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Problem: Activated/effector T cells seem to play a role in the pathological inflamma-
tion associated with preterm labor. The aim of this study was to determine whether in 
vivo T-cell activation by a monoclonal αCD3ε antibody induces preterm labor and 
birth.
Method of study: Pregnant B6 mice were intraperitoneally injected with a monoclonal 
αCD3ε antibody or its isotype control. The gestational age, the rates of preterm birth 
and pup mortality at birth as well as the fetal heart rate and umbilical artery pulsatility 
index were determined.
Results: Injection of a monoclonal αCD3ε antibody led to preterm labor/birth (αCD3ε 
83 ± 16.97% [10/12] vs isotype 0% [0/8]) and increased the rate of pup mortality at 
birth (αCD3ε 87.30 ± 8.95% [77/85] vs isotype 4.91 ± 4.34% [3/59]). In addition, in-
jection of a monoclonal αCD3ε antibody decreased the fetal heart rate and increased 
the umbilical artery pulsatility index when compared to the isotype control.
Conclusion: In vivo T-cell activation by a monoclonal αCD3ε antibody in late gestation 
induces preterm labor and birth.
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1  | INTRODUCTION

Preterm birth delivery before 37 weeks of gestation is the leading 
cause of perinatal morbidity and mortality worldwide. Approximately 

70% of all preterm births occur after spontaneous preterm labor,1 
a syndrome of multiple etiologies.2 Pathological inflammation is 
implicated in the process of preterm parturition3–5 and can result 
from the activation of innate6–12 or adaptive immunity.13,14 Among 
adaptive immune cells, T cells are implicated in the mechanisms that 
lead to spontaneous labor at term15–17 and spontaneous preterm 
labor.13,14,18
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T cells are adaptive immune cells critical for antigen-specific 
immunity as well as for defense against future infections. The defin-
ing feature of T cells is the T-cell receptor (TCR), which allows them to 
perform most of their antigen-specific functions through interactions 
with MHC class I and class II molecules. T-cell subsets include: (i) CD4+ 
T helper (Th) cells, which respond to exogenous antigens presented 
through MHC class II signaling;19–23 and (ii) CD8+ cytotoxic T cells or 
CTLs, which are involved in the lysis of aberrant cells and respond to 
endogenous antigens or self-recognition through MHC class I signal-
ing.19,20,23 Discrimination of self- and non-self,24 along with the con-
cept of tolerance,25–27 are two of the most clinically important aspects 
of T-cell functionality, as even slight errors in either process can lead to 
diseases such as autoimmune disorders. T cells are activated through 
the engagement of the TCR and co-stimulation.28 Upon activation, 
effector T cells secrete cytokines that can promote their proliferation 
and the activation of T-cell-dependent B cells as well as regulate the 
activity of innate immune cells such as macrophages.28 In vivo T-cell 
activation is achieved by administering low concentrations (4–10 μg) 
of a monoclonal αCD3ε antibody (e.g., clone 145-2C11) .29,30 This anti-
body recognizes the CD3ε molecule and activates T cells in the absence 
of antigen, as it evades the TCR antigen-specific recognition mecha-
nism.31,32 Herein, we hypothesized that the administration of a mono-
clonal αCD3ε antibody (clone 145-2C11) in late gestation will cause 
pathological inflammation by initiating innate and adaptive immune 
responses which, in turn, could lead to preterm labor and birth.

The aim of this study was to determine whether in vivo T-cell acti-
vation by a monoclonal αCD3ε antibody induces preterm labor and 
birth. Also, we examined whether administration of this antibody 
would cause fetal death or fetal compromise using Doppler ultrasound.

2  | MATERIALS AND METHODS

2.1 | Animals

C57BL/6J (B6) mice were purchased from The Jackson Laboratory 
(Bar Harbor, ME, USA) and bred in the animal care facility at the C.S. 
Mott Center for Human Growth and Development at Wayne State 
University, Detroit, Michigan, USA. Mice were housed under a cir-
cadian cycle (light: dark=12:12 hour). Eight- to 12-week-old females 
were mated with males of proven fertility. Females were examined 
daily between 8:00 am. and 9:00 am. for the presence of a vaginal 
plug, which indicated 0.5 days post coitum (dpc). Upon observation 
of a vaginal plug, females were housed separately from males, their 
weight was monitored, and a gain of two or more grams by 12.5 dpc 
confirmed pregnancy. Procedures were approved by the Institutional 
Animal Care and Use Committee at Wayne State University (Protocol 
No. A 09-08-12).

2.2 | Intraperitoneal administration of a monoclonal 
αCD3ε antibody

Pregnant B6 mice were intraperitoneally injected with 10 μg of a 
purified anti-mouse CD3ε (αCD3ε) antibody (BD Biosciences, San 

Jose, CA, USA, Clone 145-2C11; n=12) dissolved in 200 μL of sterile 
1X phosphate-buffered saline (PBS) on 16.5 dpc. Controls were injected 
with 10 μg of the isotype control (IgG1 κ Isotype; BD Biosciences, 
Clone A19-3; n=8) dissolved in 200 μL of sterile PBS on 16.5 dpc. 
Following injection, mice were monitored using a video camera with an 
infrared light (Sony Corporation, Tokyo, Japan) until delivery.

2.3 | Outcome variables

Preterm labor/birth was defined as delivery occurring before 18.0 dpc, 
and its rate was represented by the percentage of females delivering 
preterm among those delivering at term (19.5 ± 0.5 dpc). Gestational 
age was defined as the time elapsed from the detection of the vaginal 
plug (0.5 dpc) through the delivery of the first pup. The rate of pup 
mortality at birth was defined as the percentage of pups found dead 
among the total litter size.

2.4 | In vivo imaging by ultrasound

Pregnant B6 mice were intraperitoneally injected with a monoclo-
nal αCD3ε antibody or its isotype control on 16.5 dpc (n=12–13 
each). Sixteen hours post-injection (prior to preterm labor/birth in 
mice injected with αCD3ε) ultrasound was performed, as previously 
described.33,34 Mice were anesthetized by inhalation of 2%–3% of iso-
flurane (Aerrane; Baxter Healthcare Corporation, Deerfield, IL, USA) 
and 1–2 L/min of oxygen in an induction chamber. Anesthesia was 
maintained with a mixture of 1.5%–2% of isoflurane and 1.5–2 L/min 
of oxygen. Mice were positioned on a heated platform and stabilized 
using adhesive tape. Fur was removed from the abdomen and thorax 
following the application of Nair cream (Church & Dwight Co., Inc., 
Ewing, NJ, USA) to those areas. Body temperature was maintained at 
37 ± 1°C and monitored using a rectal probe. Respiratory and heart 
rates were monitored by electrodes embedded in the heated plat-
form. An ultrasound probe was fixed and mobilized with a mechanical 
holder, and the transducer was slowly moved toward the abdomen. 
The fetal heart rate and umbilical artery pulsatility index (PI) were 
examined with the 55-MHz linear ultrasound probe (VisualSonics Inc., 
Toronto, ON, Canada). Umbilical artery PI was calculated using the fol-
lowing formula: PI=(systolic velocity − diastolic velocity)/mean veloc-
ity. Ultrasound signals were processed, displayed, and stored using 
the Vevo Imaging Station (VisualSonics Inc). Following ultrasound, 
females were placed under a heat lamp for recovery, which occurred 
10–20 minutes after heating.

2.5 | Statistical analysis

Statistical analyses were performed using SPSS, Version 19.0 (IBM 
Corporation, Armonk, NY, USA). The following tests were per-
formed to compare differences between the groups: a Fisher’s exact 
test for the rates of preterm labor/birth, a Mann-Whitney U test 
for gestational age, a logistic regression model for the rates of pup 
mortality at birth, and t tests for fetal heart rate and umbilical artery 
PI. A P value of .05 was considered statistically significant. When 
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proportions are displayed, percentages and 95% confidence inter-
vals (CI) are shown. Medians are shown with the interquartile range 
(IQR), and means are shown with the standard error of the mean 
(SEM).

3  | RESULTS

The frequency of preterm labor/birth after an intraperitoneal injec-
tion of a monoclonal αCD3ε antibody was higher than that fol-
lowing an intraperitoneal injection of its isotype control (αCD3ε 
83 ± 16.97% [10/12] vs isotype 0% [0/8]; P<.0001; Fig. 1a). 
Pregnant mice injected with a monoclonal αCD3ε antibody had a 
shorter gestational age than those injected with the isotype control 
(αCD3ε 17.51 dpc [IQR=17.46–17.59 dpc] vs isotype 19.19 dpc 

[IQR=19.03–19.28 dpc]; P=.002; Fig. 1b). Intraperitoneal injection of 
a monoclonal αCD3ε antibody was also associated with an increased 
rate of pup mortality at birth (αCD3ε 87.30 ± 8.95% [77/85] vs iso-
type 4.91 ± 4.34% [3/59]; P<.0001; Fig. 1c).

Most of the dams injected with a monoclonal αCD3ε antibody 
delivered premature non-viable pups (Fig. 1c). We then investigated 
whether T-cell activation was causing fetal death (i.e., fetuses without 
a heartbeat) or fetal compromise (i.e., fetuses with abnormal umbil-
ical artery velocimetry and fetal heart rate35,36). Therefore, Doppler 
ultrasound was performed (Fig. 2a,b) prior to preterm labor/birth in 
mice injected with a monoclonal αCD3ε antibody or matched-time 
isotype controls. Fetuses from dams injected with a monoclonal 
αCD3ε antibody were viable, as a heartbeat was detected (Fig. 2a). 
However, these fetuses were bradycardic when compared to the 
controls (αCD3ε 104.32 bpm [SEM ± 4.11 bpm; n=88] vs isotype 

F IGURE  1  Intraperitoneal injection of a monoclonal αCD3ε antibody. Pregnant B6 mice were intraperitoneally injected with a monoclonal 
αCD3ε antibody (10 μg dissolved in 200 μL of sterile 1X phosphate-buffered saline [PBS]; n=12) on 16.5 d post coitum (dpc). Control mice were 
injected with an isotype (10 μg dissolved in 200 μL of sterile PBS; n=8) on 16.5 dpc. The rate of preterm labor/birth (a), gestational age (b), and 
rate of pup mortality at birth (c) are displayed
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F IGURE  2  In vivo imaging by 
Doppler ultrasound. Doppler ultrasound 
was performed on fetuses prior to 
preterm labor/birth in dams injected 
with a monoclonal αCD3ε antibody 
(10 μg dissolved in 200 μL of sterile 1X 
phosphate-buffered saline [PBS]; n=13) 
or time-matched isotype controls (10 μg 
dissolved in 200 μL of sterile PBS; n=12). 
Fetal heart rate (a) and umbilical artery 
pulsatility index (b) were recorded. Data are 
from 12 to 13 independent litters
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154.69 bpm [SEM ± 3.54 bpm; n=82]; P<.0001; Fig. 2a). Fig. 2b 
shows how Doppler ultrasound was used to determine the blood 
flow through the umbilical artery, which was used to calculate the 
pulsatility index. Fetuses from dams injected with a monoclonal 
αCD3ε antibody had an increased umbilical artery PI when compared 
to the controls (αCD3ε 1.83 PI [SEM ± 0.01 PI; n=87] vs isotype 
1.74 PI [SEM ± 0.01 PI; n=82]; P=.037; Fig. 2b). Together, these data 
demonstrated that, although pups from dams injected with a mono-
clonal αCD3ε antibody did not die in the uterus, their health was 
compromised before birth.

4  | DISCUSSION

T cells have been implicated in the mechanisms that lead to spontane-
ous labor at term15–17 and spontaneous preterm labor.13,14,18 In the 
study herein, we demonstrated for the first time that the intraperito-
neal injection of a monoclonal αCD3ε antibody induces preterm labor 
and birth. Administration of this antibody causes a massive systemic 
release of several T-cell-derived cytokines such as tumor necrosis fac-
tor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, and IL-3.37 These 
data suggest that T-cell activation causes a systemic inflammatory 
response in the mother, leading to preterm labor and birth.

Activated/effector CD8+ T cells (CTLs) and, to a lesser extent, CD4+ 
T cells, are observed in chronic inflammatory lesions of the placenta, 
such as villitis of unknown etiology (VUE).38–40 CTLs are also abundant 
in the endometrium41 and cervix42 of premenopausal women, as well as 
in the systemic circulation13 and chorioamniotic membranes of patients 
with chronic chorioamnionitis,43 the most common placental lesion in 
late spontaneous preterm birth.44 These cytotoxic T cells induce tro-
phoblast apoptosis and damage the integrity of the chorioamniotic 
membranes14,43 which, in turn, may induce the premature rupture of 
these tissues and consequently lead to labor. Activated/effector T cells 
also mediate allograft rejection; indeed, both VUE and chronic cho-
rioamnionitis are considered histopathologic manifestations of T-cell-
mediated rejection of the semi-allograft fetus.14 Altogether, these data 
led us to propose that in vivo T-cell activation represents a preterm 
birth model of maternal–fetal T-cell mediated rejection.

In vivo T-cell activation caused fetal compromise by inducing 
bradycardia and altering the umbilical artery pulsatility index. This 
finding is consistent with two facts: (i) VUE is associated with an abnor-
mal Doppler velocimetry of the umbilical artery;45 and (ii) chronic chorio-
amnionitis is associated with fetal death.46 The negative effects of T-cell 
activation on the fetal heart rate are most likely mediated by TNF-α 
and IL-2 (T-cell cytokines), which induce cardiomyopathy.47,48 Taken 
together, these data suggest that in vivo T-cell activation induces fetal 
compromise by causing fetal inflammatory response syndrome (FIRS), of 
which maternal–fetal rejection may be the mechanism of disease (i.e., 
FIRS type 2).14

In summary, the study herein provides evidence that activa-
tion of maternal T cells by a monoclonal αCD3ε antibody induces 
fetal compromise and the premature expulsion of the semi-allograft 
fetus.
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