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What is already known about this subject? 

• Aerobic fitness is the most powerful predictor of mortality and metabolic disease 

development in humans.  

• High-fat diets result in increased weight gain in humans and animal models proportional 

to the quantity of fat in the diet. 

• In humans and animals models, a phenotype exists with reduced susceptibility to high-

fat diet-induced weight gain and obesity. 

 

What does this study add? 

• High aerobic capacity is associated with greater capacity to adjust food intake following 

transition to high-fat diet to reduce excess energy intake and subsequent acute weight 

gain. 

• Selection for increased aerobic capacity has resulted in a phenotype that reduces high-

fat diet-induced acute weight gain in part through decreased weight gain per kcal of 

energy consumed. 

• High aerobic capacity is associated with greater brown adipose tissue mass adjusted for 

body weight and increased gene expression of brown adipose genes involved in 

thermogenesis in male rats. 
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Abstract 

Objective: Aerobic capacity is the most powerful predictor of all-cause mortality in humans; 

however, its role in the development of obesity and susceptibility for high fat diet (HFD)-induced 

weight gain is not completely understood. Methods: Herein, we utilized a rodent model system 

of divergent intrinsic aerobic capacity [high capacity running (HCR) and low capacity running 

(LCR)], to evaluate the role of aerobic fitness on 1-week HFD-induced (45% & 60% kcal) weight 

gain. Food/energy intake, body composition analysis, and brown adipose tissue gene 

expression were assessed as important potential factors involved in modulating HFD-induced 

weight gain. Results: HCR rats had reduced 1-week weight gain on both HFDs compared to 

LCR. Reduced HFD-induced weight gain was associated with greater adaptability to decrease 

food intake following initiation of the HFDs. Further, the HCR rats were observed to have 

reduced feeding efficiency, greater brown adipose mass, and expression of genes involved in 

thermogenesis. Conclusion: Rats with high intrinsic aerobic capacity have reduced 

susceptibility to 1-week HFD-induced weight gain, which is associated with greater food intake 

adaptability to control intake of energy dense HFDs, reduced weight gain per kcal consumed, 

and greater brown adipose tissue mass and thermogenic gene expression.  
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Introduction  

     Obesity is a global epidemic, impacting over 35% of the world population (1, 2) and is 

fundamental to the development and progression of metabolic disease states. Therefore, 

understanding the factors influencing weight gain and obesity are critically important. A striking 

characteristic is the presence of individual phenotypes that are resistant to obesity despite 

exposure to the same obesogenic environment (3). This is undoubtedly driven by a complex 

interplay between polygenetic factors. The importance of these polygenetic characteristics is 

emphasized by the observation that up to 2/3 of variability in body mass index is due to heritable 

factors (4). These putative genetic factors predispose individuals to susceptibility or protection 

against weight gain through metabolic, hedonic, hormonal, and satiety driven mechanisms (5, 6, 

7, 8). 

       Weight gain occurs following a shift to a positive energy balance through some combination 

of increased energy intake and/or reduced energy expenditure (9). However, the multi-system 

physiology and polygenetic factors that interact to ultimately control energy balance make it 

difficult to tease out individual components of weight gain that may be used as predictive tools 

or therapeutic targets. Observed changes in energy intake and body weight are not constant, 

with daily and weekly weight fluctuations observed. As such, long-term weight gain results as a 

series of small positive weight fluctuations due to changes in energy intake and expenditure in 

time scales such as weekends (10), holidays (11, 12), and seasonally (13). Thus, any factors 

that could act to reduce the propensity to acutely gain weight in the face of the current energy 

dense food landscape could be important tools in mitigating the increasing number of 

overweight and obesity. 

       Aerobic capacity has been described as the most powerful predictor of all-cause mortality in 

adults(14), and 40 - 70% of an individual’s aerobic capacity is driven by complex genetic 

components (15). However, the mechanisms by which intrinsic aerobic capacity impacts diet-

induced weight gain are not completely known. To assess how intrinsic aerobic capacities 
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impact metabolic health, a rat model was produced based on selective breeding for high 

capacity running (HCR) or low capacity running (LCR) rats, resulting in divergent intrinsic 

aerobic capacities(16). Several studies have found that the HCR rats are resistant to high-fat 

diet (HFD)-induced metabolic diseases and increased adiposity (17, 18), while in contrast, the 

LCR are extremely susceptible to dietary-induced obesity, insulin resistance, and fatty liver (19, 

20). Therefore, the HCR/LCR model presents a unique opportunity to study the role of aerobic 

capacity upon susceptibility or protection against weight gain.  Here we examine the potential 

role of intrinsic fitness to impact short-term, dose-dependent, HFD-induced weight gain through 

modulation of food/energy intake and excess energy storage. Our findings suggest that the high 

aerobic capacity HCR rat is protected from obesity due in part to a better acute regulation of 

energy intake and reduced feeding efficiency compared to LCR rats. 
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Methods. 

   An overview of the methods utilized is provided below, detailed methods are provided in 

supplemental information. 

 

Animals. HCR/LCR rats development and characterization are previously described (16, 17, 

18, 19, 20, 21, 22). Rats 25-30 weeks of age were singly housed (~75-77°F, 12-hour light 

cycle), and acclimatized to the low-fat, control diet (LFD) (D12110704 (10% kcal fat 3.5% kcal 

sucrose, 3.85 kcal/gm), Research Diets, Inc., New Brunswick, NJ, USA) for two weeks prior to 

the initiation of the 1 week HFD, (D12451 (45% kcal fat, 17% kcal sucrose, 4.73 kcal/gm) or 

D12492 (60% kcal fat, 6.8% kcal sucrose, 5.24 kcal/gm)). Food intake was monitored for 1-

week prior to HFD (week 0), and during the 1-week HFD (week 1). Change in food intake and 

change in energy intake was calculated as the difference between the week 0 and week 1 

values. Feeding efficiency was calculated as the weight gained per kcals consumed during 1-

week. The animal protocols were approved by the Institutional Animal Care and Use Committee 

at the University of Missouri and the Subcommittee for Animal Safety at the Harry S Truman 

Memorial VA Hospital. 

 

Body Composition Analysis. Fat mass was measured by magnetic resonance using the 

EchoMRI-900 analyzer (EchoMRI, Houston, Texas, USA) as previously described (18). 

 

Adipose Staining & Morphometrics. Retroperitoneal and brown adipose tissue was collected 

at sacrifice and formalin fixed. Hematoxylin/eosin staining was performed and retroperitoneal fat 

pad images from each animal were analyzed for cell volume and number as previously 

described (19).  

 

mRNA Expression. RNA and cDNA were prepared as previously described (23).  
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Western Blot. Brown fat samples were prepared, separated by SDS-PAGE, and analyzed as 

previously described (23). 

 

Citrate Synthase Activity. Citrate synthase activity was determined as previously described 

(23).  

 

Statistical Analysis. All data is presented as means ± standard error mean. The main effects 

of phenotype and diet were tested by using two-way ANOVA utilizing SPSS (SPSS Inc., 

Armonk, NY). Two-way ANCOVA with body weight as the co-variate was performed for several 

outcomes to statistically control for the consistent difference in body weight between the strains. 

Where significant main effects were observed, post hoc analysis was performed using least 

significant difference to test for any specific pairwise differences. Linear regression analysis was 

performed utilizing GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). Data are 

represented as the regression lines within strains across diets, with dietary groups separately 

annotated. Goodness-of-fit as r2 and the equation of the regression line for comparison of the 

associations are presented. For all analysis, statistical significance was set at p<0.05. 

Page 7 of 35

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

8 
 

Results 

Animal Characteristics. Body weight was ~15% less in the HCR compared to LCR before and 

after the HFD, due to both lower initial fat-free and fat mass (data not shown). The 60% HFD 

increased body weight in both strains (5%, p<0.05). One week of both the 45% and 60% HFD 

resulted in increased fat mass in both HCR and LCR rats (Table 1, p<0.05). Final fat-free mass 

was lower in the HCR than LCR (p<0.05), with no observed diet effect. 

 The 45% HFD resulted in increased 1-week weight gain in both HCR and LCR rats (2.3x 

and 3.3x, respectively, p<0.05) compared to LFD (Figure1A). 60% HFD produced greater 

weight gain in HCR and LCR rats than both the LFD (3.7x and 4.6x, respectively, p<0.05) and 

the 45% HFD (58% and 40%, respectively, p<0.05). Importantly, HCR rats demonstrated less 

weight gain (~65%) compared to LCR regardless of diet (p<0.05). Together these findings 

resulted in a significant interaction of strain and diet on 1-week weight gain (p<0.05). ANCOVA 

for body weight was utilized to determine if the difference in body weight influenced HFD-

induced weight gain. Using final body weight as a covariate did not change the outcomes 

(Figure 1B, p<0.05). Further, the partial Eta2 for the analysis was relatively low (0.117) 

suggesting that only a small percentage of the observed variance was due to body weight 

differences. Importantly, differences in weight gain between the HCR and LCR strains was 

driven by increases in fat mass (Figure 1C). HCR rats gained less fat mass than LCR within all 

diets (p<0.05), while both the 45% and 60% HFD resulted in greater fat mass gain in both 

strains compared to LFD (p<0.05). The observed differences in fat mass resulted in similar 

alterations in change in percent body fat (Figure 1D). 1-week change in fat-free mass was 

minimal, highly variable, and not different between strains or diets (data not shown). ANCOVA 

analysis of the change in fat and fat-free mass was not possible as both data sets failed the 

homogeneity of regression test. Together these data add to our previous data (18) suggesting 

higher intrinsic aerobic capacity is associated with reduced acute HFD-induced weight gain that 

is primarily driven by increased adiposity in the LCR rats. 
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Food and Energy Intake. Data for food and energy intake (FI and EI, respectively) are 

presented in Table 1 and Figure 2. FI during the 1-week 45% and 60% HFD’s was lower in HCR 

compared to LCR (Table 1, p<0.05). Compared to the LFD, HFD’s trended to increase FI in the 

LCR (p=0.060). Following adjustment of FI by ANCOVA, the main effect of strain disappears 

(Table 1). The partial Eta2 (0.361) highlights that the body weight difference between the strains 

is a moderate determinant of FI. We also examined how FI was altered within each animal 

during the transition from the LFD to the HFD (Figure 2A). FI after 1 week of HFD was 

subtracted by the LFD FI that was measured 1-week prior. Introduction of the 45% HFD 

increased FI in both strains (p<0.05). Interestingly, introduction of the 60% HFD resulted in a 

similar increase in FI in the LCR, while the HCR displayed a dramatic reduction in FI following 

transition to the 60% HFD (p<0.05).  

Because HFD’s have different energy density than LFD it is important to additionally 

examine EI. Both HFDs resulted in increased EI compared to LFD condition within both strains 

(Table1, p<0.05). While no difference was observed between HFD diets in HCR, the LCR rats 

on 60% HFD had a 10% higher EI compared to 45% HFD (p<0.05). HCR rats had lower EI 

compared to LCR, effects primarily driven by the 24% and 31% lower EI on the HCR on 45% 

and 60% HFD, respectively. There was a significant interaction for EI as a result of the LCR 

significantly increasing EI to a greater degree on both of the HFD’s compared to the HCR 

(p<0.05). ANCOVA analysis of EI once again diminished differences between the strains (Table 

1, Eta2 ~ 0.366). However, the weight adjusted mean EI of LFD for the HCR rats was higher 

compared to LCR (p<0.05). Both, HFDs resulted in greater weight adjusted EI compared to LFD 

in HCR and LCR rats (p<0.05). Change in EI (Figure 2B) was lower in HCR rats compared to 

LCR (p<0.05), with both HFD diets being higher than LFD across both strains (p<0.05). The 

divergent change in FI observed on transition to the 60% HFD resulted in a smaller increase in 

EI in the HCR compared to 45% HFD, while the LCR demonstrated a significantly larger 

increase in EI compared to 45% HFD. Together these data suggest that the HCR rats have 
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greater adaptability than the LCR for lowering FI when provided with an energy dense HFD, a 

trait that significantly influences HFD-induced weight gain.  

Relationship between FI/EI and Weight Gain. Regression analysis of the body weight gain 

versus change in FI for the HCR and LCR rats is displayed in Figure 3A. The dynamic 

differences in FI and lower weight gain changes result in no observed correlation within the 

HCR, while the LCR rats demonstrate a significant association (p<0.0001, r2=0.545). As 

previously observed (24), change in EI was highly associated with change in body weight 

across strains and diets (p<0.0001, r2=0.751, y=0.094x + 6.134). Figure 3B represents the 

within strain association of body weight gain versus change in EI across all three diets, with both 

HCR and LCR rats having significant associations (p<0.0001, r2=0.403, y=0.049x + 6.203; 

p<0.0001, r2=0.822, y=0.101x + 6.822, respectively). Together these data suggest a stronger 

association between FI/EI and weight gain in the LCR than in the HCR rats.  

Feeding Efficiency. Feeding efficiency (FE) is displayed in Figure 2C and represents a 

comparison of weight gained per kcal consumed during the one-week HFD’s. HCR rats 

displayed ~50% lower FE than LCR across all diets (p<0.05). 45% HFD increased FE in both 

HCR and LCR rats (70% and 2.2x, respectively, p<0.05) compared to LFD. The 60% HFD 

produced greater FE in HCR and LCR rats than LFD (2.8x and 3.0, respectively, p<0.05) and 

45% HFD conditions (62% and 36%, respectively, p<0.05). While the adjustment of FE for final 

body weight by ANCOVA was significant (Figure 2D, p<0.05), the relationships are similar to the 

absolute data and the very small partial Eta2 (~0.043) suggests that body weight differences 

were not responsible for the observed differences in FE. The large differences in FE between 

HCR and LCR rats across diets suggests that additional factors such as previously described 

differences in weight-adjusted resting energy expenditure (18) and metabolic efficiency (21), 

impact the observed association between intrinsic aerobic capacity and HFD-induced weight 

gain. 
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Adipose Mass, Morphometrics and Gene Expression. Adipose depot weights and 

retroperitoneal adipose tissue morphometric analysis are shown in Figure 4. As expected, 

epididymal and retroperitoneal adipose mass was less in HCR rats compared to LCR (Figure 4A 

& B, p<0.05). The LCR rats increased epididymal and retroperitoneal adipose mass following 

the HFD, while HCR on HFDs was not different from LFD. Adipocyte cell size in the 

retroperitoneal fat pad was smaller in HCR compared to LCR. (Figure 4C & 4E, p<0.05). Only 

the LCR demonstrated an increase following the HFD, with only the 45% HFD reaching 

significance. Further, HCR had more adipocytes per frame compared to LCR (Figure 4D & 4E, 

p<0.05), but this was not altered by the HFD in either strain. 

     The previously described weight adjusted differences in resting energy expenditure (18) and 

the observed differences in FE and weight gain could be due in part to differences in brown 

adipose tissue (BAT) mass-dependent thermogenesis. We observed no differences in BAT 

mass between strains, and only the LCR increased BAT mass in response to both HFD’s 

(Figure 5B, p<0.05). However, body weight-adjusted BAT mass was greater in HCR compared 

to LCR regardless of diet (Figure 5E, p<0.05). Previously, our group has observed greater BAT 

mass as a percentage of body weight and reduced weight gain in female HCR rats compared to 

LCR following ovariectomy (20). 

     To evaluate whether these weight-adjusted differences in BAT were associated with potential 

functional changes, we assessed tissue H&E and the expression of genes relevant to non-

shivering thermogenesis and mitochondrial content. In Figure 5A, representative H&E images 

suggest that BAT of HCR rats have increased locularity and mitochondrial content compared to 

LCR. The mRNA expression of mitochondrial biogenesis transcriptional activator, Peroxisome 

proliferator-activated receptor γ co-activator-1α (PGC-1a), was higher in the HCR compared to 

LCR rats (Figure 5C, p<0.05), with significant changes occurring due to both HFD’s compared 

to LFD (p<0.05). Citrate synthase activity, a marker of mitochondrial content, was increased in 

BAT homogenate from HCR rats compared to LCR (Figure 5F, p<0.05), with reductions due to 
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HFD in both strains. Uncoupling protein-1 (UCP1) mRNA expression was greater in HCR rats 

compared to LCR (p<0.05), with no diet effects (Figure 5B). Importantly, the reduced UCP1 

mRNA expression was associated with increased UCP1 protein expression in HCR BAT 

compared to LCR rats (Figure 5G, p<0.05). Interestingly, the observed differences in PGC-1a 

mRNA did not produce similar differences in protein expression (supplemental figure 1). 

Additionally, expression of certain genes involved in FAO, BAT activation, and lipid storage 

were differentially expressed across the strains (supplemental figure 1). Collectively these data 

suggest that the observed increase in weight-adjusted resting energy expenditure in the HCR 

may due to greater non-shivering thermogenesis (18), which may help protect against the more 

dramatic acute HFD-induced weight gain observed in the LCR. 
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Discussion 

    Aerobic capacity is arguably the most powerful predictor of all-cause mortality, (14) but its 

impact on susceptibility for weight gain and obesity is relatively unknown. Herein we report that 

HCR rats bred for high intrinsic aerobic capacity display reduced susceptibility for HFD-induced 

acute weight gain compared to LCR rats bred for low intrinsic aerobic capacity. The protective 

phenotype in the HCR rats is marked by reduced FI/EI and FE. Moreover, the reduced FE in the 

HCR rats may be due to a greater weight-adjusted brown adipose mass that also display higher 

mitochondrial content and higher expression of thermogenic genes and proteins (18).  

    In sedentary mature ad lib fed rodents, acute HFD-induced weight gain is driven by increased 

FI/EI. Increased voluntary FI/EI of HFDs in both rodents and humans (25, 26) is influenced by a 

complex interplay of metabolic and hedonic factors (5, 6, 7, 8). In agreement with previous 

studies using obese prone/resistant rats (24, 27), the HCR/LCR HFD-induced change in EI 

strongly associated with subsequent weight gain. EI is a function of both the energy density and 

quantity of the food consumed, with greater energy density of HFDs resulting in increased 

weight gain in both humans (28) and rodents (29). In this study, the HCR maintains or reduces 

FI following transition to the HFDs, while the LCR consumed more food despite the higher 

energy density of the HFD’s. All told, the smaller weight gain in the HCR rat following transition 

to the HFDs is partially due to avoiding over-consumption.  

     To date, we are aware of no detailed studies that have solely focused on hedonic pathways 

driving FI/EI in the HCR/LCR. However, a recent study examining the interaction between 

hunger and environmental novelty on FI found that the LCR consumed food (normal chow) 

more quickly after a 24 hour fast in a novel environment than the HCR (30). This suggests that 

the drive for the LCR to re-acquire dietary energy is more powerful than the need to explore or 

be vigilant to potential threats in a new environment. These results in the LCR were associated 

with differential expression of CART in the nucleus accumbens and higher circulating levels of 

leptin and ghrelin.  In the present study, we explored a different paradigm, changes in FI/EI after 
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the transition from a low fat to a more palatable and energy dense HFD.  The differences in 

FI/EI following a transition to the HFD in the HCR/LCR model could be due to hepatic energy 

sensing and vagal afferent pathways mediating control in the CNS (18), a hypothesis originally 

tested separately by Friedman (31) and Langhans (32). These groups showed that reductions in 

hepatic fat oxidation lead to greater food intake. We have shown repeatedly that the LCR have 

reduced hepatic mitochondrial content and fat oxidation compared to the HCR. Additional 

potential metabolic predictors of weight gain in human subjects have included low REE, low 

whole body fatty acid oxidation capacity (FAO), and metabolic inflexibility (3, 5), all 

characteristics that we show to occur in the LCR rats compared to HCR (18). The numerous 

combinations of potential metabolic modulators of differences in EI and weight gain between the 

HCR and LCR rats underscores the difficulty of dissecting out any individual causal factors; 

however, it emphasizes that the polygenetic nature of selection for divergent aerobic capacity 

has resulted in multi-factorial components that underlie their susceptibility for HFD-induced 

weight gain. Importantly, other factors that control EI, such as hedonic control, as well as, 

hormonal and satiety feedback signaling cannot be ignored (5, 7), but are beyond the scope of 

this manuscript. 

    As previously stated, susceptibility for HFD-induced weight gain has been ascribed to low 

metabolic rate (8), decreased fat oxidation (33), reduced spontaneous activity (8), low 

sympathetic nervous system activity, and increased storage of dietary fat (34). In this study, we 

observed the HCR rats had lower FE compared to LCR within all diets. The decreased FE of the 

HCR rats could be due to greater metabolic flexibility as suggested by the previously reported 

lower RQ on HFD compared to LCR (18, 22). Importantly, in the same study HCR rats have 

higher whole-body FAO on the LFD compared to LCR (18). The higher whole body FAO in the 

HCR over the LCR is likely due to the greater skeletal muscle and hepatic mitochondrial content 

and FAO capacity witnessed in the HCR (17, 19, 35). In humans, subjects classified as high fat 

oxidizers had lower weight gain compared to low fat oxidizers, which was independent of 24 hr 
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metabolic rate (36). Further, maintenance of weight loss in previously obese subjects is 

associated with higher FAO rates compared to those who regained weight (37). These data 

suggest that the observed reduction in FE of HCR rats on HFD is due in part to increased 

adaptability to utilize fat for energy production. However, other factors that could impact FE such 

as increased tone of sympathetic nervous system (21), higher resting energy expenditure, and 

cage activity (18, 19, 20, 22) have also been observed in HCR compared to LCR rats.    

      REE represents ~75% of total energy expenditure in sedentary, caged rodents, and thus 

significantly impacts energy balance following a transition to a HFD. The HCR display higher 

weight-adjusted REE on LFD and following 3-days of HFD (18, 20). Elevated brown adipose 

tissue (BAT) thermogenesis produces an increase in REE, and results in improvements in 

numerous metabolic disease states (38). Recent studies suggest that increased BAT 

thermogenesis attenuates HFD-induced weight gain (39, 40). Following body weight 

adjustment, the HCR display greater BAT regardless of diet. This data is in agreement with our 

previous finding that female HCR rats display greater BAT (per body weight) which correlated 

with higher REE, and protection from weight gain following ovariectomy (20).  In this study, we 

observed HCR BAT was more multi-locular, had greater mitochondrial content, and altered 

expression of several genes and proteins putatively involved in BAT thermogenesis between 

HCR and LCR rats. Classic markers of increased BAT thermogenesis, PGC-1α and UCP-1, 

were higher in HCR rats compared to LCR. These data suggest that high intrinsic aerobic 

capacity results in a phenotype of greater weight-adjusted BAT mass and possibly enhanced 

BAT thermogenesis, as evidenced by greater mitochondrial content and UCP-1 protein, which 

could potentially explain the observed higher REE reported in our previous studies (18, 20). 

More studies are needed to validate the role of BAT in the HCR phenotype. 

    In summary, we demonstrate that selection for high intrinsic aerobic capacity results in a 

phenotype of reduced 1-week weight gain following initiation of both a 45% and a 60% HFD. 

The protection against weight gain in the HCR is linked to a greater adaptability to control FI 
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upon transition to the HFDs, reduced FE, and possibly increased BAT thermogenesis. In 

contrast, the LCR display greater acute HFD-induced weight gain, putatively due to an inability 

to adapt FI/EI after transition to HFD’s, augmented FE, and reduced BAT size and thermogenic 

gene expression. These data provide insight into potential mechanisms by which intrinsic 

aerobic capacity impacts weight gain, factors which may have particular importance in our 

obesogenic environment in which energy is available in over-abundance.  
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Table and Figure Legends 

Table 1 – Anthropometrics, Food, and Energy Intake Data. Body weight (n=16-24), fat-free 

mass (FFM, n=8-16), fat mass (FM, n=8-16), and percent body fat after the one week HFD are 

expressed as means ± SEM. Food and energy intake (n=16-24) during the one week HFD are 

expressed as means ± SEM. Food and energy intake following ANCOVA for body weight are 

expressed as the estimated mean ± SEM. Estimated effect size of the covariate for each 

ANCOVA analysis are presented as partial eta squared. * p<0.05 main effect HCR vs. LCR, † 

p<0.05 main effect LFD vs. HFD, ** p<0.05 HCR vs. LCR within diet, †† p<0.05 LFD vs. HFD 

within strain, && p<0.05 45% HFD vs 60% HFD within strain. 

 

Figure 1 – High intrinsic aerobic capacity reduces HFD-induced weight gain. Body weight and 

composition was determined prior to and following one week of HFD. One week weight gain (A), 

one week change in fat mass (B, n=8-16), and one week change in percent body fat (C, n=8-16) 

are presented as means ± SEM. § p<0.05 interaction, * p<0.05 main effect HCR vs. LCR, † 

p<0.05 main effect LFD vs. HFD, & p<0.05 main effect 45% HFD vs 60% HFD. 

 

Figure 2 - High intrinsic aerobic capacity is associated with food intake adaptability and reduced 

feeding efficiency following HFD. Change in food and energy intake were calculated as the 

difference between the LFD lead-in week and one week of HFD, and feeding efficiency is the 

weight gain in milligrams for the week divided by the total weekly energy intake: A) change in 

food intake, B) change in energy intake, C) feeding efficiency, and D) estimated feeding 

efficiency adjusted for final body weight (ANCOVA) (n=16-24) are presented as means ± SEM.   

§ p<0.05 interaction,* p<0.05 main effect HCR vs. LCR, † p<0.05 main effect LFD vs. HFD, & 

p<0.05 main effect 45% HFD vs 60% HFD, †† p<0.05 LFD vs. HFD within strain, && p<0.05 

45% HFD vs 60% HFD within strain. 
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Figure 3 – Change in food/energy intake versus weight gain. Linear regression of on week body 

weight gain versus B) change in food intake and D) change in energy intake (blue = HCR, red = 

LCR, LFD = ●, 45% = ■, 60% = ▲) are presented with p-value and r2 when appropriate. 

 

Figure 4 – White adipose tissue. Epididymal (A) and retroperitoneal (B) fat pad masses at the 

time of sacrifice. Morphometric analysis of the retroperitoneal fat pad are presented as (C) cell 

area and (D) cell number are presented as means ± SEM (n=8). (E) Representative H&E 

images of retroperitoneal fat pad. * p<0.05 main effect HCR vs. LCR, †† p<0.05 LFD vs. HFD 

within strain. 

 

Figure 5 – Brown adipose tissue. Representative H&E images of brown adipose tissue are 

presented in panel A. (B) Fat pad mass was determined at sacrifice and estimated mass of 

brown fat pad adjusted for final body weight (ANCOVA) is shown in panel E. Gene expression in 

brown adipose was determined by RT-PCR and western blot analysis: relative mRNA 

expression of (C) UCP1 and (D) PGC1a were normalized to CycA, and western blot analysis of 

brown adipose homogenate for (F) UCP1. Brown adipose mitochondrial content was assessed 

by (G) citrate synthase activity. All data are presented as means ± SEM (n=8). § p<0.05 

interaction,* p<0.05 main effect HCR vs. LCR, † p<0.05 main effect LFD vs. HFD, & p<0.05 

main effect 45% HFD vs 60% HFD, †† p<0.05 LFD vs. HFD within strain, && p<0.05 45% HFD 

vs 60% HFD within strain. 

 

 

Page 23 of 35

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

24 
 

Table 1 

 HCR LCR  

LFD 45% HFD 60% HFD LFD 45% HFD 60% HFD Interaction 

Anthropometrics        
Body Weight (g) 361.1 ± 7.8 363.7 ± 11.8 382.0 ± 10.0

†
 441.6 ± 8.4* 446.8 ± 10.6* 465.6 ± 11.6*,

†
  

Fat-Free Mass (g) 320.7 ± 8.9 322.8 ± 13.6 325.2.7 ± 7.9 370.3 ± 9.5* 374.8 ± 11.4* 369.2 ± 8.8*  

Fat Mass (g) 50.0 ± 4.1 64.6 ± 7.8
†
 56.6 ± 2.9

†
 72.4 ± 4.3* 89.2 ± 6.1*,† 89.1 ± 4.8*,†  

% Body Fat 14.0 ± 1.0 16.4 ± 1.4
†
 15.26 ± 0.8

†
 16.20 ± 0.8* 19.1 ± 0.9*,† 19.33 ± 0.9*,†  

Intake        

Food (g) 103.5 ± 3.6 98.8 ± 4.2 93.4 ± 3.3 111.6 ± 4.0* 122.7 ± 5.6* 122.5 ± 3.8* p<0.05 

Energy (kcal) 398.0 ± 13.9 467.3 ± 19.7
†
 489.2 ± 17.1

†
 429.5 ± 15.3* 580.4 ± 26.7

*,†
 641.8 ± 20.1

*,†,&&
 p<0.05 

Adjusted Intake        

Food (g, covariate 
Final BW) 

116.3 ± 3.5 110.3 ± 3.8 101.3 ± 3.8
††

 105.2 ± 3.2** 113.2 ± 3.7 107.0 ± 4.2 p<0.05 

Co-variate Effect Size Co-variate p-value Partial Eta
2
    

 BW p<0.05 0.361    

Energy (kcal, 
covariate Final BW 

455.1 ± 15.4 519.1 ±17.0
†
 525.1 ± 16.8

†
 399.9 ± 14.1** 537.6 ± 16.6

†
 572.3 ± 18.6

†
 p<0.05 

Co-variate Effect Size Co-variate p-value Partial Eta
2
    

 BW p<0.05 0.366    
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High intrinsic aerobic capacity reduces HFD-induced weight gain. Body weight and composition was 
determined prior to and following one week of HFD.  
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High intrinsic aerobic capacity is associated with food intake adaptability and reduced feeding efficiency 
following HFD.  
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Supplemental Information. 

Detailed Methods. 

Animals. HCR/LCR rats development and characterization are previously described (1, 2, 3, 4, 

5, 6, 7, 8). Male rats used in this study were phenotyped for run time and distance to exhaustion 

during a graded exercise test at 11 weeks of age (average run time (min) - 71.8 & 12.9 , 

average run distance (m) – 1978 & 165, HCR & LCR, respectively). Rats 25-30 weeks of age 

were singly housed (~75-77°F, 12-hour light cycle), and acclimatized to the low-fat, control diet 

(LFD) (D12110704 (10% kcal fat 3.5% kcal sucrose, 3.85 kcal/gm), Research Diets, Inc., New 

Brunswick, NJ, USA) for two weeks prior to the initiation of the 1 week HFD, (D12451 (45% kcal 

fat, 17% kcal sucrose, 4.73 kcal/gm) or D12492 (60% kcal fat, 6.8% kcal sucrose, 5.24 

kcal/gm)). Food intake was monitored for 1-week prior to HFD (week 0), and during the 1-week 

HFD (week 1). Change in food intake and change in energy intake was calculated as the 

difference between the week 0 and week 1 values. Feeding efficiency was calculated as the 

weight gained per kcals consumed during 1-week. Epididymal and retroperitoneal, and brown 

adipose tissues were collected, weighed, and snap frozen in liquid nitrogen after an overnight 

fast. The animal protocols were approved by the Institutional Animal Care and Use Committee 

at the University of Missouri and the Subcommittee for Animal Safety at the Harry S Truman 

Memorial VA Hospital. 

 

Body Composition Analysis. Fat mass was measured by magnetic resonance using the 

EchoMRI-900 analyzer (EchoMRI, Houston, Texas, USA). Fat free mass (FFM) was calculated 

as the difference between body weight and fat mass. Body composition was determined before 

the initiation and 1-week after the HFD. 

 

Adipose Staining & Morphometrics. Retroperitoneal and brown adipose tissue was collected 

at sacrifice and formalin fixed. Hematoxylin/eosin staining was performed on slides produced 
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from paraffin embedded fixed tissue. In retroperitoneal slides, three 20X images from each 

animal were analyzed for cell volume and number utilizing ImageJ as previously described (4).  

 

mRNA Expression. RNA and cDNA were prepared as previously described (9). Real time 

quantitative PCR analysis was performed utilizing a Prism 7000 and SYBR green rat primers 

(listed below). All gene specific values were normalized to relative cyclophilinA mRNA 

expression values. 

Gene Forward Primer Reverse Primer 

Cyc A 
PGC1a 

CGAGCGTTTGCAGACAAAGT 
TGGAGTGACATAGAGTGTGCTG 

CACCCTGGCACATGAATCCT 
GTGAGGACCGCTAGCAAGTT 

UCP1 GGTACCCACATCAGGCAACA TCTGCTAGGCAGGCAGAAAC 
B3Adr GCTATGAAGGTGAGCGTCCA TTGGTTCTGGAGAGTTGCGG 
CPT1a 
GPAT1 
ATGL 

CCTACCACGGCTGGATGTTT  
CCATCTTCAGTACCTTGATTC 
CTTATCCAGGCCAATGTTTG 

TACAACATGGGCTTCCGACC 
AGGACTTCAACTATATGCCC 
ATAAAGTGGCAAGTTGTCTG 

Plin1 TTACGGATAACGTGGTAGAC GAGGATTATCGATGTCTTGG 
Plin2 GGTGGAAGGATTTGATATGG CGATTCAATCAGATGGACAG 

 

Western Blot. Triton X-100 cell lysates were used to produce Western blot ready Laemmli 

samples. Samples were separated by SDS-PAGE, transferred to PVDF membrane and probed 

with primary antibodies. Peroxisome proliferator-activated receptor a co-activator-1 a (PGC-1a) 

antibody was purchased from EMD Millipore (Billerica, MA, USA). Uncoupling protein-1 was 

purchased from Sigma (St. Louis, MO, USA). Individual protein bands were quantified using a 

densitometer (Bio-Rad) and protein loading was corrected by 0.1% amido-black (Sigma) 

staining to determine total protein as previously described (10). 

 

Citrate Synthase Activity. Citrate synthase activity was determined as previously described 

(11). Citrate synthase activity in brown adipose homogenate was used as a general marker of 

mitochondrial content. 
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Statistical Analysis. All data is presented as means ± standard error mean. The main effects 

of phenotype and diet were tested by using two-way ANOVA utilizing SPSS (SPSS Inc., 

Armonk, NY). Two-way ANCOVA with body weight as the co-variate was performed for several 

outcomes to statistically control for the consistent difference in body weight between the strains. 

Prior to ANCOVA analysis, the homogeneity of regression assumption was tested for all 

dependent variables with the body weight co-variate. ANCOVA data are presented as 

calculated adjusted means and standard error means. The data presented use final body weight 

as the co-variate, parallel analysis utilizing the initial body weight as co-variate produced similar 

statistical outcomes. Partial eta squared values are discussed as the calculated proportion of 

the variability in the dependent variable due to the co-variate, and can be utilized as a measure 

of the effect size of the co-variate. All analysis contained Levene’s test of equality of error 

variance to assess the variance of dependent variable for each group. Where significant main 

effects were observed, post hoc analysis was performed using least significant difference to test 

for any specific pairwise differences. Linear regression analysis was performed utilizing 

GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). Data are represented as the 

regression lines within strains across diets, with dietary groups separately annotated. 

Goodness-of-fit as r2 and the equation of the regression line for comparison of the associations 

are presented. For all analysis, statistical significance was set at p<0.05.  
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Supplemental Figure 1 
Gene expression in brown adipose tissue by western blot analysis and RT-PCR were 
determined: (A) PGC-1a protein expression, and relative mRNA expression of (B) CPT1a, (C) 
GPAT1, (D) ATGL, (E) b3Adr, (F) Plin1, (G) Plin2, and (H) FNDC5. All data are presented as 
means ± SEM (n=8). * p<0.05 main effect HCR vs. LCR, & p<0.05 main effect 45% HFD vs. 
60% HFD, ** p<0.05 HCR vs. LCR within diet, †† p<0.05 LFD vs. HFD within strain. 
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