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Abstract 

 

Computer models have been used to simulate engineering product and system 

performances in applications such as vehicle crashworthiness, structural safety, thermal 

responses, etc. If these predictions were accurate in the product and system design space, 

these models can help reduce product development cycle, cut down the cost of physical 

tests, and identify the optimal design. However, models are built on assumptions and 

simplifications. Therefore, model prediction could be problematic without referring to the 

corresponding test data. More importantly, design errors could be created because of the 

model error. Model validation is to determine the degree to which the model is an accurate 

representation of the real world from the perspective of the intended uses of the model and 

is a critical process to ensure the improved design efficiency and accuracy while 

minimizing the overall design cost. 

 

The objective of this dissertation is to study a systematic and practical model validation 

framework for the design of engineering products. To achieve this goal, five research 

thrusts are developed. First of all, a copula-based model bias characterization approach is 

developed to capture the relationship between model inputs, outputs, and the model bias. 

The contribution is to overcome the limitations of regression-based model bias modeling 

approaches including: i) the curse of dimensionality; ii) assumption of regression forms; 

and iii) low accuracy to the model outputs with unexplained portion of model bias defined 

by model parameters. Secondly, an adaptive copula-based model bias characterization 

approach is developed to further enhance the accuracy of the copula-based approach with 

the aid of clustering analysis. Thirdly, a novel validation metric for dynamic responses 

under uncertainty is developed so that model accuracy with dynamic responses can be 

quantitatively assessed considering limited test data. Fourthly, a stochastic model bias 

calibration and approximation approach is proposed with the aid of the developed dynamic 



x 
 

validation metric for reliability analysis. Finally, reliability-based design optimization is 

integrated with the proposed model uncertainty characterization approach for reliable 

design of various engineering products. Various numerical examples and practical 

engineering problems are employed to demonstrate the proposed model validation 

framework for designing reliable engineering products.
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Chapter 1: Introduction 

 

1.1 Background and Motivation 

Computer models have been extensively used to simulate engineering problems such as 

solid mechanics, structural dynamics, hydrodynamics, heat conduction, fluid flow, 

acoustics, etc. These models predict various performances of interest such as stress, strain, 

velocity, or failure measures such as crack initiation, crack growth, fatigue life, net section 

rupture, critical corrosion damage, etc. Computer models are playing more and more 

important role to aid virtual prototyping, reduce product development cycle, and cut down 

the cost of performing physical tests. Not limited to engineering disciplines, applications 

of computer models are also popular in chemistry, biology, economics, psychology, and 

social science.  

 

Although the list of applications for computer models seems endless, validity of these 

models needs to be examined carefully before enjoying the benefits and making design 

decisions based on the model prediction. A model is more abstract than the system it 

represents. Abstraction and assumptions are made to build the model by eliminating 

unnecessary details and focusing on important factors in the system. This abstraction 

process introduces inaccuracy and makes the model solution tractable and efficient to 

obtain. While on the other hand, such abstraction process requires assessment of the 

goodness of the model.  

 

Model verification and validation needs to be formally defined. Various researchers from 

computational fluid dynamics (CFD), ground water flow, Institute of Electrical and 

Electronics Engineers (IEEE), software engineering and American Institute of Aeronautics 

and Astronautics (AIAA) provided their own definitions. Here definitions of verification 

and validation are adopted from [1] because of the popularity in the literature (commonly 

cited in [1, 2, 3, 4, 5]): 
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 Verification is the process of determining that a computer model implementation 

accurately represents the developer's conceptual description of the model and the 

solution to the model. 

 

 Validation is the process of determining the degree to which a computer model is an 

accurate representation of the real world from the perspective of the intended uses of 

the model. 

 

Verification answers the question “Have we built the model right?”. It is similar to 

debugging, in the sense that it intends to ensure the model does what it is designed to do. 

Verification focuses on comparing the elements of a simulation model of the system with 

the description of what the requirements and capabilities of the model were to be (i.e., see 

if the model matches specifications and assumptions deemed acceptable for the given 

purpose of application). There are many techniques that can be utilized to verify a model 

including, but not limited to, having the model checked by an expert, making logic flow 

diagrams, examining the model output under a variety of settings of the input parameters, 

etc. 

 

Validation answers the question “Have we built the right model?”. It is the task of 

demonstrating that the model is a reasonable representation of the actual system: that it 

reproduces system behavior with enough fidelity to satisfy analysis objectives. Validation 

also focuses on determining whether the differences between the model and the system are 

acceptable given the intended use of the model. There are many approaches that can be 

used to validate a computer model. The approaches range from subjective reviews to 

objective statistical tests. 

 

Verification and validation (V&V) have gained interest in various research fields and 

various model validation approaches have been developed. However, are these approaches 

sufficient to assess the goodness of the model? As a result of applying model validation 

approaches, how will they impact the reliability-based design in miscellaneous engineering 
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fields? We shall seek the answer to these questions and construct our own solution in this 

research if no satisfactory answers are found.   

 

1.2 Research Thrusts and Contributions 

The overall objective of this research is to study a systematic and practical uncertainty 

management framework for incorporating model uncertainty into reliability-based design 

by enhancing/developing model validation methodology. To achieve this objective, model 

uncertainty should be accurately approximated in the whole design space, where the design 

space is defined as the allowable design domain of all design variables for an engineering 

design practice. As a result of breaking down the research objective, the following research 

thrusts are formed: 

 

 Research Thrust 1: Study general and robust algorithms for model uncertainty 

approximation at intended uses of the model: this research addresses challenges for 

model uncertainty approximation in the design space and further quantifying 

uncertainty for the model uncertainty approximation.  

 

 Research Thrust 2: Study time-independent and time-dependent reliability analysis 

with consideration of the model uncertainty: this research task addresses challenges 

raised from model validation metric for dynamic systems and reliability analysis 

considering model uncertainty.  

  

 Research Thrust 3: Study general and effective algorithms for reliability-based design 

by incorporating the model uncertainty: this research task addresses challenges for 

reliability-based design with irreducible and reducible uncertainties, statistically 

correlated uncertainties, and random field uncertainties.  

 

The contributions of this research with respect to each research thrust is briefly described 

as follows: 

 Contribution to Research Thrust 1: A Copula-based model bias characterization 

approach is developed to capture the relationship between model inputs, outputs 
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and the model bias, as well as to provide the prediction in new design space. Model 

bias is first characterized in the design space, then the model prediction is corrected 

by adding the characterized model bias. Through case studies it is proved that the 

non-linearity in the model is not affecting the potency of the proposed approach, 

and it is capable of handling problems with high number of design variables. The 

Copula-based model bias characterization approach is further enhanced by 

constructing an adaptive Copula-based model bias characterization approach 

coupling cluster analysis. Cluster analysis is performed on the raw data to group 

similar data points, followed by copula modeling for each group (cluster). Model 

prediction is then produced using information from each cluster. The final 

prediction is the weighted sum of every prediction from the respective cluster. The 

proposed approach is effective in improving the accuracy of model prediction 

compared to its predecessor in the sense that it is able to produce more accurate 

model prediction as well as narrower confidence bounds. 

 

 Contribution to Research Thrust 2: A novel validation metric for dynamic 

responses under uncertainty is proposed. The classical U-pooling approach is 

extended for dynamic responses by discretizing and treating the dynamic responses 

as a high dimensional joint distribution. PCA is utilized to effectively represent the 

dynamic responses by a few random variables so that the U-pooling value can be 

computed more efficiently. The shape deviation is introduced in the validation 

metric so that the metric can still distinguish the model accuracy when the U-

pooling value alone is not differentiable. Furthermore, a stochastic model bias 

calibration and approximation approach for dynamic system responses is proposed. 

It calibrates model bias using PCA so that only limited number of calibration 

parameters are needed and the calibration can be effectively conducted similar to 

the static model bias calibration. Another contribution of the proposed approach is 

to approximate model bias through building the response surfaces of PCA model 

components so that the approximate model bias keeps the same form as a PCA 

model which makes it possible to seamlessly integrate the dynamic model bias with 

the baseline model. 
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 Contribution to Research Thrust 3: Reliability-based design optimization is 

integrated with the proposed model uncertainty characterization approach for 

reliable design of engineering products. A copula-based model bias correction 

approach is proposed for RBDO addressing model bias calibration at available 

training design configurations, model bias approximation at new design 

configurations, reliability analysis considering model bias and design sensitivity 

analysis. The proposed approach is a non-causal modeling approach that conducts 

non-causality modeling between model bias, design variables, and the baseline 

model prediction. The proposed approach has the potential of being more suitable 

for model bias modeling compared to the regression approach because model bias 

is defined as the inherent model inadequacy for representing the real physical 

systems due to simplifications and assumptions and hence is not supposed to be 

fully accounted for by the defined model parameters using a causal modeling 

approach. Furthermore, the proposed approach employs less assumptions and is 

expected to be less sensitive to the dimensionality of the problem compared to the 

regression-based approach. 
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Chapter 2: Literature Survey 

 

2.1 Model Verification and Validation History 

As stated by statistician G. E. P. Box, all models are wrong, but some are useful [6]. Since 

computer models are, at their best, approximations of real world phenomena based on 

various assumptions, validation and verification (V&V) started to emerge in the literature 

and techniques has been developed to formally assess the goodness of the computer models. 

The earliest work on V&V can be traced back in [7], where the author noticed that with the 

advancement in computer technology in modeling complex systems, issues such as V&V 

were not satisfactorily solved or paid serious attention to. Sargent [8] used Fishman and 

Kiviat's definition [7] for V&V and did a summary on existing validation techniques. A 

list of validation techniques was provided, such as, subjective judgment by experts, 

graphical comparison, cross-validation, etc. They concluded that multiple validation 

techniques should be selected and the statistical test is desirable if it is feasible and 

economical. Dr. Balci in [9] continued their work and stated that the validation techniques 

available then generally fall into two categories, subjective validation techniques and 

statistical tests. They also provided a summary of such statistical tests. Dr. Balci was the 

main contributor to V&V techniques included in the 96' Department of Defense (DOD) 

report [2] as DOD recognized the benefits of V&V to modeling and simulation (M&S). 

Such benefits include, but not limited to, increasing the confidence in M&S, mitigating the 

risk of making the wrong decision and reducing the cost of the future verification, 

validation and accreditation (VV&A). It was also pointed out that it is easy to confuse 

verification with validation. In [10] the author emphasized various distinctions between 

verification and validation, and argued that verification should proceed before validation. 

This research will be focused on validation. Various validation methodologies will be 

reviewed next. 
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2.2 Deterministic Model Validation 

Deterministic model validation aims at producing a fixed model validation outcome. This 

is mostly due to the fact that this type of model validation deals primarily with systems 

with deterministic inputs and outputs, and no statistics-based techniques are involved. The 

end product of deterministic model validation is often in the form of a validation metric 

that measures the difference between computer model and the true system response. The 

most intuitive and primitive approach in this area is to compare computational and 

experimental system response quantity (SRQ) graphically. One decides whether or not to 

accept the model by inspecting the difference between the two SRQ curve or response 

surfaces. No quantitative measure of the difference between the two quantities compared 

is involved. In [11] a study was done for dynamic stiffening behavior of flexible structure. 

A mathematical model was developed to quantify the deformation of a flexible beam. The 

authors validated this model by superimposing computer-simulated deformation curve 

onto the experimental curve image taken by a high speed camera. In [12] in order to 

validate the computer model for predicting slip factor of centrifugal impellers, the authors 

plotted the predicted values versus experimental measurements. If they agree with each 

other, then the collection of all the points plotted should form a line with a slope of one 

(base line). Similar usage of graphical comparison can be found in [13, 14]  However, in 

[15] the authors argued that graphical comparison may be subjected to reader 

misinterpretation because of unknown underlying data structure. In [16] the authors argued 

that graphical comparison can be biased and subjective. More refined techniques are thus 

needed to produce plausible validation results. 

 

More quantitative validation metrics are developed to assess the agreement between 

computational and experiment outcomes in terms of a comprehensive quantitative measure. 

For non-dynamic systems there are simple mathematical measures to quantify model 

adequacy such as 𝐿2 norm. For dynamic systems more sophisticated validation metrics are 

needed to consider various features in the system such as magnitude, shape or phase.  

 

A common feature to compare is magnitude. In [15] the authors discussed several 

magnitude-only error metrics such as mean absolute error (MAE) and the root mean square 
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error (RMSE). It was noted in [15] that it is impractical to set a single threshold value for 

these measures because the validity of the model depends on both the type of the model 

and its intended uses. They recommended to use a combination of various validation 

techniques, which echoes with the suggestions in [8]. 

 

In [17] the authors used 𝐿1 and 𝐿2 norms to quantify the magnitudes difference for the case 

where both the experimental measurements and the computer simulation results are 

deterministic. 

 

Another feature to compare is shape. A continuous wavelet transform was combined with 

several measures in [18, 19] to evaluate the differences in the shapes of the time series. The 

surfaces in the time-scale domain obtained by wavelet transforms represent the first and 

second derivatives of the time series and, hence, can be used to quantify shape attributes, 

such as the slopes and slope changes of the time series. 

 

Authors in [17] suggested the use of more sophisticated techniques that comprehensively 

take into account features, such as magnitude, shape, and phase. Such techniques will be 

discussed next. 

 

The Sprague and Geers metric [20, 21] (denoted as SG metric) was an integration of the 

magnitude and phase error quantifications. Authors in [22] illustrated that SG metric is not 

symmetric and do not consider shape differences. And SG failed to identify discrepancy 

between two time histories which differ in shape and magnitude. Also in [23] the author 

compared SG metric with Russell's metric and pointed out that SG metric is biased. 

 

Russell's metric [21, 23] (denoted as R metric) is similar to SG metric but different in the 

magnitude error factor. Russell noticed that the phase error factor is bounded between zero 

and one but the magnitude error factor is unbounded. In order to develop a metric that is 

not dominated by either error factor, Russell adjusted the magnitude error factor so that it 

is of the same scale as the phase error factor. In [22] the authors used the same numerical 
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example as used for SG metric to demonstrate that Russell's metric also failed to recognize 

the discrepancy between the two time series. 

 

The Knowles and Geer's metric [21] (denoted as KG metric) used a different magnitude 

error factor. And in place of the phase error factor the KG metric used a time-of-arrival 

(TOA) metric. The time-of-arrival for a wave form is determined by the time at which the 

wave form attains some percentage of the maximum value, a range of 5-10% is 

recommended for wave forms with relative fast rise times. The rise time is a useful quantity 

in shock and vibration analysis. 

 

In [21] the author compared the SG and KG metrics and concluded that although KG metric 

provides values comparable to SG metric, it is not able to indicate the sign of magnitude 

error (under or over prediction). And the use of TOA metric instead of the phase metric 

seems a limitation because of the requirement of characterizing the rise time. The author 

also expressed that SG and KG metric are not symmetric metrics. This is not a concern 

when compare a time series to a reference. When comparing two time series with no 

reference, then the metric is evaluated two ways, i.e. each time series is treated as basis, 

and the resulting two metrics averaged. 

 

Compared to SG, KG and R metrics, in addition to quantifying magnitude and phase error, 

the EARTH metric [22] also evaluates topology error, which is discrepancy in the shapes 

of two time series. Discrepancy in phase is removed by shifting the time history with the 

number of steps before analyzing the magnitude error. There exist local timing errors as 

well as discrepancy in shape. In order to compensate for these, dynamic time warping 

(DTW) was used. The topological error is a measure of discrepancy in shape of the two 

time histories. The shape of a time history is defined by the slope at each point. 

 

In order to remove the effect of phase error, time-shifting is performed before derivatives 

of the time shifted histories are calculated. DTW technique is applied to compensate for 

local timing errors and quantify the difference in magnitude of the derivatives. Unlike KG, 

SG and R metrics, there is no comprehensive form of the EARTH metric. Each error factor 
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is calculated and compared separately. When evaluations from subject matter experts 

(SME) are available, a regression is performed to generate comparable ratings. 

 

In [22] the authors compared EARTH metric with several other metrics, namely, Wavelet 

decomposition coupled with Russell's metric, step function, ADVISER model evaluation 

criteria and Corridor Violation Plus Area (CVPA). They found that EARTH metric 

produces more consistent results than other metrics using a case study provided by the 

International standards Organization (ISO) working group on virtual testing (head impact 

test). 

 

2.3 Statistical Model Validation 

Model improvement is achieved by quantifying model bias. However this is not a simple 

task as a model typically has uncertainty in inputs and outputs. Quantification of 

uncertainty (e.g. statistics of uncertainty) is needed in model validation as stated in [7]. 

Such model validation is the so called statistical model validation.  

 

Uncertainty can be classified into two categories, namely, aleatory and epistemic 

uncertainties [24]. Either one of or both of the SRQs to be compared can be thought of as 

random variables when purely aleatory uncertainty is present (e.g. a statistical distribution).  

 

For cases where pure aleatory uncertainty is present in both experimental measurements 

and the computer model outputs, various techniques were developed to quantify the 

distances between the CDF's. In [25] the authors examined whether or not the deterministic 

scalar experimental SRQ is within the highest density region (HDR) of the PDF's of the 

computational SRQ. In [26] the authors developed a maximum horizontal distance between 

the two CDF's. The selection of rejection criteria is subjective. 

 

The Kolmogorov-Smirnov statistic measures the vertical distance between the two CDF's. 

Observe, however, that if the SRQ has a very small variability (almost deterministic), the 

vertical distance could be very large even though the two CDF's are very close when their 

distance is measured horizontally. 
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Another measure of the distance between CDF's was developed in [27, 28], where they 

proposed to use the area between the two CDF's as a validation technique. They argued 

that it enjoys several advantages such as ease of interpretation, objectiveness and ability to 

express validation results in terms of physical units (degree, Celsius, meter, etc.). The 

computational SRQ is specified by the model so the associated cumulative distribution 

function (CDF) is assumed to be known. The authors suggested that this CDF be obtained 

by solving the mathematical model analytically or by propagating a large number of 

replicate samples in a Monte-Carlo simulation. The experimental SRQ, on the other hand, 

is usually provided as a collection of point values in a data set. Empirical cumulative 

distribution function (ECDF) was used to describe the distribution of the experimental 

measurements. The authors illustrated that this area metric is better than those based solely 

on the mean or/and variance of the data as it was able to detect the difference when the 

mean and variance of observations are matched but the distribution isn't. They showed a 

case where the traditional statistical test Kolmogorov-Smirnov (based on Kolmogorov-

Smirnov statistic) fails to recognize the difference in the distributions while the area metric 

was able to. 

 

In [29] the authors used Anderson-Darling test statistic as a measure of the discrepancy 

between two distributions. The Anderson-Darling test is one of the most powerful 

statistical tools for detecting most departures from normality [30]. It is a modification of 

the Kolmogorov-Smirnov (KS) test and gives more weight to the tails than does the KS 

test. The test uses a weighted quadratic ECDF statistic to measure the distance between the 

two CDF's. 

 

When both aleatory and epistemic uncertainty are present, the term 𝑝-box is used to 

describe the set of all possible CDFs that the random variable may follow. Corresponding 

validation technique was developed in [17]. 

 

Another branch of statistical model validation approaches springs from hypothesis testing. 

For univariate quantities, 𝑡-test is used to assess the similarity between the means from 

computer model predictions and experimental measurements, and 𝐹 -test to assess the 
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similarity between the variances [15, 31, 32]. Extension to multivariate quantities can be 

achieved by using Hotelling's 𝑇2 -test for comparing multivariate means [33, 34], and 

Wilk's Λ distribution for comparing covariance matrices [35]. In [36] the author stated that 

multivariate hypothesis test limits the inflation of type-I error present in multiple univariate 

tests. Also it was noted in [31] that in all these hypothesis tests normality is assumed for 

both the experimental SRQ and the computational SRQ. This assumption is often not valid 

and transformation to normality was suggested in [32]. It is possible that such 

transformation is not successful in transforming the data into normality. Alternatively, 

bootstrap method to estimate the distribution of data was suggested in [37]. In [32] the 

authors suggested to use univariate and multivariate tests collectively. The univariate tests 

can yield conflicting validation results but are able to identify which variable in the 

multivariate data is associated with deficiency. However, multivariate test is needed since 

the univariate tests do not take into account the correlation in the data and data that pass all 

the univariate tests may not pass the multivariate test. A closely related method to 

Hotelling's 𝑇2 -test is the 𝑟2  method developed by [38] and is similar to Mahalanobis 

distance. The statistic 𝑟2 measures the distance between the centroids of the two SRQ's and 

the computer model is rejected if the probability of 𝑟2 being greater than the critical value 

is less than the significance level. The 𝑟2 method is applicable for both univariate and 

multivariate cases and takes into account uncertainty in the model parameters and the 

model outputs. Authors in [39] further developed this method by formulating confidence 

intervals for the 𝑟2 statistic. This method was implemented in a metal flanging process 

validation problem [40]. The 𝑟2 method requires normality assumption. As a result, the 𝑟2 

statistic follows a Χ2 distribution, and the rejection criteria is based on critical values of the 

Χ2  distribution at a given confidence level. The authors extended this method to non-

normal data by the use of maximum likelihood estimation (MLE) [41]. The rejection 

criteria can be determined by Monte Carlo simulations. Consequently, the computation 

cost increases. A drawback of the 𝑟2 method is that the validation results are influenced by 

the level of prescribed type-I error. As noticed in [42], specifying the type-I error at 

different values can lead to different conclusions. Statistical hypothesis testing is a trade-

off between type-I and II errors. And the authors suggested that the selection of significance 

level be an optimization problem and be balanced for the intended purposes. 
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In [43] it was demonstrated that Bayesian hypothesis testing methods are superior to 

classical hypothesis testing methods because both hypotheses (null and alternative) are 

considered simultaneously. And it was found that 𝑝-value used in classical hypothesis 

testing leads to misleading results [44] and does not yield model confidence. A 

combination of Bayesian methods and hypothesis testing was developed for validation 

purposes. Using Bayes factor ( [31, 45, 46] ), the authors set up validation criteria (whether 

the Bayes factor is above or below unity) based on the suggestion by [47]. Normality is no 

longer relied upon although it was used to make the calculation of Bayes factor easier than 

non-normal distributions. As stated in [32], explicit expression of the joint PDF for 

multivariate normal random variables exists but the construction of joint PDF of other 

multivariate non-normally distributed random variables can be cumbersome. However the 

joint PDF can be acquired via Nataf transformation and there are approximation methods 

stated in [47] that facilitate the calculation of Bayes factor once the joint PDF is available. 

In [43] the authors treated the Bayes factor as a random variable to address the uncertainty 

in model parameters. In cases where some Bayes factors support the computer model while 

others don't, they suggested that future work treat the model acceptance as a decision 

problem, considering additional test costs, cost/risk consequences of accepting the current 

model, etc. In [32] the authors transformed non-normal data to normality and showed the 

transformation helps to reduce the type-I error. In [48, 49] the authors enabled the inclusion 

of multiple sets of experimental data by assuming the experimental data in each set are 

independent. The overall Bayes factor is calculated by multiplying individual Bayes factors 

for each data set together. In [50] the authors indicated the difference between the 𝑟2 

technique developed by [38] and their Bayesian technique (though they are similar) is that 

not having enough evidence to reject a model is not the same as having enough evidence 

to accept the model. The numerical example in their paper demonstrated that the validation 

results yielded by the two techniques are the same for all experiments except one 

conflicting result. In [50] the authors derived model confidence based on Bayes factor and 

claimed being the first to derive explicit expression of the model confidence for Bayesian 

point-null hypothesis testing. [29, 51] made a comparison between point-null and interval 

based hypothesis testing, stating that as the sample size increases, the chance of rejecting 

a correct model also increases for point-null hypothesis testing (the effect of sample size 
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on the validation metric is significant). To have more consistent results, a Bayesian 

interval-based hypothesis testing method (BIH) was proposed in [50] and this was the first 

to have explicit expressions of model confidence for Bayesian interval-based hypothesis 

testing. In [52] the author coupled BIH with Probabilistic Principle Component Analysis 

(PPCA) [53] to remove correlation of data, reduce dimensionality and handle uncertainty. 

 

2.4 Model bias characterization 

With the help of model validation methodologies, one is able to tell whether a model is 

good or not in terms of the difference between the model and the real world. Such 

difference is also known as model bias and characterizing it would be a natural next step 

following the model validation. Characterizing the model bias is of great importance in this 

research. There are various approaches for model bias characterization in the model 

validation community. Such approaches will be characterized and briefly introduced next. 

   

Response surface methodologies (RSM) [54] are used to characterize the model bias since 

they can play a critical role in the process of obtaining corrected model prediction. In [55] 

the authors reviewed response surface methodology and developed error bounds for 

capturing variation in the model bias. In [56] a methodology for quantifying model bias 

using response surface was developed. The authors utilized Maximum Entropy Production 

(MEP) principle to approximate the PDF of the model bias.  

 

The accuracy of response surface approaches mainly depends on three factors including: i) 

nonlinearity of the model bias in the design space; ii) amount and location of the identified 

model bias in the design space; and iii) algorithm of the response surface method [57]. 

 

Due to its flexibility and ability to capture the nonlinearity of the underlying model through 

different settings of hyper-parameters, the Gaussian process approach remains one of the 

most popular approaches in meta-modeling to date, and is believed to be applicable for 

characterizing a large variety of different model biases. The well-known Kriging method 

is considered to be a special case of the Gaussian process approach. Gaussian process was 

used together with Efficient Global Optimization (EGO) and Efficient Global Reliability 
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Analysis (EGRA) to improve the efficiency of solving the RBDO problem in [58]. 

Information found at one design point may influence those at subsequent design points and 

GP was effective in modeling this relationship.   

 

As another branch of methodologies dealing with uncertainties in model bias 

characterization, the Bayesian-based approaches assume a prior distribution for the model 

bias and apply Bayesian theorem to update the distribution based on available data so that 

a posterior distribution can be obtained. The work in this area can be traced back to [59], 

where a Gaussian Process was used to model the prior of the SRQ and the posterior was 

inferred using Bayes' theorem. The authors suggested performing normality transformation 

if normal distribution is not appropriate. They indicated that future work should extend the 

current technique to multivariate output. Based on [59], various subsequent works were 

done. Bayarri et al. [60] developed tolerance bounds for model predictions. The authors' 

view of validation is not simply to provide answer (yes/no) to the validity of a computer 

model, but rather, to evaluate the accuracy of computer model prediction for the intended 

use. Higdon [61] developed posteriors based on non-normal prior of parameters of the 

Gaussian process model. The authors' approach to validation is to assess the prediction 

capability of the computer model. The computer model is said to be useful if it reduces 

uncertainty in prediction compared to using experimental measurements only. However 

there is no formal and objective way to state how much reduction is enough. Chen et al. 

[62, 63] developed posteriors for both model bias and output using a more flexible beta 

distribution prior. Tolerance bounds were developed for validation purposes. The 

traditional criterion for validation is that the model is accepted if the interval of the model 

bias contains zero or if the interval of the true value of the system response quantity 

contains the computer model output. The authors considered this criterion problematic 

since it tends to reject the computer model at regions with many physical observations (and 

thus prediction intervals are narrow) but fails to reject the computer model at regions with 

few or no physical observations (and thus prediction intervals are wide). They suggested 

that evaluation of the associated confidence based on the validation be performed when 

deciding accept/reject model. They proposed an innovative criterion for validation but it 

suffers from the fact that it needs subjective inputs (opinions from experts, etc.). All the 



 16 
 

above Bayesian posterior estimation techniques involve the use of Gaussian Process. The 

validity of this assumption needs to be examined. 

 

2.5 Limitations of the State-of-the-Art 

The deterministic model validation methodologies are often tied to single SRQs and cannot 

handle multiple SRQs. The predictive capability of the deterministic model validation 

methodologies is very limited as these methodologies are developed for the sole purpose 

of providing a quantitative measure of the discrepancy of the computer model. More 

importantly, the deterministic model validation methodologies do not consider uncertainty. 

 

The statistical model validation often rely on some assumptions (e.g. normality). Some 

only concern single SRQ and cannot handle the multiple SRQs (mainly their correlation 

structure). Classical hypothesis testing technique is of point-null type hypothesis testing 

and validation results are affected by sample size [36]. The ability to handle both types of 

uncertainties (epistemic and aleatory) in SRQs is limited due to the dependence on the 

normality assumption except the 𝑟2  method. Classical univariate hypothesis testing is 

sensitive to the selection of type-I error levels and is subject to accumulation of type-I error 

when applied to each component of a vector quantity. The Bayesian-based hypothesis 

testing methods do not rely on normality assumption any more, but often the posterior 

distribution does not have closed-form analytical expression and computation cost 

becomes high as a result.  

 

Moving on to the model bias characterization approaches, the accuracy of the RSM 

depends on the complexity of the problem and may suffer from this dependency. As a result, 

the prediction accuracy can swing dramatically and the improvement can sometimes be 

negligible due to the high nonlinearity/complexity of the problem. The determination of 

the parameters used in GP can be tedious and complicated, not to mention that the GP uses 

normality assumption. The Bayesian methods also do have their limitations, for example, 

the Bayes factor often cannot be obtained in an analytical form, and the computation cost 

is typically high unless coupled with dimensionality reduction techniques. 
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All the limitations as discussed above call for further research effort in the model validation 

and model bias characterization. This research will begin by addressing such issue and the 

coming chapter 3 will be dedicated to developing a model bias characterization approach 

to overcome the known hurdles in the model bias characterization.  
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Chapter 3: Copula-based Model Bias Characterization  

 

3.1 Introduction 

Various model validation approaches have been developed over the years, and there are 

limitations associated to them. Some approaches do not consider model uncertainty. For 

those that do consider model uncertainty utilizing statistical techniques, assumptions (e.g. 

normality) are used to simplify the derivation/computation process but oftentimes these 

assumptions are not valid. When dealing with high dimension problems (consider multiple 

inputs/outputs simultaneously), the computation cost may rise due to the curse of 

dimensionality. The copula-based model bias characterization approach is proposed here 

to overcome these shortcomings including: i) the curse of dimensionality; ii) assumption 

of regression forms; and iii) low accuracy due to noisy model outputs. Before introducing 

the proposed approach, the concept of model bias needs to be described first. 

 

A general relationship between the model prediction and the test data can be expressed as 

 𝑌̂(𝑷, 𝑿, 𝚽) + 𝛿 = 𝑌 − 𝜀 (3.1) 

where 𝑌̂ and 𝑌 are the predicted and the measured system performances, respectively, 𝛿 is 

the model bias, 𝜀  is the measurement error, 𝑷  is a vector of the deterministic model 

variable, 𝑿 and 𝚽 are the vectors of the irreducible and reducible model random variables, 

respectively. The irreducible random variables (𝑿) are characterized using probability 

density functions (PDFs) with sufficient information. The reducible random variables (𝚽) 

are derived from the lack of information for describing the uncertainty. For example, 

parameters, i.e., the mean and the variance of the PDF, or even distribution types are 

uncertain unless sufficient information is collected. The measurement error 𝜀 is mainly 

affected by the equipment accuracy and human errors. 𝑌 − 𝜀 can be thought of as data 

obtained from physical tests (test data), while 𝑌̂(𝑷, 𝑿, 𝚽) + 𝛿 can be treated as computer 

model outputs (CAE data). 
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3.2 Copulas 

Due to the limitation of the model bias characterization approaches as discussed in chapter 

2, a Copula-based approach is being proposed here. A copula is a general way in statistics 

to formulate a multivariate distribution, particularly for a bivariate distribution, with 

various statistical dependence patterns. Formally, a copula is a joint distribution function 

of standard uniform random variables. According to Sklar’s theorem [64], there exists an 

n-dimensional copula 𝐶 such that for all 𝑇 in a real random space, 

 𝐹(𝑇1, … , 𝑇𝑁) = 𝐶(𝐹1(𝑇1), … , 𝐹𝑁(𝑇𝑁)) (3.2) 

where 𝐹 is an 𝑁-dimensional distribution function with marginal functions 𝐹1, … , 𝐹𝑁. To 

this date, most copulas only deal with bivariate data due to the fact that there is a lack of 

practical n-dimensional generalization of the coupling parameter [65, 66]. For multivariate 

data, a usual approach is to analyze the data pair-by-pair using two-dimensional copulas. 

 

3.3 Copula Modeling of Model Bias 

Applying the concept of Copula on model bias characterization, we propose an approach 

here to use Copula to model the distribution of the relationship between model bias and 

model inputs and/or model responses. There are two challenges our proposed approach 

aims to solve: i) selecting the best Copula; and ii) reducing dimensionality/mitigating 

computational cost in the construction of model bias. The solving process of the two 

challenges will be discussed next.   

 

One of biggest challenges for Copula modeling is to select the best Copula suitable for the 

available data. The most commonly employed methods are based on a maximum likelihood 

approach [67, 68, 69], which relies on the estimation of an optimal parameter set. In other 

words, comparisons are made among copulas with given optimal parameters. The 

maximum-likelihood-based copula selection approach typically demands sufficient 

bivariate data to ensure the accurate copula selection. Hence, such an approach may not 

always be suitable, especially for cases when there is a lack of validation experiments for 

charactering the model bias at few design configurations. 
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Recently a Bayesian copula approach [65] was proposed to select the best copula. It was 

further shown that this approach provides more reliable identification of true copulas even 

with the small amount of samples because, unlike the maximum likelihood approach, the 

selection of the best copula is independent of the copula parameter estimation [65]. Hence, 

we employ the Bayesian copula approach for modeling statistical dependence between 

design variables and the model bias, between model prediction and the model bias, where 

the design variable indicates the controllable model variable. Determination of the best 

copula is done in two steps: i) selection of optimal marginal distributions; and ii) 

determination of an optimal copula. The marginal distribution is determined using the 

maximum likelihood approach. Next, we focus on the second step for determining the 

optimal copula using the Bayesian approach. 

 

In the Bayesian copula approach, a set of hypotheses are first made as follows. 

 𝐻𝑘: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝐶𝑜𝑝𝑢𝑙𝑎 𝐶𝑘, 𝑘 = 1, … , 𝑄 (3.3) 

The objective is to find the copula with the highest 𝑃𝑟(𝐻𝑘|𝐷) from a finite set of copulas, 

where 𝐷  represents bivariate data in a standard uniform space. Based on the Bayes’ 

theorem, the probability that data come from the copula 𝐶𝑘 is expressed as 

      𝑃𝑟(𝐻𝑘|𝐷)   =
𝑃𝑟(𝐷|𝐻𝑘)𝑃𝑟(𝐻𝑘)

𝑃𝑟(𝐷)
= ∫

𝑃𝑟(𝐷|𝐻𝑘, 𝜏)𝑃𝑟(𝐻𝑘|𝜏)𝑃𝑟(𝜏)𝑑𝜏

𝑃𝑟(𝐷)

1

−1

 (3.4) 

where 𝜏  is the Kendall’s tau, which is a non-parametric measure of the statistical 

dependence associated to copulas. Kendall’s tau (𝜏) belongs to the set of each copula and 

the outcome is equally likely. All copulas are equally probable with respect to a given 𝜏 

which reflects no preference over the copulas. The likelihood 𝑃𝑟(𝐷|𝐻𝑘, 𝜏) depends upon 

𝜏 and can be calculated from the copula PDF as 

 𝑃𝑟(𝐷|𝐻𝑘, 𝜏) = ∏ 𝑐𝑘(𝑢1𝑙, 𝑢2𝑙|𝜏)

𝑚

𝑙=1

 (3.5) 

where 𝑐𝑘(∙) is the PDF of the 𝑘𝑡ℎ copula, 𝑚 is the total number of coupling data, 𝑢1𝑙 and 

𝑢2𝑙  are the 𝑙𝑡ℎ  realizations of the statistically dependent bivariate variables. The 

normalization of 𝑃𝑟(𝐷) can be computed using the sum rule [70]. For more details of the 

Bayesian copula approach, please refer to the reference document [65]. 
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After selecting the best Copula, the next step is to utilize the copula modeling between 𝑌̂ 

and 𝛿 to find the possible model bias 𝛿 for a realization of 𝑌̂ (e.g. 𝑌̂ = 𝑎) at a new design 

configuration. Mathematically, this is a process to identify the conditional PDF of the 

model bias 𝛿 given 𝑌̂ = 𝑎, that is, 

 𝐶(𝐹𝑌̂ (𝑦̂), 𝐹Δ (𝛿))|𝑦̂ = 𝑎 (3.6) 

Meanwhile, we also know the design variable (e.g., 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, … , , 𝑥𝑗 = 𝑎𝑗) at the 

new design configuration. Thus, the possible realizations of the model bias 𝛿  must 

simultaneously satisfy all the conditional PDFs identified from a series of copula models. 

In other words, we need to find the intersection of these conditional PDFs for the model 

bias. Theoretically, it is very difficult. Therefore, a sampling approach is proposed for the 

model bias prediction. Four steps are conducted to have the empirical PDF of the model 

bias. 

 

 Step 1: generate model bias samples (e.g. 𝛿𝑁,1, 𝛿𝑁,2 ,…, 𝛿𝑁,𝑗) from the conditional 

PDFs obtained using Eq. (3.6) 

 Step 2: identify lower (𝛿_𝑙𝑜𝑤𝑒𝑟) and upper (𝛿_𝑢𝑝𝑝𝑒𝑟) bounds from the model bias 

samples, where 

𝛿_𝑙𝑜𝑤𝑒𝑟 = 𝑚𝑎𝑥[𝑚𝑖𝑛(𝛿𝑁,1), 𝑚𝑖𝑛(𝛿𝑁,2), … , 𝑚𝑖𝑛(𝛿𝑁,𝑗)] 

𝛿_𝑢𝑝𝑝𝑒𝑟 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝛿𝑁,1), 𝑚𝑎𝑥(𝛿𝑁,2), … , 𝑚𝑎𝑥(𝛿𝑁,𝑗)] 

 Step 3: keep model bias samples located between the lower and upper bounds 

 Step 4: obtain an empirical PDF of the model bias from samples in step 3 

 

3.4 Case Studies 

3.4.1 Barnes Problem 

The Barnes problem originated from Barnes’ master’s thesis [71]. It is a study of four 

optimization sub-problems: one high-fidelity (HF) model and three of its variants (low-

fidelity, LF models), as listed in Table 3.1.  

 



 22 
 

Table 3.1: Description of the Barnes problem 

High-fidelity Model 

 

            𝑓ℎ𝑖𝑔ℎ = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎5𝑥1
4 + 𝑎6𝑥2 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1

2𝑥2

+ 𝑎9𝑥1
3𝑥2 + 𝑎10𝑥1

4𝑥2 + 𝑎11𝑥2
2 + 𝑎12𝑥2

3 + 𝑎13𝑥2
4 +

𝑎14

𝑥2 + 1
+ 𝑎15𝑥1

2𝑥2 
2

+ 𝑎16𝑥1
3𝑥2 

2 + 𝑎17𝑥1
3𝑥2 

3 + 𝑎18𝑥1𝑥2 
2 + 𝑎19𝑥1𝑥2 

3 + 𝑎20𝑒𝑎21𝑥1𝑥2 

             𝑔1ℎ𝑖𝑔ℎ = 1 −
𝑥1𝑥2

700
≤ 0 

           𝑔2ℎ𝑖𝑔ℎ =
𝑥1

2

625
−

𝑥2

5
≤ 0 

             𝑔3ℎ𝑖𝑔ℎ = (
𝑥1

500
− 0.11) − (

𝑥2

50
− 1)

2

≤ 0 

Low- Fidelity Model A 

 

                𝑓𝑙𝑜𝑤 = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎6𝑥2 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1
2𝑥2 + 𝑎9𝑥1

3𝑥2          

+ 𝑎10𝑥1
4𝑥2 + 𝑎11𝑥2

2 + 𝑎12𝑥2
3 + 𝑎13𝑥2

4 +
𝑎14

𝑥2 + 1
+ 𝑎15𝑥1

2𝑥2 
2 + 𝑎16𝑥1

3𝑥2 
2

+ 𝑎17𝑥1
3𝑥2 

3 + 𝑎18𝑥1𝑥2 
2 + 𝑎19𝑥1𝑥2 

3 + 𝑎20 

             𝑔1𝑙𝑜𝑤 = 0.5 −
𝑥1𝑥2

750
≤ 0 

             𝑔2𝑙𝑜𝑤 =
𝑥1

16
−

𝑥2

5
≤ 0 

             𝑔3𝑙𝑜𝑤 = (
𝑥1

500
− 0.11) − (

𝑥2

50
− 1)

2

≤ 0 

Low- Fidelity Model B 

 

                𝑓𝑙𝑜𝑤 = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎5𝑥1
4 + 𝑎20 

             𝑔1𝑙𝑜𝑤 = 0.5 −
𝑥1

750
≤ 0 

             𝑔2𝑙𝑜𝑤 =
𝑥1

16
≤ 0 

             𝑔3𝑙𝑜𝑤 = (
𝑥1

500
− 0.11) ≤ 0 
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Low- Fidelity Model C 

 

               𝑓𝑙𝑜𝑤 = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎20 

             𝑔1𝑙𝑜𝑤 = 0.5 −
𝑥1

750
≤ 0 

             𝑔2𝑙𝑜𝑤 =
𝑥1

16
≤ 0 

             𝑔3𝑙𝑜𝑤 = (
𝑥1

500
− 0.11) ≤ 0 

 

High-fidelity model has a high-degree polynomial for the objective function and non-linear 

constraints while low-fidelity models have low-degree polynomials and more linear 

constraints. All models have two variables and they are both bounded between 0 and 70. 

For ease of understanding, none of the constraints was used and only the objective function 

was calculated to produce the model output. Out of the various configurations selected by 

using the Latin hypercube design (20 configurations), a portion of them (15 configurations) 

was used as training data to obtain the copula model, while the rest (5 configurations) was 

used to demonstrate the improvement the proposed approach can make. 

 

The output calculated by the high-fidelity model is compared with that produced by one of 

the three low-fidelity models, as depicted in Fig. 3.1. The output from low-fidelity model 

A is the closest to that from the high-fidelity model, while there is significant difference in 

the forms of models B and C as compared to that of the HF model.  

 

The copula approach is implemented and the error is improved significantly. Average 

prediction error and maximum prediction error, denoted as 𝜀𝜇 and 𝜀𝑚𝑎𝑥 , respectively, are 

displayed in Table 3.2. Both the average prediction error and the maximum prediction error 

are much smaller for model A than those for model B and C. The copula has significantly 

larger influence on the bias associated to model B and model C as both the relative 

reductions of the average and maximum prediction error are considerable.  
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The improvement in model accuracy made by using the proposed copula-based approach 

is shown in Fig. 3.2. The copula-updated outputs are closer to those generated by the high-

fidelity model for models A, B and C. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.1: Design configurations and comparison of test data and CAE data for models 

A, B and C using training configurations. (a) Input configurations (training + 

confirmation); (b) Training data comparison for LF model A; (c) Training data 

comparison for LF model B; (d) Training data comparison for LF model C 

 

Table 3.2: Improvement made by the copula-based approach for the Barnes problem 

 Model A Model B Model C 

Original Model 
𝜀𝜇 0.35 14.43 11.11 

𝜀𝑚𝑎𝑥 1.15 17.55 21.09 

Corrected Model Using copula 
𝜀𝜇 0.23(34%) 10.17(30%) 5.86(47%) 

𝜀𝑚𝑎𝑥 0.74(35%) 15.63(11%) 9.00(57%) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.2: Comparison of test and cae data for models A, B and C. (a) Input 

configurations (confirmation configurations highlighted); (b) Confirmation data 

comparison for LF model A; (c) Confirmation data comparison for LF model B; (d) 

Confirmation data comparison for LF model C 
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The absolute error results presented in Tab. 3.2 are also visualized in Fig. 3.3 as bar plot. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.3: Comparison of absolute error for models A, B and C. (a) Input configurations 

(confirmation configurations highlighted); (b) Confirmation data comparison for LF 

model A; (c) Confirmation data comparison for LF model B; (d) Confirmation data 

comparison for LF model C 

 

3.4.2 2001 Ford Taurus model 

A 2001 Ford Taurus model is provided by the National Crash Analysis Center. Fig. 3.4 

shows the physical test and model prediction for the full frontal impact. The simulation 

speed is 56.6 km/h against a rigid wall. For frontal impact protection, vehicle design must 

meet internal and regulated frontal impact requirements. In particular, vehicles must be 

designed to absorb enough impact energy through structural deformation and attenuate the 

impact force to a tolerable level in order to protect the occupants. Eight design variables 

are defined in Fig. 3.5 and their baseline design and design bounds are listed in Table 3.3. 

Chest G and Crash Distance are two key performances of interest that need to be validated. 
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Figure 3.4: Comparison of the full frontal impact between test and model prediction 

 

Figure 3.5: Eight design variables for main front-end structure 

 

In this benchmark problem, 80 design configurations are generated in the design space 

defined in Table 3.3 where both model prediction and test values are available for the Chest 

G and Crash Distance. Among them, 64 design configurations are selected as training data 

to characterize the model bias in the design space. Fig. 3.6 shows the comparison between 

test and model prediction for the Chest G and Crash Distance at 64 design configurations. 

For Chest G, the average model prediction error is calculated as 0.0704, and the maximum 

prediction error could reach 0.4375. For Crash Distance, the average and maximum 

prediction error are calculated as 0.0328 and 0.1514, respectively. Clearly, the uncertainty 

from the model prediction is significant, which could mislead the designer towards a bad 

design for the main front-end structure. 
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Table 3.3: Baseline design and design bounds for main front-end structure 

Design variable Baseline Lower bound Upper  bound 

𝑥1 1.9 1.4 2.8 

𝑥2 1.91 1.2 2.8 

𝑥3 2.51 1.6 4 

𝑥4 2.4 1.5 4 

𝑥5 2.55 1.6 4 

𝑥6 2.55 1.5 3.5 

𝑥7 2.25 1.5 3.5 

𝑥8 1.5 1.2 3 

 

 

 

(a) 

 

(b) 

Figure 3.6: Comparison between test and model prediction at 64 training design 

configurations. (a) Comparison for chest G; (b) Comparison for crash distance 

 

 

Among 80 design configurations, we intentionally select the rest 16 design configurations 

to be interpolation study. In order to check the effectiveness of the proposed approach for 

extrapolation study, 25 extra design configurations are generated where the design variable 

exceeds the defined bounds in Table 3.3. Fig. 3.7 shows the initial comparison between the 

test and model prediction for the interpolation and extrapolation study without employing 
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the characterized model bias. For Chest G, the average model prediction error is calculated 

as 0.0551 and 0.1247 for interpolation and extrapolation, respectively. The maximum 

prediction error could reach 0.1393 and 0.4258, respectively. For Crash Distance, the 

average and maximum prediction error are 0.0496 and 0.1903 respectively for the 

interpolation and 0.0376 and 0.1678 for the extrapolation, respectively. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.7: Initial comparison between test and model prediction for interpolation and 

extrapolation study. (a) Comparison for chest G in the interpolation study; (b) 

Comparison for crash distance in the interpolation study; (c) Comparison for chest G in 

the extrapolation study; (d) Comparison for crash distance in the extrapolation study 

 

64 training data sets are used to calculate the model bias and the corrected model responses 

at 15 interpolation and 25 extrapolation design configurations. Using the copula approach, 

model bias is determined by the mean of the empirical PDF. To quantify the improvement 
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of model accuracy, Table 3.4 lists error statistics of model prediction using the copula 

approaches and compares their accuracy improvement with the original model, where 𝜀𝜇 

and 𝜀𝑚𝑎𝑥  indicate the mean and maximum of the absolute model error (|test-model 

prediction|). Relative change of the two error statistics in percentage produced by the 

copula approach is calculated and the results are shown as the numbers in the parentheses. 

The copula approach yields better error statistics as compared to the original model (a 

reduction of the error statistic, or the negative number in the parentheses indicates better 

accuracy). A comparison was also made between the copula approach and the traditional 

approach, the response surface methodology (RSM), in Table 3.4. The copula approach 

displays more consistent improvement of the error statistics compared to the RSM. 

 

Table 3.4: Improvement made by the copula-based approach for the Ford Taurus model 

study 

 

Interpolation Extrapolation 

Chest G 
Crash 

Distance 
Chest G 

Crash  

Distance 

Original 

Model 

𝜀𝜇 0.055 0.05 0.125 0.038 

𝜀𝑚𝑎𝑥 0.139 0.19 0.426 0.168 

Corrected 

Model using 

copula 

𝜀𝜇 
0.053  

(-3.0%) 

0.034  

(-31.6%) 

0.088  

(-29.1%) 

0.038  

(-1.3%) 

𝜀𝑚𝑎𝑥 
0.120  

(-13.8%) 

0.131  

(-30.9%) 

0.228  

(-46.6%) 

0.130  

(-22.7%) 

RSM 

𝜀𝜇 
0.062 

(+12.6%) 

0.022 

(-56.9%) 

0.081 

(-35.5%) 

0.045 

(+19.6%) 

𝜀𝑚𝑎𝑥 
0.155 

(+11.2%) 

0.059 

(-69.1%) 

0.242 

(-43.3%) 

0.201 

(+19.5%) 
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The absolute error results presented in Tab. 3.4 are also visualized in Fig. 3.8 as bar plot. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.8: Comparison of absolute error resulted from original model and corrected 

model using the copula approach (a) chest G, interpolation; (b) crash distance, 

interpolation; (c) chest G, extrapolation; (d) crash distance, extrapolation 

 

3.5 Summary 

In this chapter, a copula-based approach was proposed to improve model accuracy by 

correcting the bias term. Model bias is first characterized in the design space, then the 

model prediction is corrected by adding the characterized model bias. The copula-based 

approach is capable of establishing a statistical relationship among model bias, design 

variables and model responses. The non-linearity in the model is not affecting the potency 

of the proposed approach. The two case studies used here adequately demonstrated that the 

proposed approach is effective in improving the accuracy of model prediction. Although 

the second case has a higher number of design variables, the computation time consumed 
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did not rise significantly. Being able to handle problems with high number of design 

variables is another advantage of the proposed approach.  
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Chapter 4: Adaptive Copula Approach for Model Bias 

Characterization 

 

4.1 Introduction 

The adaptive Copula modeling of model bias is proposed here as an enhancement for the 

Copula-based model bias characterization approach discussed in the previous chapter.  

Cluster analysis will be employed first to group similar data points together, followed by 

the copula-based approach using information from each cluster. The final prediction 

accumulates predictions obtained from each cluster. In this way, information contained by 

the available data can be better utilized and as a result, the model bias characterization can 

be improved and the predictive capability of the methodology can be strengthened. 

 

4.2 Adaptive Copula Modeling of Model Bias 

Important steps in the proposed approach can be summarized as those in the flow chart 

shown as Fig. 4.1. Test and CAE data (computer model outputs) are assumed to be 

available and they will be used as training data to build the clusters and copula models. 

Bias is then calculated by simply subtracting CAE data from the test data. Data pairs are 

formulated by treating each of the CAE data as the 𝑥 coordinate and the corresponding bias 

as the 𝑦  coordinate. Cluster analysis is conducted for the data pairs using 𝑘 -means 

clustering. And a copula model will be built for each cluster. Weights associated to each 

cluster will be assigned to each of the confirmation data pairs (again bias vs CAE) based 

on the distance between the pair and the centroid of each of the clusters. It should be noted 

here that confirmation test data are often unavailable and as a result the confirmation bias 

cannot be obtained. To cope with this situation, a prediction using our previously proposed 

single copula-based approach [72]  will be made and treated as the pseudo confirmation 

test data. Also using our previous approach, prediction for a specific confirmation point 
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using information (copula sample points) from each cluster will be made. The final 

prediction is the weighted sum using the weights and the predictions just mentioned. 

Compared to our previously proposed approach, the proposed approach here has several 

enhancements, in the sense that it incorporates cluster analysis to separate data into groups 

based on their similarity, and uses a weighting scheme to consolidate every piece of 

information from the clusters, and a sampling approach for calculating expected value at 

the confirmation locations. All three aspects will be discussed in detail in the following 

sections. 

 

 

Figure 4.1: Steps of adaptive copula-based model bias characterization 

 

4.2.1 𝑘-means Clustering Analysis 

The 𝑘-means clustering is the algorithm used here to preprocess data and group similar 

data points together. Doing so would enable a better fit of copula models to the data, which 

will be illustrated in our case studies. 



 35 
 

The clustering procedure aims at segmenting the data in such a way that the within-cluster 

variation is minimized. It starts by randomly assigning objects to a number of clusters. The 

objects are then successively reassigned to other clusters to minimize the within-cluster 

variation, which is basically the (squared) distance from each observation to the center of 

the associated cluster. If the reallocation of an object to another cluster decreases the 

within-cluster variation, this object is reassigned to that cluster. With 𝑘-means, cluster 

affiliations can change in the course of the clustering process. 

  

Prior to analysis, we have to decide on the number of clusters. We can tell how many 

segments are needed, or we may know from previous research what to look for. Based on 

this information, the algorithm randomly selects a center for each cluster.  

 

Euclidean distances are computed from the cluster centers to every single object. Each 

object is then assigned to the cluster center with the shortest distance to it. We now have 

our initial partitioning of the objects into several clusters. And based on this initial partition, 

each cluster’s geometric center (i.e., its centroid) is computed.  

 

The distances from each object to the newly located cluster centers are computed and 

objects are again assigned to a certain cluster on the basis of their minimum distance to 

other cluster centers. Since the cluster centers’ position changed with respect to the initial 

situation in the first step, this could lead to a different cluster solution.  

 

The 𝑘-means procedure now repeats and re-computes the cluster centers of the newly 

formed clusters, and so on. In other words, steps 3 and 4 are repeated until a predetermined 

number of iterations are reached, or convergence is achieved (i.e., there is no change in the 

cluster affiliations).  

 

Generally, 𝑘-means clustering is superior to other clustering methods such as hierarchical 

approaches as it is less affected by outliers and the presence of irrelevant clustering 

variables. Furthermore, 𝑘-means can be applied to very large datasets, as the procedure is 

less computationally demanding than hierarchical methods.  
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The following are the steps for carrying out a cluster analysis using partitioning approach: 

 Step 1: Select 𝑘 points as the initial centroids 

 Step 2: Form 𝑘 clusters by assigning each point to the closest centroid  

 Step 3: Re-compute the centroid of each cluster 

 Step 4: Go back to step 2 and repeat steps 2 and 3 until the centroids converge or a 

predetermined number of iterations has been reached 

 

4.2.2 Determine Number of Clusters 

Research has suggested several procedures for determining the number of clusters in a 

dataset. Most notably, the variance ratio criterion (VRC) by Calinski and Harabasz [73] 

has proven to work well in many situations. 

The variance ratio criterion (also known as Calinski-Harabasz criterion) is formulated as 

 
𝑉𝑅𝐶𝑘 =

𝑆𝑆𝐵

𝑆𝑆𝑊

(𝑁 − 𝑘)

(𝑘 − 1)
 

(4.1) 

where 𝑆𝑆𝐵  is the overall between-cluster variance, 𝑆𝑆𝑊  is the overall within-cluster 

variance, 𝑘 is the number of clusters, and 𝑁 is the number of observations. 

The overall between-cluster variance 𝑆𝑆𝐵 is defined as 

 
𝑆𝑆𝐵 = ∑ 𝑛𝑖‖𝑚𝑖 − 𝑚‖2

𝑘

𝑖=1
 

(4.2) 

where 𝑘 is the number of clusters, 𝑚𝑖 is the centroid of cluster 𝑖, 𝑚 is the overall mean of 

the sample data, and ‖𝑚𝑖 − 𝑚‖2  is the L2 norm (Euclidean distance) between the two 

vectors. 

 

The overall within-cluster variance 𝑆𝑆𝑊 is defined as 

 
𝑆𝑆𝑊 = ∑ ∑ ‖𝑥 − 𝑚𝑖‖

2

𝑥∈𝑐𝑖

𝑘

𝑖=1
 

(4.3) 

where 𝑘 is the number of clusters, 𝑥 is a data point, 𝑐𝑖 is the 𝑖th cluster, 𝑚𝑖 is the centroid 

of cluster 𝑖, and ‖𝑥 − 𝑚𝑖‖2  is the 𝐿2 norm (Euclidean distance) between the two vectors. 

Well-defined clusters have a large between-cluster variance (𝑆𝑆𝐵) and a small within-

cluster variance ( 𝑆𝑆𝑊 ). The larger the 𝑉𝑅𝐶𝑘  ratio, the better the data partition. To 
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determine the optimal number of clusters, maximize 𝑉𝑅𝐶𝑘 with respect to 𝑘. The optimal 

number of clusters is the solution with the highest Calinski-Harabasz index value. 

 

It should be noted here that there are only few approaches that compares one cluster and 

multiple clusters. Hence, a likelihood-based approach is developed here to deal with this 

scenario. One cluster is preferred if the associated likelihood is higher compared to that 

calculated based on two clusters, and vice versa.  

 

4.2.3 Weighting Scheme 

After the cluster analysis performed on training data and the construction of the copula 

models associated to every cluster, weights associated to each of the copulas need to be 

determined so that our final weighted-sum prediction can be made. The weight assigned to 

cluster 𝑖 is: 

 
𝑤𝑖 =

𝑑𝑖
−1

Σ𝑑𝑖
−1 

(4.4) 

where 𝑑𝑖 is the distance between the confirmation point and the centroid of cluster 𝑖. The 

weight is constructed in such a way that it is larger when the distance between the 

confirmation point and the centroid of cluster 𝑖 is small (cluster 𝑖 has more influence for 

the final prediction than other clusters since it is closer to the point where the prediction 

takes place).  

 

The final prediction is calculated as: 

 𝑦̂ = Σ𝑤𝑖𝑦̂𝑖 (4.5) 

where 𝑦̂𝑖 is the prediction made using copulas associated to cluster 𝑖. 

 

In Eq. (4.4) the quantities 𝑑𝑖  is calculated using Mahalanobis distance instead of the 

Euclidean distance to take into account the covariance information of the data. More 

specifically, Mahalanobis distance indicates how many standard deviations a point is from 

the center. It is unit-less and scale-invariant 

 

The Mahalanobis distance is calculated as: 
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𝑑𝑖 = √(𝑥 − 𝜇𝑖)𝑇𝑆𝑖

−1(𝑥 − 𝜇𝑖) 
(4.6) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the coordinate of a specific confirmation data point, 𝜇𝑖 =

(𝜇𝑖1
, 𝜇𝑖2

, … , 𝜇𝑖𝑛
) is the coordinate of the centroid of a certain cluster, 𝑆𝑖 is the covariance 

matrix and 𝑖 = 1,2 is the index of the two closest clusters.  

 

4.2.4 Sampling Approach for Prediction 

There are cases where a confirmation data pair is completely outside of a specific copula 

model prediction range. In this case the weight associated to that cluster will be set to zero. 

This case also introduces the need to develop a new sampling scheme to overcome this 

situation where the number of Copula samples is low or even zero. This can potentially 

lead to inaccurate prediction. 

 

Here a new sampling scheme is constructed. First the data are transformed to the copula 

domain. Then the best type of copula and its parameters will be determined using our 

previously proposed approach. Instead of generating a fixed number of samples for the 

entire copula, now a fixed number of samples are generated for each confirmation data pair. 

The sampling is done by first obtaining the conditional PDF and CDF using Eq. (4.7), 

where 𝑋 and 𝑌 correspond to the confirmation CAE and bias transformed to the copula 

domain. Then a fixed number of samples will be generated from a uniform distribution on 

the interval [0,1]. The final samples will be obtained by calculating the values such that 

conditional CDFs at these values are equal to each of the random uniform samples. Finally 

these samples will be transformed back to the original data space. 

 

 
𝑃(𝑌 = 𝑦|𝑋 = 𝑥) =

𝑃(𝑌 = 𝑦,     𝑋 = 𝑥)

𝑃(𝑋 = 𝑥)
 (4.7) 
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4.3 Case Studies 

4.3.1 Artificially Constructed Example Problem 

In this example data are generated from two distributions. In case 1, the data group on the 

left are simulated samples from a bivariate Gaussian distribution with mean vector [-8,-7] 

and the covariance matrix [1 1.5; 1.5 3], while the data group on the right are simulated 

samples from a bivariate Gamma distribution with parameter 𝑘 = [1.2 1.8]  and 𝜃 =

[2 0.5]. Data are shown in Fig. 4.2, where CAE stands for computer aided engineering and 

is essentially representing results from a computer model. 

 

Figure 4.2: Data from case 1 

 

In case 2, the data group on the left are simulated samples from a bivariate Gaussian 

distribution with mean vector [-2,-1] and the covariance matrix [1 1.5; 1.5 3], while the 

data group on the right are simulated samples from a bivariate Gamma distribution with 

parameter 𝑘 = [1.2 1.8] and 𝜃 = [2 0.5]. Data are shown in Fig. 4.3. The only difference 

between case 1 and case 2 is the mean vector of the bivariate Gaussian distribution. The 

distance between two clusters is larger in case 1 than that in case 2. 

 

Model prediction accuracy made by the proposed adaptive copula-based model bias 

characterization approach is compared with that made by its predecessor and the result is 

shown in Fig. 4.4. As we see, training data points are clustered into different groups and 

are represented by big dots using two different colors (red and yellow). The copula sample 
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points are shown as small black dots. Fig. 4.4 (b) corresponds to the result made by the 

proposed approach while Fig. 4.4 (a) corresponds to those made by its predecessor (so 

called single copula approach). For a specific confirmation point, prediction as well as the 

95% confidence bound are shown in blue. Immediately from the graph we can see that the 

confidence bound produced by the proposed approach is significantly narrower than that 

produced by its predecessor. Besides the width of the confidence bound, the prediction 

accuracy is improved and is shown in Table 4.1. Using the proposed approach, the average 

error is about 50% less using the proposed approach, and for a specific confirmation point, 

the bias is characterized so that it is closer to the true bias value than the previously 

proposed approach. 

 

Figure 4.3: Data from case 2 

 

  

(a) (b) 

Figure 4.4: Results from case 1, (a) single cluster; (b) adaptive copula 
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Table 4.1: Average error and bias of a specific confirmation point from case 1 

Average Error Bias 

Single 

Copula 

Adaptive 

Copula 
True 

Single 

Copula 

Adaptive 

Copula 

1.14 0.64 0.60 1.50 0.40 

 

The absolute error results presented in Tab. 4.1 are also visualized in Fig. 4.5 as bar plot. 

 

Figure 4.5: Absolute error comparison: single copula vs adaptive copula for case 1 

 

Similar results can be observed for case 2. 

  

(a) (b) 

Figure 4.6: Results from case 2, (a) single cluster; (b) adaptive copula 
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Table 4.2: Average error and bias of a specific confirmation point from case 2 

Average Error Bias 

Single 

Copula 

Adaptive 

Copula 
True 

Single 

Copula 

Adaptive 

Copula 

0.80 0.62 -0.30 -1.10 -0.29 

 

The absolute error results presented in Tab. 4.2 are also visualized in Fig. 4.7 as bar plot. 

 

Figure 4.7: Absolute error comparison: single copula vs adaptive copula for case 2 

 

It should be noted here that in both case 1 and case 2, there are points which are outside 

the range of copula sample points from a specific cluster. In this scenario, the associated 

weight is set to be zero. 

 

4.3.2 Barnes Problem 

The Barnes problem originated from Barnes’ master’s thesis [71]. It is a study of four 

optimization sub-problems: one high-fidelity (HF) model and its three variants (low-

fidelity (LF) models A, B and C). Only LF model A is used here. The HF model and the 

LF model A are described in Tables 4.3 and 4.4, respectively.  
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Table 4.3: Description of the Barnes problem, high-fidelity model 

High-fidelity Model 

            𝑓ℎ𝑖𝑔ℎ = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎5𝑥1
4 + 𝑎6𝑥2 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1

2𝑥2

+ 𝑎9𝑥1
3𝑥2 + 𝑎10𝑥1

4𝑥2 + 𝑎11𝑥2
2 + 𝑎12𝑥2

3 + 𝑎13𝑥2
4 +

𝑎14

𝑥2 + 1
+ 𝑎15𝑥1

2𝑥2 
2

+ 𝑎16𝑥1
3𝑥2 

2 + 𝑎17𝑥1
3𝑥2 

3 + 𝑎18𝑥1𝑥2 
2 + 𝑎19𝑥1𝑥2 

3 + 𝑎20𝑒𝑎21𝑥1𝑥2 

             𝑔1ℎ𝑖𝑔ℎ = 1 −
𝑥1𝑥2

700
≤ 0 

           𝑔2ℎ𝑖𝑔ℎ =
𝑥1

2

625
−

𝑥2

5
≤ 0 

             𝑔3ℎ𝑖𝑔ℎ = (
𝑥1

500
− 0.11) − (

𝑥2

50
− 1)

2

≤ 0  

 

High-fidelity model has a high-degree polynomial for the objective function and non-linear 

constraints while low-fidelity models have low-degree polynomials and more linear 

constraints. All models have two variables and they are both bounded between 0 and 70. 

For ease of understanding, none of the constraints was used and only the objective function 

was calculated to produce the model output. Out of the various configurations selected by 

using the Latin hypercube design (20 configurations), a portion of them (15 configurations) 

was used as training data to obtain the copula model, while the rest (5 configurations) was 

used to demonstrate the improvement the proposed approach can make. 

 

Table 4.4: Description of the Barnes problem, low-fidelity model A 

Low- Fidelity Model A 

                𝑓𝑙𝑜𝑤 = 𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥1
2 + 𝑎4𝑥1

3 + 𝑎6𝑥2 + 𝑎7𝑥1𝑥2 + 𝑎8𝑥1
2𝑥2 + 𝑎9𝑥1

3𝑥2          

+ 𝑎10𝑥1
4𝑥2 + 𝑎11𝑥2

2 + 𝑎12𝑥2
3 + 𝑎13𝑥2

4 +
𝑎14

𝑥2 + 1
+ 𝑎15𝑥1

2𝑥2 
2 + 𝑎16𝑥1

3𝑥2 
2

+ 𝑎17𝑥1
3𝑥2 

3 + 𝑎18𝑥1𝑥2 
2 + 𝑎19𝑥1𝑥2 

3 + 𝑎20 

             𝑔1𝑙𝑜𝑤 = 0.5 −
𝑥1𝑥2

750
≤ 0 

             𝑔2𝑙𝑜𝑤 =
𝑥1

16
−

𝑥2

5
≤ 0 

             𝑔3𝑙𝑜𝑤 = (
𝑥1

500
− 0.11) − (

𝑥2

50
− 1)

2

≤ 0  
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The output calculated by the high-fidelity model is compared with that produced by the 

low-fidelity model A, as depicted in Fig. 4.8.  

 

  

(a) (b) 

Figure 4.8: Results from low-fidelity model A, (a) single cluster; (b) adaptive copula 

 

Table 4.5: Average error and bias of a confirmation point from low-fidelity model A 

Average Error Bias 

Single 

Copula 

Adaptive 

Copula 
True 

Single 

Copula 

Adaptive 

Copula 

0.065 0.0042 0.008 0.0001 0.0054 

 

 

The absolute error results presented in Tab. 4.5 are also visualized in Fig. 4.9 as bar plot. 
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Figure 4.9: Absolute error comparison: single copula vs adaptive copula for Barnes 

problem high-fidelity model vs. low-fidelity model A 

 

A hypothesis testing was used to see if the average absolute error produced by the adaptive 

copula approach is different than that from the single copula approach. Since there are so 

few sample points (5 confirmation points), bootstrapping technique was employed to 

generate sufficiently large number of bootstrap samples (1000). In this way, a large number 

average absolute error (mean value) can be produced (one mean value for each bootstrap 

sample, for a total of 1000 mean values in this case). A one-sample t-test was established 

with the null hypothesis 𝐻0 set up as 𝐻0: 𝜇𝑆𝐶 − 𝜇𝐴𝐶 = 0. The null hypothesis was rejected 

at 5% significance level indicating there is significant difference between the average 

absolute error produced by the adaptive copula approach and that by the single copula 

approach. Such statistical evidence suggests that the proposed methodology, the adaptive 

copula approach was able to improve the error statistic significantly compared to the 

previously-proposed single copula approach.  
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4.4 Summary 

In this chapter, an adaptive copula-based approach was proposed to improve model 

accuracy by correcting the bias term. Cluster analysis is performed on the raw data to group 

similar data points, followed by copula modeling for each cluster. Model prediction is then 

produced using information from each cluster. The final prediction is the weighted sum of 

every prediction. The two case studies used in this chapter adequately demonstrated that 

the proposed approach is effective in improving the accuracy of model prediction 

compared to its predecessor which uses single copula. The proposed approach is able to 

produce more accurate model prediction as well as narrowed confidence bounds. 
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Chapter 5: Model Validation Metric for Dynamic Responses 

under Uncertainty  

 

5.1 Introduction 

Majority of available validation metric is designed for static system response such as the 

U-pooling [27] and Bayes factor [74]. Though metrics for dynamic responses are also 

available [75], they are specifically designed for vehicle impact application and 

uncertainties are not well considered in the metric. In this section we propose the statistic 

validation metric for dynamic responses.   

 

5.2 Statistic Validation Metric for Dynamic Responses 

The proposed validation metric is related to the U-pooling metric, hence this metric is 

briefly reviewed here. U-pooling metric was proposed by Ferson et al. [27] as a validation 

metric and has been adopted by many researchers in the study of model validation. The 

basic idea is to compare the cumulative distribution function (CDF) difference (i.e., the U-

pooling value) between model prediction and test data in the standard Uniform space (or 

U-space) as shown in Fig. 5.1. The smaller the area difference, the higher of the expected 

accuracy of the model prediction. For static responses, each test datum 𝑦𝑖 corresponds to 

one 𝑢𝑖 value which is calculated from the CDF value of the model prediction at the same 

design configuration (i.e., 𝑢𝑖 = 𝐹𝑌̂(𝑦𝑖) where 𝐹(∙) is the CDF of 𝑌̂). To adopt the U-

pooling value for dynamic responses, 𝐹𝑌̂(𝑦𝑖) should be calculated where 𝑦𝑖 is a dynamic 

response from test and 𝑌̂ is an arbitrary random process from model prediction.     
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Figure 5.1: Illustration of the U-pooling value  

 

The proposed validation metric makes use of the U-pooling approach by addressing two 

technical components: i) extension of the U-pooling for dynamic responses; and ii) 

inclusion of the shape difference in the metric. The first component is addressed by 

discretizing the random process into 𝑛  time steps such that the calculation of each 𝑢𝑖 

equivalents to identifying the n-dimensional joint CDF value for each random process 

realization of 𝑦𝑖. The second component is addressed by quantifying the shape deviation 

of the model prediction from the test. Technical details are elaborated as follows.  

 

Under the assumption of Gaussian random process, the value of 𝑢𝑖  can be estimated 

numerically using a number of algorithms since there is no closed form for 𝑛-dimensional 

normal joint CDF [76]. Considering an arbitrary random process, such calculation could 

be practically difficult. Generally, the sampling approach is able to approximate the 𝑢𝑖 by 

counting the number of random process realizations less than or equal to the corresponding 

realization of 𝑦𝑖  from the test as shown in Eq. (5.1). 

 
𝑢𝑖 = 𝐹𝑌̂(𝑦𝑖) ≅ ∑

𝑀𝑘

𝑁

𝑁

𝑘=1
 , where 𝑀𝑘 = {

1
0

𝑦̂𝑘,𝑗 ≤ 𝑦𝑖,𝑗 𝑗 = 1, … , 𝑛

𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                    
 (5.1) 

where 𝑁 is the total number of random process realizations from the model. It is worth 

nothing that above calculation is general but computationally expensive because each 

𝑢𝑖 estimation requires a magnitude of 𝑁 × 𝑛  comparison operations. With several test 

observations of 𝑦𝑖, 𝑖 = 1, … , 𝑄 , corresponding 𝑢𝑖  can be calculated using Eq. (5.1) 

resulting in a U-pooling value as shown in Fig. 5.1.  
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Unlike static responses, shape difference of dynamic responses is another important 

attribute between model prediction and test, which is not able to be accounted for in Eq. 

(5.1). In other words, the same 𝑢𝑖 value could represent different quality of the response 

matching as shown in Fig. 5.2a. Therefore, it is desirable to include the shape difference in 

the validation metric for dynamic system responses. Under the assumption that model 

prediction is valid and truly represents the real physical systems, test observations 

equivalent to corresponding random process realizations from the model prediction. 

Therefore, the expected shape deviation between test observations and corresponding 

realizations from the model should be as small as possible. Otherwise, the assumption is 

not valid and the magnitude of such shape deviation indicating the level of disagreement 

between model prediction and test. Two remaining challenges need to be addressed to 

include the shape difference in the validation metric: i) quantification of the shape deviation; 

and ii) identification of the corresponding realizations from the model.  

 

Quantification of the shape deviation is proposed to be conducted in a normalized region 

as shown in Fig. 5.2b so that its magnitude is at the same level as the U-pooling value. 

Assign 𝑆𝑖(𝑦, 𝑦̂) as the shape deviation between 𝑦𝑖 and the corresponding random process 

realization from the model, its value is the shaded area as shown in Fig. 5.2b. The 

corresponding realizations from the model based on test observations can be identified 

using Eq. (5.2). 

 
𝑦̂𝑖 = 𝐹𝑌̂

−1 [
𝑖

𝑄 + 1
] (5.2) 

where 𝑄 is the number of test observations; 𝑖 is the order of the test observations; and  

𝐹𝑌̂
−1(∙) is the inverse CDF of 𝑌̂. For example, one test observation corresponds to 𝐹𝑌̂

−1(0.5)  

indicating the median of the random process or the mean for Gaussian random process. 

Two test observations correspond to 𝐹𝑌̂
−1(0.33)  and 𝐹𝑌̂

−1(0.67) . Identification of the 

corresponding realizations meeting the CDF values can be conducted from the marginal 

distributions.    

 

The proposed validation metric for dynamic responses is formulated in Eq. (5.3). 
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Ψ = 𝑈(𝑢1, … , 𝑢𝑄) +

1

𝑄
∑ 𝑆𝑖(𝑦, 𝑦̂)

𝑄

𝑖=1
 (5.3) 

where the first part is the U-pooling value and the second part is the average of shape 

deviation. The smaller value of Ψ indicates the better model accuracy based on available 

test observations. It is worth noting that calculation of the proposed metric is 

computationally expensive for each 𝑢𝑖.  

 

 

(a) Shape difference with the same 𝑢𝑖 value 

 

(b) Shape deviation in normalized region 

Figure 5.2: Illustration of the shape difference for dynamic responses 

 

Majority of the computational effort of the proposed validation metric is conducted on the 

basis of 𝑛-dimensional joint PDF/CDF by discretizing the dynamic responses into 𝑛 time 

steps. Due to the statistical dependence among marginal distributions, the sampling 

approach may be the only feasible way for calculating the 𝑢𝑖  value. The principle 

component analysis (PCA) (or proper orthogonal decomposition) is a typical method to 

significantly reduce the dimensionality of many correlated random variables into only a 

few uncorrelated random variables (or principle components) with prescribed accuracy 

requirement [77]. Therefore, preprocessing the dynamic system responses using the PCA 

can significantly improve the computational efficiency of the proposed validation metric 

because the computation can be conducted in a statistically uncorrelated random space.  

 

The dynamic response 𝒀̂ can be decomposed into mean𝝁 and variation 𝝂. The 𝒌𝒕𝒉 random 

process realization can be generally expressed as  

 𝑌̂𝑘 = 𝜇 + 𝜈𝑘 (5.4) 

Using the PCA approach, a random process can be represented by Eq. (5.5) given sufficient 

number of random process realizations.  
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𝑌̂(𝑡) = 𝜇(𝑡) + ∑ 𝛼𝑘𝜙𝑘(𝑡)

𝑛

𝑘=1
 (5.5) 

where 𝑡  is the time; 𝜙𝑘(𝑡)  is the 𝑘𝑡ℎ  eigenvector (or principle component) of the 

covariance matrix of n random variables from the discretized dynamic responses; 𝛼𝑘 is the 

coefficient of the 𝑘𝑡ℎ eigenvector and its value can be obtained through the inner product 

operation  between the variation part 𝜈(𝑡) and the corresponding eigenvector as 

 𝛼𝑘 = 𝜈(𝑡) ∙ 𝜙𝑘(𝑡) (5.6) 

Theoretically, all eigenvectors are required to exactly represent the random process. 

However, only a few important eigenvectors may be vital for the representation of the 

random process especially when original random variables are highly correlated. In Eq. 

(5.6), a dataset of the coefficient 𝛼𝑘 of the 𝑘𝑡ℎ eigenvector can be obtained from all random 

process realizations. Hence, 𝜈𝑘 can be defined as a new random variable projected to the 

𝑘𝑡ℎ eigenvector (or principle component) that statistically models the coefficient data set 

𝛼𝑘. Therefore, the random process is represented as a function of deterministic eigenvector 

𝜙𝑘 and the corresponding random variables 𝑉𝑘 as explained in Eq. (5.7).   

 
𝑌̂(𝑡) ≅ 𝜇(𝑡) + ∑ 𝑉𝑘𝜙𝑘(𝑡)

𝑚

𝑘=1
 (5.7) 

where 𝑚 is the number of the vital eigenvectors. Marginal distributions of 𝑉𝑘 can be easily 

determined using the maximum likelihood estimation (MLE) given sufficient number of 

random samples (e.g. 𝑁 = 1000). It is worth noting that Eq. (5.7) essentially reduces 𝑛-

dimensional random space into 𝑚 dimension, where the new random variables 𝑉𝑘’s are 

statistically uncorrelated and 𝑚 is typically a much smaller number than 𝑛.    

 

Joint CDF value can be easily computed if random variables are statistically independent 

as defined in Eq. (5.8). 

 𝐹ν(𝜈∗) = 𝑃(𝜈1 ≤ 𝜈1
∗, … , 𝜈𝑚 ≤ 𝜈𝑚

∗ ) = ∏ 𝑃(𝜈𝑘 ≤ 𝜈𝑘
∗)

𝑘

 (5.8) 

where 𝜈𝑘
∗  is the projected value of the test observation 𝑦𝑖 onto the 𝑘𝑡ℎ principle component. 

Eq. (5.8) may introduce errors if 𝑉𝑘 ’s are statistically dependent because statistical 

independence is not ensured even though 𝑉𝑘’s are statistically uncorrelated. Nevertheless, 

Eq. (5.8) significantly improves computational efficiency compared to Eq. (5.1). In 
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addition, the statistical dependence of 𝑉𝑘  is rarely observed in the tested engineering 

problems. It is worth noting that the joint CDF value (i.e., 𝑢𝑖) calculated in Eq. (5.1) may 

not equals to the value in Eq. (5.8) because of the orthogonally rotated coordinate systems 

using the PCA. However, the U-pooling value still reflects the degree of agreement 

between the model prediction and test observations, which will be shown in the case study.    

 

5.3 Case Studies 

A driver-side occupant restraint system, a MADYMO model, is used to demonstrate the 

proposed validation metric before and after model validation. The model simulates a full 

frontal rigid barrier crash scenario at the speed of 35 mph with a 50th percentile belted 

Hybrid III dummy in a vehicle. This represents the USA New Car Assessment Program 

(NCAP) test mode. Each MADYMO simulation takes approximately 7 minutes to 

complete on a HP C8000 workstation. There are eleven occupant response curves 

(summarized in Table 5.1) that are monitored and compared with the test data to evaluate 

the accuracy of the MADYMO model. Sixteen model input random parameters were 

selected on the basis of three reasons including: i) a significant range of variation shown in 

component tests (e.g., stiffness); ii) absence of representative component test data (e.g., 

friction); and iii) non-controllable parameters (e.g., impact load magnitude and location). 

Their lower and upper bounds were chosen based on the component tests and engineering 

experience, and their distributions were assumed to be uniform.  

 

Table 5.1: Eleven Occupant Responses 

Dynamic Responses Description 

Response 1 Belt Load at Anchor 

Response 2 Belt Load at Retractor 

Response 3 Belt Load at Shoulder 

Response 4 Chest Deflection 

Response 5 Chest Acceleration in 𝑋-Direction 

Response 6 Femur Load Left in 𝑍-Direction 

Response 7 Femur Load Right in 𝑍-Direction 

Response 8 Head Acceleration in 𝑋-Direction 

Response 9 Upper Neck Load in 𝑍-Direction 

Response 10 Upper Neck Moment 

Response 11 Pelvis Acceleration in 𝑋-Direction 
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Figure 5.3: Model A vs. test 
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Figure 5.4: Model B vs. test 

 

Figs. 5.3 and 5.4 show the time history responses of two model predictions (i.e., model A 

and B) against the same set of experimental data. The results from the model prediction 

consist of 200 computer simulations using the MCS, and the experimental data consist of 

Test
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10 repeated tests. It is difficult to observe directly which model is more accurate. Hence, 

validation metric is necessary for quantitative comparison. 

 

Table 5.2: Validation metric for model A and B 

Validation Metric 
Model A Model B 

𝑈 𝑈∗ 𝑆 Ψ 𝑈 𝑈∗ 𝑆 Ψ

Resp. #1 0.459 0.459 0.074 0.533 0.459 0.459 0.062 0.521 

Resp. #2 0.459 0.459 0.048 0.507 0.459 0.459 0.059 0.518 

Resp. #3 0.459 0.459 0.050 0.509 0.459 0.459 0.053 0.512 

Resp. #4 0.459 0.459 0.071 0.530 0.459 0.459 0.090 0.549 

Resp. #5 0.459 0.459 0.066 0.525 0.459 0.459 0.060 0.519 

Resp. #6 0.459 0.459 0.144 0.603 0.459 0.459 0.076 0.535 

Resp. #7 0.459 0.459 0.193 0.652 0.459 0.459 0.146 0.605 

Resp. #8 0.459 0.459 0.075 0.534 0.459 0.459 0.039 0.498 

Resp. #9 0.459 0.459 0.102 0.561 0.459 0.459 0.052 0.511 

Resp. #10 0.459 0.459 0.175 0.635 0.459 0.459 0.091 0.550 

Resp. #11 0.459 0.459 0.092 0.551 0.459 0.459 0.078 0.538 

Average 0.459 0.459 0.099 0.558 0.459 0.459 0.073 0.532 

 

Table 5.2 lists results computed from the proposed validation metric for eleven dynamic 

responses, where 𝑈 indicates the U-pooling value, S means the average shape deviation, Ψ 

is the summation of them, and 𝑈∗ represents the U-pooling value calculated using the PCA 

approach. Several valuable observations are summarized as follows. First of all, 𝑈 equals 

to 𝑈∗ for all responses demonstrating that the PCA approach for calculating the U-pooling 

value is equivalent to the sampling approach. It is noted in this example that 99.9% of 

accuracy requirement was implemented in the PCA, otherwise, some difference may be 

observed due to neglecting some portion of the total data variation. Secondly, the U-

pooling value is relatively large (i.e., 0.459) and the same for all responses, which is mainly 

due to the fact that test data locate outside the boundary of the model prediction at many 

time steps for both models. In fact, even if only at one time step with such feature, the large 

U-pooling value is expected because each 𝑢𝑖 value is calculated from the perspective of a 

joint CDF. Such a strict attribute may not be appreciated in this example, however, it would 

be very important in other applications where model prediction at each time step is critical 

(e.g., the strength decay of a bridge structure every year). Thirdly, model B has smaller 

shape deviation than model A for majority responses except for responses 2, 3 and 4. 



 56 
 

Quantitatively, the average shape deviation of model B is reduced about 26% compared to 

model A. Fourthly, the top 3 responses with large shape deviation for model B is the 

response 7, 10, and 4.        

 

5.4 Summary 

A new validation metric for dynamic responses under uncertainty was proposed in this 

chapter. The classical U-pooling approach can be extended for dynamic responses by 

discretizing and treating the responses as a high dimensional joint distribution. The PCA 

is very effective for representing the dynamic responses by a few random variables so that 

the U-pooling value can be computed more efficiently. The shape deviation was included 

in the validation metric so that the metric can still distinguish the model accuracy when the 

U-pooling value only is not differentiable. The proposed shape deviation metric works 

effectively with multiple test data and distinguishes not only the mean shape difference but 

also the difference at corresponding percentage levels. One vehicle impact model was 

employed and the effectiveness of the proposed validation metric was demonstrated. 

Further work is to apply the metric for other engineering applications where dynamic 

responses are prominent.  
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Chapter 6: Model Bias Modeling of Dynamic System 

Responses 

 

6.1 Introduction 

Given limited test data, model bias needs to be effectively identified so that reliability 

analysis would be more accurate compared to the baseline model. In particular, it is 

desirable that model bias can be accurately approximated at any new design configurations 

where test data are not available. This chapter will first elaborate on the dynamic model 

bias calibration with the aid of the validation metric, then propose the dynamic model bias 

approximation at any new design configurations.  

 

6.2 Dynamic Model Bias Calibration 

Majority of the bias correction approach is based on the Bayesian calibration model 

proposed by Kennedy and O’Hagan [59] as shown in Eq. (6.1). 

 𝑌̂(𝑿) + 𝛿 = 𝑌 − 𝜀 (6.1) 

where 𝑌̂ is system performance prediction of the baseline simulation/analytical model, 𝛿 

is model bias, 𝑌  is test data, 𝜀 is test error, and 𝑿 is a vector of model parameters. In 

particular, model parameter 𝑿 could take the form of deterministic values, irreducible 

random parameters (i.e., aleatory uncertainty), or reducible random parameters (i.e., 

epistemic uncertainty), depending on the nature and available data of the problem. The 

Bayesian calibration model addresses the challenge of calibrating model parameter 𝑿, 

model bias 𝛿 , and test error 𝜀  with limited test data 𝑌  at given design configurations. 

Essentially, prior distributions of these calibration terms are updated to posterior 

distributions provided the evidence of test data 𝑌 using a Bayesian updating mechanism.  

 

The calibration model as shown in Eq. (6.1) has been used to calibrate the non-dynamic 

model bias with well-defined calibration parameters. For example, either the distribution 
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parameters (e.g., the mean and standard deviation) or their hyper-parameters can be treated 

as calibration parameters with assumed distribution types of the model bias. This 

calibration model can be also used for dynamic model bias calibration if the calibration 

parameters can be properly defined.  

 

Considering arbitrary dynamic model bias under uncertainty, the principle component 

analysis (PCA) (or proper orthogonal decomposition) is a typical method to characterize 

the dynamic randomness using only a few uncorrelated random variables (or principle 

components) with prescribed accuracy requirement [77]. An arbitrary dynamic model bias 

can be formulated as shown in Eq. (6.2).  

 𝛿(𝑡) ≅ 𝜇(𝑡) + ∑ 𝑉𝑘𝜙𝑘(𝑡)
𝑚

𝑘=1
 (6.2) 

where 𝑡  is the time; 𝜇(𝑡)  is the mean of the dynamic model bias; 𝜙𝑘(𝑡)  is the 𝑘𝑡ℎ 

important feature; 𝑉𝑘’s are the uncorrelated random variables with zero means; and 𝑚 is 

the number of the vital features. Here 𝑉𝑘 will be considered as calibration parameters and 

𝜇(𝑡) and 𝜙𝑘(𝑡) will be determined on the basis of the baseline model prediction and 

corresponding test data. In particular, sufficient model bias realizations can be obtained 

using the sampling approach based on Eq. (6.1). With discretization of the dynamic model 

bias into 𝑛 time steps, an 𝑚 × 𝑛 matrix representing the bias can be constructed as 

 𝛿(𝑡) ≅ 𝜹 = [
𝛿11 ⋯ 𝛿1𝑛

⋮ ⋱ ⋮
𝛿𝑚1 … 𝛿𝑚𝑛

] (6.3) 

where 𝛿𝑖𝑗 indicates the model bias at the 𝑗𝑡ℎ time step for the 𝑖𝑡ℎ sampled realization. The 

mean of the model bias is estimated as 

 𝜇(𝑡) ≅ 𝝁 = [𝛿∙̅1, … , 𝛿∙̅𝑛] (6.4) 

where 𝛿∙̅𝑗 stands for the average of the 𝑗𝑡ℎ time step over the sampled realizations. Hence 

the variation part of the model bias is expressed as 

 𝝂 = [
𝛿11 − 𝛿∙̅1 ⋯ 𝛿1𝑛 − 𝛿∙̅𝑛

⋮ ⋱ ⋮
𝛿𝑚1 − 𝛿∙̅1 … 𝛿𝑚𝑛 − 𝛿∙̅𝑛

] (6.5) 

The feature vector 𝝓 can then be obtained by solving an eigen-problem as 

 𝚺𝝓 = 𝜆𝝓 (6.6) 
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where 𝜆 is the eigenvalue of the covariance matrix 𝚺(n × n) that is defined as 

 𝚺 = 𝛎𝐓𝝂 (6.7) 

 The number of the vital features 𝑚 is dependent on the required accuracy level for 

preserving the variation part of the matrix 𝝂, which is determined by the ratio of the first 

𝑚 largest eigenvalues to the summation of all eigenvalues.   

 

Dynamic model bias calibration is thus formulated as 

 

min     Ψ(𝑌̂ + 𝛿,   𝑌 − 𝜀)  

𝑆. 𝑇.     𝐿𝑘
𝜎 ≤ 𝜎(𝑉𝑘) ≤ 𝑈𝑘

𝜎 

                                𝐿𝑘
𝑠𝑘𝑒𝑤 ≤ 𝑠𝑘𝑒𝑤(𝑉𝑘) ≤ 𝑈𝑘

𝑠𝑘𝑒𝑤 

                              𝐿𝑘
𝑘𝑢𝑟𝑡 ≤ 𝑘𝑢𝑟𝑡(𝑉𝑘) ≤ 𝑈𝑘

𝑘𝑢𝑟𝑡 

(6.8) 

where Ψ(∙)  is the validation metric function; 𝜎(𝑉𝑘), 𝑠𝑘𝑒𝑤(𝑉𝑘) , and  𝑘𝑢𝑟𝑡(𝑉𝑘) are the 

standard deviation, skewness, and kurtosis of random variable 𝑉𝑘, respectively; 𝐿𝑘
𝑥  and 𝑈𝑘

𝑥 

are the corresponding lower and upper bounds. It is worth noting that if Gaussian random 

field was assumed for dynamic model bias, only 𝜎(𝑉𝑘)is needed in the above calibration 

model, otherwise, more advanced PDF approximation methods (e.g., Pearson System, 

Johnson System, maximum entropy principle, etc.) [78, 79, 80, 81] can be used to 

approximate the distribution of 𝑉𝑘 with inclusion of the 𝑠𝑘𝑒𝑤(𝑉𝑘) and 𝑘𝑢𝑟𝑡(𝑉𝑘).  

 

6.3 Dynamic Model Bias Approximation in the Design Space 

With successful calibration of dynamic model bias represented in the form of Eq. (6.2) at 

available design configurations, the model bias at any new design configuration can be 

approximated by using the response surface methods. In particular, 𝜇(𝑡) and 𝜙𝑘(𝑡) are 

deterministic for a given design configuration, and 𝑉𝑘  follows an arbitrary distribution 

whose statistical moments can be extracted for building the response surface models. Four 

steps are summarized to approximate the dynamic model bias in the design space with the 

aid of the response surface methods.  
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 Step 1: identify optimal dynamic model bias using Eq. (6.8) under several design 

configurations;  

 Step 2: construct response surfaces for 𝜇(𝑡), 𝜙𝑘(𝑡) and the central moments of 𝑉𝑘;    

 Step 3: approximate 𝜇(𝑡), 𝜙𝑘(𝑡) and the central moments of 𝑉𝑘  of the model bias at 

new design configurations on the basis of the response surfaces;  

 Step 4: approximate the distributions of 𝑉𝑘  at new design configurations using one of 

the advanced PDF approximation methods. 

 

Response surface of the model bias plays a critical role for correcting the baseline model 

prediction with a more credible reliability analysis by incorporating the uncertainty of the 

model. Its accuracy mainly depends on three factors including: i) nonlinearity of the model 

bias in the design space; ii) number of identified model bias in the design space; and iii) 

algorithm of the response surface method. The first factor is determined by the quality of 

the baseline model, while the second factor is decided by available resources for 

conducting validation experiments at different design configurations. Intuitively, more 

validation experiments increase accuracy of the response surface. The third factor belongs 

to the study of response surface methodology [82].  

 

6.4 Case Studies  

Two case studies including a thermal problem and a beam problem are employed to 

demonstrate the proposed validation metric, dynamic model bias calibration and 

approximation, and reliability analysis.  

 

6.4.1 Thermal Problem 

A thermal problem was developed by Sandia National Laboratory for the study of model 

validation [83]. The subject is a safety-critical structure, which is schematically shown in 

Fig. 6.1. The structure is subject to a constant heat flux rate 𝑞  with the thickness 𝐿 . 

Temperature of the structure at location 𝑥 is expressed in Eq. (6.9). 

 𝑇(𝑥, 𝑡) = 𝑇0 +
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where 𝑇0 is the initial temperature; 𝑘 is the thermal conductivity; and 𝜌 is the volumetric 

heat capacity. Specifically, parameters 𝑘  and 𝜌 have unit-to-unit variability due to the 

manufacturing tolerance and they were assumed to follow Normal distributions with the 

mean of 0.0820 and standard deviation of 0.0012 for 𝑘  and the mean of 400000 and 

standard deviation of 30113 for 𝜌. For safety reason, probability that surface temperature 

exceeds a failure temperature, i.e. 𝑇 = 900℃, should be less than 1% after exposure to a 

heat flux 𝑞 =  3500 𝑊/𝑚2 at time 𝑡 =  1000 (𝑠).   

 

 

Figure 6.1: Schematic view of a safety-critical structure 

 

 

Figure 6.2: Validation experiments at five design configurations 

 

Experiments were conducted at four design configurations as shown in Fig. 6.2, where four 

test data sets were available for each design configuration. Two more accreditation 

experiments were conducted at the 5th design configuration to verify model accuracy after 

model validation. Measurement error 𝜀 is ignorable in this problem.   
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6.4.1.1 Validation metric for the baseline thermal model 

MCS was used for the surface temperature prediction with respect to the time by 

considering the randomness of material properties. Fig. 6.3 shows the baseline model 

prediction compared to four set of test data at each configuration. Qualitatively speaking, 

the baseline model is not accurate and its accuracy varies for different configurations. Table 

6.1 shows the quantitative results of the validation metric at four configurations. From the 

U-pooling perspective, the baseline model shows the best accuracy for the 3rd configuration 

followed by the 1st configuration, and the U-pooling value cannot differentiate the accuracy 

for the 2nd and 4th configurations. According to the average shape deviation 𝑆̅, the 3rd 

configuration again presents the best accuracy followed by the 1st, 2nd, and 4th 

configurations. Overall, the baseline model presents the best and worst accuracy for the 3rd 

and 4th configurations, respectively.     

   

Table 6.1: Validation metric for the baseline model prediction 

 𝑈 𝑆̅ Ψ

Conf. #1 0.2999 0.1116 0.4116 

Conf. #2 0.3956 0.1295 0.5251 

Conf. #3 0.2362 0.0779 0.3142 

Conf. #4 0.3957 0.1422 0.5380 

 

6.4.1.2 Model bias calibration and approximation for the baseline thermal model 

The proposed calibration model in Eq. (6.8) was employed to calibrate the dynamic model 

bias at the four training configurations. With predetermined mean 𝜇(𝑡) and features 𝜙𝑘(𝑡)  

of the dynamic model bias, statistical moments of 𝑉𝑘  were calibrated to minimize the 

validation metric Ψ so that the agreement between the corrected model prediction and test 

data was maximized. The calibration history of Ψ is listed in Table 6.2 at the four training 

configurations. Obviously, accuracy of the corrected model prediction was significantly 

improved as compared to the validation metric in Table 6.1. Fig. 6.4 further shows the 

comparison between the corrected model prediction and the test data.  
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Table 6.2: Optimization history of the validation metric for the thermal problem 

Iteration Conf. #1 Conf. #2 Conf. #3 Conf. #4 

0 0.099 0.088 0.098 0.103 

1 0.085 0.086 0.092 0.102 

2 0.070 0.039 0.050 0.037 

3 0.069 0.034 0.043 0.034 

4 0.069 0.033 0.042 0.034 

Optimal 0.069 0.033 0.042 0.034 

 

 

 

Conf. #1 

 

Conf. #2 

 

Conf. #3 

 

Conf. #4 

 

Figure 6.3: Comparison between baseline model prediction and experiment 

 

 



 64 
 

 

Conf. #1 

 

Conf. #2 

 

Conf. #3 

 

Conf. #4 

Figure 6.4: Comparison between corrected baseline model prediction and experiment 

 

With successful calibration of the dynamic model bias at four training configurations, 

response surfaces of 𝜇(𝑡) , 𝜙𝑘(𝑡)  and statistical moments of 𝑉𝑘  were constructed as 

functions of the heat flux rate 𝑞 and structure thickness 𝐿 using the moving least square 

method. The approximate model bias at the 5th configuration is shown in Fig. 6.5 where 

one thousand random samples of the bias were generated according to Eq. (6.2) and the 

centered solid line is the mean of the bias. To demonstrate the effectiveness of the proposed 

bias approximation, the bias was employed to correct the baseline model prediction at the 

5th configuration. Two sets of accreditation experiments were used to verify the accuracy 

improvement of the baseline model as shown in Fig. 6.6. Quantitatively, the value of Ψ 

was reduced 47% indicating significant accuracy improvement of the baseline model after 

adding the approximate model bias.   
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Figure 6.5: Approximate model bias of Conf. #5 

 

 

Baseline model 

 

Corrected baseline model 

Figure 6.6: Comparison between model prediction and experiment at Conf. #5 

  

 

6.4.2 A corroded beam problem  

A corroded beam problem [84, 85] was modified to further demonstrate the proposed 

approach. As shown in Fig. 6.7, the cross section of the beam is rectangular with initial 

width of 𝑎0 and height of 𝑏0. Both the width and height decrease at a rate of 𝑟1 and 𝑟2 

respectively due to the corrosion. The beam is subject to its own weight and a random load 

𝐹 at the center of the beam. The failure occurs when the external stress exceeds the strength 

of the beam which decays over the time. The true limit sate function is formulated in Eq. 

(6.10) with assumed true decay rate 𝑟1 and 𝑟2. 

 

 
𝑔 = [

𝐹𝐿

4
+

𝜌𝑎0𝑏0𝐿2

8
] − [

(𝑎0 − 2.2𝑟0𝑡)(𝑏0 − 3𝑟0𝑡)𝜎𝑢

4
] 

 

(6.10) 
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where 𝜎𝑢 is the ultimate strength; 𝜌 is the density; 𝐿 is the length of the beam; 𝑡 is the time 

of year; 𝑟1 = 1.1𝑟0 and 𝑟2 = 1.5𝑟0. It is assumed in this example that the true decay rate 

cannot be measured in real operation conditions and the baseline model employs a nominal 

decay rate r0 on the basis of historical data. Thus, the baseline model of the limit state 

function which is employed for reliability prediction is formulated as 

 𝑔 = [
𝐹𝐿

4
+

𝜌𝑎0𝑏0𝐿2

8
] − [

(𝑎0 − 2𝑟0𝑡)(𝑏0 − 2𝑟0𝑡)𝜎𝑢

4
] (6.11) 

In short, Eq. (6.10) is the true model that is pretended to be not known and is only used for 

reference and Eq. (6.11) will be used for reliability analysis for a time period of 30 years. 

Model parameters and their properties are listed in Table 6.3.   

 

Figure 6.7: Schematic view of a corroded beam problem 

 

Table 6.3: Model parameters and properties of the corroded beam problem 

Variable Mean 
Standard 

deviation 
Distribution 

𝑎0 0.2 m 0.01 m Normal 

𝑏0 0.04 m 0.004 m Normal 

𝜎𝑢 2.4e8 Pa 2.4e7 Pa Lognormal 

𝐹 200,000 N 40,000 N Gaussian 

𝐿 5 m 0 Deterministic 

𝜌 78.5 kN/m3 0 Deterministic 

𝑟0 5e-5 m/year 0 Deterministic 

 

For model bias calibration, one set of virtual test data of the beam strength was obtained at 

four training design configurations where the means of 𝑎0  and 𝑏0  were downsized. In 

particular, the size of the beam at four training configurations is listed in Table 6.4. The 

virtual test data of the beam strength were obtained from Eq. (6.12) where only one random 

F
A-A

A-A

a0

b0

r1t
r2t
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realization was extracted using MCS considering the randomness of 𝑎0, 𝑏0 and 𝜎𝑢 at each 

configuration. Fig. 6.8a shows such an example of the comparison between the baseline 

model prediction and one virtual test data for the 1st configuration. With successful 

calibration of the dynamic model bias, the corrected baseline model prediction shows much 

higher degree of agreement as shown in Fig. 6.8b. Similar work was conducted for other 

training configurations and finally response surfaces were built for the dynamic model bias 

as functions of 𝑎0 and 𝑏0.  

 

 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = (𝑎0 − 2.2𝑟0𝑡)(𝑏0 − 3𝑟0𝑡)𝜎𝑢/4 (6.12) 

 

Table 6.4: Four training configurations 

Configuration Variable Mean 
Standard 

deviation 
Distribution 

Conf. #1 
𝑎0 0.1 m 0.01 m Normal 

𝑏0 0.02 m 0.004 m Normal 

Conf. #2 
𝑎0 0.15 m 0.01 m Normal 

𝑏0 0.02 m 0.004 m Normal 

Conf. #3 
𝑎0 0.1 m 0.01 m Normal 

𝑏0 0.03 m 0.004 m Normal 

Conf. #4 
𝑎0 0.15 m 0.01 m Normal 

𝑏0 0.03 m 0.004 m Normal 

 

 

a. Before bias calibration 

 

b. After bias calibration 

Figure 6.8: Comparison of model prediction and virtual test for the 1st configuration 
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6.5 Summary 

This chapter proposed a stochastic model bias correction approach for dynamic system 

responses. One contribution here is to propose a calibration model for dynamic model bias 

using the PCA so that only limited number of calibration parameters are needed and the 

calibration can be effectively conducted similar to the static model bias calibration. The 

other contribution is to propose the dynamic model bias approximation through building 

the response surfaces of PCA model components (i.e., 𝜇(𝑡), 𝜙𝑘(𝑡), and 𝑉𝑘) so that the 

approximate model bias keeps the same form as a PCA model which makes it possible to 

seamlessly integrate the dynamic model bias with the baseline model. The effectiveness of 

the proposed approach was well demonstrated by two case studies with dynamic system 

responses.  
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Chapter 7: Reliability-based Design Optimization 

Incorporating Model Uncertainty  

 

7.1 Introduction 

Reliability based design optimization (RBDO) has been widely employed for engineering 

product design to minimize the design cost while satisfying the reliability constraints. 

Typically, RBDO is conducted based on a simulation model (e.g., a finite element model, 

an analytical model, a computer fluid dynamics model, etc.) and the model is assumed to 

be accurate in representing the real physical system. However, this assumption may not be 

valid in many realistic engineering design applications, which could result in significant 

reliability prediction errors. Hence, the RBDO that is solely based on the simulation model 

without referring to the test data is less useful for practical engineering product design. 

Model calibration, hence, has been widely employed to improve the model prediction 

accuracy by tuning (or calibrating) some model parameters [86, 87, 88, 89, 90]. However, 

the improved model accuracy, strictly speaking, is only for the calibrated design 

configurations and the accuracy may or may not be maintained for the unexplored new 

design configurations. In other words, prediction capability of the model is uncertain 

because model accuracy is not quantitatively assessable at new design configurations. The 

designer may fall into the trap of continuously calibrating the model, but the new design 

can only be certified with the corresponding test data instead of the model, which 

significantly reduces the role of the simulation model in engineering product design 

process. The deficiency of this statistical model calibration is mainly attributed to three 

reasons: i) model prediction error is not quantitatively assessable at specific new design 

configurations; ii) a calibration model typically neglects model bias which is the inherent 

model inadequacy for representing the real physical system due to model assumptions and 

simplifications; and iii) tuned or calibrated model parameters may deviate from their true 

values and thus cause worse model accuracy at new design configurations.   
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Traditionally, the research on reducing the model error was proposed to revise the model 

conceptually for credibility improvement of the model. From the model development 

perspective, the key advantage of revising the model conceptually is that accuracy of the 

model could be significantly improved. However, this approach is practically difficult and 

may not be feasible in reality due to three reasons: i) identification of the root cause for 

model inaccuracy is complicated particularly for large scale engineering systems; ii) 

fundamental modification of the model is time consuming, costly, and yet may not be 

practical; and iii) there is no perfect model which can represent the real physical system 

without any model bias. Therefore, the objective of this chapter is to propose an effective 

model bias correction approach to quantify and reduce model errors in RBDO. In particular, 

that is to propose a copula-based bias correction approach as compared to the regression-

based approach for RBDO with three distinct differences. First of all, the proposed 

approach performs bias modeling using statistical dependency relationship instead of 

building a regression functional model. Essentially, the late approach is a causal modeling 

approach with a pre-assumption that model bias can be fully explained by the defined 

model parameters. Whereas, the proposed approach is a non-causal modeling approach 

which acknowledge the fact that model bias could also be affected by unknown factors 

other than the defined model parameters. Secondly, the proposed approach is a data-driven 

approach without artificial assumptions about the relationship such as the covariance 

function or basis function assumptions in the regression-based approach. Thirdly, unlike 

the regression-based approach suffering from the curse of dimensionality, the proposed 

approach is expected to be less sensitive to the dimensionality of the problem.      

 

7.2 Reliability-based Design with Model Uncertainty 

RBDO is composed of two sub-problems, reliability analysis and design optimization. 

Reliability analysis evaluates probability constraints at a given design configuration. 

Design optimization seeks for an optimal design subject to the probability constraints. 

Despite extensive efforts made in the RBDO methods, model uncertainty (i.e., uncertainty 

of the model bias) is typically ignored such that probability constraints may not be 

accurately evaluated in each design iteration even if the reliability analysis method is very 
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accurate. This section thus proposes a general approach for RBDO that can deal with model 

uncertainty using any reliability analysis method. The RBDO can be formulated as 

 

            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑦(𝒅) 

            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜              

           𝑃(𝑌̂𝑖(𝑿,  𝑷) + 𝛿𝑖(𝑿) ≤ 𝑇𝑖) = 𝐹𝐺𝑖
(0) ≥ Φ(𝛽𝑖), 𝑖 = 1, … , 𝑁𝑃 

            𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈, 𝑥 ∈ ℝ𝑁, 𝑃 ∈  ℝ𝐿 

   (7.1) 

where 𝑦(𝒅) is the objective function; 𝒅 = 𝜇(𝑿) is the mean vector of the controllable 

design parameter vector 𝑿; 𝑷 is the uncontrollable random parameter vector and does not 

change at different design configurations; 𝑌̂𝑖(∙) is the model prediction of the 𝑖𝑡ℎ constraint; 

𝛿𝑖(∙) is the model bias of the 𝑖𝑡ℎ constraint; 𝑇𝑖 is the performance limit of the 𝑖𝑡ℎ constraint; 

𝛽𝑖  is the ith reliability target; Φ(∙) is the cumulative distribution function (CDF) of a 

standard normal distribution; 𝑁𝑃, 𝑁, and 𝐿 are the number of probabilistic constraints, 

design parameters, and random parameters, respectively. The probability constraint, 𝐹𝐺𝑖
(0), 

is expressed as 

 𝐹𝐺𝑖
(0) = ∫ ∫ 𝑓𝑋,𝑃(𝒙, 𝒑)𝑑𝒙𝑑𝒑

𝑌̂𝑖(𝑿, 𝑷)+𝛿𝑖(𝑿)−𝑇𝑖≤0

    (7.2) 

where 𝑓𝑋,𝑃(𝒙, 𝒑) is the joint probability density function (PDF) of 𝑿 and 𝑷.   

 

Compared to the traditional RBDO, the key difference is to calculate the model bias 𝛿𝑖 at 

each design iteration and incorporate it into the reliability analysis. Three technical 

components should be addressed including: i) approximation of model bias at defined 

design space; ii) reliability analysis considering model bias; and iii) design sensitivity 

analysis considering model bias. Technical details of each technical component are 

elaborated in the following subsections.     

 

7.2.1 Model bias approximation in the design space 

A two stage process is requested for model bias approximation in the design space. First 

of all, model bias needs to be identified at some training design configurations. Then, a 

bias meta-model can be constructed using different bias modeling approaches so that model 

bias can be approximated in the defined design space.  
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7.2.1.1 Model bias calibration at training design configurations 

The majority of the bias calibration approaches are based on the Bayesian calibration model 

proposed by Kennedy and O’Hagan [59] as shown in Eq. (7.3). 

 𝑌̂(𝑿, 𝑷) + 𝛿(𝑿) = 𝑌 − 𝜀    (7.3) 

where 𝑌̂(∙) is system performance prediction from the baseline simulation model, which is 

equivalent to the 𝑌̂𝑖(∙) in Eq. (7.1) without specifying the 𝑖𝑡ℎ constraint; 𝛿(∙) is the model 

bias that needs to be calibrated at available design configurations; 𝑌 is available test data 

at corresponding design configurations; 𝜀 is test and measurement error. It is worth noting 

that model bias 𝛿  is modeled as a function of only 𝑿  not 𝑷  because the late is not 

changeable at different design configurations. As a consequence, model bias is not 

deterministic for a given set of deterministic design variable 𝑿 due to the unexplained 

randomness of 𝑷 in the model. Unlike the classical bias calibration approach using the 

regression-based approach, Eq. (7.3) is employed here to calibrate the model bias 

individually at each design configuration instead of for all available design configurations. 

In the regression-based approach, the functional structure of 𝛿(∙) (e.g., a linear model or a 

nonlinear model of 𝑿) needs to be assumed, then model coefficients are calibrated. This 

regression-based approach essentially assumes a new model (i.e., the bias model) that 

needs to be validated and has inherent limitations. 

 

To perform the bias modeling without making additional assumptions, a copula-based 

approach is proposed, which requires to calibrate the model bias at each specific design 

configuration as  

 min 𝑈 ((𝑌̂ + 𝛿 + 𝜀, 𝑌)|𝛿)    (7.4) 

where 𝑈(∙) is the U-pooling metric to quantify the degree of agreement between simulation 

and test data considering uncertainties. U-pooling metric was proposed by Ferson et al. [27] 

as a validation metric and has been adopted by many researchers in the study of model 

validation. The basic idea is to compare the cumulative distribution function (CDF) 

difference (i.e., the U-pooling value) between model prediction and test data in the standard 

Uniform space (or U-space). The smaller the area difference, the higher of the expected 

accuracy of the model prediction. For a specific static system response, each test datum 𝑌𝑖 



 73 
 

corresponds to one 𝑢𝑖 value which is calculated from the CDF value of the corrected model 

prediction (i.e., 𝑌̂ + 𝛿 + 𝜀) at the same design configuration (i.e., 𝑢𝑖 = 𝐹𝑌̂+𝛿+𝜀(𝑌𝑖), where 

𝐹(∙) is the CDF of 𝑌̂ + 𝛿 + 𝜀). With available test data 𝑌, provided estimation of test and 

measurement error  𝜀 , and uncertainty quantification (UQ) of 𝑌̂  with appropriate 

uncertainty modeling of 𝑿 and 𝑷, the only unknown quantity is the model bias 𝛿 which 

needs to be calibrated. It is recommended not to calibrate the model bias coupled with other 

unknown parameters (e.g., from 𝑿, 𝑷, and 𝜀 if any) because the solution is not unique and 

wrong bias calibration could jeopardize the bias modeling in the design space [56, 91]. At 

each specific design configuration, uncertainty of the model bias 𝛿 (i.e., model uncertainty) 

could be modeled as an arbitrary distribution by the Pearson system [92], an assumed 

normal distribution, or a constant value depending on the amount of test data and desired 

generality. If there is only one test datum, however, it may be desirable to model the bias 

as a constant value because there is no sufficient information to uniquely determine two 

distribution parameters (e.g., mean and standard deviation) of the model bias using Eq. 

(7.4). Here, model bias 𝛿 is modeled as a normal distribution for simplicity if there are 

more than two test data at each design configuration.   

 

7.2.1.2 Model bias modeling using a copula-based approach 

The main idea is to build general statistical relationships between model bias 𝛿, baseline 

model prediction 𝑌̂, and design parameters 𝑿 in the design space using calibrated model 

bias across various design configurations. Since model bias is modeled as a Normal 

distribution in general, the distribution parameter (i.e., mean and standard deviation) is 

extracted for building the statistical relationship. For notation simplification, 𝛿 is still used 

representing either mean or standard deviation of the model bias in this subsection.    

 

A copula is a general way in statistics to formulate a multivariate distribution with various 

types of statistical dependence in a standard uniform space. To date, most copulas only 

deal with bivariate data due to the fact that there is a lack of practical 𝑛-dimensional 

generalization of the coupling parameter [65, 66]. One way to deal with multivariate data 

is to analyze the data pair-by-pair using two-dimensional copulas. According to a set of 

bivariate copula models between the expected model bias 𝛿 (i.e., mean of model bias), the 
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baseline model prediction 𝑌̂, and the model design parameters 𝑿, it is feasible to predict 

the possible model bias at any new design configuration. For example, copula modeling 

between 𝑌̂ and 𝛿 allows us to identify the possible model bias 𝛿 for a realization of 𝑌̂ at a 

new design configuration. Mathematically, this is a process to identify the conditional PDF 

of the model bias 𝛿 given 𝑦̂ = 𝑎 that is,  

 𝑓Δ|𝑌̂(𝛿|𝑦̂ = 𝑎) =
𝑐 (𝐹Δ(𝛿),  𝐹𝑌̂(𝑦̂))

𝑓𝑌̂(𝑦̂ = 𝑎)
    (7.5) 

where 𝐹(∙) is the CDF of M and 𝛿, 𝑐(∙) is the copula PDF defined in the standard uniform 

space. Meanwhile, we also know the design variable (e.g., 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, … , 𝑥𝑗 = 𝑎𝑗) 

at the new design configuration. Thus, the possible realizations of the model bias 𝛿 could 

also be predicted from other conditional PDFs from a series of copula models between 𝛿 

and design variables 𝑿. These predictions should not be exclusive but inclusive because 

each conditional PDF prediction is obtained only based on the bivariate copula. Hence, the 

final PDF prediction of the model bias can be approximated as    

 𝑓(𝛿) ≅ Σ𝑗=1
𝑅 𝑤𝑗 ×

𝑐 (𝐹Δ(𝛿),  𝐹𝑋𝑗
(𝑥𝑗))

𝑓𝑋𝑗
(𝑥𝑗 = 𝑎𝑗)

+ 𝑤𝑅+1 ×
𝑐(𝐹Δ(𝛿), 𝐹𝑌̂(𝑦̂))

𝑓𝑌̂(𝑦̂ = 𝑎)
    (7.6) 

where 𝑤𝑖 (𝑖 =  1, … , 𝑅 + 1) is the weight of the 𝑖𝑡ℎ conditional PDF, and R is the number 

of design variables. The weight 𝑤𝑗 is calculated as   

 𝑤𝑗 = |𝜌𝑗|/ ∑ |𝜌𝑗|
𝑅+1

𝑗=1
    (7.7) 

where 𝜌𝑗 is the correlation coefficient of the 𝑗𝑡ℎ copula. Hence, higher weight is assigned 

to the copula with stronger statistical dependence. The weight would be zero if the copula 

has zero correlation coefficient because it is reasonable not to use the copula to predict the 

model bias from the uncorrelated variable such as 𝑥𝑗. It is noted that the PDF of 𝛿 can be 

an arbitrary distribution with a closed form solution depending on the combination of 

copulas in Eq. (7.6). To determine the optimal copula in Eq. (7.6), the maximum likelihood 

estimation (MLE) approach [67] or the Bayesian copula approach [65] can be employed 

based on the calibrated model bias at available training design configurations. For the MLE 

approach, an optimal parameter set is calculated for each candidate copula and the one with 

the largest likelihood value would be the optimal copula. The Bayesian copula approach is 
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more preferable with the lack of samples (i.e., bias samples at training design 

configurations) because it generally provides more reliable identification of the true copula 

[65]. Four representative copulas (i.e., Clayton, Gaussian, Frank, and Gumbel) are 

employed in this study. 

 

It is worth noting that model bias prediction, either mean or standard deviation, in Eq. (7.6) 

follows a certain distribution given a set of deterministic design variables 𝑿, indicating the 

epistemic uncertainty of model bias due to the lack of test data, effects from the 

uncontrollable random parameters 𝑷, and unknown inherent inadequacy of the model for 

representing the real physical system. For one prediction of the model bias corresponding 

to a set of deterministic design variable 𝑿, the expected model bias can be calculated in Eq. 

(7.8). 

 𝐸(𝛿) = ∫ 𝛿𝑓(𝛿)𝑑𝛿    (7.8) 

 

7.2.2 Reliability analysis considering model bias  

With approximate model bias at new design configurations, reliability analysis should be 

performed for the corrected model prediction (i.e., 𝑌̂ + 𝛿) instead of the baseline model 

prediction (i.e., 𝑌̂). Essentially, another source of uncertainty (i.e., 𝛿) should be included 

in reliability analysis. Since the model bias 𝛿 is modeled by a distribution with uncertain 

distribution parameters, any available reliability analysis strategies and methods that can 

handle both aleatory and epistemic uncertainties can be used to perform reliability analysis 

for the corrected model prediction. Here, two approaches of computing the reliability are 

proposed: i) the expected reliability; and ii) the reliability distribution. Since there are 

abundant literature dealing with both aleatory and epistemic uncertainty in reliability 

analysis, the objective of this section is to illustrate the difference of the two approaches 

considering the model bias.    

 

Calculation of the expected reliability considers the expected uncertainty of 𝛿  (i.e., 

expected mean and standard deviation of 𝛿 calculated in Eq. (7.8)) at a specific design 

configuration. If MCS were used, sufficient random samples of 𝑿  and 𝛿  would be 
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generated to calculate the corrected model prediction of 𝑌̂ + 𝛿, then the expected reliability 

could be easily calculated from the ratio of safe trials over the total trials. Calculation of 

the reliability distribution treats realizations of model bias uncertainty individually. If MCS 

were used, sufficient random samples of 𝑿 would be firstly generated to calculate the 

baseline model prediction 𝑌̂. Next, sufficient random samples of 𝛿 would be generated 

from a set of model bias distribution parameters to calculate one reliability value. Then, 

above step should be repeated for many sets of model bias distribution parameters to obtain 

many reliability values. Finally, a reliability distribution can be obtained considering the 

epistemic uncertainty of the model bias. 

 

In summary, the 1st approach obtains the expected reliability considering the expected 

uncertainty from 𝛿, whereas, the 2nd approach computes the reliability distribution which 

may be more useful for safety critical structure design where confidence bounds of the 

reliability prediction can be provided. Other than the MCS, many advanced reliability 

analysis methods, such as the MPP-based approaches, the EDR method, the PCE methods, 

etc., can be employed to significantly improve the computational efficiency of the 

reliability analysis.   

 

7.2.3 Design sensitivity analysis considering model bias 

This section presents the reliability sensitivity analysis with respect to the mean change of 

the design variable 𝑿. The sensitivities of reliabilities with respect to the mean of the 𝑖𝑡ℎ 

design variable are computed using the finite difference method (FDM) as shown in Eq. 

(7.9). 

 
𝜕𝑅𝑘

𝜕𝜇𝑋𝑖

≅
𝑅𝑘(𝜇𝑋𝑖

+ Δ𝜇𝑋𝑖
) − 𝑅𝑘(𝜇𝑋𝑖

)

Δ𝜇𝑋𝑖

, 𝑓𝑜𝑟 𝑘 = 1, … , 𝑁𝑃    (7.9) 

In particular, computation of the reliability change due to the mean shift of 𝑿 is critical and 

its solution is determined by two factors: i) PDF change of M; and ii) PDF change of 𝛿. A 

practical concern in sensitivity analysis using the FDM is the computational efficiency and 

it is desirable not to run extra simulations in order to maintain the efficiency of RBDO. It 

is clear that no extra simulations are required for the second part because the calculation of 

𝛿 is based on a constructed statistical model in Eqs. (7.6) and (7.8). Therefore, the only 



 77 
 

concern is the PDF change of 𝑌̂ due to the mean change of the design variable 𝑿. Many 

advanced probability analysis methods require only a few simulations at a set of samples 

of the input random variables for quantifying the PDF of 𝑌̂. The remaining problem is how 

to freely evaluate the shifted 𝑌̂ values at the shifted set of samples. For probability analysis 

methods with assisted response surfaces (e.g., the EDR and PCE methods), such 

evaluations do not require extra simulations because the shifted 𝑌̂ values can be freely 

estimated from the response surfaces. Other methods (e.g., direct MCS and expansion 

methods) may need extra simulations to conduct the sensitivity analysis. Nevertheless, this 

issue belongs to traditional RBDO sensitivity calculation. It is worth noting that no extra 

simulations are required because of the consideration of the model bias 𝛿 in RBDO. Here, 

a perturbed mean of the design variable X is identified with a common perturbation size of 

0.1%. 

  

7.3 Case Studies 

7.3.1 A modified vehicle side impact response  

The objective of this case study is to compare the model bias approximation using the 

proposed copula-based approach and a traditional regression-based approach such as the 

moving least square method. One of the vehicle side impact responses, i.e., the lower rib 

deflection, [93] was modified for the comparison. All required model parameters are shown 

in Table 7.1 with defined lower and upper design bounds. To focus the problem on bias 

accuracy comparison, uncertainties of model parameters are not considered in this case 

study. A true model and a low fidelity baseline model of the lower rib deflection are defined 

in Table 7.2. In particular, the term 𝜉  in the true model indicates the unexplained portion 

other than the defined model parameters that contributes to the true response, which models 

the inherent inadequacy of the defined model parameters to represent the ground truth due 

to a series of assumptions and model simplifications. The response of 𝐺3 defined in Table 

7.2 is equivalent to 𝑌 − 𝜀 in Eq. (7.3). If the test and measurement error 𝜀 is ignored, 𝐺3 

means the test value of the lower rib deflection at a specific design. In this example, the 

quantity of 𝜉 is modeled as a Normal distribution with zero mean and a certain standard 

deviation (STD) 𝜎𝜉. In other words, a small 𝜎𝜉 (e.g., a value close to 0) means that defined 

model parameters and the functional form can truly represent the real physical systems 
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without any error, and a large 𝜎𝜉  (e.g., 1) indicates that there is a certain level of 

unexplained portion by the model parameters. For a given design configuration 𝑿, the bias 

error 𝛿3 (i.e., model bias) is calculated as 𝐺3 – 𝑀3.    

      

Table 7.1: Parameter lower and upper bounds for the lower rib deflection model 

Model Parameters 𝑑𝐿 𝑑𝑈 

𝑋1  0.500 1.500 

𝑋2  0.500 1.500 

𝑋3  0.500 1.500 

𝑋8    0.192 0.345 

𝑋10   -25 25 
 

 

To compare the model bias approximation for an assigned 𝜎𝜉  using two different 

approaches, four steps were conducted and summarized as follows. First of all, Latin 

hypercube sampling (LHS) was employed to generate 45 design configurations. The 

baseline model responses of 𝑀3 were explicitly calculated, and the true responses 𝐺3 were 

correspondingly computed with addition of a random sample 𝜉  for each design 

configuration. Hence, model bias 𝛿3 at 45 design configurations were easily calculated as 

𝐺3 –  𝑀3. Secondly, model bias at 35 design configurations were randomly selected as 

training data sets to build the bias approximation model in the design space using two 

different approaches. Thirdly, model bias at the remaining 10 configurations were 

employed as confirmation to calculate the model bias absolute prediction errors by two 

different approaches. Figure 7.1 shows the model bias errors when the STD of 𝜉  is 

increased. When 𝜉 is insignificant (i.e., Fig. 7.1a), the true model bias is well represented 

by a simple regression model. Hence, model bias error from the regression approach is 

almost zero indicating that the regression approach approximate the model bias without 

any error at 10 confirmation configurations. However, as long as 𝜉  is significant and 

particularly when its STD increases, the copula-based approach shows much stable and 

better model bias approximation accuracy compared with the regression approach. The 

reason is because the observed model bias at 35 training configurations cannot be fully 

explained by defined model parameters 𝑿 , which is very common considering many 

realistic engineering validation problems. Finally, the mean and maximum bias prediction 
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error from 10 configurations were computed and results are shown in Fig. 7.2 when the 

STD of 𝜉 increases from 0 to 1. It is clearly observed that the regression approach is much 

more sensitive to the unexplained portion of 𝜉 in the bias modeling, resulting in a much 

higher error increasing rate for both average and maximum bias prediction error. In this 

particular problem, the copula-based approach shows consistent advantages in terms of the 

accuracy than the regression approach when the STD of 𝜉 is higher than 0.05. It is worth 

noting that even the STD of 𝜉  increases to 1, the contribution of 𝜉  on the true model 

response 𝐺3 is still trivial.   

a. 𝜎𝜉1e-6 b. 𝜎𝜉 0.0526 

c. 𝜎𝜉  0.1579 d. 𝜎𝜉 0.4211 

Figure 7.1: Model bias prediction errors at 10 confirmation configurations by copula and 

regression approaches with respect to different STD of 𝜉 

 

Table 7.2: Formulations of a true model and a baseline model for the lower rib deflection 

Constraint Formulations 

Rib Deflection  

(Lower) 

Baseline model 𝑀3 = 40 − 9𝑥2 − 11𝑥1𝑥8 + 0.10𝑥3𝑥10 
True model 𝐺3 = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 + 0.11𝑥3𝑥10 + 𝜉 
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Figure 7.2: Comparison of average and maximum model bias prediction error of copula 

and regression approaches when the STD of 𝜉increases from 0 to 1 

 

7.3.2 A 2001 Ford Taurus frontal impact model 

A 2001 Ford Taurus model provided by the National Crash Analysis Center was employed 

for RBDO. Figure 7.3a shows the physical test and model prediction for the full frontal 

impact. The simulation speed is 56.6 km/h against a rigid wall. For frontal impact 

protection, vehicle design must meet internal and regulated frontal impact requirements. In 

particular, vehicles must be designed to absorb enough impact energy through structural 

deformation and attenuate the impact force to a tolerable level in order to protect the 

occupants. Eight design variables of the main front-end structure are defined in Fig. 7.3b 

and their baseline design and design bounds are listed in Table 7.3. Chest G (CG) and 

Crush Distance (CD) are two key performances of interest that need to meet the reliability 

constraints in RBDO.  

  

 

 
a. Vehicle full frontal impact from test and 

FEA 

 
b. Eight design variables of the main front-end 

structure 

Figure 7.3: A 2001 Ford Taurus model with eight design variables for the main  

front-end structure 
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Table 7.3: Baseline design and design bounds for the main front-end structure 

Design variable Baseline Lower bound Upper  bound 

𝑥1 1.90 1.4 2.8 

𝑥2 1.91 1.2 2.8 

𝑥3 2.51 1.6 4.0 

𝑥4 2.40 1.5 4.0 

𝑥5 2.55 1.6 4.0 

𝑥6 2.55 1.5 3.5 

𝑥7 2.25 1.5 3.5 

𝑥8 1.50 1.2 3.0 

 

To demonstrate the proposed work without conducting real prototype testing as shown in 

Fig. 7.3a, meta-models (i.e., regression models) of the CG and CD were constructed from 

a high fidelity model (i.e., a FEA model). To characterize the model bias of the meta-model 

in the design space, a total of 64 design configurations were generated using Latin 

hypercube sampling (LHS) in the design space where CG and CD predictions are available 

from both regression and FEA models. Figure 7.4 shows the copula modeling between 𝑌̂ 

and 𝛿 for both CG and CD based on the 64 training design configurations. It is observed 

that the meta-model predictions of both CG and CD are negatively correlated with the 

model bias. In other words, the meta-model tends to underestimate and overestimate the 

true performance (i.e., FEA results) when the prediction is relatively small and large, 

respectively. Considering other copula models between design variables 𝑿 and 𝛿, model 

bias at any new design configuration can be estimated using Eqs. (7.6) and (7.8). 

 

According to the meta-model, an RBDO problem is formulated in Eq. (7.10) to minimize 

the mean of the structure weight whiling satisfying 99% reliability constraints for both 

performances of interest, where all design variables are assumed to follow Normal 

distributions and standard deviations are set to be 5% of the baseline mean value. RBDO 

history is shown in Table 7.4 where weight of the structure is significantly reduced and the 

reliability constraint of CD is active. In particular, the value of 𝑐𝑖 in Table 7.4 is defined as 

the subtraction of the performance value at the 99% level by the performance target value. 

Hence, the constraint is inactive, active, or does not meet the reliability target if the value 

is less than, equal to, or larger than zero, respectively. However, the reliability estimation 

may not be accurate without considering the model bias of CG and CD. Ten virtual test 
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data of CG and CD were obtained at the optimal design identified in Table 7.4 and they are 

compared with the UQ results from the meta-model as shown in Fig. 7.5a and Fig. 7.5c. 

Even though CG is inactive, CG prediction from the meta-model has large discrepancy 

with ten virtual test data. The consequence of such discrepancy is not significant in this 

setting because the CG performance target (i.e., 65) is relatively high. On the other hand, 

the consequence of ignoring the model bias of CD is more severe because two out of ten 

virtual test data exceeding the performance target (i.e., 750) indicating an extremely small 

probability that 99% reliability constraint is truly met. To demonstrate the copula-based 

approach, model bias of these two performances were approximated using Eqs. (7.6) and 

(7.8), and they were added to the baseline model prediction. The comparison results are 

shown in Fig. 7.5b and Fig. 7.5d and it is clearly observed that the agreement between the 

corrected model prediction and the virtual test data has been significantly improved. In 

particular, the expected reliability of the CD is about 92% based on the corrected model at 

the optimal design.      

 

 
a. CG prediction vs. model bias 

 
b. CD prediction vs. model bias 

Figure 7.4: Meta-model prediction vs. model bias at 64 training design configurations 

 

                   Minimize:     𝜇𝑤𝑒𝑖𝑔ℎ𝑡 

               Subject to: 

                                    𝑃(𝐶𝐺 ≤ 𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡) ≥ 99%,  𝐶𝐺𝑡𝑎𝑟𝑔𝑒𝑡 = 65 

                                    𝑃(𝐶𝐷 ≤ 𝐶𝐷𝑡𝑎𝑟𝑔𝑒𝑡) ≥ 99%,  𝐶𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = 750 

                                    𝐿𝐵𝑥𝑖
≤ 𝜇𝑥𝑖

≤ 𝑈𝐵𝑥𝑖
 

(7.10) 
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where  

𝑥𝑖            ~ 𝑁(𝜇𝑥𝑖
,  (0.05𝜇𝑥𝑖

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
2

)  

𝑤𝑒𝑖𝑔ℎ𝑡 = 6.01𝑥1 + 3.17𝑥2 + 2.08𝑥3 + 1.24𝑥4 + 1.46𝑥5 + 4.37𝑥6 + 3.55𝑥7 + 2.31𝑥8  

𝐶𝐺       = 84.70 − 7.77𝑥6 + 0.76𝑥5𝑥8 + 0.98𝑥7 − 13.13𝑥1 − 1.00𝑥2𝑥5 + 4.09𝑥1𝑥6 −
                   0.32𝑥4𝑥8 + 0.29𝑥1𝑥5  

𝐶𝐷       = 922.51 − 2.56𝑥6𝑥7 + 0.66𝑥4 − 88.27𝑥1 + 13.93𝑥1
2 − 1.27𝑥3𝑥6 +

                   0.47𝑥4𝑥5 − 8.20𝑥2𝑥6 − 4.69𝑥4𝑥8  

 

Table 7.4: Design history of RBDO without considering model bias 

Iteration Weight 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑐1 𝑐2 

1 51.97 1.90 1.91 2.51 2.40 2.55 2.55 2.25 1.50 -3.93 -7.82 

2 44.94 2.35 1.87 1.60 2.01 1.60 1.98 1.50 1.20 -6.11 0.88 

3 44.96 2.32 1.98 1.60 1.63 1.60 2.06 1.50 1.20 -5.93 0.04 

4 44.81 2.20 2.19 1.60 1.50 1.60 2.07 1.50 1.20 -5.73 0.52 

5 44.88 2.17 2.13 1.60 1.50 1.60 2.17 1.50 1.20 -5.46 0.08 

6 44.88 2.21 2.06 1.60 1.50 1.60 2.16 1.50 1.20 -5.52 0.04 

7 44.86 2.28 2.07 1.60 1.50 1.60 2.06 1.50 1.20 -5.84 0.25 

8 44.88 2.23 2.06 1.60 1.50 1.60 2.14 1.50 1.20 -5.60 0.06 

9 44.89 2.24 2.04 1.60 1.50 1.60 2.14 1.50 1.20 -5.61 0.01 

10 44.89 2.24 2.04 1.60 1.50 1.60 2.14 1.50 1.20 -5.62 0.00 

Optimal 44.89 2.24 2.04 1.60 1.50 1.60 2.14 1.50 1.20 -5.62 0.00 
 

 

With consideration of the model bias, RBDO was conducted again and its design history 

is shown in Table 7.5. The optimal solution is slightly different where the weight is slightly 

increased because of the change of 𝑥1, 𝑥2, and 𝑥6, and the constraint of CD is still active. 

Ten virtual test data were obtained from this optimal design and the comparison with the 

model prediction is shown in Fig. 7.6. It is observed that the agreement for both CG and 

CD responses is much better than the scenarios without considering the model bias. 

Furthermore, ten virtual test data of CD are all less than 750 and there is no statistical 

evidence that the reliability constraint of CD is not met.     
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a. CG model prediction vs. virtual test 

without considering model bias 

 
b. CG model prediction vs. virtual test 

considering model bias 

 
c. CD model prediction vs. virtual test 

without considering model bias 

 
d. CD model prediction vs. virtual test 

considering model bias 

Figure 7.5: Model predictions vs. virtual tests at an optimal design from the meta-model 

 

 
a. CG model prediction vs. virtual test 

 
b. CD model prediction vs. virtual test 

Figure 7.6: Model predictions vs. virtual tests at optimal design considering model bias 

 

This RBDO example was also conducted by another research team with the exactly same 

design setting, but a regression model bias modeling approach using the Gaussian process 

regression (GPR) model. The optimal solution was reported in a reference paper [94] and 

was included in Table 7.6 for comparison. It is observed that different model bias modeling 

technique will affect the optimal results. The reason should be that the approximate model 

bias at each design iteration (i.e., bias distribution) is different from different bias modeling 
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approaches even though the same data set were utilized for the bias modeling. For this 

particular problem, the weight from the copula-based approach is less than the GPR 

approach without statistical evidence of violating the reliability constraints. Another 

insightful observation is that ignoring model bias in RBDO has a high risk to produce 

unreliable optimal design, even though the goal of RBDO is to pursue a reliable design. 

On the other hand, considering model bias in RBDO could produce a conservative and 

reliable design, especially when reliability distribution is considered with a high confidence 

interval for the desired reliability.   

 

Table 7.5: Design history of RBDO considering model bias 

Iteration weight 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑐1 𝑐2 

1 51.97 1.90 1.91 2.51 2.40 2.55 2.55 2.25 1.50 -3.18 -3.70 

2 45.77 2.24 2.24 1.60 1.99 1.60 2.07 1.50 1.20 -4.97 0.26 

3 45.54 2.11 2.28 1.60 1.64 1.60 2.26 1.50 1.20 -4.44 -0.05 

4 45.45 2.11 2.27 1.60 1.50 1.60 2.29 1.50 1.20 -4.36 -0.21 

5 45.41 2.11 2.28 1.60 1.50 1.60 2.26 1.50 1.20 -4.40 0.05 

6 45.41 2.13 2.27 1.60 1.50 1.60 2.24 1.50 1.20 -4.45 -0.06 

7 45.40 2.13 2.27 1.60 1.50 1.60 2.24 1.50 1.20 -4.44 0.02 

8 45.40 2.13 2.26 1.60 1.50 1.60 2.25 1.50 1.20 -4.44 0.01 

10 45.40 2.15 2.23 1.60 1.50 1.60 2.25 1.50 1.20 -4.46 0.01 

11 45.40 2.16 2.21 1.60 1.50 1.60 2.24 1.50 1.20 -4.43 0.00 

Optimal 45.40 2.16 2.21 1.60 1.50 1.60 2.24 1.50 1.20 -4.46 0.00 
 

 

Table 7.6: RBDO optimal solutions with three different approaches 

Design 

variable 

Optimum with 

the meta-model 

Optimum considering 

model bias (GPR) 

Optimum considering 

model bias (copula) 

𝑥1 2.24 1.96 2.16 

𝑥2 2.04 2.26 2.21 

𝑥3 1.60 1.96 1.60 

𝑥4 1.50 2.93 1.50 

𝑥5 1.60 1.67 1.60 

𝑥6 2.14 2.24 2.24 

𝑥7 1.50 1.60 1.50 

𝑥8 1.20 1.20 1.20 

Weight 44.89 47.30 45.40 
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7.4 Summary 

In this chapter a copula-based model bias correction approach was proposed for RBDO. 

Four technical components were addressed including: i) model bias calibration at available 

training design configurations; ii) model bias approximation at new design configurations; 

iii) reliability analysis considering model bias; and iv) design sensitivity analysis. The 

proposed approach is a non-causal modeling approach that conducts non-causality 

modeling between model bias, design variables, and the baseline model prediction. The 

proposed approach is more suitable for model bias modeling compared to the regression 

approach because model bias is defined as the inherent model inadequacy for representing 

the real physical systems due to simplifications and assumptions and hence is not supposed 

to be fully accounted for by the defined model parameters using a causal modeling 

approach. Furthermore, the proposed approach employs less assumptions and is expected 

to be less sensitive to the dimensionality of the problem compared to the regression-based 

approach. Two vehicle case studies showed that the proposed approach approximates 

model bias more accurate and stable than the regression-based approach when there is an 

unexplained portion in the model bias, and hence could result in a better RBDO solution. 

It should also be noted that the proposed approach has the potential to be applied to any 

design problem (i.e. robust design [95, 96] and multidisciplinary design [97, 98]). 
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Chapter 8: Conclusion 

 

In this research a systematic and practical model validation framework for reliability-based 

design optimization is developed. The contributions of the research are listed as follows. 

 

 Contribution 1: A Copula-based model bias characterization approach is developed to 

capture the relationship between model inputs, outputs and the model bias, as well as 

to provide the prediction in new design space. Model validation have been developed 

over the years and they do have their limitations. Some approaches do not consider 

model uncertainty. For those that do consider model uncertainty utilizing statistical 

techniques, assumptions (e.g. normality) are used to simplify the derivation or the 

computation process but oftentimes these assumptions are not valid. When dealing with 

high dimension problems (consider multiple inputs/outputs simultaneously), the 

computation cost may rise due to the curse of dimensionality. The copula-based model 

bias characterization approach is proposed here to overcome these shortcomings. The 

copula-based approach is capable of establishing a statistical relationship among model 

bias, design variables and model responses. The non-linearity in the model is not 

affecting the potency of the proposed approach. Two case studies adequately 

demonstrated that the proposed approach is effective in improving the accuracy of 

model prediction. The proposed approach is also proved to be able to handle problems 

with high number of design variables. 

 

 Contribution 2: An adaptive copula-based model bias characterization approach is 

developed to further enhance the accuracy of the copula-based approach with the aid 

of clustering analysis. Cluster analysis is employed first to group similar data points 

together, followed by the copula-based approach using information from each cluster. 

The final prediction accumulates predictions obtained from each cluster. Two case 

studies adequately demonstrated that the proposed approach is effective in improving 
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the accuracy of model prediction compared to its predecessor which uses single copula. 

The proposed approach is also able to produce narrower confidence bounds thus 

reducing uncertainty associated to the prediction. The adaptive copula-based model 

bias characterization approach turns out to be a better way of utilizing information 

contained by the available data. 

 

 Contribution 3: A novel validation metric for dynamic responses under uncertainty is 

developed to assess model accuracy with dynamic responses considering limited test 

data. It also enables the generalization of model bias characterization from static 

responses to dynamic responses. Majority of available validation metric is designed for 

static system response. Though metrics for dynamic responses are also available, they 

are specifically designed for vehicle impact application and uncertainties are not well 

considered in the metric. The proposed statistic validation metric for dynamic 

responses addresses the two challenges. The classical U-pooling approach is extended 

for dynamic responses by discretizing and treating the responses as a high dimensional 

joint distribution. The PCA is applied to represent the dynamic responses by a few 

random variables so that the U-pooling value can be computed more efficiently. The 

shape deviation was included in the validation metric so that the metric can still 

distinguish the model accuracy when the U-pooling value only is not differentiable. 

The proposed shape deviation metric works effectively with multiple test data and 

distinguishes not only the mean shape difference but also the difference at 

corresponding percentage levels. One vehicle impact model was employed and the 

effectiveness of the proposed validation metric was demonstrated. 

 

 Contribution 4: A stochastic model bias calibration and approximation approach is 

proposed with the aid of the developed dynamic validation metric for reliability 

analysis. Given limited test data, model bias needs to be effectively identified so that 

reliability analysis would be more accurate compared to the baseline model. In 

particular, it is desirable that model bias can be accurately approximated at any new 

design configurations where test data are not available. A calibration model for 

dynamic model bias using the PCA is established so that only limited number of 
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calibration parameters are needed and the calibration can be effectively conducted 

similar to the static model bias calibration. The dynamic model bias is then 

approximated through building the response surfaces of PCA model components so 

that the approximate model bias keeps the same form as a PCA model which makes it 

possible to seamlessly integrate the dynamic model bias with the baseline model.  The 

effectiveness of the proposed approach was well demonstrated by two case studies with 

dynamic system responses. 

 

 Contribution 5: Reliability-based design optimization is integrated with the proposed 

model uncertainty characterization approach for reliable design of various engineering 

products. RBDO is typically conducted based on a simulation model which is assumed 

to be accurate in representing the real physical system. Such assumption may not be 

valid in many realistic engineering design applications, which could result in 

significant reliability prediction errors. Model calibration has been widely employed to 

improve the model prediction accuracy by tuning some model parameters. However, 

the improved model accuracy is only for the calibrated design configurations and the 

accuracy may or may not be maintained for the unexplored new design configurations. 

An effective model bias correction approach to quantify and reduce model errors in 

RBDO is proposed here to address these challenges. The proposed approach is a non-

causal modeling approach that conducts non-causality modeling between model bias, 

design variables, and the baseline model prediction. The proposed approach is more 

suitable for model bias modeling compared to the regression approach because model 

bias is defined as the inherent model inadequacy for representing the real physical 

systems due to simplifications and assumptions and hence is not supposed to be fully 

accounted for by the defined model parameters using a causal modeling approach. 

Furthermore, the proposed approach employs less assumptions and is expected to be 

less sensitive to the dimensionality of the problem compared to the regression-based 

approach. Two vehicle case studies showed that the proposed approach approximates 

model bias more accurate and more stable than the regression-based approach when 

there is an unexplained portion in the model bias, and hence could result in a better 

RBDO solution. 
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The successful accomplishment of the current research will have significant impact on 

other fields of engineering science where computer simulation models are employed. With 

high fidelity computer simulation models obtained from the proposed research, three 

significant industrial impacts are expected including: i) reduce expensive physical tests in 

engineering design; ii) reduce time, cost, and development risk associated with full-scale 

testing of engineering products; and iii) further enhance the capabilities and robustness of 

reliability-based design in various industrial applications. 

 

Areas of future work are described here to overcome the shortcomings of the proposed 

approaches and/or extend the applicability of them. 

 

 The copula-based model bias characterization approach could be extended to systems 

with dependent inputs. Currently, the copula-based approach deal with systems with 

multiple inputs by treating one input at a time assuming each input is independent. The 

correlation between the inputs may potentially has impact on the effectiveness of the 

proposed approach and should be studied. PCA could be applied here to transform the 

inputs, computer model outputs and bias into a space spanned by the PCs which are 

uncorrelated to each other. 

 

 The copula-based model bias characterization approach could also be extended to deal 

with multiple dependent responses. Again the copula-based approach deal with 

multiple system responses individually assuming there is no correlation between them. 

Transformation techniques such as PCA could be employed here to de-correlate the 

responses. 

   

 The classification of the quality of the model could be developed based on the value of 

the validation metric. The proposed validation metric is able to differentiate if a model 

has significant bias or not. But it lacks the ability to tell how good a model is. Subject 

matter experts’ opinion and empirical results could be used here to help interpret the 

value produced by the validation metric. This could help the decision making process 

as priority can be created based on the interpreted values of the validation metric and 
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improvement effort can be directed to the corresponding aspects of the computer model 

with severe model bias. 

 

 More case studies need to be conducted to study the integration of model bias modeling 

and various design problems. In this research only the RBDO was utilized to 

demonstrate the integration of the model bias characterization due to the limitation of 

resources and time. Compatibility issues need to be carefully studied when integrating 

other design problems and the model bias characterization approach.   
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