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Multiple imputation of missing covariates for the
Cox proportional hazards cure model

Lauren J Beesleya∗, Jonathan W Bartlettb, Gregory T Wolfc and Jeremy M G
Taylora

We explore several approaches for imputing partially observed covariates when the outcome of interest is a
censored event time and when there is an underlying subset of the population that will never experience the
event of interest. We call these subjects “cured,” and we consider the case where the data are modeled using
a Cox proportional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully
conditional specification (FCS). We derive the exact conditional distribution and suggest a sampling scheme for
imputing partially observed covariates in the CPH cure model setting. We also propose several approximations to
the exact distribution that are simpler and more convenient to use for imputation. A simulation study demonstrates
that the proposed imputation approaches outperform existing imputation approaches for survival data without
a cure fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation
techniques to a study of patients with head and neck cancer. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. Introduction

In survival analysis, a common assumption is that all subjects will eventually experience the event of interest given long
enough follow-up time. However, there are many settings in which this assumption does not hold. For example, suppose
we are interested in studying cancer recurrence in patients treated for head and neck cancer. If the treatment completely
eradicated the cancer in some individuals, then there will be a subset of the population that will never experience a
recurrence. We call these subjects “cured” or “non-susceptible.”

One commonly used modeling approach for survival data with a cured fraction is a mixture model with two components.
The first component is a model for the probability that a subject is not cured, which is usually modeled using logistic
regression. The second component is a model for the failure time in the susceptible (non-cured) population. Parametric,
semiparametric, and nonparametric formulations of the failure time model exist in the literature [1–7]. We consider a
formulation of the mixture cure model where failure time in the susceptible population is modeled using a Cox proportional
hazards regression model [4, 6, 8]. It is important to note that subjects with observed events are known to be non-cured,
but cure status is not known for censored subjects. Cure models are appealing because they enable enhanced interpretation
and inference from data with a cure structure as cure models allow us to model both the probability that a subject is cured
and the hazard of an event in the non-cured group separately.

A challenge that arises in the application of these cure models is that often one or more covariates are only partially
observed. One simple approach is to ignore the missing data and analyze only the patients with complete covariate data.
“Complete case” analysis is an undesirable approach since it does not use data from patients with missing covariate values
and is therefore inefficient. Also, complete case analysis may be biased if the covariate missingness mechanism depends on
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the outcome. Other approaches in the literature for handing missing covariates in the cure setting often involve modeling
the joint distribution of the missing covariates using general location models [7,9] or by specifying a series of conditional
distributions [10]. Both approaches require us to explicitly specify the joint distribution of the covariates, which may not
be easily done, and they are not easily implemented using standard software.

In this paper, we explore multiple imputation as another approach for handling missing data in the cure model setting.
When performing multiple imputation, it is important to include outcome information in the model for imputing partially
observed covariates [11]. In the cure setting, however, many aspects of the outcome (cure status and event times in
the non-cured subjects) are not fully observed due to censoring. We are interested in comparing different methods for
incorporating the observed outcome information to impute partially observed covariates when the primary outcome
has a Cox proportional hazards cure structure. We will study covariate imputation approaches using fully conditional
specification.

Fully conditional specification (FCS) is a multiple imputation approach in which we specify a conditional distribution
for each partially observed covariate [12, 13]. We then use these conditional distributions to impute covariates as part of
an iterative algorithm that cycles through the conditional distributions for all the partially observed covariates. This often
involves specifying a regression model for each partially observed covariate and then using the regression models to impute
the missing values. An attractive feature of FCS is that it does not require us to explicitly specify the joint distribution of the
covariates. Suppose X is a set of covariates and Y is an outcome variable. Also, suppose our ultimate goal is to fit a standard
regression model for Y |X (e.g. linear, logistic). Let X (p) denote the pth covariate in X and X (−p) denote all covariates in
X except X (p). We would like to use the distribution of X (p)|X (−p),Y to impute each partially observed X (p). If we have
the distributions for Y |X and X (p)|X (−p), then we can derive the distribution for X (p)|X (−p),Y directly. When X (p)|X (−p)

and Y |X are normally distributed with predictors incorporated in the mean structure, then the distribution of X (p)|X (−p),Y
will also be normal and will correspond to a linear regression that can be readily used to impute X (p). When the true
distribution of X (p)|X (−p),Y is unknown or difficult to sample from, we may attempt to approximate the distribution using
a simpler and more computationally convenient standard regression model. For example, for normal X (p), we may specify
the distribution of X (p)|X (−p),Y using some function of X (−p) and Y as predictors in a linear regression model.

In survival analysis, the primary outcome usually consists of the pair (Y,δ ). If T is the underlying event time and C is
the censoring time, then Y = min(T,C) and δ = I(T ≤C). The ultimate goal is usually to fit a model for T |X . Although
T is the outcome of interest, it is not directly observed due to censoring. We can still derive the exact distribution of
X (p)|X (−p),Y,δ to impute each partially observed X (p). However, due to the complicated structure of survival data, the
exact distribution of X (p)|X (−p),Y,δ will often be inconvenient or computationally intensive to sample from [14].

One possible alternative is to obtain a more convenient approximation to the exact conditional distribution of
X (p)|X (−p),Y,δ for each partially observed covariate X (p). White and Royston derived an approximate conditional
distribution for proportional hazards survival data that reduced to a regression model of X (p) with predictors
X (−p),δ ,and Ĥ0(Y ), where Ĥ0(Y ) is the estimated cumulative baseline hazard function [15]. One adaptation of this would
be to using log(Y) in place of Ĥ0(Y ) [16]. Another adaptation would be to use a regression model for X (p) with predictors
X (−p),δ f1(Y ),and (1−δ ) f2(Y ), where f1(Y ) and f2(Y ) are functions of Y specified using splines or step functions.

Additionally, since Y = min(T,C) is a mixture of a censoring time and the event time of interest, it may not be appealing
to include Y in the imputation regression models, and we may instead wish to incorporate T directly. We can treat T as
another partially observed variable and impute the value of T from the distribution of T |T > C,X for censored subjects.
Assuming C is uninformative for X (p), we can then try to impute each partially observed X (p) by specifying the exact
conditional distribution X (p)|X (−p),T or by approximating the exact distribution with a regression model using T .

When the ultimate goal is to fit a mixture cure model, the form for the distribution of T |X is more complicated. The most
convenient estimation method introduces a partially observed variable, G, which indicates cure status. Either an imputed
value or the expectation of G is used in the mixture cure model estimation algorithm [6]. When we have partially observed
covariates, we can impute each partially observed X (p) from the corresponding distribution of X (p)|X (−p),Y,δ ,G. Using
assumptions for the distribution of X (p)|X (−p), we can derive the exact conditional distribution from which to impute.
We can also impute using approximations to the exact conditional distribution that are more computationally convenient.
Alternatively, we can impute the event time T for censored individuals and then impute each partially observed X (p) using
the approximated conditional distribution of X (p)|X (−p),T,G.

In this paper, we derive the exact conditional distribution and suggest a sampling scheme for imputing partially observed
covariates in the Cox proportional hazards mixture cure model setting. Additionally, we propose several approximations
to the exact distribution that are more convenient to use for imputation. We compare the performance of our proposed
imputation approaches to methods for survival data without a cure fraction.

In Section 2, we present details about the Cox proportional hazards cure model. In Section 3, we present possible
approaches for imputing partially observed covariates in the cure setting. In Section 4, we report results from a set of
simulations and compare the performance of the imputation algorithms. In Section 5, we apply two imputation approaches
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to a study of cancer recurrence in head and neck cancer patients, and in Section 6 we present a discussion.

2. Cox Proportional Hazards Cure Model

We consider the setting where the primary outcome is a censored event time and there is an underlying subset of the
study population that will never experience the event of interest. We call individuals that will never experience the event
“cured.” The Cox proportional hazards (CPH) cure model is a mixture model with two components: 1) a model for the
probability that an individual is not cured and 2) a Cox proportional hazards model for the hazard of an event for non-cured
subjects [4].

Let Yi = min(Ti,Ci) be the observed event/censoring time for individual i where Ti is the underlying event time (defined
as infinity if a subject is cured) and Ci is the censoring time. Let δi = I(Ti ≤Ci). We define the cure status of individual i,
Gi, as 1 when the individual is not cured and 0 when the individual is cured. Gi is 1 when δi = 1 and is unknown when
δi = 0. We assume censoring is independent of G and T given covariates. We model the data as follows:

Logistic Model of Cure Status: logit(P(Gi = 1|Xi)) = α0 +αT Xi i = 1, ...,n
CPH Model of Failure Time: h(t|Xi,Gi = 1) = h0(t)eβ T Xi i = 1, ...,n

where h0(t) is the baseline hazard of having an event in the non-cured group. For simplicity, we assume that we have
the same set of covariates in both parts of the mixture model. Estimation of model parameters can be done using an EM
algorithm [5, 6].

We consider the complete data partial log-likelihood corresponding to the CPH cure model assuming that Gi is observed.
The EM algorithm iterates between two steps. In the E-step for a given iteration, we replace Gi in the complete data
log-likelihood with

wi = E(Gi|δi,Yi,Xi) = δi +(1−δi)
piS(Yi|Xi,Gi = 1)

1− pi + piS(Yi|Xi,Gi = 1)
(1)

Here, pi = P(Gi = 1|Xi) = expit(α0 +αT Xi) and S(Yi|Xi,Gi = 1) = e−H0(Yi)eβT Xi using the estimates of α0,α , and β from
the previous iteration and an estimate of H0(t) obtained using a Breslow estimator weighted by wi [17]. To improve the
stability of the EM algorithm (model parameters are nearly unidentifiable), we define censored individuals with very late
censoring times as cured with wi = 0 [6]. The M-step involves taking the complete data partial log-likelihood with wi
substituted for Gi and maximizing it with respect to α0,α , and β . The EM algorithm allows us to handle the fact that cure
status is only partially observed. Variances of model parameter estimates can be estimated via bootstrap.

3. Multiple Imputation of Missing Covariates

In this section, we discuss imputation by fully conditional specification in more detail. Then, we derive the exact
conditional distribution to impute partially observed covariates in the cure setting. We also present several approximations
to the exact distribution that are more convenient to use for imputation. We include several covariate imputation models
for survival data without a cured fraction.

3.1. Fully Conditional Specification

Fully conditional specification (FCS) or “chained equations” is a multiple imputation approach in which we specify the
conditional distribution for each partially observed variable and then use these distributions to impute variables one-by-
one as part of an iterative procedure [12, 13]. Suppose we are interested in fitting a model to outcome O with partially
observed covariates W = (X (1), . . . ,X (d)) and fully observed covariates Z = (X (d+1), . . . ,X (s)). Let X = (W,Z). Recall
that X (p) denotes the pth covariate in X and X (−p) denotes all covariates in X except X (p). For each partially observed
X (p), we specify the conditional distribution f (X (p)|X (−p),O;φ p) where φ p is a set of parameters. Let f (φ p|X ,O) denote
the posterior distribution of φ p and let X (p,miss) and X (p,obs) denote the missing and observed portions of X (p). To impute
missing values for X (1) . . .X (d), we perform the following iterative chained equations algorithm. At iteration k, we obtain
updated imputed values by drawing

φ
1
(k) ∼ f (φ 1|X (1,obs)

(k−1) , . . . ,X (d)
(k−1),Z,O)

X (1,miss)
(k) ∼ f (X (1)|X (2)

(k−1), . . . ,X
(d)
(k−1),Z,O;φ

1
(k))
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φ
2
(k) ∼ f (φ 2|X (1)

(k) ,X
(2,obs)
(k−1) , . . . ,X (d)

(k−1),Z,O)

X (2,miss)
(k) ∼ f (X (2)|X (1)

(k) ,X
(3)
(k−1), . . . ,X

(d)
(k−1),Z,O;φ

2
(k))

. . .

φ
d
(k) ∼ f (φ d |X (1)

(k) , . . . ,X
(d−1)
(k) ,X (d,obs)

(k−1) ,Z,O)

X (d,miss)
(k) ∼ f (X (d)|X (1)

(k) , . . . ,X
(d−1)
(k) ,Z,O;φ

d
(k))

We iterate until convergence. When we have missingness in only one variable, no iteration is required, and the algorithm
reduces to standard parametric multiple imputation.

In our cure setting, we want to use the conditional distribution f (X (p)|X (−p),Y,δ ,G;φ p) to impute each partially
observed covariate X (p). In practice, however, f (X (p)|X (−p),Y,δ ,G;φ p) may be difficult to use for imputation, and we may
use an approximation, f̃ (X (p)|X (−p),Y,δ ,G; φ̃ p). We approximate the posterior distribution of φ̃ p (or φ p) by a multivariate
normal distribution. If the distribution used for imputation explicitly depends on G, we treat G as another partially observed
variable and impute G as part of the chained equations algorithm. If we also impute the true event time T for censored
subjects, we could impute partially observed X (p) using f (X (p)|X (−p),T,G;φ p) or a corresponding approximation. We
assume that the covariates are missing at random (MAR).

For many of the imputation approaches we consider, drawing φ̃ p and missing X (p) values will reduce to fitting a
regression model for X (p) using some function of X (−p),G,Y,δ , and maybe T as predictors. As in standard FCS, we
fit this regression model only for subjects with observed X (p). We then draw the parameter φ̃ p from a multivariate normal
with mean and variance obtained using the regression model fit and then use the drawn φ̃ p and the conditional distribution
implied by the regression model to draw each missing value of X (p). We will call this regression model the imputation
model for X (p). Alternatively, we can obtain a draw of φ̃ p by fitting the imputation model to a bootstrap sample of the
data [18]. Multiple imputation using standard regression models can be implemented using the package MICE in R [19].
For imputing covariates assumed to be normally distributed, we use predictive mean matching as implemented in MICE.

The chained equations (FCS) algorithm will result in a single imputed dataset. We repeat the algorithm to create several
imputed datasets. Suppose our goal is to make inference from a particular model fit (in our case, the CPH cure model).
We fit this model to each imputed dataset, and then we use Rubin’s Rules to produce a final estimate of the parameters
and their variances from which we can make the desired inference [20].

3.2. Imputation using the exact conditional distribution

We can use the complete data likelihood from the CPH cure model and an assumption about the distribution of X (p)|X (−p)

to derive the kernel of the conditional distribution of X (p)|X (−p),δ ,G,and Y for each partially observed X (p).
Below, we derive the exact imputation distribution assuming X (p)

i ∼ N(θ0 + θ T X (−p)
i ,σ2). We can generalize our

approach to impute covariates with non-normal distributions. We include a derivation for Bernoulli random variables in
the appendix. We assume that censoring does not depend on X (p) but may depend on other covariates. Therefore, we do not
need to specify a model for the censoring mechanism to derive the conditional distribution of X (p). Let f (X (−p)

i ;γ) be the
joint distribution of X (−p)

i . In practice, we will not need to explicitly specify this distribution. Let f (X (p)
i |X

(−p)
i ;θ0,θ ,σ

2)

be the distribution of X (p) given all the other covariates. We consider the complete data likelihood (assuming cure status
is known) for the CPH cure model:

L(α,α0,β ,θ ,θ0,γ,σ
2) =

n

∏
i=1

{
h(Yi|Gi = 1,Xi;β )δiS(Yi|Gi = 1,Xi;β )P(Gi = 1|Xi;α,α0)

}Gi

×{P(Gi = 0|Xi;α,α0)}1−Gi f (X (p)
i |X

(−p)
i ;θ0,θ ,σ

2) f (X (−p)
i ;γ)

∝

n

∏
i=1

{(
h0(Yi)eβ T Xi

)δi
e−H0(Yi)eβT Xi eαT Xi+α0

1+ eαT Xi+α0

}Gi{
1

1+ eαT Xi+α0

}1−Gi

e
−
(

X(p)
i −θ0−θT X(−p)

i

)2

2σ2 f (X (−p)
i ;γ)

From the above likelihood, we see that

f (X (p)
i |Gi,δi,Yi,X

(−p)
i ) ∝

{
eδiβ

T Xie−H0(Yi)eβT Xi eαT Xi+α0

1+ eαT Xi+α0

}Gi{
1

1+ eαT Xi+α0

}1−Gi

e
−
(

X(p)
i −θ0−θT X(−p)

i

)2

2σ2 (2)

We can use this kernel to draw from f (X (p)
i |Gi,δi,Yi,X

(−p)
i ) within the chained equations imputation procedure. We note

that this kernel depends on both Gi and H0(t), and it is parameterized by α,α0,β ,σ
2,θ ,and θ0. When X (p)

i is assumed to
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be normal, we can draw from (2) using an accept-reject algorithm as described below. When X (p)
i is binary and modeled

as in the appendix, we do not require an accept-reject algorithm to draw from f (X (p)
i |Gi,δi,Yi,X

(−p)
i ).

In order to impute partially observed covariates using their exact conditional distributions, we treat G as another
partially observed variable and impute G within the chained equations algorithm. We also append a step at the start of
each chained equations iteration in which we estimate H0(t). We can impute by iterating the following steps:

Step 1: Estimating H0(t)

We can estimate H0(t) several different ways. Firstly, we can estimate H0(t) using a weighted Breslow estimator [17].
Suppose we have event times t1, ..., tJ and let R j be the risk set at time t j. Using the imputed X from the most recent
iteration, we estimate H0(t) at the kth iteration of the imputation algorithm as the step function

Ĥ(k)
0 (t) =

J

∑
t j≤t

# events at time t j

∑i∈R j e[β
(k−1)]

T
Xiw(k)

i

where w(k)
i is the conditional probability that a person is not cured at iteration k as expressed in equation (1) and β (k−1) is

a draw of β from the previous iteration [6]. We use this approach to estimate H0(t) in our simulations.
We can also obtain a parametric estimate of H0(t) by fitting a CPH cure model with a parametric baseline hazard such

as Weibull. If the baseline hazard of an event in the non-cured subjects is truly Weibull, then fitting a Weibull cure model
rather than a semi-parametric CPH cure model may produce extra efficiency in estimating β . However, if the baseline
hazard in the non-cured group is not believed to be Weibull, using this approach is not advised. Alternatively, H0(t) can
be estimated using only the subset of the data such that Gi = 1 (non-cured) as imputed at iteration k− 1. This can be
estimated by fitting a Cox model and using a traditional Breslow estimator applied to the Gi = 1 subset of the data or by
assuming a parametric form for the event hazard in the Gi = 1 group.

Step 2: Imputing Cure Status

To produce proper imputations using the FCS algorithm, we first draw the parameters. We can obtain draws of
α0,α , and β at a given iteration by 1) fitting a logistic model to the most recent imputed data with G as the outcome
and X as covariates, 2) fitting a CPH regression model to the subset of subjects such that Gi = 1, and then 3) drawing
(α0,α,β ) from a multivariate normal distribution using the estimated parameters and their corresponding covariance
matrices from the logistic and CPH model fits. This approach is much faster than fitting a cure model to the data to
estimate the parameters and then using bootstrap to estimate the covariance matrix. Alternatively, we can draw (α0,α,β )
by fitting the models in 1) and 2) to a bootstrap sample [18].

Using the complete data likelihood for the CPH cure model, we can show that logit(P(Gi = 1|Xi,δi = 0,Yi)) =

−Ĥ0(Yi)eβ T Xi +αT Xi +α0. We can draw imputed values of Gi using this probability relation. We note that if δi = 1, then
Gi is known to be 1, so we will not need to impute. Also, we define censored individuals with late censoring times (after
some cut-point c) as cured. Therefore, G is treated as missing only if δ = 0 and Y ≤ c, so we can view missingness in G
as MAR conditional on δ and Y .

Step 3: Imputing the Missing Covariates

We specify the distribution f (X (p)
i |Gi,δi,Yi,X

(−p)
i ;φ p) for each covariate X (p) with missing values. As described

in Section 3.1, we 1) Draw φ p and 2) Impute missing values of X (p) for each X (p) in X (1), . . . ,X (d). If only one covariate
has missingness, we perform 1) and 2) a single time for that covariate. If we have missingness in many covariates,
we perform 1) and 2) sequentially for each covariate with missingness using the most recent imputations of the other
variables. We describe how to perform 1) and 2) to impute normal and binary covariates using their exact conditional
distributions.

Normal X (p): We can draw (θ0,θ ,σ
2) under the Bayesian linear regression model with X (p) as the outcome and with

X (−p) as the predictors using the most recent imputed values. This model is described by Rubin (1987) [20] and used in
MICE [19]. Unlike standard FCS, we fit this model using all subjects and the complete imputed X (p) from the most recent
iteration as the outcome [14]. If desired, we may also draw new values of α and β as described in Step 2 and using the
newly-imputed G. We then want to impute each missing value X (p)

i by taking draws from the full conditional distribution
knowing only the kernel in (2). Many methods exist to draw from a distribution using only the kernel. To obtain an
imputed value for X (p)

i at a given iteration, we perform a Metropolis-Hastings draw from (2) using a normal random walk
proposal distribution centered at the imputed value from the previous iteration [21, 22]. The variance of this proposal
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distribution is a tuning parameter that must be determined to ensure good mixing properties and a reasonable acceptance
rate [23]. Due to this accept-reject sampling, we may need to perform many iterations of the chained equations fitting
algorithm to reach convergence.

Binary X (p): Using notation from the appendix, we draw (θ0,θ) using a logistic regression fit with X (p) as the outcome
and X (−p) as covariates. We then impute missing values X (p)

i using the probability relation in equation (4). This reduces
to drawing X (p)

i from a Bernoulli(πi) distribution with parameter πi = P(X (p)
i = 1|Gi,δi,Yi,X

(−p)
i ) from (4).

This “Exact Cure” approach imputes each partially observed X (p) using its conditional distribution implied by
the CPH cure model and the model for X (p)|X (−p). However, when X (p) is normal, sampling from this specification of
f (X (p)

i |Gi,δi,Yi,X
(−p)
i ) requires us to use an accept-reject algorithm to impute each missing X (p)

i at each iteration of
the chained equations imputation procedure, and this can quickly result in a large computational burden. This burden is
amplified when we have missingness in multiple covariates. To impute multiple partially observed covariates, we must
specify the model for X (p)|X (−p) for each partially observed X (p), which increases the number of parameters that must be
drawn. Additionally, we must derive the form of f (X (p)

i |Gi,δi,Yi,X
(−p)
i ) separately for different forms of the model for

each X (p)|X (−p) (eg. Gamma, Poisson, etc). Due to this, we do not apply the Exact Cure approach to the head and neck
cancer example later on, which has missingness in many variables.

3.3. Approximations to the Exact Distribution using Regression Models

In the previous section, we derived exact conditional distributions to use for imputation of normal and binary covariates,
and sampling from these distribution can often become computationally intensive. We will consider approximations
to the exact conditional distributions that do not require accept-reject sampling and can more easily be implemented
with existing software. We are interested in approximations that correspond to standard regression models. We can then
perform a FCS draw from the approximate conditional distribution by fitting a standard regression model as described
earlier.

We start by describing two simple covariate imputation approaches for survival data without a cure fraction. We then
describe an approach in the literature for imputing survival data without a cure fraction that is motivated directly by
the standard Cox proportional hazards model. Then, we propose an approximate distribution that incorporates the cure
structure of the data and is motivated by the CPH cure model formulation. Finally, we consider a modification to these
approaches in which event time T is imputed for censored subjects.

3.3.1. logY Imputation for survival data without a cure fraction. One approach in the literature for imputing covariates
for survival data without a cure fraction is to use X (−p), δ , and log(Y ) as predictors in the imputation model for X (p) used
in the chained equations algorithm [16]. Unlike the Exact Cure approach, this approach does not require us to impute cure
status or estimate H0(t), so we do not require iteration of the chained equations algorithm when we have missingness
in only one covariate. We can impute using MICE in R by specifying regression models with predictors X (−p), δ , and
log(Y ) for imputing each partially-observed X (p) [19].

3.3.2. Outcome Binning Imputation for survival data without a cure fraction. One adaptation of existing approaches for
imputing covariates in the non-cure setting would be to use a regression model for imputing each partially observed X (p)

with predictors X (−p),δ f1(Y ),and (1− δ ) f2(Y ) where f1(Y ) and f2(Y ) are some functions of Y. We propose using f1
and f2 in the form of step functions with step height determined by the data. This allows for a very flexible association
between the outcome and the partially observed covariate. Additionally, this approach does not require us to impute cure
status or estimate H0(t) explicitly.

We call this approach “Outcome Binning” because it involves binning individuals based on the composite outcome,
(Y,δ ). We first separate subjects into a δ = 1 and δ = 0 group. We then define bins of Y within each δ group using
summary statistic-based cutoffs or by other methods. For convenience, we define the bins using quartiles of Y within
each of the δi = 1 and δi = 0 groups. We define a set of dummy indicator variables, M1, . . . ,Mm, which identify the bin
membership of each individual (Mk = 1 if the subject is in bin k). We then impute each partially observed covariate within
the chained equations procedure using a regression model for each X (p) with X (−p) and binary indicators M2, . . . ,Mm as
predictors. After determining M1, . . . ,Mm, we can perform the chained equations imputation using MICE in R [19]. With
missingness in only one covariate, we can perform a single iteration of the chained equations algorithm.
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3.3.3. White and Royston Imputation for the CPH model without a cure fraction. Based on algebraic derivation involving
Taylor approximations, White and Royston suggest using X (−p),δ ,and H0(Y ) as predictors in the imputation model for
each partially observed X (p) in the standard CPH model setting without a cure fraction [15]. This is quite similar to the
approximation in 3.3.1 but replacing log(Y ) with H0(Y ). This requires us to obtain an estimate of H0(t) but does not
require us to impute cure status.

We note that H0(t) is the cumulative baseline hazard of an event in the entire study population. This is not the same as
the cumulative baseline hazard in the non-cured population, as the cured subjects cannot experience the event of interest.
When applied to survival data with a cure fraction, H0(t) is the cumulative baseline hazard of an event in the (assumed to
be misspecified) survival model without a cure fraction based on the entire study population.

White and Royston ultimately recommend using the Nelson-Aalen estimator of H(t) to estimate H0(t) before
imputation. However, they also investigated an approach in which they add a step to the imputation algorithm and re-
estimate H0(t) at each iteration. We estimate H0(t) after each iteration of the chained equations algorithm by fitting a
Cox model to all subjects using the most recent imputed data, drawing the Cox model parameter using a multivariate
normal distribution with mean and covariance matrix from the Cox model fit, and then using a Breslow estimator. We
can also draw parameter values by fitting the models to a bootstrap sample of the data [18]. Alternatively, we can fit a
Weibull regression model to all subjects and estimate the cumulative baseline hazard in the total population as a parametric
function.

As we estimate H0(t) at the end of each iteration, we iterate the chained equations algorithm even when we only have
missingness in a single covariate. We can impute using MICE in R by iterating the following steps: 1) Estimate H0(t) 2)
Impute each partially observed covariate X (p) sequentially using an appropriate elementary imputation method in MICE
(eg. mice.impute.logreg() for binary covariates) with predictors X (−p),δ ,and Ĥ0(Y ) [19].

3.3.4. Approximated Imputation for the CPH cure model. We use a similar approach to White and Royston to derive
approximate imputation models for normal and binary covariates in the CPH cure model setting [15]. Although not shown
here, we can derive approximate imputation models for covariates with other distributions in a similar fashion. Suppose
we have the same set of covariates in both parts of the mixture cure model and that the set contains s covariates. Therefore,
α and β both have dimension s. Again, we suppose that a partially observed X (p) ∼ N(θ T X (−p) + θ0,σ

2). Taking the
logarithm of kernel (2), we have that

log
(

f (X (p)
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i )

)
=
−1
2σ2

(
X (p)

i −θ
T X (−p)
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i as constant. We note that log(1+z) ≈ log(1+c) + (z-c)/(1+c) if z is near c and

eaX+bY ≈ eaX̄+bȲ [1+a(X− X̄)+b(Y − Ȳ )] if Var(aX + bY) is small. Assuming Var(αT Xi) and Var(β T Xi) are small, we
can approximate the above by:
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If we complete the square on (3), we see that the mean of this normal distribution will be a linear combination of
X (−p)

i , Gi, Gi×δi and Gi×H0(Yi). A second order Taylor approximation of eαT Xi and eβ T Xi will also give the interaction
Gi×H0(Yi)×X (−p)

i . This suggests that when X (p) is normal and the assumptions are satisfied, we can approximate the
exact distribution f (X (p)

i |Gi,δi,Yi,X
(−p)
i ) using a linear regression model with X (−p)

i , Gi, Gi×δi, Gi×H0(Yi), and perhaps
Gi×H0(Yi)×X (−p)

i as predictors. In the appendix, we include a similar derivation for an approximate imputation model
when X (p) is binary and X (p) has a logistic relation to X (−p). In the binary case, we approximate the exact distribution
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using a logistic regression model with X (−p)
i , Gi, Gi×δi, Gi×H0(Yi), and Gi×H0(Yi)×X (−p)

i as covariates. We will call
this imputation approach the “Approximate Cure” approach.

The approximate imputation models implied by (3) and (5) explicitly depend on H0(t) and Gi. To use the derived
approximate distributions for covariate imputation, we estimate H0(t) and impute Gi as part of the chained equations
algorithm as we did in Section 3.2. In contrast, the imputation approaches discussed in Sections 3.3.1-3.3.3 do not require
us to impute Gi.

The final interaction term in the imputation models implied by (3) and (5) may have many parameters if Xi consists of
many covariates, so that term may have to be dropped for settings with many covariates. Also, it may be that the imputed
Gi and Gi×δi are highly correlated, so one may need to only use Gi due to collinearity issues.

In order to impute partially observed covariates using these approximations, we can perform a modification of the
Exact Cure algorithm proposed in Section 3.2. We can impute using MICE in R by iterating the following steps: Step 1)
Estimate H0(t) as in Section 3.2, Step 2) Impute Cure Status as in Section 3.2, and Step 3) Impute each partially observed
covariate X (p) sequentially using an appropriate elementary imputation method in MICE (eg. mice.impute.logreg() for
binary covariates) with predictors X (−p)

i , Gi, Gi×δi, Gi× Ĥ0(Yi), and perhaps Gi× Ĥ0(Yi)×X (−p)
i [19].

A natural alternative to the proposed Approximate Cure approach is to first impute G and then impute covariates
separately for the G = 1 and G = 0 groups. We could then apply imputation approaches for survival data without a
cure fraction (such as the White and Royston method) for imputing covariates in the G = 1 group. In simulations (not
shown), this approach resulted in similar bias and inflated variances compared to the Approximate Cure approach.

3.3.5. A Modification: Event Time Imputation. Since the observed event/censoring time Y = min(T,C) is a mixture of
two underlying random variables, it may not be very intuitive to include Y as a predictor in standard regression models
for imputing missing covariates. Instead, we may wish to include the true event time, T , which is not fully observed. We
can treat T as another partially observed variable and impute values of T for censored individuals within the chained
equations algorithm used to impute missing covariates. This modification can conceptually be applied to any of the
imputation approaches we have discussed.

In the cure setting, T is defined as infinity for cured individuals and is an event time for non-cured individuals.
Although cure status is not known for censored individuals, if we also impute G as part of the chained equations
imputation algorithm, then we can impute values of T for the non-cured, censored subjects using an assumed truncated
distribution f (t|t >C,G = 1,X). We can modify the Exact and Approximate Cure imputation algorithms by adding a step
to the chained equations imputation algorithm to impute Ti for censored individuals who have Gi = 1 at iteration k. Then,
we replace (Yi,δi) in the subsequent imputation models for the partially observed covariates with the imputed (Ti,Gi). In
several simulations (not shown), however, T imputation does not appear to improve the performance of the Exact Cure
and Approximate Cure imputation algorithms.

We are interested to see how some simple covariate imputation approaches for survival data without a cure fraction are
impacted by first imputing T and then substituting (Y,δ ) by (T,1) in the covariate imputation models. We consider both
the logY and Outcome Binning approaches. For the Outcome Binning approach, we use octiles to define bins of T among
all subjects. In these two approaches, cure status is not known or imputed for censored individuals, and so we cannot
impute censored T using the truncated distribution f (t|t > C,X ,G = 1). Instead, we impute the event time T using the
truncated distribution f (t|t >C,X), which we assume has a proportional hazards structure with a Weibull baseline.

We use a Cox proportional hazards model for the hazard of an event in the total study population. The survival function

of the truncated distribution f (t|t >Ci,Xi) of Ti is in the form ST RUNC(t|Xi) = e−[H0(t)−H0(Ci)]eβT Xi , t >Ci. To impute Ti for
a censored individual, we can first generate Ui from a Uniform(0,1) distribution. We can then draw Ti using the relation
Ti = H−1

0

(
−log(Ui)e−β T Xi +H0(Ci)

)
. This requires us to draw β and estimate H0(t). If we assume the failure time is

Weibull such that S(t|Xi) = e−λ tη eβT Xi , then we can generate Ti as Ti =

(
−log(Ui)e−βT Xi+λCη

i
λ

)1/η

after drawing values for

β ,λ , and η . Within the chained equations algorithm, we generate a Ti value for all censored subjects at each iteration.
We can obtain draws of β ,λ , and η by first fitting a Weibull regression model to the entire study population using the
most recent imputed X and then drawing β ,λ , and η from a multivariate normal distribution with mean and covariance
estimated by the Weibull fit.

We note that in the CPH cure model setting, the truncated distribution f (t|t >C,X) is incorrectly specified, and it may
seem unintuitive to use this misspecified model to impute event times. However, event time imputation has been used in
the non-cure survival setting, and an analyst might naively try to apply the same approach to survival data with a cure
fraction [24]. We want to see whether this approach improves or worsens the performance of imputation approaches for
survival data without a cured fraction when applied in the cure setting.
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4. Simulations

In this section, we present results from a simulation study to compare the imputation approaches in terms of bias, relative
variance, and coverage rate of confidence intervals for estimating CPH cure model parameters. We also compare with
complete case analysis and analysis of the full data without any covariate missingness.

4.1. Simulation Details

We create 500 simulated datasets of 500 observations each. For each dataset, we simulate multivariate normal covariates
X = (X1,X2) with zero means, unit variances, and a correlation of 0.5. We then simulate cure status using the relation
logit(P(Gi = 1|Xi,1,Xi,2)) = 0.5+ 0.5Xi,1 + 0.5Xi,2, leading to an average cure rate of 40%. For the non-cured group,
we simulate a survival time Ti. We model the event hazard in the non-cured group as h(t) = h0(t)e0.5X1+0.5X2 with
h0(t) = 0.002. We then generate censoring times Ci ∼U(250,4500) and define Yi = min(Ti,Ci) and δi = I(Ti ≤Ci).

We impose ∼50-55% missingness in X2 using three models: (1) missing completely at random (MCAR) with
P(X2 missing|X1,δ ,Y ) = 0.5, (2) missing at random (MAR) with logit(P(X2 missing|X1,δ ,Y )) = X1, and (3) MAR with
logit(P(X2 missing|X1,δ ,Y )) = 0.3− 0.4δ − 0.5X1δ . While this final missingness mechanism may seem implausible, it
could be induced when missingness depends on an unobserved variable U that is independently related to T .

We note that we impose missingness in only a single covariate rather than many covariates (the typical setting where
FCS is applied). However, we are mainly interested in investigating various strategies for modeling the univariate
conditional distribution for one partially observed covariate. As such, we can compare the imputation approaches by
imposing missingness in only one covariate. Similar results can be seen when we apply the imputation approaches with
missingness in multiple covariates (See Supplementary Materials). We also consider the setting with many partially
observed covariates in our head and neck cancer example.

We perform multiple imputation of X2 using methods described in this paper. For each simulation and method, we
produce 10 imputed datasets. We then fit a CPH cure model to each imputed dataset (ignoring imputed cure status) and
use Rubin’s Rules to obtain a single set of estimates for each simulation [20]. We then compute bias, relative variance
(compared to analyzing the full data with no covariate missingness), and coverage in estimating model parameters across
500 simulations for each method. Alternatively, for imputation approaches that result in imputed values for G, we could
have performed our final analysis by fitting Cox and logistic regressions given the imputed G. In simulations (not shown),
this approach resulted in a slight increase in efficiency for estimating the intercept for the logistic part of the model, but it
also resulted in some increases in bias for the approaches using approximated distributions for imputation.

We use 100 iterations for each imputation algorithm except Exact Cure, for which we use 1500 due to the slower
convergence of the Metropolis-Hastings algorithms. When fitting the cure models to each imputed dataset, we use 100
iterations of the EM algorithm and use 100 bootstrap samples of the imputed dataset to estimate variances.

Computational time is shortest for the Outcome Bins and logY approaches, followed closely by the T imputation
methods. The Approximate Cure approach takes about four times as long as the Outcome Bins method to run and about
two times as long as the White and Royston method. The Exact Cure approach takes at least ten times as long as the
Approximate Cure approach to run.

4.2. Simulation Results

Table 1 shows simulation results under three different missingness mechanisms for X2. Under missingness models (1) and
(2), complete case (CC) analysis is essentially unbiased. However, in model (3), CC analysis results in biased estimates,
particularly in estimating parameters for the logistic part of the mixture cure model. In all missingness settings shown, the
imputation methods have little bias in estimating α0,α1, and β1, the logistic model intercept and the parameters associated
with X1.

In all three missingness settings, the logY, White & Royston, Outcome Binning, T imputation, and Approximate Cure
(w/o extra interaction) approaches result in similar or larger bias than CC analysis in estimating α2, the logistic parameter
for X2. For all three missingness models, the imputation approaches using T imputation result in larger α2 bias than
their counterparts without T imputation. The Approximate Cure approach with the interaction term and the Exact Cure
approach produce comparably low bias in estimating α2.

All imputation methods except the Exact Cure approach result in biased estimates for β2, the failure time model
parameter associated with X2. Among the biased imputation methods, however, the Approximate Cure approach including
the extra interaction term consistently results in the smallest β2 bias. The logT approach produces smaller β2 bias than the
logY approach. Outcome Binning results in similar β2 bias with and without the T imputation.

All imputation methods result in smaller empirical variance (so larger relative variance) in estimating α0,α1, and β1
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compared to CC analysis in all three simulation settings. Some reduction in the variance in estimating β2 can also be
seen, suggesting that we can still gain some information about the effect of X2 by including information from subjects
with missing X2. Coverage rates for α0,α1, and β1 are similar for all imputation methods in all three simulation settings.
CC coverage of 95% confidence intervals for α0 and α1 under missingness model (3) is far below 0.95%. Reductions in
coverage for some imputation approaches can be seen for α2 and β2. Undercoverage is mainly due to increased bias. The
Exact Cure approach and the Approximate Cure approach with the extra interaction term tend to produce higher coverage
rates in estimating β2 compared to the other imputation methods.

In all three sets of simulations, we see large reductions in the Approximate Cure approach’s corresponding biases
by adding the extra interaction term. Although not shown, we do not see corresponding decreases in bias by adding a
Ĥ0(Yi) : X (−p) interaction term to the White and Royston approach [15]. We also see that the Exact Cure imputation
approach far outperforms all other imputation algorithms in terms of bias, and among the biased imputation approaches,
the Approximate Cure approach with the interaction term is generally the best performer. In all three sets of simulations,
the non-cure imputation approaches that involve T imputation tend to have worse coverage or bias properties than the
corresponding approaches without T imputation. Finally, we see that among the approaches that do not take the cure
fraction into account (Outcome Binning, logY, White & Royston, and logT), Outcome Binning without T imputation
tends to produce the smallest bias overall across the three simulation settings.

5. Head and Neck Cancer Example

We consider data from a cohort study of time to cancer recurrence in N=1226 patients with head and neck squamous cell
carcinoma (HNSCC). This study was conducted by the University of Michigan’s Head and Neck Specialized Program
of Research Excellence (SPORE) and included consenting patients treated for HNSCC at the University of Michigan
Cancer Center between November 2003 and July 2013. Details regarding the cohort study can be found in Duffy et al.
and Virani et al. [25, 26]. Data on newly-diagnosed patients were collected from the time of diagnosis, and patients were
then followed for cancer recurrence after the start of treatment. A patient is considered to have recurred if cancer becomes
detectable. Personal and disease-related characteristics including age, cancer stage, cancer site, comorbidities, cigarette
use, alcohol use, gender, and BMI were collected at the time of diagnosis and are reported in Table 2.

Of the 1226 patients in the study, 374 (30.5%) experienced a cancer recurrence. Of these, 149 (39.8%) had detectable
cancer toward the end of their planned treatment. These patients are called “persistent” and are given a recurrence time
of 1 day as exact recurrence times are unavailable for these subjects. Patients were followed for a median time of 36.6
months. Of the observed recurrences, 360 (96.2%) occurred within 36 months. Few patients had recurrences after 36
months, and the estimated survival curve had a plateau in the later half of the study (∼36-60 months). For HNSCC, it is
well established that patients can be cured [27]. This provides some evidence that these data may follow a cure structure.

Based on biological knowledge of HNSCC recurrence and empirical evidence in the data, we assume that a subset of
the study cohort had been cured of disease by treatment, and we fit a mixture cure model. We assume a Cox proportional
hazards model for the hazard of cancer recurrence in the non-cured group, and we model probability of being cured of
the primary HNSCC after treatment using a logistic regression. In particular, the first component is a model for time
until cancer becomes detectable in the non-cured group. We include persistent patients in our analysis as persistence was
defined subjectively and roughly corresponded to whether there were early signs that the cancer was present. Because
persistence is an outcome of the treatment that was unobserved at baseline, these patients were included in the analysis.
We fit a Cox proportional hazards cure model to the complete case data using age at diagnosis, cancer stage, cigarette use,
HPV status, comorbidities, and cancer site as predictors in both parts of the mixture cure model. Results of this model fit
are shown in Table 3.

In the study of HNSCC, the association between HPV status and cancer recurrence is of particular interest. However,
HPV status was only obtained for 541 (44.1%) of the patients. Investigation into the missingness of HPV status (not
shown) suggests that HPV missingness is associated with diagnosis date and therefore censoring time. However, assuming
censoring is independent of HPV status, we can still assume HPV status is missing at random [28]. We want to impute
HPV status using approaches discussed and then compare results from corresponding CPH cure model estimates between
imputation approaches and to complete case analysis.

We performed multiple imputation of HPV status (55.8% missing) and comorbidities (0.01% missing) using both the
Approximate Cure approach with the extra interaction term and the White & Royston approach. We did not use the Exact
Cure approach as we have many partially observed covariates, and when we have many covariates to impute, the Exact
Cure approach becomes increasingly computationally intensive. HPV status is known to be associated with factors such as
gender, smoking, alcohol use, and number of sexual partners. HPV also has a much higher prevalence for oropharyngeal
cancers compared to other types of head and neck cancer. We observe that HPV status is associated with calendar time
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and therefore year of study enrollment. As these variables are known to be associated with HPV status, they may help
us to obtain better imputations of HPV. Therefore, we use all factors in Table 2 as predictors for the various imputation
models, requiring us to also impute BMI, number of sexual partners, and alcohol use as part of the chained equations
algorithm. We note that sexual partners has a large amount of missingness (62.3%), but we include it in the imputation
algorithm due to its strong association with HPV status. Number of sexual partners is observed for 198 (28.9%) of the
subjects with missing HPV status. Year of study enrollment was categorized into three intervals reflecting different rates
of HPV missingness. Greater effort was made to obtain HPV status for subjects enrolled after 2008, and some samples
obtained in 2012 and 2013 have not yet been tested. Some of the Table 2 variables are not included in the final cure model
analysis as cure models become increasingly unstable with a large amount of predictors. We therefore implicitly assume
that the predictors not included in the final model are not independent predictors of the outcome. In order to satisfy the
assumptions made in the derivation of the Approximate Cure approach, we assume that censoring of recurrence time
(including death from other causes) does not depend on the partially observed variables and in particular HPV status
and number of sexual partners. We impute categorical covariates using polytomous regression in MICE [19]. Number of
sexual partners is imputed using predictive mean matching on the log-scale. We produced 20 imputed datasets for each
approach.

Table 3 shows the Cox proportional hazards cure model results for two imputation algorithms and complete case
analysis. Point estimates and confidence intervals are very similar between the two imputation approaches. Based on
the simulation results, we may expect the biggest difference between the two approaches to be the bias in estimating
parameters for HPV status. For this dataset, however, the estimates for the parameters corresponding to HPV status are
very similar between the two imputation approaches. When we apply other imputation approaches discussed in this paper
to these data (not shown), we see similar results.

Differences can be seen between the model fits from imputation and from complete case analysis. Confidence intervals
tend to be narrower for the imputation approaches than for complete case analysis. Point estimates tend to be somewhat
similar with some exceptions. The most notable difference between the imputation and complete case fits is in the
estimates for the cigarette use variable. Point estimates from the imputation approaches suggest that cigarette use may
be associated with a decrease in the probability of being cured, but it is not associated with the hazard of recurrence. In
contrast, the complete case analysis suggests that cigarette use is associated with a decreased hazard of recurrence in the
non-cured group, but it is not associated with cure status. Additionally, the confidence intervals for some cigarette use
parameters from the imputation approaches do not include the complete case point estimates. The complete case fit shows
some signs of model instability.

Point estimates for HPV status parameters are similar between the complete case and imputation approaches, but the
confidence intervals are smaller in the imputation model fits. This suggests that some additional information about HPV
status is obtained by including information from the patients with missing HPV status.

6. Discussion

In this paper, we have explored approaches for imputing missing covariates in the Cox proportional hazards cure model
setting. We considered multiple imputation using fully conditional specification, an approach in which we impute partially
observed covariates by drawing from their conditional distributions.

We derived the exact conditional distribution and suggested a sampling scheme for imputing normal and Bernoulli
covariates in the CPH cure model setting. We also proposed several approximations to the exact distribution that are
simpler and more convenient to use for imputation. Our approach can be generalized to impute covariates with different
distributions. We compared the performance of our proposed imputation approaches to existing imputation methods for
survival data without a cure fraction.

A simulation study demonstrates that all imputation methods considered can substantially increase precision in
estimating many CPH cure model parameters compared to complete case analysis. Imputation can produce smaller
variances for estimating parameters corresponding to fully observed variables compared to complete case analysis.
Some variance reduction may also be seen in estimating parameters associated with the imputed variables. The Exact
Cure imputation approach outperformed all other imputation approaches in terms of bias. In our simulations, all other
imputation approaches tended to have some bias in estimating at least one of the parameters associated with the imputed
variable/s. Among the biased imputation approaches, the Approximate Cure approach with the interaction term was the
best performer. Among the approaches that do not account for the cure fraction, Outcome Binning tended to have the best
performance across the three simulation settings. The approaches in which the event time is imputed without accounting
for the cure structure of the data did not perform well in the cure setting and are not recommended. In the head and neck
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cancer example, little difference could be seen between the imputation approaches, but many differences were present
between imputation and complete case analysis.

While imputation using the exact conditional distribution is a clear frontrunner in terms of bias, it is typically more
difficult to implement and takes much longer to run than other methods due to the many required Metropolis-Hastings
draws. These issues become even more pronounced when there is missingness in multiple covariates. If one is willing to
allow some bias in estimating some model parameters (particularly those associated with the imputed variables), then the
Approximate Cure imputation approach with the interaction term may be preferred. For example, if we are only adjusting
for an imputed variable as a possible confounder, then adding some bias in estimating its parameters in exchange for
computational simplicity may be acceptable. If we desire an even simpler imputation scheme and do not want to impute
cure status, we may still be able to obtain some bias reduction by using Outcome Binning without the event time imputation
rather than other existing imputation approaches for survival data without a cure fraction.

We compare imputation approaches in terms of performance in estimating CPH cure model parameters, and most of
the imputation approaches proposed are compatible with and directly motivated by the final modeling strategy. If we
change the modeling strategy (for example, if we want to fit an accelerated failure time model with a cure fraction),
then the imputation approach may need to be adapted and the comparative performance of the approaches may change.
Additionally, although simulations suggest there is a difference between imputation approaches, there may not always be
a large practical difference when applied to particular datasets as seen with the head and neck cancer data. The presented
simulations are limited to a setting with normal and binary covariates with linear covariate effects in the logistic and failure
time models. When imputing covariates with other distributions (e.g. ordered categorical), the comparative performance
of the imputation approaches may be different. Also, if the failure time or logistic models include interactions/non-linear
effects of the partially observed covariates, the difference between the Exact Cure method and the approximated methods
would be expected to be even more pronounced than in the linear effects case considered here [14].

We note that H0(t) in the CPH model is really an infinite-dimensional parameter, and we do not directly incorporate
this uncertainty into the estimation procedure. Additionally, we only consider multiple imputation using fully conditional
specification. Fully conditional specification is convenient to use for imputation as it does not require us to explicitly
specify the joint distribution of the covariates. However, in the case of multiple imputed variables, the assumed
distributions for each partially observed X (p)|X (−p) are not guaranteed to be compatible and form a valid joint distribution.
In some cases, this could lead to problems (e.g. bias) when estimating parameters in the final model fitting [14]. Several
authors have provided conditions in which FCS is equivalent to joint model imputation and converges to the desired
sampling distribution [29, 30].
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Appendix A Imputation for Binary Covariates

We will derive an approximate imputation model for imputing binary covariates. Suppose X (p) ∼ Bernoulli(t) where t =
expit(θ T X (−p)+θ0). Using the complete data likelihood for the CPH cure model, we have

logit
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i = 1|Gi,δi,Yi,X

(−p)
i )

)
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This relation gives the form for the exact conditional distribution, which we can use to impute a partially observed, binary
X (p). Now, we attempt to find a simpler approximated model. We use a similar approach as in the normal derivation.
Assuming Var(αT Xi) and Var(β T Xi) are small, we approximate the above by:
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This equation is a linear combination of X (−p)
i , Gi, Gi× δi, Gi×H0(Yi), and Gi×H0(Yi)×X (−p). This suggests that we

can impute X (p)
i using X (−p)

i , Gi, Gi×δi, Gi× Ĥ0(Yi), Gi× Ĥ0(Yi)×X (−p) as predictors in a logistic regression model if
we impute Gi for censored subjects and estimate H0(Yi) as additional steps in the multiple imputation algorithm.
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Table 1: Bias, Relative Variance, and Coverage of Cure Model Estimates across 500 simulations.
CI indicates empirical coverage of 95% confidence intervals and RV indicates relative variance.

α0 α1 α2 β1 β2
Method Bias (RV) CI Bias (RV) CI Bias (RV) CI Bias (RV) CI Bias (RV) CI

Full Data -0.01 (1.00) 0.93 0.02 (1.00) 0.93 0.02 (1.00) 0.94 -0.01 (1.00) 0.95 0.00 (1.00) 0.95

Missingness Model 1: MCAR missingness in X2

Exact Cure 0.00 (0.83) 0.94 0.01 (0.75) 0.92 0.03 (0.48) 0.94 -0.01 (0.82) 0.94 0.00 (0.48) 0.95
Approximations
Non-Cure w/ (Y,δ )

logY 0.00 (0.79) 0.94 0.00 (0.74) 0.91 0.08 (0.47) 0.92 0.01 (0.85) 0.95 -0.14 (0.71) 0.78
White & Royston 0.00 (0.81) 0.94 0.00 (0.73) 0.93 0.07 (0.47) 0.92 0.00 (0.82) 0.95 -0.13 (0.76) 0.81
Binning by (Y,δ ) 0.00 (0.80) 0.94 0.01 (0.75) 0.93 0.04 (0.48) 0.93 0.00 (0.83) 0.96 -0.11 (0.66) 0.87

Non-Cure w/ T
logT 0.00 (0.80) 0.94 -0.02 (0.79) 0.93 0.14 (0.55) 0.89 0.01 (0.94) 0.96 -0.12 (0.90) 0.86
Binning by T 0.00 (0.81) 0.94 0.00 (0.78) 0.93 0.09 (0.53) 0.92 0.00 (0.86) 0.95 -0.10 (0.71) 0.89

Cure w/ (G,Y,δ )
Approx Cure 0.00 (0.85) 0.94 0.01 (0.75) 0.93 0.05 (0.50) 0.94 0.00 (0.81) 0.95 -0.13 (0.82) 0.82
Approx + Int* 0.00 (0.85) 0.93 0.02 (0.78) 0.92 0.02 (0.47) 0.93 0.00 (0.91) 0.95 -0.07 (0.75) 0.93

Complete Case -0.01 (0.48) 0.94 0.03 (0.52) 0.96 0.03 (0.49) 0.94 0.00 (0.52) 0.97 0.00 (0.46) 0.95

Missingness Model 2: MAR missingness in X2 dependent on X1

Exact Cure 0.00 (0.84) 0.95 0.01 (0.81) 0.94 0.04 (0.47) 0.93 0.00 (0.79) 0.95 -0.01 (0.34) 0.92
Approximations
Non-Cure w/ (Y,δ )

logY 0.00 (0.82) 0.94 0.01 (0.82) 0.95 0.13 (0.47) 0.91 0.02 (0.80) 0.95 -0.20 (0.63) 0.62
White & Royston 0.00 (0.79) 0.95 -0.02 (0.79) 0.95 0.14 (0.46) 0.89 0.02 (0.77) 0.96 -0.19 (0.63) 0.65
Binning by (Y,δ ) 0.00 (0.83) 0.95 0.00 (0.80) 0.94 0.10 (0.51) 0.92 0.01 (0.78) 0.95 -0.16 (0.54) 0.73

Non-Cure w/ T
logT 0.01 (0.83) 0.94 -0.01 (0.85) 0.94 0.15 (0.61) 0.88 0.02 (0.85) 0.95 -0.16 (0.71) 0.73
Binning by T 0.00 (0.84) 0.94 0.00 (0.82) 0.95 0.11 (0.58) 0.93 0.01 (0.83) 0.95 -0.15 (0.53) 0.76

Cure w/ (G,Y,δ )
Approx Cure 0.00 (0.84) 0.94 -0.01 (0.76) 0.94 0.12 (0.49) 0.90 0.02 (0.71) 0.94 -0.20 (0.67) 0.61
Approx + Int* 0.00 (0.89) 0.95 0.01 (0.82) 0.94 0.05 (0.48) 0.94 0.00 (0.78) 0.94 -0.12 (0.65) 0.86

Complete Case 0.00 (0.41) 0.95 0.04 (0.43) 0.94 0.05 (0.50) 0.95 -0.02 (0.31) 0.95 -0.02 (0.33) 0.91

Missingness Model 3: MAR missingness in X2 dependent on X1,δ

Exact Cure 0.00 (0.86) 0.94 0.01 (0.77) 0.93 0.03 (0.44) 0.94 -0.01 (0.82) 0.95 0.00 (0.60) 0.95
Approximations
Non-Cure w/ (Y,δ )

logY 0.00 (0.81) 0.93 0.00 (0.77) 0.94 0.07 (0.42) 0.93 0.00 (0.88) 0.95 -0.11 (0.88) 0.89
White & Royston 0.00 (0.83) 0.94 0.00 (0.79) 0.93 0.06 (0.44) 0.94 0.00 (0.87) 0.96 -0.09 (0.87) 0.90
Binning by (Y,δ ) 0.00 (0.86) 0.94 0.02 (0.79) 0.94 0.02 (0.44) 0.94 0.00 (0.81) 0.96 -0.08 (0.71) 0.92

Non-Cure w/ T
logT 0.01 (0.83) 0.94 -0.03 (0.81) 0.92 0.16 (0.52) 0.88 0.01 (0.94) 0.96 -0.09 (0.99) 0.92
Binning by T 0.00 (0.84) 0.94 0.00 (0.80) 0.94 0.09 (0.47) 0.92 0.00 (0.86) 0.96 -0.07 (0.78) 0.94

Cure w/ (G,Y,δ )
Approx Cure 0.00 (0.87) 0.93 0.02 (0.78) 0.94 0.02 (0.44) 0.95 -0.01 (0.81) 0.96 -0.08 (0.94) 0.92
Approx + Int* 0.00 (0.88) 0.93 0.02 (0.82) 0.94 0.03 (0.44) 0.94 0.00 (0.89) 0.96 -0.05 (0.93) 0.95

Complete Case 0.18 (0.39) 0.83 0.29 (0.41) 0.77 0.03 (0.43) 0.96 0.00 (0.54) 0.95 0.00 (0.57) 0.95

*Includes Ĥ0(Y ) : G : X1 interaction in imputation model
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Table 2: Characteristics of N = 1226 Study Patients at HNSCC Diagnosis

N (%) or Missing N (%) or Missing
Characteristic Mean (SD) N (%) Characteristic Mean (SD) N (%)

Model Variables

Age at Diagnosis 59.5 (11.7) Comorbidities 1 (0.01)
Cancer Stage 0 (0) None 343 (27.9)

I/Cis 162 (13.2) Mild 535 (43.6)
II 123 (10.0) Moderate 239 (19.4)
III 181 (14.7) Severe 108 (8.8)
IV 760 (61.9) Cancer Site 0 (0)

Cigarette Use 0 (0) Larynx 245 (19.9)
Never 285 (23.2) Hypopharynx 53 (4.3)
Current 559 (45.5) Oral Cavity 413 (33.6)
Former 382 (31.1) Oropharynx 515 (42.0)

HPV Status 685 (55.8)
Negative 320 (26.1)
Positive 221 (18.0)

Auxiliary Variables

Gender 0 (0) Enrollment Year 0 (0)
Female 315 (25.6) 2003-2008 559 (45.5)
Male 911 (74.3) 2009-2011 363 (29.6)

Alcohol use 1 (0.01) 2012-2013 304 (24.7)
Never 115 (9.3) No. Sexual Partners 16.8 (53.4) 765 (62.3)
Current 300 (24.3) BMI 26.9 (5.9) 6 (0.4)
Former 810 (66.0)

Table 3: Cox Proportional Hazards Cure Model of Time-to-HNSCC Recurrence

Complete Case Analysis, N = 540 Approx Cure + Int*, N = 1226 White and Royston, N = 1226

Patient Logistic Failure Time Logistic Failure Time Logistic Failure Time
Characteristic OR, 95% CI HR, 95% CI OR, 95% CI HR, 95% CI OR, 95% CI HR, 95% CI
Age at Diagnosis

10 Year ↑ 1.07 (0.91, 1.26) 1.23 (1.02, 1.45)† 1.14 (1.00, 1.31)† 1.08 (0.98, 3.95) 1.14 (0.99, 1.31) 1.08 (0.98, 1.18)
Cancer Stage

I/Cis (ref)
II 0.94 (0.31, 2.88) 2.17 (0.51, 9.23) 1.25 (0.57, 2.74) 1.67 (0.70, 3.95) 1.26 (0.56, 2.84) 1.68 (0.66, 4.28)
III 2.25 (0.84, 6.00) 2.91 (0.72, 11.6) 2.36 (1.18, 4.72)† 2.42 (1.22, 4.79)† 2.31 (1.19, 4.47)† 2.42 (1.13, 5.19)†

IV 2.42 (1.11, 5.31)† 2.77 (0.68, 11.1) 3.32 (1.74, 6.33)† 2.76 (1.48, 5.16)† 3.25 (1.84, 5.75)† 2.78 (1.39, 5.59)†

Cigarette Use
Never (ref)
Current 1.03 (0.57, 1.89) 0.63 (0.34, 1.14) 1.46 (0.97, 2.18) 0.98 (0.70, 1.38) 1.49 (1.00, 2.21)† 0.99 (0.72, 1.35)
Former 1.09 (0.63, 1.87) 0.56 (0.35, 0.90)† 1.27 (0.85, 1.90) 0.94 (0.66, 1.33) 1.28 (0.84, 1.93) 0.95 (0.69, 1.32)

HPV Status
Negative (ref)
Positive 0.43 (0.21, 0.87)† 0.80 (0.35, 1.82) 0.34 (0.19, 0.58)† 0.91 (0.55, 1.48) 0.38 (0.19, 0.76)† 0.82 (0.52, 1.28)

Comorbidities
None (ref)
Mild 1.14 (0.66, 1.97) 0.93 (0.48, 1.81) 1.14 (0.77, 1.69) 0.89 (0.65, 1.23) 1.14 (0.80, 1.62) 0.89 (0.65, 1.21)
Moderate 1.32 (0.65, 2.68) 1.47 (0.72, 2.98) 1.66 (1.08, 2.56)† 1.10 (0.75, 1.61) 1.68 (1.12, 2.53)† 1.09 (0.74, 1.60)
Severe 1.70 (0.73, 3.92) 0.79 (0.24, 2.60) 1.94 (1.10, 3.43)† 1.07 (0.63, 1.80) 1.96 (1.09, 3.52)† 1.05 (0.62, 1.80)

Cancer Site
Larynx (ref)
Hypopharynx 7.90 (0.00, Inf.) 2.42 (0.88, 6.64) 1.93 (0.88, 4.22) 1.43 (0.77, 2.67) 1.91 (0.88, 4.16) 1.46 (0.76, 2.80)
Oral Cavity 1.58 (0.83, 3.00) 1.33 (0.61, 2.89) 1.24 (0.81, 1.90) 1.33 (0.90, 1.97) 1.24 (0.81, 1.90) 1.34 (0.92, 1.95)
Oropharynx 1.51 (0.66, 3.44) 0.93 (0.39, 2.18) 1.68 (0.94, 3.02) 1.02 (0.62, 1.68) 1.57 (0.84, 2.94) 1.11 (0.69, 1.78)

*Includes Ĥ0(Y ) : G : X (−p) interaction in imputation model † Significant at p = 0.05
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