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Abstract 

 

 Energy-banded ions from 10’s to 10000’s of eV are observed in the low latitude 

auroral and sub-auroral zones during every large (minimum DST <-150 nT) geomagnetic 

storm encountered by the FAST satellite. The banded ions persist for many FAST orbits, 

lasting up to 12 hours, in both the northern and southern hemispheres. The energy-banded 

ions often have more than six distinct bands, and the O+, He+ and H+ bands are often 

observed at the same energies. The bands are extensive in latitude (~50-75 degrees on the 

dayside, often extending to 45 degrees) and magnetic local time, covering all MLT over 

the dataset of storms. The distributions are peaked in the perpendicular direction at the 

altitudes of the FAST satellite (~350-4175 km), though in some cases the precipitating 

component dominates for the lowest energy bands. At the same time, for some of the 

events studied in detail, long lasting intervals of field-aligned energy dispersed ions from 

~100 eV to 40 keV are seen in LANL geosynchronous observations, primarily on the 

dayside and after magnetosheath encounters (i.e. highly compressed magnetosphere). We 

present both case and statistical studies of the banded ions.  These bands are a new 

phenomenon associated with all large storms, which are distinctly different from other 
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banded populations, and are not readily interpreted using previous models for particle 

sources, transport and loss.  The energy-banded ions are an energetically important 

component of the inner magnetosphere during the most intense magnetic storms.  

 

 

 

1. Introduction 

 

Major geomagnetic storms trigger a wide range of changes in the earth’s 

magnetosphere, inluding the transfer of a significant amount of energy, and are usually 

associated with coronal mass ejections, large interplanetary magnetic fields and/or high 

pressure solar wind plasma [Baker et al., 2001].  There are many unusual particle 

acceleration processes that can occur, including prompt energization of relativistic 

electrons in the radiation belts [Wygant et al., 1994], acceleration of electrons over a 

broad energy range in the auroral zone [Shiokawa et al.,1996; Dombeck et al., 2005; 

Nakajima et al., 2007] and strong outflow of ionospheric ions in the polar cap [Moore et 

al.,1999; Strangeway et al., 2000]. Although much of the research on storms in the 

auroral zone has focused on electrons, including those that produce sub-auroral red 

(SAR) arcs and great red aurora [Kozyra et al., 1993, 1997; Shiokawa et al., 1997], there 
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are unusual signatures in the ions that are seen during large storms, and which are 

sometimes coincident with these electron signatures.  

During superstorms (defined as Dst < -240 nT by Mac-Mahon and Gonzalez, 

[1997]), the surprising discovery was made that soft (< 1 keV) ions penetrate deep within 

the plasmasphere -  as low as 33 degrees MLAT (L~1.4) [Swider 1990; Huang et al., 

2005].  This is much deeper than is possible for ions to drift inward from the magnetotail 

and remain within this energy range, thus the source of these ions is unknown.  FAST 

observations revealed that these ions often had multiple energy bands [Thomsen et al., 

2004; Cattell et al., 2004; Kozyra et al., 2004] ranging from 10 eV to 10 keV.  As shown 

in Colpitts et al., [2012] and demonstrated later in this paper, multiple ion species appear 

in a single energy band, thus this banding cannot be explained by currently known 

mechanisms which organize bands by constant velocity rather than constant energy 

seperating ion species into different bands.  DMSP observations indicated that the soft 

ions appeared first without banding and then later developed this feature. However, these 

observations were made at ~850 km altitude by satellites in the Defense Meteorological 

Satellite Program (DMSP) and thus viewed only the precipitating component.  In contrast 

FAST observations revealed a higher energy component with a double loss cone 

distribution not seen at DMSP altitudes. The source of these ions and their evolution to 

multiple energy bands are major focus areas of ongoing research.    
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The banded ions are often accompanied by plasma waves banded in frequency 

[Parrot et al., 2006; Colpitts et al., 2012].   These banded ions are part of a 

phenomenology of subauroral to midlatitude features, which includes unstructured and 

structured warm (10s to 10000s of eV) ion distributions (both multiple energy bands and 

wedge-like ions) with possibly multiple source mechanisms that span three regions 

during superstorms:  (1) the diffuse auroral region, (2) the region between the diffuse 

aurora and the plasmasphere and (3) plasmaspheric field lines.   Taken together, these 

features provide clues to the mechanisms that transport warm ions into the inner 

magnetosphere during superstorms.  At these times, warm ions can provide up to 30% of 

the intense ring current energy in the dawn sector [c.f., Hamilton et al., 1988] making 

them an energetically important component during extreme events.  The deeply 

penetrating warm ions (particularly the protons) transfer considerable energy to the 

thermal electrons through Coulomb collisions supplying an additional energy source for 

the subauroral electron temperature peak and SAR arcs and altering the energetics of the 

subauroral region.  A better understanding of the details of this phenomenology and how 

its elements are inter-related is needed to place constraints on source mechanisms and 

trace associated effects throughout the geospace system.   

  In this paper, we focus on warm (< 10 keV) ions with multiple energy bands in 

order to better understand the morphology and evolution of this population.  These ions, 

banded in energy from 10 eV to 10 keV,  were first reported in conjunction with studies 
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of the October, 2003 “Halloween” magnetic storms  [Thomsen et al., 2004; Cattell et al., 

2004; Kozyra et al., 2004]. The energy-banded ions during the Halloween storms lasted 

for more than 12 hours, often had more than six distinct bands, and the O+ and H+ bands 

were sometimes at the same energies. The bands were evident on both dayside and 

nightside and were extensive in latitude (~50-75 degrees on the dayside, often extending 

to 45 degrees, the low-latitude limit of the FAST observations). The distributions peaked 

in the perpendicular direction (locally mirroring) at FAST altitudes. 

Energy-banded ions have previously been reported on auroral field lines at low 

altitudes (FAST, DMSP and DE-2), intermediate altitudes (DE-1) and at high altitudes 

(Polar and Cluster).  In the low altitude auroral zone, energy dispersed discrete bands, 

which lasted for a few hours and had equal O+ and H+ velocities, have been reported 

during quiet times. Two interpretations for the observed structures were proposed (see 

e.g. Boehm et al., [1999], Plate 1): (1) convective drift dispersion from an ionospheric 

heating source [Hirahara et al., 1997]; and (2) time-of-flight dispersion from an 

equatorial acceleration event [Boehm et al., 1999].  Both models predict that O+ and H+ 

ions will have the same velocity, that energy bands have ratios dependent on latitude 

(field line length) and that energy increases with latitude.  The equatorial source model 

assumes an impulsive acceleration process that is broad in latitude, as described by Mauk 

[1986].  Examples include substorm injections and compression of the magnetosphere by 

high solar wind dynamic pressure.  The observed energy dispersion with latitude depends 
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on the length of the field line squared and results in bands in energy with ratios of [0.25, 

.75, 1.25…]2.  In the ionospheric acceleration model, the latitude dispersion depends on 

the ExB drift velocity and results in bands with ratios of [1, 2, 3…]2 or [1.5, 2.5, 3.5…]2.  

Boehm et al. [1999] concluded that both their observations and those of Hirahara et al. 

[1997] were most consistent with the equatorial acceleration mechanism. 

A statistical study of O+ and H+ ions using FAST data over the year 2000 also 

identified features with multiple-energy bands [Yao et al., 2008]. They concluded that the 

hydrogen and oxygen bands had different source mechanisms because they had different 

occurrence probabilities and locations. The H+ bands generally were observed at higher 

latitudes within the auroral oval and during quiet times, whereas the O+ bands occurred 

at lower latitudes around the equatorward boundary of the auroral oval during more 

active intervals. They concluded that the oxygen bands were consistent with a velocity 

filter from higher to lower latitudes and that the bands may supply oxygen from the 

ionosphere to the ring current during storms.  Since keV protons in an ionospheric plasma 

(1000-2000 cm-3 with electron temperature of 0.5 eV) have a Coulomb loss lifetime of 1-

2 hours compared to 0.5-1 day for oxygen [c.f., Kozyra et al., 1987], these bands may 

initially have been a mixture of the two species with the protons being rapidly depleted 

by Coulomb collisions leaving the bands dominated by oxygen.   

 Using DE data (at low and mid-altitudes), Frahm et al. [1986] and Winningham et 

al. [1984] described energy dispersed ion bands, within the region of diffuse aurora, from 
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a few eV to a few keV and peaked at a pitch angle of 0º. In contrast to the Boehm et al. 

[1999] and Hirahara et al. [1997] observations, these occurred primarily during the main 

phase of storms. Similar to Hirahara et al. [1997], the bands were interpreted as being 

the result of convective dispersion from an ionospheric, auroral source. 

At higher altitudes, Polar observations of multiple energy dispersed bands (~1-

100s of keV) were reported by Fennell et al. [1998] and Peterson et al. [1998]. These 

events had O+ and H+ at the same energy and were weakly peaked at 90º-pitch angle. 

They extended from L ~3-8, were most often seen from ~6-18 MLT, and in quiet times 

following substorms. Three different explanations were proposed: (1) convection of time 

variable discrete ion sources in the plasma sheet [Peterson et al., 1998]; (2) time-of-flight 

following prompt energization in an electric field pulse associated with substorm 

dipolarization with bands dependent on grad B drift time [Li et al., 2000]; and (3) time-

varying ExB convection of a tail source population for energies >~1keV and an 

ionospheric source for energies <~1keV  [Fennell et al., 1998]. A subsequent particle 

tracing simulation [Ebihara et al., 2004] concluded that the Fennell et al. mechanism was 

most likely, with the bands being a result of enhanced convection (during the substorm) 

followed by reduced convection. 

Note that there are other band-like features that have been observed and modeled, 

including the ion ‘gaps’ [see, for example, Kovrazkhin et al., 1999], ‘wedge’-type 

dispersion [Ebihara et al., 2001] and velocity-dispersed ions in the plasma sheet 
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boundary layer [Ashour-Abdallah et al., 1992; 2005; Bosqued et al., 1993]. During 

superstorms, ion distributions resembling wedge-like ions frequently appear as an 

important component at the lowest latitudes overlapping with the banded ions.  These low 

latitude warm ion structures have also been described as injections into the low energy 

tail of the ring current distribution by McFadden et al., [2001].  These are essentially 

complementary descriptions of the same phenomena, which is not treated in the present 

study.  Many of these previously reported band-like structures are observed during some 

of the events with ion banding shown herein and can be co-located with the bands, but 

are different phenomena; warm energy-banded ions at constant energy across all 

component species such as these have not previously been reported. 

Wave emissions with harmonics near the ion cyclotron frequency are also seen 

during large geomagnetic storms. The occurrence of harmonic emissions in the 

DEMETER wave data in association with large storms was first described by Parrot et 

al. [2006]. The fact that energy banded ions were also seen during these intense storms 

led Colpitts et al. [2012] to investigate the association of the two phenomena, utilizing 

both particle data and wave data from the FAST satellite.  Details of the relationships 

between the short-lived (in the satellite frame) waves seen on DEMETER and both the 

banded ions and a different type of banded VLF emissions are discussed in Colpitts et al. 

[2012].  The banded waves and ions were observed in all 26 large (minimum Dst < -100 
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nT) storms investigated, and it was determined that the waves could be generated by the 

banded ions, though the exact free energy source was not definitively identified. 

There is some evidence to suggest that banded ions are also observed on the same 

field lines as the banded waves reported by Parrot et al. [2006] in the trough region.    

See for example the discussion of the trough region banded waves in Colpitts et al. 

[2012] during the 7-10 November 2004 superstorms at L=2.3 – 3.0 in the DEMETER 

data on the nightside in their Figure 2 and the observations of banded ions on these same 

L values at this same time but on the dayside in the FAST data in their Figure 1.  The 

same is true on 21 January 2005 for DEMETER at 20:09 UT (9.7 MLT) and FAST at 

20:07 UT (1.7 MLT) in the northern hemisphere.  Since the phenomenon of banded ions 

covers virtually all MLTs and the heating of the thermal plasma by the banded ions 

contributes to the subauroral Te peak which is also extended over all MLTs, the 

observations by DEMETER and FAST on the same L values but different MLTs offers 

valid support for the relationship between banded ions and trough region banded waves 

suggesting they are part of the overall phenomenology during superstorms. 

In this paper, we address the occurrence of these energy-banded ions during large 

storms [Bell et al., 1997; Mac-Mahon and Gonzalez, 1997].  As we will show, these ions 

are a distinctly different population from previously reported ion bands and are associated 

with unique characteristics of strong geomagnetic storms.  Potential source populations, 

energization and loss mechanisms will be discussed.  The role of this ion population in 
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superstorm dynamics will be briefly addressed.  The paper will present case studies of 

three superstorms and one strong storm that provide a range of driver conditions that can 

be used to illuminate the origin and effects of these ions, as well as statistical data on the 

ion band occurrence. The data sets utilized are described in Section 2. The revealing 

example of energy banded ions from the 29-31 October 2003 ‘Halloween’ superstorm is 

discussed in Section 3. The three other exemplary events – 07-11 November 2004, 20-24 

November 2003 and 26-31 August 1998 - are presented in Section 4.  Statistical results 

on the occurrence of banded ions during the set of eleven superstorms and 26 large 

storms are presented in Section 5, and a detailed comparison of the geosynchronous 

observations with previous models is given in Section 6. Discussion and conclusions are 

given in Section 7. 

 

2. Instrumentation and Data Sets 

 

The data presented in this study comes primarily from the FAST satellite, with 

additional data from LANL instruments on geosynchronous satellites provided for the 

case studies. The complete features of the FAST particle instrumentation are presented in 

Carlson et al. [2001] for the electrostatic analyzers (ESAs) and Klumpar et al. [2001] for 

the ion mass spectrometer, TEAMS (Time-of-flight Energy Angle Mass Spectrograph), 

and most of the data presented herein is from these two instruments. The fields 
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instruments are described by Ergun et al. [2001] (the electric field and waves instrument) 

and by Elphic et al. [2001] for the dc and search coil magnetic field instruments.  In the 

initial years of the mission, instruments were turned on and data were usually limited to 

auroral latitudes (>60º ILAT). After 1999, data were regularly obtained at lower latitudes.  

For three of the four illustrative events shown here, data were obtained down to 45º 

invariant latitude.  

A series of 13 geosynchronous satellites carrying the LANL particle instruments 

were launched from 1976-2002 into geosynchronous (6.6 RE, equatorial) orbit with ~10 

second spin rates.  The last 5 of these satellites carried Magnetospheric Plasma Analyzers 

(MPA) covering electrons and protons ~ 1 eV - 40 keV [Bame et al., 1993], data from 

which are shown here.  

In addition, data from the ACE satellite are used to provide information on solar 

wind conditions.  Both magnetic field [Smith et al., 1999] and plasma data [McComas et 

al., 1999] are used.  Dst data were obtained from the WDC for Geomagnetism, Kyoto Dst 

index service. 

 

 3. The prototype case of the Halloween 2003 storms  

 

 The Halloween storms of October 24 – November 5 2003 have been studied 

extensively [see e.g. the AGU Special Collection “Violent Sun-Earth Connection Events 

This article is protected by copyright. All rights reserved.



of October-November 2003, introduction: Gopalswamy, N. et al., 2005], and are among 

the most severe events of the satellite age.  The two storms on October 29-30 and 

October 30-31 in particular featured Earth-directed CMEs with speeds up to 2200 km/s, 

allowing for a Sun-Earth transit time of just ~19 hours; and the geomagnetic response 

was fast and intense, with maximum running Ap indices of 252 and 221 for the two 

storms, both among the 16 largest values ever recorded.  Unfortunately, these storms 

were so intense that ACE and WIND solar wind plasma measurements were unavailable 

due to contamination from the high fluxes of energetic particles, but Skoug et al. [2004] 

used 1-D Maxwellian fits to the low-resolution data to estimate the solar wind speed, 

density, and temperature, with estimates of 2240 km/s (October 29) and 1710 km/s 

(October 30) for the maximum flow speeds associated with these two storms.  

Figure 1 shows the ACE magnetic field measurements, FAST ion data, and the 

Dst level (from the Kyoto World Data Center for Geomagnetism) for the 5-day period 

from October 28-November 01.  The two shock fronts are evidenced by the sharp rise in 

the interplanetary magnetic field (Bmag, top panel) at ~06:00 UT on October 29 and 16:20 

UT on October 30, which are followed by periods of strong southward Bz (fourth panel). 

After the first shock, there is a ~12 hour delay before the IMF turns southward, it reaches 

25 nT and remains southward for ~9 hours, while after the second shock there is a ~3 

hour delay, it reaches 30 nT, and doesn’t turn northward for ~4 hours.  The Kp index (not 

shown) reaches 9o at about ~20:00 UT, indicating the highest level of geomagnetic 
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activity.  The Dst (bottom panel) shows two very large drops corresponding to the two 

storms. The fifth panel shows the FAST ion spectrograms, to indicate when in the storm 

we have FAST ion observations, illustrating the orbital period and several data gaps 

where there is no ion data for a number of orbits due to data rate and antenna availability.  

The y-axis is energy in log form from 4-30000 eV on and the color scale is log of energy 

flux. At this time resolution there is no way to resolve the energy-banded ions (or any 

other feature – the data are merely presented here to show when FAST ion data are 

available), but the orbits in which we observe ion bands are indicated by the magenta 

bands at the top of the panel.  The orbits that will be expanded and plotted in subsequent 

figures are indicated by a black bar above the magenta bar and the label “Figs 2-5”.  The 

magenta bands (in this figure as well as Figures 8, 11 and 13) include both dayside and 

nightside observations of banded ions (both for most orbits), as there is no correlation 

between phase of storm and observation of bands in the dayside, nightside, or both. 

 Figure 2 shows 6 consecutive dayside (MLT of ~8 to 11) auroral passes on 

10/31/03 covering the time period 01:54-13:06 UT, but plotted versus latitude rather than 

UT.   From left to right, the panels are energy spectrograms of ions with perpendicular 

(60-120 deg), upgoing (150-180), and downgoing (0-30) pitch angles (these ranges are 

used for all subsequent pitch angle sorting as well) for the 6 orbits, with energy in log 

form from 4-30000 eV on the y-axis, latitude from 45-85 degrees south on the x-axis, and 

the log of the energy flux in color scale.  Several ion bands are visible in the downgoing 
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and perpendicular components, at energies from 10s of eV to 10s of keV, lasting the 

entire >11 hours, over a wide range of latitudes from ~50-75 degrees (more commonly 

56-72).   

Below these latitudes and extending to 45 degrees is the subauroral region 

associated in the magnetosphere with the ring current peak flux and in the ionosphere 

with the subauroral electron temperature peak and SAR arcs.  This region is very 

important to subauroral energetics during superstorms.  At this time DMSP F13 observed 

the subauroral electron temperature peak spanning the interval  ~44-51 degrees latitude at 

dawn and dusk, reaching 8000 K at the beginning of the interval and dropping below 

6000K by the end.  The subauroral temperature peak is produced by the transfer of 

energy between ring current ions and thermal plasmaspheric electrons and thus identifies 

the region of overlap between the ring current and plasmasphere.  The bulk of the energy 

transfer actually occurs equatorward of the clear ion energy bands where the overlap 

between these ion energy bands and wedge-like ion distributions are partially obscured 

on the FAST spectrograms by penetrating radiation from the high energy ring current and 

radiation belts.  In other storms in which the penetrating radiation is weaker, wedge-like 

ion distributions are sometimes observed overlapping with the most equatorward segment 

of the banded ions.   

During some orbits, there is evidence for local modification of the band energy, 

possibly due to local potential drops, e.g. the gradual drop and subsequent rise of the 
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energy in the bands at latitude ~67-76 visible in orbit 28774. The banded ions are 

observed primarily equatorward of and within the main auroral zone, although in some 

passes, they extend to latitudes where the injected cusp ions are observed (e.g. top three 

passes near ~70-75 degrees).  The ion fluxes peak near 90º, with almost no upgoing ions, 

consistent with mirroring close to the satellite altitude and loss to the atmosphere of ions 

in the loss cone (the few observed upgoing ions in the latter 3 orbits likely mirror below 

FAST, while the majority of the mirroring occurs above the satellite).  The lower energy 

bands in particular are evident in the downgoing component, while the higher energy 

bands are in some cases restricted to the perpendicular population (e.g. bands at latitudes 

56-67 in orbit 28773).  Downgoing lower energy ions consistent with the FAST 

observations of the precipitating lowest energy bands are seen over the same range of 

magnetic latitudes by DMSP satellites during this storm [Huang et al., 2007], though the 

peaks of their observations occur during the gaps in the FAST ion data visible in Figure 

1.  The persistent banding was not clear in the DMSP observations.   

As mentioned above, cusp ions are also evident at low (~10-200 eV) energies and 

high (67-85 ILAT) latitudes in this figure, and the cusp often appears to represent the 

poleward boundary of the banded ions.  This is a common feature in the banded ion 

observations, though the cutoff is in many cases not very sharp (e.g. orbit 28772, where 

both bands and low energy ions are evident at ~67-70 deg ILAT).   The question of 

whether the banded ions are present on open field lines in the cusp is therefore an open 
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one, but they are far more common on the closed field lines in the auroral zone and if 

they are present in the equatorward edge of the cusp they quickly disappear at higher 

latitudes.  Further investigation of the poleward boundary of the banded ions and their 

presence (or lack thereof) on open field lines could provide information as to their 

generation mechanism, and will be a part of the more rigorous planned statistical study 

discussed in Section 7.   

 Examples of the different relationships that are observed between down-going 

electrons and the banded ions are shown in Figure 3, which plots the perpendicular ions 

(left side) and downgoing electrons (right side) for the same passes as Figure 2.  Inverted-

V electron signatures are evident in the top 5 panels, e.g. in the second panel at ~75-76, 

79, and 80°.  In all panels (particularly the top panel at ~73-67°, the second at ~76-77 and 

the third panel at ~70-74°), broadband electrons up to ~1 keV can be seen.  In addition to 

the ion banding, which is equatorward of these electron features, there was strong 

perpendicular ion heating and ion outflow at energies < ~100 eV at the same latitudes as 

the observed electrons, in the cusp and auroral zone in association with both ‘inverted-V’ 

and broadband electron acceleration. Note that FAST observed very intense ion outflow 

(of both H+ and O+), peaking at > 1010 ions/cm2 s throughout this interval, consistent with 

previous observations of ionospheric outflow during large geomagnetic storms [Moore et 

al., 1999].  The outflow may provide a source population for bands observed at later 

times. 
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The banding seen on the nightside is often more complex and intermittent than on 

the dayside, as can be seen in Figure 4 which shows energy spectrograms of the 

perpendicular component of ions (left panels) and the downgoing component of electrons 

(right panel) observed on the nightside during 6 orbits within the same storm.  The orbits 

shown are those immediately after the 6 orbits of dayside ions shown in Figure 2, as the 

nightside bands are less evident during the timespan shown in that figure.  During this 

particular storm, the nightside bands were more prevalent during the recovery phase, 

though as previously mentioned there is no consistent correlation between storm phase 

and dayside/nightside observations.  As with the dayside ions, ion bands across the 

energy range from 10s of eV to 10s of keV are visible and persistent through the 6 orbits 

(~ 10.5 hrs.); but in this case the bands exhibit energy dispersion, with higher energies 

observed at higher latitudes, and the ion bands only rarely occur at latitudes above ~65º. 

However, as on the dayside, the bands are equatorward of the primary auroral electron 

acceleration, evident in the right panels as large-scale inverted-V electron signatures e.g. 

in the third panel at ~74 and 72-21°, and occasionally as broadband electron acceleration 

(bottom panel ~74°), both of which are again associated with ion outflow in the auroral 

zone and the cusp region (not shown).  Intense ion outflow was less common on the 

nightside, but was observed during orbit 28780.  Of course, ion outflow peaks near the 

polar cap boundary, and the electron spectrograms in the right panels indicate that data 
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was not taken in this region for several of these orbits (orbits 28797-28799, data gaps 

above ~75 deg.)  

Figure 5 shows the energy spectrograms of all ions, H+, O+, and He+ for the first 

orbit shown in Figure 2, from 1:56 – 2:13 UT (~50-80 ILAT).  The bands are evident in 

all of the component species, and although the relative flux varies from peak to peak, the 

bands are often observed at the same energy in different species; as is the case here with 

e.g. the ~100 eV and ~ 1000 eV bands evident in both H+ and O+ (and to a lesser extent, 

He+) from ~ 2:00-2:09.  Therefore, the banding can not be time-of-flight, velocity 

dispersion from a common source, as proposed by Boehm et al. [1999] and Hirahara et 

al. [1997] for their quiet time banding events. In addition, there is very little energy 

dispersion with latitude.  There is no evidence for the energy band ratios predicted by 

either of the time-of flight mechanisms discussed by Boehm et al. [1999].  

Time-of-flight dispersion is sometimes visible in the distribution functions within 

an individual energy band.  Figure 6 shows the ion distribution for the one second 

snapshot at 2:03:29-02:03:30 in two different formats: energy flux as a function of energy 

with pitch angle in color scale (top panel) and energy flux as a function of pitch angle 

with energy in color scale (bottom panel).  There is dispersion evident in the relation 

between the pitch angles and the energy of particles within a given band at a given time.   

For example, the bands at ~20 eV and ~100 eV visible as peaks in the top panel have 

clear pitch angle dispersion, with the lower energy components (left section of the peak) 
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having higher pitch angles (~123-134°, red and orange) and the higher energy 

components closer to perpendicular (~72-95°, blue and green). 

Figure 7 shows energy spectrograms from the LANL-97A geosynchronous 

satellite during the time of the last orbits in Figures 2 and 3, when LANL-97A was on the 

dayside and in relatively close conjunction with FAST.  The banded ions are evident in 

all look directions, but most prominently in the field-aligned directions (N and S), with 

clear energy dispersion.  Fits to these dispersion curves do not directly match any of the 

dispersion models, as we’ll discuss in detail later.  Similar energy-dispersed ions are 

observed with the LANL satellites during most of the strong storms, often following 

sudden compressions of the magnetosphere.  Particle injections in the equatorial plane 

may provide a source for the banded ions; potential source populations are being 

addressed in a separate study as discussed in Section 7. 

 

4. Case studies of the November 2004, November 2003 and August 1998 storms 

  

 Potential plasma sources, as well as energization and loss mechanisms, can be 

addressed by comparing the canonical observations obtained during the Halloween storm 

to observations from other large storms.  The next two events occurred during the same 

season (end of October through end of November), the FAST orbital planes were similar, 

and southern hemisphere data were collected. There were, however, distinct differences 

This article is protected by copyright. All rights reserved.



observed in the time until the convection electric field penetrated to low L-shell, the 

density of the plasma sheet and the strength of the initial shocks [Mannucci et al, 2008; 

Abdu et al., 2003].   

The superstorm on 20-22 November 2003 had a several hour delay before the 

enhanced electric field penetrated to low L [Mannucci et al, 2008].  The plasma sheet as 

observed by the LANL geosynchronous satellites was dense, reaching ~5 cm-3 at the time 

of minimum symH [Ebihara et al., 2005].  In the underlying ionosphere, the subauroral 

electron temperature peak observed by DMSP reached ~10,000 K but only after the 

prompt penetration electric field appeared and soft energy-banded ions drifted onto these 

field lines. In contrast, the November 2004 case had no delay in the electric field 

penetration [Mannucci et al, 2008].  In fact, the largest vertical plasma drifts due to a 

prompt penetration electric field ever recorded over Jicamarca occurred during this event 

[Fejer et al., 2007].  The nightside plasma sheet density observed by the LANL satellites 

near the times of minima in symH was only ~1-2 cm-3. The subauroral electron 

temperature peak was much weaker in this case [Kozyra et al., 2009].  The August 1998 

storm also featured a prompt penetration electric field [Abdu et al., 2003], as well as 

observations of strong ULF waves which are thought to have produced the fast buildup of 

the electron radiation belts and slow buildup of the inner proton belt that occurred during 

this storm [Hudson et al., 2001].  These distinctions between the environments in which 

the energy-banded ions were produced can offer constraints on potential source 
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mechanisms, though it is well beyond the scope of this paper.  A study of the much larger 

set of moderate storms is now underway, and comparing the environmental conditions 

during those storms, especially those where the bands are not present, to those presented 

in this study will hopefully allow us to determine the generation mechanism(s) 

responsible for the ion bands, as discussed in Section 7.   

 

A.  November 6-11, 2004 

 

 The November 7-11 2004 storm is shown in Figure 8 in the same format as Figure 

1, with the addition of ACE solar wind proton speed, density and temperature to the ACE 

magnetometer data, FAST ion data and Dst.  This storm actually consists of two separate 

storms, and the two shock fronts of the storms are evidenced by sharp rises in Bmag (top 

panel) at ~18:00 UT on November 7 and November 9.   This is followed by southward 

IMF Bz (panel b) which lasts for ~ 12 hrs after each shock before turning northward 

(though after the second shock hits there is a brief southward period and then a longer 

northward period before the true southward turning).  These two storms are also evident 

as large drops in the Dst index (bottom panel), reaching ~ -370 after the first shock and ~ 

-290 after the second.  This storm interval was associated with solar wind speeds of  ~800 

km/s (third panel), not nearly as fast as in the Halloween storms but typical of strong 

geomagnetic storms. The FAST data shows banded ions seen in almost every orbit 

This article is protected by copyright. All rights reserved.



throughout the main and recovery phases of the storm (indicated again by magenta bars 

above the FAST data, panel f).   

Note that the bands are present even at the onset of the storm (first magenta bar), 

which is occasionally but not generally observed. However, the exact time the bands are 

first observed within a given event is somewhat subjective.  In this case, as with any time 

the bands are present at onset, the ions prior to the storm are very weak, structured but 

not necessarily banded at constant energy in the way the storm-time bands are, present in 

only the H+ in single loss cone distributions, and confined to a narrow, higher latitude 

range.  This is consistent with the quiet time H+ bands observed by Yao et al. [1998].  

Only after the onset of the storm (or after the arrival of the penetration electric field if it is 

delayed, as evidenced in the next example) do the bands intensify, expand to include O+ 

and He+, and extend to lower latitudes.  This can happen somewhat gradually, again 

leading to a bit of subjectivity in determining when the bands “turn on”, but the timing of 

the first magenta bar in this and all figures of this type indicates a time when the ions are 

clearly observed to be this new type of storm-time ion bands.     

Figure 9 shows FAST data from 08:48-09:04 UT on November 8, 2004, taken 

over ILAT from 63.9-47.3 degrees south, MLT 7.3-8.5, and altitude ~3400-3800 km 

during the main phase, when Dst was ~ -320 nT and solar wind speed was ~650 km/s.  

Note that this is the next auroral zone crossing after the interval shown in Figure 1 of 

Colpitts et al. [2012]. The top four panels plot, respectively, the perpendicular ion energy 
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flux from 4-30000 eV, the downgoing ion energy flux, and the ion pitch angle 

distributions over two different energy ranges, 10-300 eV and 300-10000 eV.  

 As in previous figures (2, 3 and 4), banded ions are prominent in the top two 

panels and last from ~ 8:50-9:03 UT.  They are distinct from the ‘wedge’-type dispersion 

[Ebihara et al., 2001] or storm-time ring current ions described by McFadden et al. 

[2001], which are also evident at the higher energies and lower latitudes.  The two 

different phenomena can co-occur, as in this event, as well as other days presented herein 

(see Figure 12).  Consistent with the banding events shown above, the ion fluxes peak in 

the perpendicular direction and there is little or no upgoing flux.  The pitch angle 

distribution can be seen in more detail in the third and fourth panels: there is a double 

loss cone at the higher energies and a single loss cone at lower energies.  This pitch angle 

structure of the ion bands is illustrated more clearly in the left panel of Figure 10, which 

shows the energy flux distribution of all species of ions at ~08:59:17 (indicated by the 

black vertical line in Figure 9).  The bands are clearly visible in the ion distribution, 

including both single loss cone bands at lower energies and double loss cone bands at 

higher energies.  The right panel of Figure 10 shows the ion energy flux distribution for 

~02:03:30 on October 31, 2003, during the Halloween storms and at a time (marked by a 

vertical black line in Figure 5) within Figures 2, 3 and 5.  In this case there is a clear 

single loss cone at lower energies, and at higher energies there is still a single loss cone, 

but the downgoing flux is considerably less than in the perpendicular direction.   
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 The bottom two panels of Figure 9 show the energy flux of H+ and O+ ions, 

using the TEAMS ion mass spectrometer data.  Note that the color scales are different in 

each panel.  Ion bands are observed in both species, with several bands visible at the 

same energies in both species, particularly the lower energy bands (~20-300 eV) as well 

as some higher energy bands. This storm event displays many of the signature features 

that were also clear in the figures showing the warm ions during other storms and 

described above: low energy ions tend to extend to lower latitudes, bands occur for 

multiple orbits (10s of hours), are more prominent on the dawnside, and the existence of 

oxygen and hydrogen bands at the same energies is not consistent with previously 

described mechanisms [Boehm et al., 1999; and Hirahara et al., 1997].  The observation 

of both H+ and O+ at these low latitudes and with double loss cones at higher energies is 

also in contrast to the quiet time observations of Yao et al. [1998], who observed H+ at 

higher latitudes and with single loss cones only.   

 

B.  November 20-22, 2003 

 

The November 20-22, 2003 storm differs from the other storms investigated here 

in that the penetration electric field is delayed by several hours.  This feature can 

potentially offer insight into the formation of the bands.  Figure 11 shows an overview of 

the storm in the same format as Figure 8.  The shock front of the storm is evident at 
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~08:30 as a sharp rise in Bmag (top panel), as well as in proton flow speed, density and 

temperature (panels c-e).  A few hours later, Bz (second panel) drops below zero 

(southward IMF), and remains southward for ~12 hours.  The Dst (bottom panel) drops to 

-422 nT, making this the strongest storm of the last solar cycle by this measure, but the 

solar wind flow speed (panel c) only reaches a moderate level of ~780 km/s. 

Figure 12 shows perpendicular ion spectra from 12 consecutive dayside (MLT ~ 

6-12) passes near the beginning of this storm (onset occurs at ~ 11:22 UT [Mannucci et 

al., 2008], between the third and fourth panels on the left, orbits 28997 and 28998).  The 

6 panels on the left are observed before the penetration electric field is established (~ 

18:00 UT as determined from a combination of TEC, vertical E x B drift, and IEF Ey 

[Mannucci et al., 2008]), while the panels on the right occur afterward.  The bands are 

already evident in the first orbit (28995, top left), before the onset of the storm, though 

they are weak and confined to a narrow latitude range.  Around the time when the 

penetration electric field arrives (29000, 29001), the bands move to considerably lower 

latitude (~ 50-60 deg as opposed to ~ 60-70 both before and after), as do the cusp 

injections visible in orbits 28998-29001.  Note that the banded ions are present 

throughout the interval, both before and after the electric field penetrates.  As can be seen 

in Figure 11 (magenta bars above 6th panel), the banded ions are observed throughout the 

main and recovery phases of the storm as well.   
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C.  August 26-31, 1998 

 

The geomagnetic storm of August 26-31, 1998 provides another illustrative 

example of the banded ions, in particular highlighting the presence of the bands at the 

same energies in different ion species and the coincidence of the bands with frequency-

banded electromagnetic waves.  Figure 13 gives an overview of this storm in the same 

format as Figure 8.  The initial shock front is visible in the Bmag data (top panel) at 7:00 

UT on August 26, and it is followed after ~ 16 hours by extended southward IMF Bz 

(second panel) lasting ~ 24 hrs with a brief northward turning during that time.  The solar 

wind speed (third panel) drops off quickly over this time, from ~ 880 to ~ 520 km/s, 

typical values for storm-time and quiet-time solar wind speed.  The Dst (bottom panel) 

drops from ~ 30 to ~ -155, indicating a sizable storm, and FAST banded ions are 

observed throughout the main and recovery phases of the storm.    

Figure 14 shows FAST data from 05:06-05:11UT (MLT 2.2-2.3, ILAT 70.4-64.1) 

on August 30, 1998 (during the recovery phase of the storm in the auroral zone, ~ 3 days 

after the peak Dst of -155 nT, with Dst ~ -50 nT and solar wind speed ~570 km/s), in the 

same format as Figure 9 but with the flux of He+ ions added in the bottom panel.  There 

is very little flux in the downgoing component (second panel), with only the lowest 

energy band evident with low flux, perhaps because the lowest energy bands are higher 

(>1000 eV) than in the case shown in Figure 9 (~20 eV).  This is also evident in the low- 
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and high-energy pitch angle plots (third and fourth panel), where the low-energy plot in 

this case covers 4-2000 eV (high-energy 2000-30000) and the downgoing loss cone is 

partially filled in at low energies and empty at high energies.  As in the case shown in 

Figure 5, several energy bands are visible in the H+, O+, and He+ populations at the same 

energies (in particular ~2000 and ~5000 eV from 05:07:15-05:07:45, ~1000 and ~2000 

eV from 05:08:30-05:10:30), ruling out time of flight mechanisms for the generation of 

the bands. 

Strong VLF emissions with frequencies from ~700 to 2000 Hz were observed in 

association with this storm  (see Figure 5 in Colpitts et al. [2012], which shows the waves 

and the ions for the FAST pass just before the one in Figure 9).  For this storm, the 

banded waves are not located significantly equatorward of the primary auroral electrons 

as in the other storms, and, in fact, throughout this storm the banded waves and ions are 

observed more in the central auroral region than on the equatorward edge or sub-auroral 

region where they are typically observed.  This could be related to the fact that this is not 

a superstorm; it is the weakest (minimum Dst -155) of the storms shown here and one of 

the weaker storms in which the banded ions have been observed to date.  This can be seen 

in Table 1, which lists the storms investigated for this study chronologically, as well as 

the minimum Dst, presence of banded ions (Y meaning yes for all) and presence of 

banded waves (Y again being yes, P being possible/partial, N/A reflecting the lack of 

available wave data, green shading representing FAST wave data and yellow shading 
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DEMETER data).  In fact, the interval shown here is a time of rapidly fluctuating north-

south IMF and recurrent auroral activity.  It is most likely a high-speed stream interval 

following behind the CME that initiated the magnetic storm.  The auroral activity 

generated by the fluctuating IMF prolongs the recovery phase of the storm in Dst. 

The close connection between the occurrence of waves and of banded ions for 

strong storms (minimum Dst -150 nT for FAST field data, -100 nT for DEMETER) when 

wave data were available on either DEMETER or FAST is presented in Table 1.  Unlike 

the long-lived ion bands, the banded waves typically persist for only on the order of a few 

minutes, and are seen during times when the ion density peaks, though there does not 

appear to be a consistent density threshold that is conditional for the wave observations. 

Details on the possible causal connections between the waves and ions are explored in 

Colpitts et al. [2012]. 

 

5. Statistical occurrence 

 

 The warm energy-banded ions were observed in all 24 very large (Dst < -150 nT) 

storms encountered by the FAST satellite from May 1998 – December 2006 (see Table 

1), and an additional 13 large (Dst < -100) storms added to the study to take advantage of 

the DEMETER satellite to investigate banded waves coincident with the banded ions 

[Colpitts et al., 2012].  A banded ion event was identified when banded ions were 
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observed in any region from the auroral zone to deep within the plasmasphere.  It was not 

required that all elements of the complex phenomenology during superstorms including 

the penetration of ions to extremely low latitudes and the overlap with wedge-type ions 

deep within the plasmasphere be present for an event to be identified.  Thus the statistical 

study focuses on banded ions alone and the conditions under which they appear 

throughout the auroral and subauroral regions.  Since banded ions are observed during 

virtually all levels of magnetic activity [c.f., Yao et al., 2008] in the diffuse auroral 

region, the intensity of storms during which they occur is extended to include large and 

some moderate storms as well.  A more rigorous statistical study incorporating all 

moderate storms is beyond the scope of this paper, but is planned for the near future and 

discussed in Section 7. 

  The banded ions were observed in both the northern and southern hemispheres, on 

the dayside and the nightside, though the dayside observations tend to be more constant 

in energy while on the nightside the bands are more typically dispersed in energy and 

latitude, with higher energies observed at higher latitudes.  The bands occurred 

throughout the main and recovery phases of the storms, at all local times MLT 0-24, all 

FAST altitudes ~350-4175 km, and geomagnetic latitudes ranging from 45-85 degrees, 

extending to the lower latitudes during the main phase and higher latitudes during the 

recovery phase.  Due to data rate and contact time with and availability of antennae, we 

did not always receive data from both the nightside and dayside (and northern and 
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southern) portion of an orbit over the desired 45-90 MLAT range, accounting for many of 

the passes where the bands were not observed, but over the dataset of storms all MLT and 

latitude are covered. The bands were observed coincident with frequency-banded waves 

during some intervals of each storm on either FAST or DEMETER in all 27 storms 

where wave data exist.   

The observation of banded warm ions during storms with intensity < -100 nT is 

consistent with the results of Huang et al., [2005].  They identified significant soft ion 

precipitation in DMSP observations at subauroral latitudes extending to as low as 33 

degrees (but more typically to 40 degrees) during all storms with minimum Dst <-200 nT 

(roughly superstorm intensity).  In contrast, they found weak warm ion precipitation for 

storms with minimum Dst in the range -100 to -150 nT but only if the main phase lasted 

for several hours.  They did not investigate in detail the occurrence of energy bands 

within this precipitating component. 

The typical energy range of the ion bands is 100-10,000 eV, but the observed 

energies extend from ~ 10-25,000 eV.  Observed ion densities were typically 1-2  

cm-3, but extended from 0.5-5.0 cm-3.  The bands are typically roughly constant in 

energy, aside from the occasional nightside dispersion mentioned previously.  Bands are 

often evident in all component species (H+, He+, and O+), and often all at the same 

energies, with energy flux ratio O+/H+ ~ 0.1‐2.0.  The flux peaks in the perpendicular, or 

trapped population, and can have a single loss cone distribution with the bands visible in 
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both the downgoing and perpendicular components, or double loss cone distribution with 

bands only in ions with perpendicular pitch angles.  The single loss cone is more common 

for the lower energy bands, but the distribution is uncorrelated with altitude, latitude, 

MLT, or storm phase, unlike in previous reports of banded ions such as Yao et al. [2008], 

which was restricted to the year 2000, where a single loss cone distribution was observed 

for the quiet time H+ bands and a double loss cone for storm time O+ bands.    

 

6.  Test of models for the origin of the bands using geosynchronous data 

 

During some of the events studied, including the Halloween storms, the LANL 

geosynchronous satellites observed broad regions of energy dispersed field-aligned ions 

from ~100 eV to 40 keV. The ions occurred primarily on the dayside and often in 

association with strong magnetospheric compressions (inside geosynchronous).  The 

simultaneous observation of dispersed banded ions at geosynchronous orbit and the 

energy banded ions at low altitudes provides the opportunity to test various models for 

the sources of and mechanisms producing the energy-banded ions at low altitudes, as well 

as the dispersed ions at geosynchronous. The two sources usually invoked are equatorial 

(for example, substorm injection on the nightside) and ionospheric (for example, outflow 

from the polar cap boundary). The energy dispersion is interpreted as being due to time-
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of-flight from the source region, in combination with subsequent bounce motion along 

the magnetic field. 

Useful times for the comparison include the bounce period, which for 1 keV H+ is 

~300s and for 1 keV O+ is ~1200s.  Historically, the typical cutoff when modeling and 

observing particle transport in this region of the magnetosphere is that grad-B dominates 

for energies >100 keV and EXB for energies <30 keV, with some overlap of the two 

processes in the intermediate 30-100 keV range [Schultz and Lanzerotti, 1974; Sheldon 

and Gaffey, 1993].  McFadden et al. [2001] used FAST data to establish a cutoff at ~5-10 

keV as the region below which grad-B is not effective at FAST locations.  At the energies 

and L-shells of the FAST observations shown here, there is no doubt that the particles are 

EXB drifting eastward, and not grad-B drifting westward, so grad-B and curvature drift 

effects cannot be responsible for the observed banding.  At the LANL spacecraft location, 

there is some grad-B contribution at the highest energies, but as the bands are dispersed 

down to ~ 100 eV the grad-B drift cannot explain the dispersion.  For L~6-10, only ions 

with E>~1.5 keV will have a large contribution to their motion due to the grad B drift; for 

lower energies, co-rotation dominates.  The energy dispersion observed by the LANL 

satellites was compared to that expected from time-of-flight. The relationship between 

the energy, E, time of observation, t, time of injection, t0, and source distance, S, is given 

by:     

  E(t) = 1/2mi[S/(t - t0]2                                       [1]   
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or defined for t: 

𝑡 − 𝑡0 = 𝑆[𝑚/2𝐸]1/2                                                                                                      [2] 

For dispersion due to bounce motion along the magnetic field, the source distance 

depends on multiples of the field-line length and whether the source (observation point) 

is equatorial (ionospheric). When both the source and observation points are the same 

location, the energy will depend on n2  (n=1,2,3…bounce number); when they are 

different the energy depends on [(2n-1)/2]2.  Figure 15 shows the time (in minutes after 

0200 UT on 31 October 2003) vs. 1/E1/2 plots for a subset of the LANL 02A ion band 

observations (thick lines), with linear fits to each band shown underlying the 

observations.  All of the bands observed in both the north- (top panel) and south-looking 

(bottom panel) directions show the expected linear relationship for time-of-flight effects. 

The slopes of the bands from the linear fits shown in Figure 15, as well as those observed 

with another LANL satellite (97A), are plotted in Figure 16 (along with the calculated 

errors in the fits) for comparison with the slopes expected for an ionospheric source (S= 

l/2, 2l/2, 5l/2…) or an equatorial source (S=l, 2l, 3l…), where l is the length of the field 

line through the geosynchronous location.  The assumed species are H+ (top), He+ 

(middle) and O+ (bottom).  

Although most of the ion bands fit a time-of-flight dispersion, in some cases it 

was for an ionospheric source and in some for an equatorial source [Thomsen et al., 

2004].  Note that, for some bands, multiple bounces are required to fit the dispersion; 
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however, not all the intermediate bounces are observed.  In addition, multiple source 

injection times were necessary (t0 in Figure 16). This is not inconsistent with the multiple 

magnetospheric compressions and/or the FAST observations of ionospheric outflow over 

a long interval.  The tan shading in Figure 16 indicates some clustering in t0, with most of 

the calculated slopes bunched around a few times.  Preliminary analysis suggests these 

times may be separated by roughly the period of ion Pc5 oscillations (~3-3.5 minutes), 

and Pc5 waves are often observed just after the magnetopause compressions in these 

strong storms.  This implies that Pc5 oscillations may play a role in the generation or 

modulation of these ion bands, but more investigation is required to determine the exact 

nature of the relationship between the bands and Pc5 waves. 

 

7.  Discussion and conclusions 

 

We observe energy-banded ions from 10s to 10000s of eV in the auroral and sub-

auroral zones during every large (minimum Dst <-150 nT, in some cases <-100 nT) 

geomagnetic storm encountered by the FAST satellite.  Intense bands with similar 

properties can persist for 12 hours, as in the Halloween storm.  Some degree of ion 

banding is seen throughout all of the storms, although some individual orbits do not 

display visible bands over the latitude range measured or during all magnetic local times 

observed.  We observe multiple distinct bands (often > 6), and the O+, He+ and H+ bands 
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are often observed at the same energies.  During the times of banded ion observations, 

shorter periods of a new type of frequency-banded electromagnetic wave are also 

observed.  In addition, long lasting intervals of field-aligned energy dispersed ions from 

~100 eV to 40 keV are seen in the LANL instruments onboard geosynchronous satellites 

for some of the events studied in detail. We find that the geosynchronous ions have 

energy dispersion consistent with time-of-flight, but without a consistent source region 

for all of the bands, and that the FAST bands only show such dispersion within an 

individual band and not across bands or latitude.  The temporal spacing of the LANL 

observations appears to be somewhat consistent with the period of Pc5 oscillations. The 

relationship between this and the energy spacing in the FAST observations is unclear, but 

it is possible that Pc5 oscillations play a role in the generation or modulation of the ion 

bands.  Investigation of the potential nature of the role of Pc5 oscillations is beyond the 

scope of this paper, but will be a part of the statistical study described below. 

There have been several other independent observations of banded ions and 

investigations into the source regions and generation mechanisms of the bands; however, 

none of the observations or proposed generation mechanisms can explain the ion bands 

reported here.  On the basis of the different ILAT and MLT dependence for O+ and H+ 

energy banded ions in a statistical study of ions observed by FAST, Yao et al. [2008] 

concluded that the O+ and H+ bands had different source mechanisms. They suggest that 

the H+ ions are plasma sheet ions generated by impulsive particle injections due to pulsed 
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dayside reconnection, while the O+ ions are ionospheric and generated by convective 

transport.  Ebihara et al. [2001] modeled three types of energy banding observed in 

Viking data referred to as wedge-like structures. The data were consistent with a 

generation mechanism that combined variable source density and location with time-

dependent convection electric fields.  Their ‘Type-1’ banding is consistent with the 

energy dispersion we observe in some cases, in particular in the nightside and 

occasionally at the low latitude edge of the dayside energy-banded ions, where the ions 

increase in energy with increasing latitude.    

These wedge-like structures cannot be produced by ion drifts alone but require 

particular spatial or temporal characteristics in the source population [Ebihara et al., 

2001].  Type 1 (ordinary) patterns are produced by a source that is narrow in the radial 

direction and extended in the azimuthal direction described as azimuthal stripes. 

Simulations indicate that the wedge-like ions are formed most likely from a cold ion 

source (T ~100 eV) rather than the hot plasma sheet  [Ebihara et al., 2001, 2008].  

Yamauchi et al. [2009] speculate that the cold dense plasma sheet (CDPS) [c.f., Fujimoto 

et al., 1997] or superdense plasma sheet intervals [Borovski et al., 1997] are likely 

sources of the cold plasma for the type 1 wedge-like ion structures. Another possible 

source is the impulsive electric field associated with substorms that is radially confined 

but azimuthally extended.  

This article is protected by copyright. All rights reserved.



Utilizing a particle tracing code with an idealized storm-time electric field model, 

Huang et al. [2005, 2007] examined possible source locations for low energy 

precipitating ions observed by DMSP at low latitudes during major storms. Based on the 

observed separation between electrons and ions, they concluded that these ions must have 

a source inside the plasmasphere, not the plasma sheet, and were associated with the large 

and time-varying penetration electric fields. One of the events discussed was the 

Halloween storm. The advantage of DMSP is the fact that there are multiple spacecraft 

with the ability to simultaneously observe precipitating ions, the penetration electric field 

and the electron temperature peaks; the disadvantage is that the bulk of the energy banded 

ions shown here are mirroring at higher altitudes and would not be evident in the 

precipitating component measured by DMSP.  

The comparison of the FAST banded ions and the geosynchronous data during the 

Halloween storm provides evidence in the FAST data and the LANL data for an 

ionospheric source, as well as for a plasma sheet source. The LANL data shows clear 

evidence for an equatorial dayside source associated with magnetospheric compressions, 

likely the boundary layer. The equatorial source observations are consistent with Mauk 

[1986] and Quinn and McIlwain [1979], as well as with the source characteristics inferred 

by Boehm et al. [1999]. Although the LANL data are consistent with time-of-flight 

dispersion, the FAST data do not appear to be since the O+ and H+ bands have the same 
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energies (not velocities). There is no clear evidence for different sources for the O+ (or 

He+) bands than for the H+ bands. 

The banded ions are observed in all of the large storms encountered by the FAST 

satellite, but they are also observed in some more moderate (minimum Dst ~ -100 nT) 

storms.  In particular, the January 21 2005 storm had a minimum Dst of only -105 nT, but 

featured several phenomena typically associated with larger storms [Kozyra et al., 2013; 

2014], including warm energy-banded ions similar to those reported herein, with multiple 

bands at the same energies observed in different components (H+ and He+ or H+ and O+).  

We are preparing additional studies of this fascinating storm, including the finding that 

the observed bands were consistent with time-of-flight mechanisms from a localized 

source if we suppose a superposition of multiple bands formed by protons bouncing 

between mirror points combined with the time-of-flight separation of heavier ions (He+ 

and O+) arriving directly from the source.  This type of mechanism would not explain the 

bands observed in the case studies shown here, where there are many bands with all three 

components at the same energies.   

Another finding from this January 2005 storm is that the bands occurred on the 

dayside only during northward IMF conditions, and this together with other plasma 

characteristics allows us to infer that intermittent capture of low-latitude boundary layer 

(LLBL) plasma was the source for these banded ions.  While in all of our case studies 

here the bands are observed in both northward and southward IMF conditions, this is an 
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interesting additional source to be considered for these ions, combined with the 

ionospheric ion outflow, equatorial plasma, and substorm injections.  In addition to the 

studies of this particular moderate event, we are beginning a study of the much larger 

subset of moderate storms encountered by FAST as well as quiet times, where we will 

determine in what percentage of moderate storms the ion bands are observed and if there 

is a threshold for how strong a storm must be for the bands to be present, or if there is 

some other factor besides minimum Dst which determines the presence of the bands.  

This study will also include statistical studies of the relative strength, number and energy 

range of the bands in each component species as a function of storm phase, MLT, 

latitude, altitude, Dst and other parameters as well as address potential source populations 

for the ion bands, and should give us a clearer picture of how the banded ions are 

generated.   
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Figure Captions: 

Figure 1.  ACE magnetic field measurements of (a) magnitude of B (Bmag); (b) GSM Bx; 
(c) GSM By; and (d) GSM Bz (North-South component of B); (e) FAST ion 
spectrograms, showing all times when FAST ion data was taken during the storm 
(magenta bars above this panel represent orbits in which banded ions are observed, black 
bar and “Figs 2-5” indicate the orbits which will be shown expanded in subsequent 
figures); and (f) Dst level (from the Kyoto World Data Center for Geomagnetism) for the 
5-day period from October 28-November 01, 2003. 
 
Figure 2.  FAST energy spectrograms of ions with (a) perpendicular (60-120 deg), (b) 
upgoing (150-180), and (c) downgoing (0-30) pitch angles for 6 consecutive dayside 
(MLT of ~8 to 11) auroral passes on 10/31/03 covering the time period 01:54-13:06 UT, 
with energy in log form from 4-30000 eV on the y-axis, latitude from 45-85 degrees 
south on the x-axis, and the log of the energy flux in color scale. 
 
Figure 3, (a) Perpendicular ions and (b) downgoing electrons for the same passes and in 
the same format as Figure 2. 
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Figure 4. Energy spectrograms of (a) the perpendicular component of ions and (b) the 
downgoing component of electrons observed on the nightside (MLT ~ 15-22) during the 
6 orbits immediately after the 6 orbits of dayside ions shown in Figure 2. 
 
Figure 5. Energy spectrograms of (a) all ions, (b) H+, (c) O+, and (d) He+ for the first 
orbit shown in Figure 2, from 1:56 – 2:13 UT (~50-80 ILAT).  The bands are evident in 
all of the component species, and often at the same energy in different species (e.g. the 
~100 eV and ~ 1000 eV bands evident in both H+ and O+ and to a lesser extent, He+ 
from ~ 2:00-2:09) and therefore cannot be time-of-flight, velocity dispersion from a 
common source. Black vertical line indicates time of data shown in Figure 10. 
 
Figure 6. Ion distribution for the one second snapshot at 2:03:29-02:03:30 in two 
different formats: (a) energy flux as a function of energy with pitch angle in color scale, 
and (b) energy flux as a function of pitch angle with energy in color scale.  The bands at 
~20 eV and ~100 eV visible as peaks in the top panel have clear pitch angle dispersion, 
with the lower energy components (left section of the peak) having higher pitch angles 
(~123-134°, red and orange) and the higher energy components closer to perpendicular 
(~72-95°, blue and green). 
 
Figure 7. Energy spectrograms from the LANL-97A geosynchronous satellite during the 
time of the last orbits in Figures 2 and 3, when LANL-97A was on the dayside and in 
relatively close conjunction with FAST.  The banded ions are evident in all look 
directions, but most prominently in the field-aligned directions (N and S), with clear 
energy dispersion.   
 
Figure 8.  ACE magnetic field measurements of (a) magnitude of B (Bmag), and (b) 
North-South component of B (Bz); (c) solar wind proton speed, (d) temperature and (e) 
density; (f) FAST ion spectrograms, showing all times when FAST ion data was taken 
during the storm (magenta bars above this panel represent orbits in which banded ions are 
observed, black bar and “Fig 9” indicate the orbit which will be shown expanded in the 
subsequent figure); and (g) Dst level (from the Kyoto World Data Center for 
Geomagnetism) for the 5-day period from 11/06/12:00-11/11/12:00, 2004. 
 
Figure 9. FAST (a) perpendicular and (b) downgoing ion energy spectrograms; (c) low 
energy (10-300 eV) and (d) high energy (300-10000 eV) pitch angle spectrograms; and 
(e) H+ and (f) O+ ion energy spectrograms from 08:48-09:04 UT on November 8, 2004, 
taken over ILAT from 63.9-47.3 degrees south, MLT 7.3-8.5 and altitude ~3400-3800 
km. Black vertical line indicates time of data shown in Figure 10. 
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Figure 10. Energy flux distribution of all species of ions at (a) ~08:59:17 on November 
8, 2004 (indicated by the black vertical line in Figure 9), and (b) ~02:03:30 on October 
31, 2003 (marked by a vertical black line in Figure 5), with the log of the parallel energy 
on the x-axis and perpendicular energy on the y-axis.  
 
Figure 11.  ACE magnetic field measurements of (a) magnitude of B (Bmag), and (b) 
North-South component of B (Bz); (c) solar wind proton speed, (d) temperature and (e) 
density; (f) FAST ion spectrograms, showing all times when FAST ion data was taken 
during the storm (magenta bars above this panel represent orbits in which banded ions are 
observed, black bar and “Fig 12” indicate the orbits which will be shown expanded in the 
subsequent figure); and (g) Dst level (from the Kyoto World Data Center for 
Geomagnetism) for the 6-day period from November 19-25, 2003. 
 
Figure 12. Perpendicular ion spectra from 12 consecutive dayside (MLT ~ 6-12) passes, 
covering the time period 05:23 on November 20 – 05:57 on November 21, 2003; with 
latitude from 45-85 deg on the x-axis. 
 
Figure 13.  ACE magnetic field measurements of (a) magnitude of B (Bmag), and (b) 
North-South component of B (Bz); (c) solar wind proton speed, (d) temperature and (e) 
density; (f) FAST ion spectrograms, showing all times when FAST ion data was taken 
during the storm (magenta bars above this panel represent orbits in which banded ions are 
observed, black bar and “Fig 14” indicate the orbit which will be shown expanded in the 
subsequent figure); and (g) Dst level (from the Kyoto World Data Center for 
Geomagnetism) for the 7-day period from August 25-September 01, 1998. 
 
Figure 14. FAST (a) perpendicular and (b) downgoing ion energy spectrograms; (c) low 
energy (10-300 eV) and (d) high energy (300-10000 eV) pitch angle spectrograms; and 
(e) H+, (f) O+, and (g) He+ ion energy spectrograms from 05:06-05:11 UT on August 30, 
1998 (MLT 2.2-2.3, ILAT 70.4-64.1) 
 
Figure 15. Time (in minutes after 0200 UT on 31 October 2003) vs. 1/E1/2 plots for a 
subset of the LANL 02A ion band observations (thick lines) shown in Figure 7, with 
linear fits to each band shown underlying the observations, for (a) north-  and (b) south-
looking directions.  
 
Figure 16.  The slopes of the bands from the linear fits shown in Figure 16, as well as 
those observed with another LANL satellite (97A), (along with the calculated errors in 
the fits) for comparison with the slopes expected for an ionospheric source (S= l/2, 2l/2, 
5l/2,…) or an equatorial source (S=l, 2l, 3l,…), where l is the length of the field line 
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through the geosynchronous location.  The assumed species are H+ (top), He+ (middle) 
and O+ (bottom). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



Table 1: List of large geomagnetic storms investigated.  Date, minimum Dst, and 
presence of banded ions and banded waves are indicated.  "P" indicates possible, 
but not clear, presence of banded waves, green shading represents FAST wave data, 
yellow shading DEMETER data and "N/A" indicates no wave data available on 
FAST or DEMETER. 
 

Date Min Dst Banded Ions Banded Waves 
05/03-05/07/98 -205 Y Y 
08/26-08/31/98 -155 Y Y 
09/25-09/26/98 -207 Y Y 
09/22-09/24/99 -173 Y Y 
10/22-10/25/99 -237 Y Y 
04/06-04/08/00 -288 Y Y 
07/15-07/17/00 -301 Y P 
08/12-08/14/00 -235 Y P 
09/17-09/19/00 -201 Y Y 
10/04-10/06/00 -182 Y Y 
11/06-11/07/00 -159 Y Y 
03/31-04/01/01 -387 Y N/A 
04/11-04/12/01 -271 Y N/A 
10/21-10/25/01 -187 Y N/A 
10/27-10/31/01 -157 Y N/A 
11/06-11/07/01 -292 Y N/A 
04/17-04/19/02 -127 Y N/A 
04/19-04/21/02 -149 Y N/A 
10/29-10/30/03 -353 Y N/A 
10/30-10/31/03 -383 Y N/A 
11/20-11/21/03 -422 Y N/A 
07/26-07/30/04 -197 Y Y 
08/30-08/31/04 -126 Y Y 
11/07-11/08/04 -373 Y Y 
11/09-11/10/04 -289 Y Y 
01/18-01/20/05 -121 Y P 
01/21-01/23/05 -105 Y Y 
05/08-05/10/05 -127 Y P 
05/15-05/19/05 -263 Y Y 
05/20-05/22/05 -103 Y Y 
05/30-05/31/05 -138 Y Y 
06/12-06/13/05 -106 Y Y 
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08/24-08/26/05 -216 Y Y 
08/31-09/03/05 -131 Y Y 
09/11-09/12/05 -147 Y Y 
04/14-04/15/06 -111 Y Y 
12/15-12/16/06 -146 Y Y 
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