine + YB (66b)

where

0 is the angle from the X to the X' axis

and (XB B) are the global coordinates of

the origin of the X'Y' system.

The total distance along a route of N segments is

- R01 of

i=7

and the angle of the tangent at the end of the N- segment,

relative to the X axis is

£i .

Furthermore, the coordinates of the point at the end of the

th
N- segment can be determined by applying equations (65a)-

(66b) sequentially to each segment of the route, as illus-

trated in Fugure 11b. The local end point of the nth

segment, (X ,Y ), is transformed to its global equivalent,

(XQYQ), and becomes the base point, (XB' B), for the origin

of the local axis system for the (n+1)th segment. The
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Figure l a. Curved segment in moving coordinates.
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Figure 11b. Combination of curved

segments along a route.
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straight line distance from the global origin to the end of

the N- segment, where (XB'YB) represents the base point for

th
the (N+1.)--- segment , is given by,

2 Y2
B +B

and the bearing, relative to the global X axis, is given by,

_ Y

tan 1 --
XB*

Thus, the input data describing a route can be checked for

total distance and heading change along the route, as well

as for the range and bearing from origin to destination.
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V. COMPUTER PROGRAM DESCRIPTION

The mathematical model is implemented in a computer

program written in standard FORTRAN IV code. A listing

of the program is given in APPENDIX E. The structure of

the program is modular, with separate SUBROUTINEs written

to perform each function of the solution. The flow within

each SUBROUTINE is generally straight forward; a description

of each is given in APPENDIX F. The variables in each

COMMON block are described in APPENDIX G, and a variable

cross-reference list is given in APPENDIX H. A detailed

description of the input data file format is given in

APPENDIX D.

The numerical computations within the program are

done in double precision, thus all real variables (those

beginning with the letters A-H and O-$) are specified to

have a length of 8-bytes. The remaining variables (I-N)

are either 4-byte integers or logical variables. A

definition of each variable is given in APPENDICES F and G.

67



VI VERIFICATION

The mathematical model is intended to represent a physical

system. This representation involves simulation of the commands

that control the rudder angle and propeller speed and prediction:

of the response of the flotilla to those commands. These

functions are incorporated into the computer program and are

supplemented by data handling routines, interpolation and

curve fitting techniques, an algorithm for resetting the

initial conditions of the flotilla in a curve and a host of

other subordinate functions.

To ascertain the degree to which the simulation represents

the physical system, two levels of program verification are

used. The various functions performed by the computer

program are each described by one or more SUBROUTINEs.

Thus, the program functions can be checked out individually

by verification at the SUBROUTINE level. The primary

consideration, however, is to determine how well the per-

formance predicted by the simulation agrees with the observed

performance of an actual system. This verification is

determined at the program level.

SUBROUTINE VERIFICATION

Each SUBROUTINE has associated with it a specific

function; for a given set of input parameters, the SUBROUTINE

should return a predictable result. Verification at this

level is accomplished for each SUBROUTINE by writing a
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temporary test program to assign known values to the input

parameters, call the SUBROUTINE, and print out the values

returned by the SUBROUTINE. These values are then compared

to results obtained independently, using the same values of

the input parameters. Satisfactory agreement indicates that

there are no programming errors in the FORTRAN code.

PROGRAM VERIFICATION

At the present stage of development of the simulation,

correlation of the predicted performance of a flotilla with

its observed behavior, on an absolute scale, is somewhat

premature. Shallow water and side wall effects that influence

the behavior of the physical system are presently neglected

in the simulation. Furthermore, the predicted results depend

on the numerical values assumed for the hydrodynamic coef-

ficients, the rudder lift and drag characteristics and the

propeller and bow thruster force terms. Thus, the absolute

accuracy of the predicted results depends on factors that are

beyond the scope of the present investigation.

Some degreee of verification, using reasonableness

criteria, is still possible. The status of the flotilla at

intermediate steps of the solution of the equations of motion,

as shown in Appendix C, indicates how the flotilla is predicted

to move around a curve. Analysis of the position and orien-

tation of the flotilla as a function of time, and its

response to changes in rudder angle and propeller speed,
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suggest that the predicted behavior is consistent with the

expected behavior of a barge and tugboat in a similar

maneuver. The rudder commands, as the flotilla progresses

through a curve, are compatible with the position and

orientation of the flotilla at any time and with the geometry

of tho next segment of the route. Finally, the predictions

of elapsed time determined by direct integration of the

equations of motion along a route agrees well with the

prediction by interpolation for the same route. These

results indicate that although the absolute accuracy of the

model is limited to the degree of accuracy to .which the

forces are approximated, the overall structure of the

solution is satisfactory, and the basic control functionis

of the model are performing as intended.
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VII. SAMPLE CASES

Test cases have been run to evaluate the results

obtained from the computer simulation. All of the basic

solution options have been evaluated, and the results

appear satisfactory (see Section VI). A sample input

data file and the corresponding solution print out are

shown in APPENDIX C, for a case using direct integration

of the equations of motion along a route.

The execution time required for a case depends on

several variables. The number of curved segments clearly

influences the execution time required. For solutions

involving integration of the equations of motion, the

severity of the curves can increase the execution time if

many iterations are required to successfully complete a

maneuver. Furthermore, the values specified for the

numerical integration error control limits (App. A) can significantly

influence the program execution time. Typical values of

these limits are in the range from 10- to 10- . Some testing

is recommended to determine values appropraite to each case.

Representative execution times are expressed in terms

of typical run costs for solutions done on the University of

Michigan AMDAHL 470 computer system. For solutions involving

integration of the equations of motion, solution costs are

on the order of one dollar per mile of curved segments. For

solutions by interpolation, typical costs are on the order

of two cents per segment.
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To illustrate one of the potential applications of

the simulation program, a series of sample cases were run

to predict the transit time for a flotilla maneuvering

through a single bend, with a series of different bow

thrusters. The characteristics assumed for the bowthruster

in each case are plotted in Figure 12a. The parameters

describing the curve are given in Figure 12b, which shows

a plot of the elapsed time required to complete the maneuver

as a function of the maximum thrust of the bowthruster

in each case. Data of this sort will permit an investigator

to quantitatively assess the benefits accrued from a given

size bowthruster, compared to another size or none at all.
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VIII. RECOMMENDATIONS

The recommendations for further development stress

three different phases. The first phase involves extensive

testing of the existing model, to develop a data base for

selecting values of the error control limits and the steering

criteria parameters appropriate to a particular case. The

second phase involves alteration of the model, to improve

the execution time for simulating curved segments.

Emphasis should be placed on improving the search method

used to determine the best initial conditions to apply at

the start of a curve. The present search method reduces

propeller speed by several small increments, then reduces

initial forward speed a small increment, and then repeatst

the sequence, until a maneuver is completed. A search

method that varies the initial forward speed, and then

searches for the best propeller speed at each forward speed

tested, may 'substantially improve the convergence of the

solution. The third phase of development involves improving

the representation of the hydrodynamic forces and incor-

porating terms to account for shallow water and side wall

effects. The model should also be modified to include a

representation of the wind generated forces and moments

acting on the flotilla.

Implementation of the preceeding recommendations will

permit the simulation to more realistically represent a barge

flotilla maneuvering in an inland waterway.
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APPENDIX A

NUMERICAL INTEGRATIEON

The differential equations of motion, equations (6a) -

(6f), are simultaneously integrated to determine the velocity

and position of the flotilla at any time. Because the

representation of the forces, Q%, Q , QR is not ammenable

to analytic treatment, solution by numerical integration

is required. A Kutta.-.Merson predictor-corrector technique

is used, featuring a variable step size, At, to control

the magnitude of the absolute and relative errors, e a and

E
r'

The integration along a curved segment is done in

increments of time, AT. When error control limits are

specified, At is successively halved or doubled from its

initial value,At , until the maximum step size which will

satisfy the error tolerances is achieved. To prevent the

step size from becoming too small, a limit, Nc, is placed

on the number of times the step size may be halved. Thus,

the integration will terminate when,

ja t|<jo t)(})N ( )

When E =E = 0.0, the error control feature is
a r

suppressed, and the step size is held constant at At

throughout the entire interval AT.
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At the end of each interval AT, the position of the barge

is checked. If the angular position of the center of gravity

is greater than the angular extent of the curve,

IczI>Icz.I(A2)

the integration is terminated and the solution proceeds to

the next segment. If the clearance between the flotilla and,

the channel boundary is negative,

cx. <0 (A3a)

or

cx o0 (A3b)

the integration is assigned a new set of initial values,

and is restarted. The integration continues until equation

(A2) is satisfied, or until a specified number of integration

steps have been evaluated. If equation (A2) is satisfied,

the conditions at the end of the segment become the initial

conditions for the next segment of the route. If the

maximum number of integration steps is exceeded, an error

message is printed, and the specified initial conditions

are assumed for the next segment of the route.
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APPENDIX B

TARGET LATERAL CLEARANCE FUNCTION

In specifying the target lateral clearance as a function

of a, four cases are considered, as shown in Figure B1. In

all four cases, when Ja|<J|a the target lateral clearance

is a constant specified as a fraction of the segment width,

ct. = bcl W (B1.)

where
bcl a constant, specified control parameter

W0 = the segment width.

The simplest case, Figure B1a, represents the last curve in

a journey. In this case, there is no need to orient the

flotilla to enter another segment so there is no problem in

keeping the lateral clearance constant throughout the curve.

Equation (B1) is applied throughout the entire segment.

In the second case, Figure B1b, a curve is followed by

another curve in the same direction but with a different

radius and/or channel width. If the width of the second

curve is Wn, then the change in channel width from the first

to the second segment is,

AW = W - W . (B2)

If
A W < -bcl (B3a)

then
A W = -bcl W . (B3b)
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To position the flotilla at the desired lateral clearance

for the start of the second curve, the target lateral

clearance for a> +zaJ is given by,

(2a - a )('A W)
ct. = (b W0) + a0 )(B4)

0

where
a = the angular position of the center of

gravity of the flotilla

a0= the angular extent of the curve.

Note that equations (B3a) and (B3b) are required to keep

the barge clear of the inside wall of the channel when the

second segment is much wider than the first.

In the third case, Figure B1, a curve is followed by

a straight (or delay) segment. The target lateral clearance

for this case is adjusted to bring the flotilla to the

center of the channel at the start of the next segment.

Then for lal> 11aj,

ct. = (bcl W) + {---- (W..2b 1W-Bt) (B5)

where

B = the beam of the barge array.

Finally, in the fourth case, Figure B1d, a curve is

followed by another curve in the opposite direction. The

target lateral clearance for this case is adjusted to bring

the flotilla across the channel at the end of the segment

to a proper distance from the inside wall of the next segment.
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Then for lal > +IxOI,
2a-a _

ct. = (b W ) + (W-2bW.-Bt) (B6)
i- cl o a cl o t

where
W = j(W+W) for W< W

o n n o

or

W = W for W>W

Note, as in the second case, W is defined to keep the barge

from hitting the outside wall of the channel when the second

segment is much wider than the first.
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APPENDIX C

Sample Input and Output Data File

Samnple Input Data File.

TSST C:ASE USING LIMIAS 6iULJ~i7 D~A'C c.FI-rC:NTS A1-A1C/Fld-B1C
311 Rl
BA ~G

IN:T
:N:-T
ST °R

1
2
.3

5
0
1
0

1
1
1
1
2

1

1
3
3

'4

20

3
'1

2

1

.35.C

574.5
10.4

500.0
9.5

100.0
8.0

0.15

35.0
112.5

13.8

7.5
9.0
1.0

0.C 6

283.0
0.88
10.0
0.85

0.0
0.01
0.06

0.5

0.5
0.5

0.0

56.C
0.80

100.0
0.0
0.0

0.:~1
0.001

140.0

C.E
0.0
0.c

0.05

28.0

0.06

0.0

4.0

1.0

50CC.G0
3 cc:.0
5C jC. 0

CC;3
v.'.

'2.0

5 00.0
5 c .
500 *

-C .ooi 11
-c . C+1 i
-C . C')72

" J

0.0
0.V

-0.0070
-0.016

cl



V.

Sample Output

rj;S'[ CASE. USIiNG LDA'S HiYDROL)YA'1AC CGF GiCEN-S Al1-AlO/B1-BlO

CiiA'lAClT. .RIST=(;S OF TOWi3OAT AND 3 LON~G 1 Y 1 WIDE. BARGE TOW

TOW

LENGTH OVES ALA

W :DTH
D& AFT

575.

10. 40

i3OAT

113.
35.
13.8C

3iuCI{ COEFE'ICIENT 0.880 0.800
L C G (F01iWA2,D) 283.0 56.0
G Y ADIUS 1i40.0 28.0

n PU t 5:Ot AND ;PIDDER C1MAFiCTER7STICS AND STEERING C?_TERIA

NLUiii OF SHAFTS 1
i!S~~ ~ SHAHT 500.

.LA:OFD Si T F:2OtI CL 10.

r.Lci)rE t LE' i'r~oPELLER S
D AIlE1'9.5

P~i. 7.5

;& L :,ACO 3.035:

,r ricei DEALTUN 0.0

AiL EA PE; UiDR 100.

~. A:R:UDDER BATE .3.0 C)

DEi iC:ZB 1S I UZ ST i SL -

t:..15 Cl J. G;;C C. ) b 3C
STFCCER ST K RGAJ.
ui.C 01O ('.MC 4.COC

IN:T:A.:. 3Ar-G:/O'0ibOAT VE--'OCITY AND 0?'-.'TATTON

LRPM SPr::D CUtE:T GAi!MIVA
AN .L-l

1J0. 9.00 C.11

Y AW YAW; IAiT91L
ANG LE RATE OF'FSET

0.0 0.J 1.0000.0

INTE(;'eAT:GN LCN:-OLT PARA METIMIS

NCUTTS F L1,S'-JTIL"
2C 1.00W0

STM'?-S IZE RL- ':R0R ALS-ERROR
$.0cGc c.010J000C O.C1000000
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Sample Output
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