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ABSTRACT

We report the structure prediction results of a new composite pipeline for template-based modeling (TBM) in the 11th

CASP experiment. Starting from multiple structure templates identified by LOMETS based meta-threading programs, the

QUARK ab initio folding program is extended to generate initial full-length models under strong constraints from template

alignments. The final atomic models are then constructed by I-TASSER based fragment reassembly simulations, followed by

the fragment-guided molecular dynamic simulation and the MQAP-based model selection. It was found that the inclusion of

QUARK-TBM simulations as an intermediate modeling step could help improve the quality of the I-TASSER models for

both Easy and Hard TBM targets. Overall, the average TM-score of the first I-TASSER model is 12% higher than that of the

best LOMETS templates, with the RMSD in the same threading-aligned regions reduced from 5.8 to 4.7 Å. Nevertheless,

there are nearly 18% of TBM domains with the templates deteriorated by the structure assembly pipeline, which may be

attributed to the errors of secondary structure and domain orientation predictions that propagate through and degrade the

procedures of template identification and final model selections. To examine the record of progress, we made a retrospective

report of the I-TASSER pipeline in the last five CASP experiments (CASP7-11). The data show no clear progress of the

LOMETS threading programs over PSI-BLAST; but obvious progress on structural improvement relative to threading tem-

plates was witnessed in recent CASP experiments, which is probably attributed to the integration of the extended ab initio

folding simulation with the threading assembly pipeline and the introduction of atomic-level structure refinements follow-

ing the reduced modeling simulations.
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INTRODUCTION

The first template-based protein structure prediction

can be traced back to 1969 when Browne and colleagues

tried to build structural model of the bovine alpha-

lactalbumin using the solved hen egg-white lysozyme

structure as template.1 The power of template-based

modeling (TBM) have since then been significantly

extended, which can be attributed to several factors.

First, the invention of PSI-BLAST2 and the consequent

profile-to-profile alignment techniques3–5 has signifi-

cantly increased the accuracy of template identification

and alignment, compared to the original single-sequence

based or manual alignment approaches. Second, compos-

ite structure assembly simulations combine multiple tem-

plates identified by meta-server threading alignments,6,7

which can drive individual templates considerably closer

to the native structures.8–12 Finally, the rapid accumula-

tion of experimental sequence and structure databases
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converted many non- or distant-homology targets to

homology ones by providing close homology templates.

Despite the progress, significant challenges still exist in

distant-homology template detection and atomic-level

structure refinement for TBM. To partially address these

challenges, we developed a new pipeline specifically

designed for composite template structure prediction that

was tested in the TBM section of the 11th Critical Assess-

ment of protein Structure Prediction (CASP) experiment.

The major component of the pipeline is based on iterative

threading reassemble refinement (I-TASSER),9,13 where

the ab initio folding method, QUARK,14 was extended as

an intermediate step for TBM structure refinement. The

results showed promise for improving TBM accuracy by

the integration of the extended ab initio folding process.

Three pipelines (“Zhang-Sever,” “QUARK,” and

“Zhang”) were tested in CASP11, our report will be mainly

focused on the first model generated by “Zhang-Server,”

which implemented an automated pipeline of composite

I-TASSER and QUARK-TBM as depicted in Figure 1. The

“Zhang” group is a human group using exactly the same

pipeline as “Zhang-Server” but with input including server

predictions from other groups, where “QUARK” is an

automated server predictor based on QUARK-TBM pipe-

line. Following the suggestion of the CASP organizers, at

the end of the study we present a retrospective comparative

study on the Zhang-Server models from the last five CASP

experiments, which provides a unique opportunity to track

possible progress (if any) of the same pipeline developed

over the last decade.15,16

METHODS

The pipeline that we used for TBM in CASP11 is

depicted in Figure 1, which can be generally divided into

four steps of threading and domain parsing, template-

based QUARK modeling, I-TASSER assembly simulation,

and model selection. One of the major differences from

the standard I-TASSER server is that QUARK-TBM is

integrated into the current pipeline for multiple-step

template structure reassembly.

Threading and threading-based domain
structure determination

The query sequence of the target protein is first

threaded through the PDB library by LOMETS,7 a meta-

threading approach containing multiple individual

Figure 1
The flowchart of the template based modeling (TBM) by “Zhang-Server” in CASP11. Models by “Zhang” human group were generated similarly
except that models from other groups in the Server Section were exploited in addition to the LOMETS templates.
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threading programs to identify possible template structures

as well as super-secondary structure segments. The domain

structure of the query sequence is then determined by

ThreaDom,17 which was developed based on the distribu-

tion of a domain conservation score that counts for the

gap/insertion distribution of LOMETS alignments and the

domain boundaries of the PDB templates. The gap penalty

score is measured by the number of gaps in multiple align-

ments of the template sequences and the domain bounda-

ries of the template structures is defined based on the

definition in CATH,18 both of which are combined linearly

with equal weight in the domain conservation score.17 If

ThreaDom deems the target to be a multidomain protein,

LOMETS is used again to generate threading alignments

for each domain. Based on the normalized Z-score and the

degree of consensus of LOMETS alignments, the domains

are categorized into four classes [“Trivial,” “Easy,” “Hard,”

and “Very-Hard,” see Eq. (1) of Ref. 19]. A two-step simu-

lation process, including QUARK-TBM and I-TASSER, is

performed if the target is deemed as a “Trivial” or “Easy”

target (Fig. 1).

QUARK-TBM

QUARK was originally developed for ab initio structure

prediction by assembling the continuously distributed

fragments excised from un-related PDB structures.14

Here we extended it to template-based modeling, called

QUARK-TBM, which is built on the same force field and

Monte Carlo search engine. Rather than starting from

random conformations, however, QUARK-TBM starts

from the top threading templates identified by LOMETS.

Meanwhile, spatial restraints collected from the template

alignments, including Ca distance-map and side-chain

contacts, are integrated with the generic QUARK poten-

tial (including hydrogen-bonding, van der Waals, solva-

tion, Coulomb, backbone-torsion, bond-length and

bond-angle, atomic distance, and strand pairing) to

guide the Monte Carlo folding simulations.14 Consider-

ing the extensive time request on large proteins,

QUARK-TBM was used only on the domains with length

below 300 residues. These models will be used as the

input of the next step of I-TASSER simulations (Fig. 1).

I-TASSER

I-TASSER9,20 was designed to construct protein struc-

tural models by reassembling continuous fragments

excised from the top LOMETS threading alignments. In

addition to spatial restraints from threading templates,

here I-TASSER also has restraints taken from the full-

length models generated from QUARK-TBM. Because the

QUARK-TBM models are full-length, the residue in the

middle of each loop is deleted so that the I-TASSER pro-

gram can recognize and reassemble the secondary struc-

ture segments in the simulations. Since the QUARK-TBM

simulations have been strongly constrained to the tem-

plates, the QUARK-TBM models are often closer to the

templates than the I-TASSER simulations. We found in

our benchmark tests that the inclusion of QUARK-TBM

in the LOMETS templates as starting conformations can

often improve the quality of local structural packing,

which is particularly helpful when the quality of final

models is measured by the GDT-HA score.

Here, although both simulations use homologous tem-

plates as restraints, the major difference between I-TASSER

and QUARK-TBM lies at the structural representation and

the force field employed. The I-TASSER simulations are built

on a reduced C-alpha and side-chain of mass model, and the

force field is a purely knowledge-based potential including

multiple terms derived from the regularities of the PDB struc-

tures.9,20,21 On the contrast, QUARK-TBM models contain

atomic detail of backbone (Ca, C, O, N) plus Cb and the

side-chain center of mass.14 The more detailed conforma-

tional representation in QUARK-TBM allows the considera-

tion of more physics-based potentials, which includes van der

Waals, Coulomb, backbone-oriented hydrogen bonding and

solvation interactions as outlined in the last section, in addi-

tion to the knowledge-based components.14,22 Meanwhile,

QUARK-TMB has a stronger weight for the external spatial

restraints than I-TASSER, which results in the final models

with a closer similarity to the templates. These differences

help generate models of complementary structural features

when integrating the programs into a unified pipeline as

depicted in Figure 1.

Decoys clustering, model selection and
side-chain atom refinement

Following the QUARK-TBM and I-TASSER simulations,

we cluster the structure decoys using the SPICKER pro-

gram.23 Fragment-guided molecular dynamics simulations

(FG-MD)24 is used to refine the SPICKER models at the

atomic level. Finally, multiple Model Quality Assessment

Programs (MQAPs) are used to select the best models for

submission. The MQAP programs contain three classes of

scores: (1) a structure consensus score that is defined as

the average TM-score25 of the target model to all other

candidate models; (2) statistical potentials derived from

the PDB structures (DOPE,26 GOAP,27 and RWplus28);

(3) I-TASSER or QUARK-TBM confidence score (or

C-score) that is calculated based on the product of the

significance score of LOMETS alignments and the struc-

ture density of the SPICKER clusters.29

The decoy models are sorted by each of the MQAP

scoring functions. The final rank score of each decoy

model equals to the sum of the ranks from all the

MQAP programs. The models with the lowest rank score

are finally selected for submission to CASP. Apparently,

models selected through this procedure should be rea-

sonably favored by all the MQAPs since a low rank from

one MQAP program can dramatically increase the overall
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rank score and therefore remove the target model from

selection.

If a target is determined by ThreaDom to consist of

multiple domains, the full-length model is constructed

by docking the models of individual domains using the

full-length I-TASSER model as the template, where FG-

MD simulation is used to remove possible clashes created

during the domain docking simulation. The entire pipe-

line as shown in Figure 1 is fully automated without

human intervention.

Here, we note that both I-TASSER and QUARK simula-

tions are based on reduced models with the side-chain

represented by a single point at the center of mass (but

with backbone represented differently as outline above).

Therefore, no atomic-level side-chain optimization is

implemented in the structure assembly simulation process

in the current pipeline. In I-TASSER simulations, the side-

chain center position of the ith residue is computed on a

local Cartesian system built on the three adjacent Ca

atoms (i 2 1, i, i 1 1) with the bond-length and angle

parameters derived from high-resolution PDB structures

that are specified by the secondary structure type (helix,

coil and strand) and amino acid identity.20 In QUARK,

the side-chain position is calculated in a similar manner

but with the parameters specified with 20 different amino

acids and backbone torsion-angle pairs (u, w) that are

divided into 72 bins from 6023 training PDB structures.14

Atomic-level side-chain refinements in our pipeline are

performed after the I-TASSER and QUARK simulations,

that is, the atomic details including backbone and side-

chain atoms are first added by REMO30 to the C-alpha

traces which are then refined by the fragment-guided

molecular dynamic simulations.24 Since the molecular

dynamic simulation in FG-MD is short (�30 CPU

minutes), changes in backbone conformation at this step

are modest. Therefore, one of the limitations of the cur-

rent pipeline is that the side-chain conformations cannot

be sufficiently optimized, because the full-atomic side-

chain optimization often requires adjustments of back-

bone conformations that cannot be completed by the

current short-term FG-MD simulations. One strategy

that is on-going to address the issue is to incorporate the

atomic-level side-chain rotamer optimization31 into the

I-TASSER and QUARK assembly simulations. Consider-

ing that the inclusion of full-atom details dramatically

increases the simulation time, this can be implemented

in the later stage of the Monte Carlo simulations, which

should help optimize the side-chain rotamer conforma-

tions and their interactions with the backbone structures.

RESULTS AND DISCUSSION

Overall results

There are 82 domains from 68 protein entries, which

were assigned by the assessors as TBM targets in the final

assessment. These 82 domains contain 10 targets that

have distant-homology templates in the PDB but are

assumed to be difficult to detect by the assessors; these

domains are named as “TBM-hard.” The rest of 72

domains are referred as “TBM-easy” throughout this

manuscript.

Improvement of final models over threading templates

One of the major goals of template-based protein

structure prediction is to refine the initial templates and

draw the structure closer to the native. In Figure 2, we

present a head-to-head comparison between the first

submitted models in Zhang-Server versus the best tem-

plates from LOMETS that were used by I-TASSER and

QUARK-TBM. Figure 2(A) shows the RMSDs of tem-

plates and final models. Because models are full-length

while template alignments usually contain gaps and

insertions, we calculate the RMSD of models only on the

regions that are aligned in the templates. For 67 of the

82 TBM domains (82%), the RMSD of the final models

is lower than that of the best templates, indicating that

the I-TASSER/QUARK-TBM simulations have drawn the

templates closer to the native. Such improvement occurs

on both TBM-easy and TBM-hard domains, showing

that the ability to improve the protein structures does

not depend on the type of protein target. The average

RMSD reduction is 1.1 Å (5.8 vs. 4.7 Å for template and

model, respectively). A summary of the numerical data

of template vs. model comparison is also presented in

Table I.

Since the RMSD values are often more sensitive to the

local error than to the correctness of the global fold,25

we present in Figure 2(B) the TM-score of final model

versus the best templates. Again, the majority of the tar-

gets appear in the upper triangle of the plot, meaning

that the final models have a higher TM-score than the

best templates. For several targets, the final models have

the TM-score increased significantly compared to the

templates, including T0828-D1 (DTM-score50.467),

T0828-D2 (0.455), T0773-D1 (0.323), and T0827-D1

(0.318). As expected, most of the TBM-hard targets are

distributed in the low TM-score range, where in 9 out of

10 cases the TM-score of initial templates was increased

by the structural reassembly process. Overall, the average

TM-score of the final models increases by 12% compared

to the templates for all 82 TBM domains, or by 25% for

the 10 TBM-hard domains.

For the targets that are categorized into TBM-hard tar-

gets, there may still be close templates existing in the

PDB but not successfully detected by LOMETS. If we

use TM-align32 to match the target structure through

the PDB library, we found that 8 out of the 10 cases

have a template with a TM-score above 0.5, indicating

correct fold33; the templates of the remaining two

(T0814-D3 and T0848-D2) are approximately correct
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with TM-score 5 0.455 and 0.496, respectively. The aver-

age TM-score for the 10 TBM-hard targets is 0.585 that

is 55% higher than the best LOMETS templates (0.378).

Quite surprisingly, there are 4 targets (T0799-D3, T0814-

D3, T0831-D1, and T0848-D2) whose best templates

have a sequence identity >30% to the target sequences

but none of the last three targets (T0814-D3, T0831-D1

and T0848-D2) have a LOMETS template with TM-score

>0.4. A comparison between the sequence and structure

alignments on the best templates showed that the target

sequence was aligned to the completely different regions

of the templates by the two alignments for these targets.

This suggests that one reason for the failure might be

that the current LOMETS programs have put a too

strong weight on the evolutionary scores and appropriate

structure-based scoring function are needed for improv-

ing the fold-recognition for these hard targets.

Atomic-level refinement by FG-MD

As outlined in Method, both I-TASSER and QUARK

simulations are built on the reduced models; the atomic

details are quickly added by REMO30 after the simula-

tions, which are then refined by FG-MD.24 To have a

quantitative assessment on the effect of FG-MD, we list

in Table II a comparison of the models before and after

running FG-MD on the 58 single-domain targets (– the

multi-domain targets are not counted here because mul-

tiple REMO and FG-MD simulations were conducted on

different stages of single-domain structure refinement

and complex model assembly).

The upper rows of Table II show the parameters meas-

uring the similarity of the models relative to the experi-

mental structure. There is no significant difference

between the REMO and FG-MD models in terms of

RMSD, TM-score and GDT-HA, showing that the refine-

ment on backbone structures is marginal. But the

hydrogen-bonding networks (reflected by HB-score) and

the side-chain orientation (by GDC-SC34) are obviously

improved with a P values in student’s t test below 10212

and 1022, respectively.

The lower rows of Table II show the physical quality

of the models assessed by MolProbity score.35 Again,

there is a significant improvement on the MolProbity

score by FG-MD with a P values below 10211, where the

major contributions of the improvements are from the

reduction of atomic overlaps and the number of bond-

length and bond-angle outliers.

Model selection by MQAP programs

The I-TASSER pipeline generally generated around 500

to 1500 structure decoys, depending on the difficulty of

Table I
Summary of the First Predicted Models Compared to Templates
by LOMETS

Target type N (Nm/Nt) TMb_t/Rb_t TM1_m/R1_m

TBM-easy 72 (60/12) 0.662/5.1 � 0.735/4.0 �
TBM-hard 10 (7/3) 0.378/10.4 � 0.472/9.6 �
TBM-all 82 (67/15) 0.627/5.8 � 0.703/4.7 �

N: Number of targets.

Nm: Number of targets for which the first model has a RMSD lower than the

best starting template in the threading aligned region.

Nt: Number of targets for which the first model with a RMSD higher than the

best starting templates in the threading aligned region.

TMb_t: Average TM-score of the best template.

Rb_t: Average RMSD of the best template.

TM1_m: Average TM-score of the first submitted model.

R1_m: Average RMSD of the first submitted model.

Figure 2
Comparison of the first Zhang-Server models and the best threading templates used. Stars and circles indicate TBM-easy and TBM-hard domains,
respectively. (A) RMSD of the first model versus RMSD of the best templates in the threading aligned regions. (B) TM-score of the first model

versus TM-score of the best templates.
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the targets, that is, more decoys were created for the

hard than the easy targets (see http://zhanglab.ccmb.med.

umich.edu/decoys/casp11/). In Table III, we listed the

results of the first model selected by different MQAP

programs. Again, for simplicity we only count the 58

single-domain protein targets, because the final model of

the multi-domain targets involved two levels of single-

domain and complex structure selections and the same

model submitted for multi-domain targets contains

selection results from different MQAP programs, inclu-

sion of which will compromise the clearness of data

comparison.

If we consider individual MQAP programs, the average

performance of GOAP outperforms others in all scores of

TM, GDT-HA and MolProbity. But a combination of the

statistical potentials with the consensus and confidence

scores makes the model selection more robust than the

individual MQAP programs. Not surprisingly, however,

the selected models are all far worse than the best decoys,

highlighting significant rooms for further MQAP

improvement.

The values in the parenthesis in Table III indicate the

number of times when the MQAP rank-1 model is nearly

the best decoy. Since the absolute best model has never

been selected, a model is here defined as “nearly the

best” if the model is within the top 10 best decoys and

has the quality score (TM-score, GDT-HA and MolPro-

bity) not worse than 95% of the score of the best decoy

in each category. The number of cases with the near-best

decoy selection is relatively low for all the MQAP selec-

tions. But this number by the combined MQAP scores is

slightly higher than that by the individual MQAP pro-

grams, indicating again an enhanced robustness of the

model selection through score combination.

Case studies reveal impact of secondary structure and

domain orientation on final models

Despite the significant improvement of threading tem-

plates, there are 15 out of the 82 TBM domains (18%)

where the I-TASSER/QUARK-TBM simulations deterio-

rated the templates by increasing the RMSD in the

aligned regions. Even if we consider TM-score, which

gives a slight favor to the final models, since they have a

longer length, there are still 7 domains whose final mod-

els became worse, that is, having a lower TM-score than

the templates. The most significant deterioration occurs

for the targets of T0816-D1 (TM-score reduced by 0.093)

and T0851-D1 (TM-score reduced by 0.09) [Fig. 2(B)].

T0816-D1

T0816-D1 is a small single-domain protein (68 resi-

dues) with a 4-helix bundle fold [Fig. 3(E)]. The X-ray

structure shows four short helices from W4-I15, I18-L30,

N39-M49, and L53-E67. However, the secondary struc-

ture prediction, which is from a combination of

PSIPRED36 and PSSpred,9 resulted in only three helices,

where there is only one residue break (instead of two in

the X-ray structure) between the first and second helices

[Fig. 3(A)]. As a result, the majority of the LOMETS

templates have a two-helix bundle topology, with the

best template from 1fewA that has a TM-score 5 0.389

[Fig. 3(B)].

The I-TASSER simulations are dominated by the two-

helix bundle topology, due to the population in the

threading templates. The first model selected by

SPICKER23 thus has a two-helix bundle fold with a TM-

score 5 0.296 [Fig. 3(C)]. Nevertheless, there are 18% of

the I-TASSER decoys that possess the correct fold of

Table II
Comparison of Models Before and After Running FG-MD

Parameters Model before FG-MD Model after FG-MD P values

Comparison to the
native structure

RMSD (�) 7.132 7.103 0.10
TM-score 0.664 0.665 0.40
GDT-HA 0.430 0.431 0.08
GDC-SC 0.243 0.249 0.02
HB-score 0.443 0.519 1.01e-12

Physical quality
assessment

MolProbity score 3.280 2.819 8.39e-11
# Clashes 122.5 8.2 5.55e-17
# Cb_out 6.9 7.1 0.27
# Rotamer_out 5.2 5.5 0.30
# Ramachandran_out 16.3 14.6 0.12
#Bond-length_out 10.7 0.2 3.50e-05
#Bond-angle_out 25.6 2.0 7.01e-06

Data are from the first model submitted by Zhang-Server on the 58 single-domain proteins.

Table III
Summary of MQAP Model Selections on the 58 Single-Domain
Proteins

Mqap Programs TM-score GDT-HA MolProbity

Best decoy 0.7183 (58) 0.4816 (58) 2.1643 (58)
MQAP_combined 0.6803 (6) 0.4439 (6) 2.8091 (12)
GOAP 0.6734 (4) 0.4389 (1) 2.8323 (4)
Consensus 0.6683 (3) 0.4356 (3) 3.0840 (1)
RWplus 0.6662 (3) 0.4293 (1) 2.8622 (7)
C-score 0.6629 (2) 0.4256 (1) 3.1011 (1)
DOPE 0.6544 (3) 0.4194 (2) 2.9386 (4)
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4-helix bundle; this resulted in the second submitted

model that has a high TM-score 5 0.672 [Fig. 3(D)].

This case represents a typical example where the error in

secondary structure prediction propagates through

threading and leads to incorrect model selection of the

final structure prediction.

In Table IV, we showed the MQAP ranks on the two

models for T0816-D1, which demonstrated an opposite

tendency from consensus and statistical scores. Appa-

rently, the first model of two-helix bundle is favored by

the consensus score (rank 5 2), where the second model

is ranked as the 230th because there are much fewer

modeling decoys with such topology. Interestingly, all the

statistical potentials rank favorably on the second model,

that is, with the model ranked as No. 1 by RWplus, No.

2 by GOAP and DOPE, where the first model has an

unfavorable statistical rank (211,191, and 156). But the

total MQAP rank score of the second model is still worse

than the first model due to the unfavorable C-score and

consensus scores. Here scores listed in Table IV have

been normalized by the average score of all decoys.

T0851-D1

T0851-D1 is a two-domain target of 456 residues, for

which the first model, built on 3g79A, has a TM-score

(0.783) that is considerably lower than the best template

from 2y0cA (0.873). A closer look at the first model

shows that the error was mainly due to the twist of

domain orientation of the second domain, where the

superposition of the second domain on the native results

in a TM-score50.893 [Fig. 4(A–C)].

The second submitted model was built based on the

template that has a correct domain orientation; this

results in a TM-score50.928, slightly higher than that

from 2y0cA [Fig. 4(D,E)]. Both 3g79A and 2y0cA consist

of two dinucleotide binding Rossmann-like folds in the

N- and C-terminal domains, where the subtle difference

in the intermediate linker domain results in a small twist

on the domain orientation.37 However, the I-TASSER

potential was unable to distinguish the domain orienta-

tions where nearly equal numbers of the structure decoys

have been generated by the I-TASSER simulations, for

the different domain orientations, as indicated by the

Figure 3
Case study on T0816-D1 where the first model has a TM-score lower than the fourth template. (A) Secondary structure prediction; (B) top six

templates identified by LOMETS; (C) the first model submitted by Zhang-Server; (D) the second model submitted by Zhang-Server; (E) the X-ray

structure of T0816-D1.

Table IV
MQAP Model Selection on T0816-D1 and T0851-D1

Target Scores Model1 Model2

T0816-D1 TM-score 0.296 0.672
Consensus (rank) 1.172 (2) 0.990 (230)
RWplus (rank) 20.985 (211) 21.142 (1)
GOAP (rank) 21.064 (191) 21.379 (2)
DOPE (rank) 21.017 (156) 21.153 (2)

T0851-D1 TM-score 0.783 0.928
Consensus (rank) 0.964 (246) 0.961 (258)
RWplus (rank) 21.025 (1) 21.015 (28)
GOAP (rank) 21.088 (3) 21.068 (19)
DOPE (rank) 21.032 (1) 21.023 (19)

In both cases the second model has a higher TM-score than the first but failed to

be selected by the total MQAP rank score. All MQAP scores have been normal-

ized by the average of all decoys.
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similar rank of consensus score shown in Table IV. The

statistical potentials also failed to pick up the correct

domains and the rank of the first model (with a wrong

orientation) is better than the second model (with a cor-

rect orientation) in all the RWplus, GOAP and DOPE

ranks (Table IV). This result indicates the modeling of

domain orientation remains an open problem in the cur-

rent structure prediction pipelines; this is particularly

true when the domain orientation of the template struc-

ture is different from the target.

T0830-D1

In addition to the above cases where the TM-score of

final models is lower than the template, there are also

cases in which the RMSD of the models in the aligned

region is much worse than the best template. T0830-D1

is such example that has the RMSD of the first model

much higher than the template (8.2 vs. 5.3 Å) although

the TM-scores of the model and template are comparable

(0.482 vs. 0.485).

The T0830-D1 is the transmembrane domain of the

UDP transferase protein, where PSSpred/PSIpred gener-

ated correct secondary structure predictions with the Q3

accuracy586.3%. Most LOMETS programs detected the

correct template (PDB ID: 3wajA) that has a topology

similar to the target. However, the structure of 3wajA

has two additional helices inserted in W276-V333 com-

pared to the target structure (Fig. 5), where the majority

of the threading programs mistakenly aligned these two

helices on the target sequence (– only two threading pro-

grams generated correct alignments with the two helices

Figure 4
Structure prediction on T0851-D1. Red and blue represent X-ray structure and predicted models, respectively. Yellow and black arrows mark the

domain orientations of X-ray and model structures, respectively. (A) Superposition of the X-ray structure and the LOMETS template (PDB ID:
3g39A) that is the closest to the first I-TASSER model; (B) Superposition of the first submitted model and the X-ray structure; (C) superposition

of the second domain of the first submitted model and the X-ray structure; (D) superposition of the X-ray structure and the best LOMETS tem-
plate (PDB ID: 2y0cA) that is the closest to the second submitted model; (E) superposition of X-ray structure and the second submitted model.
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skipped). Thus, the first I-TASSER model has the two

helices incorrectly arranged due to the consensus but

incorrect alignments. The second model by I-TASSER

based on the correct alignments has a much better qual-

ity (TM-score 5 0.683, RMSD 5 4.2 Å in the aligned

region). This example represents a typical case of failures

in the I-TASSER model and template selections when the

best template alignment is the minority; this case was

witnessed and extensively discussed in the previous

CASP reports.19,38,39

Comparison of QUARK-TBM and I-TASSER
refinement

The QUARK-TBM simulations were used as an inter-

mediate step of the Zhang-Server pipeline, which are

conducted only on the proteins that have a size below

300 residues. To examine the effect of QUARK-TBM on

the final models, we present in Table V the modeling

results from three different pipelines (QUARK-TBM,

I-TASSER, and I-TASSER1QUARK, the model finally

submitted by the Zhang-Server group) on the 63 TBM

domains that have fewer than 300 residues.

First, the data showed that all three pipelines have a

significantly better modeling quality than the initial

threading templates, in terms of TM-score, GDT-TS and

GDT-HA scores. Second, I-TASSER1QUARK outper-

forms I-TASSER in TM-score and GDT-TS, which dem-

onstrates a positive impact of QUARK-TBM on the final

I-TASSER model predictions. Although the QUARK-

TBM models on their own have a lower TM-score/GDT-

TS than the I-TASSER models (P values 5 0.011/0.016 in

Student’s t-test), such contribution to the improvement

of the final models is statically significant as shown by

the p-values between the I-TASSER1QUARK and I-

TASSER models that is below 0.05 for both TM-score

and GDT-TS.

A closer examination on the data shows that there are

43 cases whose TM-score of the I-TASSER1QUARK

model is higher than that by I-TASSER, while the other

20 cases have the TM-score of the I-TASSER1QUARK

models lower than the I-TASSER models. The TM-score

improvement of I-TASSER1QUARK over I-TASSER

models is smaller than 0.1 in almost all the cases, except

for T0828-D1 (a 84-residue beta-barrel domain) and

T0828-D2 (a 84-residue alpha-helix bundle domain) that

have the TM-score increased by 0.14 and 0.22 respec-

tively. In both of these two cases, the QUARK-TBM

models alone have the TM-score 0.09 and 0.12 higher

than the I-TASSER models, where a refinement further

enhanced the model quality. These data indicates that

the QUARK-TBM assists the I-TASSER pipeline by pro-

viding moderate but consistent improvement on multiple

cases rather than in a few significant but anecdotal

examples.

Interestingly, the QUARK-TBM models have a compa-

rable GDT-HA score with the I-TASSER models, despite

the fact that the I-TASSER models have a much better

TM-score (or GDT-TS). For instance, the P-values of

TM-score and GDT-TS differences between QUARK-TBM

Figure 5
Structural superposition of the target structure of T0830-D1 (sticks) on
the best template (PDB ID: 1wajA, cartoons) that is created by TM-

align. Blue to red runs from N- to C-terminus of the structures. There
is an insert of two helices (W276-V333) on the template structure that

are missed on the target. But most threading programs failed to skip

these two helices when aligning the target sequence onto the template
structure.

Table V
Comparison of the First Model Generated by Different Pipelines

Pipeline TM-scorea GDT-TSa GDT-HAa TMtemplate
b

LOMETS 0.613 0.532 0.387
QUARK-TBM 0.634 0.546 0.393 0.798 (0.644)
I-TASSERc 0.642 (0.011) 0.553 (0.016) 0.394 (0.396) 0.763 (0.637)
I-TASSER1

QUARKd
0.650 (0.022) 0.561 (0.021) 0.401 (0.041) 0.773 (0.639)

aTM-, GDT-TS and GDT-HA scores of the first models compared to the native.

The values in parenthesis are the P values compared to the models generated by

the previous row (that is, P values of I-TASSER vs. QUARK-TBM, and I-

TASSER-QUARK vs. I-TASSER).
bTM-score of the first model to the closest template. The value in parenthesis is

the average TM-score of the first model to the top 30 closest templates.
cI-TASSER without using QUARK-TBM models.
dI-TASSER predictions using QUARK-TBM models as input. These models were

finally submitted to CASP.
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and I-TASSER models are both below 0.02; but the P

values of the GDT-HA score difference is above 0.3. This

is probably because of the fact that GDT-HA score is rel-

atively more sensitive to the local structure accuracy due

to its finer distance cutoffs, that is, GDT-HA counts only

for residue pairs with a distance below 0.5, 1, 2, and 4 Å

instead of 1, 2, 4, and 8 Å in GDT-TS (or all residues in

TM-score). In QUARK-TBM, much stronger template-

based restraints were used, which results in final models

that are closer to the threading templates than those in the

I-TASSER pipeline (see Column 5 of Table V). Since the

threading templates in the PDB are obtained from exper-

imental structures, the strong constraints restraining

models to the templates can result in finer local struc-

tures that may favor a higher GDT-HA score, despite the

less magnitude of refinement in global topology as meas-

ured by TM- and GDT-TS scores. To further examine

the correlation, we made a post-CASP simulation on a

set of 20 randomly selected proteins on QUARK-TBM

while the weight of the threading restraints was reduced

by two times. It was found that average TM-score

between final model and template is reduced by 5.2%

(meaning that models are less similar to the template),

while the GDT-HA score decreases (by 2.6%) slightly

faster than TM-score (by 1.7%). Such sensitivity of

GDT-HA score to local structural quality probably

explains part of the reason for the rank variations in

CASP when the models are assessed by GDT-HA and

GDT-TS (or TM-score), where the methods generating

models based on single-template have often a finer local

structure that favors GDT-HA while the methods based

on multiple templates may benefit in GDT-TS or TM-

score if the global topology is improved. In addition,

compared to I-TASSER, the QUARK-TBM force field

contains more detailed atomic-level energy terms. These

physics-based energy terms help improve the physical

realism of the local structures, which should also contrib-

ute to the improvement of the GDT-HA score of the

final models.

Retrospect of Zhang-server in the last five
CASP experiments

The community-wide blind CASP experiment provides

a unique opportunity to assess the weaknesses and

strengths of the current state-of-the-art techniques in

protein structure prediction. However, it is non-trivial to

quantitatively assess the progress of the community

across the different CASP experiments.15,16 One diffi-

culty is on the definition of difficulty of modeling targets

across different CASP experiments where template data-

bases keep changing and template structures used by dif-

ferent predictors are also varying, which are not available

to the assessors. A constructive approach was to define

the target difficulty by the sequence and structural simi-

larities of the target to the best template identified by

structural alignment and then compare the quality of the

model predictions in different CASPs for the targets of

the same level of modeling difficulty.15,16 However, the

best templates, which are identified by structurally

matching the target structure to the PDB library, are

usually different from what the predictors used. With the

increasing size of the structure databases, it becomes

increasingly difficult to identify the absolutely best tem-

plates by using current threading approaches.15

Following the suggestion from the CASP organizer,

here we try to assess the progress of the Zhang-Server

group (essentially based on the I-TASSER pipeline) over

the last five CASP experiments. One convenience over

the community-wide progress assessment is that the tem-

plates used to construct the models are well documented,

which allows a quantitative assessment of progress with

regard to different steps of structure modeling, including

template identification and template structure

refinement.

In Figure 6, we present a summary of the threading

templates identified by LOMETS and PSI-BLAST and the

final models by I-TASSER across different CASP experi-

ments. Here, we only consider single-domain proteins in

order to isolate the data from errors in domain bound-

ary prediction and domain splitting; this results in 368

single-domain targets with 69, 83, 89, 74, and 53

domains from CASP7, 8, 9, 10, and 11, respectively. The

LOMETS and Zhang-Server models are collected from

the original submissions. Starting from the target sequen-

ces and structures, PSI-BLAST2 and TM-align32 were

used to thread through the PDB library to set up con-

trols for LOMETS-based template identifications, where

all templates solved after each CASP were excluded when

running the PSI-BLAST and TM-align searches. The data

in Figure 6 confirms the previously observed fact that

the LOMETS threading programs significantly outper-

form PSI-BLAST in structure template identification

[Fig. 6(A)], demonstrating the advantage of profile-

profile alignments, which most threading programs are

based on, over the sequence-profile alignment approach

in PSI-BLAST.40 It is also clear that the final models pre-

dicted by the I-TASSER pipeline, built on the assembly

of multiple templates, are consistently closer to the native

than the best individual templates [Fig. 6(B,C)].

To examine the progress of the modeling procedure,

we present in Figure 7 the average quality of the models

along with different CASP experiments. Here, targets are

split into two categories based on the quality of the

threading templates, that is, a target is defined as “Easy”

if the TM-score of the third best LOMETS template is

above 0.5 or as “Hard” otherwise. This resulted in 270

Easy and 98 Hard targets in total. For the Hard targets,

PSI-BLAST templates are almost random with an average

TM-score close to 0.17. However, TM-align can almost

always identify correct fold with the average TM-score

above 0.5 although the quality of the best templates for
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the Hard targets is considerably lower than that for the

Easy targets as expected. Overall, there is no obvious

trend in the TM-score of the PSI-BLAST and TM-align

templates from CASP7 to CASP11 [Fig. 7(A)], which

suggests that the difficulty of targets is essentially

unchanged through these experiments. The average TM-

score of All targets has a noticeable reduction in CASP11

in both TM-align and PSI-BLAST alignments; this is

probably due to the fact that the number of hard targets

in CASP11 increases.41 But the average TM-score of the

Hard or Easy targets did not change significantly com-

pared to former CASP experiments.

In Figure 7(B), we show the difference of TM-scores

between LOMETS and PSI-BLAST. Since LOMETS col-

lected most of the state-of-the-art threading programs

developed by the community, this plot should roughly

reflect the progress of threading results over PSI-BLAST

alignments. Meanwhile, since LOMETS and PSI-BLAST

searches are made through the same structure library, the

calculation of the TM-score difference is not influenced

by the effort of the database increase across different

CASP experiments. From Figure 7(B), there seems to be

no obvious difference between CASP7 and CASP11 in

terms of the improvement of LOMETS over PSI-BLAST.

There is a fair TM-score increase in CASP11 for the hard

targets over PSI-BLAST; but the TM-score difference for

the easy targets drops.

Finally, we present in Figure 7(C,D) the structural

improvement of final models over the best LOMETS

templates in terms of TM-score and RMSD, respectively.

Here there seems to be a steady increase from CASP7 to

CASP11 in both Easy and Hard targets. First, for the

Hard targets a jump in model quality occurred in CASP8

while a small jump occurred in CASP10 for the Easy

Figure 6
Summary of the structure prediction by Zhang-Server in the last five CASP experiments. (A) TM-score of the best templates identified by LOMETS
versus that by PSI-BLAST; (B) TM-score of the first Zhang-Server models versus TM-score of the best LOMETS templates; (C) RMSD of the first

Zhang-Server models versus RMSD of the best LOMETS templates, where RMSD was calculated in the same threading aligned regions.
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targets. A plausible explanation is probably that the

improvement on the Hard targets was brought out by

the integration of the ab initio (QUARK) and template-

based (I-TASSER) modeling simulations introduced since

CASP8,38,39 while the improvement for the Easy targets

was due to the recently introduced atomic-level structure

refinement approaches (FG-MD) since CASP10.19,24

CONCLUDING REMARKS

We developed and tested a new template-based struc-

ture prediction pipeline in the TBM section of the 11th

CASP experiment. In addition to traditional LOMETS

threading and I-TASSER structure assembly simulation

approaches, the QUARK-based ab initio folding simulation

was extended to perform template-based simulations by

integrating multiple threading alignments with the

physics-based force field in QUARK. The results show that

the inclusion of more physics-oriented fragment assembly

modeling as an intermediate simulation step can improve

the quality of the final models of the template-based pre-

diction. Overall, considerable improvements were wit-

nessed for the final models of the pipeline compared to

the initial threading templates, where the TM-score of the

first submitted model is 12% higher than the best

Figure 7
Zhang-Server modeling results in CASP7-11. Open circles, stars and solid circles indicate Easy, Hard, and All targets, respectively. DX(Y, Z) 5 XY 2 XZ.

(A) TM-score of the best templates identified by PSI-BLAST and TM-align, respectively; (B) Improvement of LOMETS over PSI-BLAST in terms of
TM-score; (C) Improvement of the first Zhang-Server model over LOMETS in terms of TM-score; (D) Improvement of the first Zhang-Server model

over LOMETS in terms of RMSD in the threading aligned regions.
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threading templates with the RMSD in the threading

aligned regions reduced by 1.1 Å (that is, from 5.8 to

4.7 Å).

There are, however, 18% of the TBM cases where the

final models are worse than the initial threading tem-

plates in terms of RMSD. Detailed analyses showed that

errors in secondary structure prediction could propagate

through and influence the template identification and

final model selection processes. Second, modeling of

domain orientations remains an open problem for multi-

domain protein structure predictions, especially when the

orientation of the templates is different from the targets.

While the statistical potentials can help pick up correct

folds for some targets, the large-scale benchmark and the

CASP data showed that a combination of the statistical

and consensus-based MQAP programs outperforms the

statistical potential or consensus MQAP alone in final

model selection. Among the 15 cases that have the

RMSD of the final model higher than the RMSD of ini-

tial threading template, 6 cases (T0793-D3, T0781-D2,

T0816-D1, T0830-D1, T0838-D1, and T0851-D1) have

the RMSD difference above 1 Å. Out of the six cases,

three cases (T0838-D1, T0793-D3, and T0781-D2) have

the Q3 accuracy of secondary structure prediction below

80% (62.7, 79.3, and 77.1%, respectively) which have

similar issue with T0816-D1 as shown in Figure 3.

T0851-D1 has the domain orientation issue as high-

lighted in Figure 4. The last target (T0830-D1) represents

the typical case of the I-TASSER failures in template

selection when the best template alignment is minority

(Fig. 5), which has been witnessed and discussed in pre-

vious CASP reports as well.19,38,39

To track the progress of the I-TASSER-based structure

modeling pipelines, we presented a retrospective report of

the Zhang-Server models in the last five CASP experiments.

There is no clear improvement on the quality of the

LOMETS threading templates over the PSI-BLAST tem-

plates from CASP7 to CASP11; but a clear trend in the abil-

ity of structure refinement was shown over the threading

templates that the I-TASSER structure predictions are

based on. This is probably due to the integration of the

template-based modeling with the extended and more

physics-oriented ab initio folding simulations and the

introduction of the atomic-level structure refinement.
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