JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 77?7, XXXX, DOI:10.1002/,

. Aerosol Lidar Observations of Atmospheric Mixing in
. Los Angeles: Climatology and Implications for
. Greenhouse Gas Observations

John Wari,1’2 i)ric A. Kort,2 Phil DeCola,3 and Riley Duren”
| |

Correspw author: J. F. Ware, Department of Climate and Space Sciences and Engineering,

Universitgchigan, Space Research Building, 2455 Hayward St., Ann Arbor, MI 48109, USA.

(j ohnwareﬁcb.edu)

1Depart®0f Physics, University of
Michig Arbor, Michigan, USA.
2Dep of Climate and Space

Sciences and Engineering, University of

r

Michigan, Arbor, Michigan, USA.
3Sigma Sprce Corporation, Lanham,

Marylarsss

{

‘NASA ropulsion Laboratory,

Lk

Pasadena, California, USA.

A

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article

D Raddbi:10.1002/2016)D024958ugust 3, 2016, 2:22pm DRAFT

This article is protected by copyright. All rights reserved.


http://dx.doi.org/10.1002/2016JD024953
http://dx.doi.org/10.1002/2016JD024953

10

11

12

13

14

15

16

17

18

19

20

X-2 WARE ET AL.: LIDAR OBSERVATIONS OF ATMOSPHERIC MIXING

Key Points.
© Aerosol lidar maps LA mixing depth in space (pilot mobile study) and
time (2 years data)
© Automatic mixing depth retrieval system finds daily variability far exceeds
seasonal difference
° PBL eiihts in models used for GHG monitoring show biases that will

carry flux estimates

Abstrastesitmospheric observations of greenhouse gases provide essen-
tial information on sources and sinks of these key atmospheric constituents.
To quantig'é(es from atmospheric observations, representation of trans-
port — espmy vertical mixing — is a necessity and often a source of error.
We reportmmotely sensed profiles of vertical aerosol distribution taken
over a twdgyear period in Pasadena, California. Using an automated anal-

ysis system estimate daytime mixing layer depth, achieving high confi-
dence i ernoon maximum on 51% of days with profiles from a Sigma
Space Mg icropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala
CL51 ceilometer. We note that considering ceilometer data on a logarithmic
scale, a stagdard method, introduces an offset in mixing height retrievals.

The mean@noon maximum mixing height is 770 m AGL in summer and
670 m iiE, with significant day-to-day variance (within-season o =
220m = 30%). Taking advantage of the MiniMPL’s portability, we demon-
strate the;ﬂity of measuring the detailed horizontal structure of the mix-

ing laye@omobile. We compare our observations to PBL heights from

sonde launches, NARR reanalysis, and a custom WRF model developed for
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GHG monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena
are both systematically higher than measured, NARR by 2.5 times; these
biases will cause proportional errors in GHG flux estimates using modeled
transport. We discuss how sustained lidar observations can be used to re-

duce flu ion error by selecting suitable analysis periods, calibrating

{

models, o cterizing bias for correction in post-processing.

P

Author Manuscri
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1. Introduction

Improved understanding of sources, sinks, and controlling processes of CO, and other
greenhouse gases (GHGs) will require robust methods for estimating surface fluxes. Ob-
servationslof ﬁHG concentrations capture the influence of known and unknown sources
and sinks ﬁnaking these observations an important complement to models and in-
ventoriog. meeamedown GHG inversions have been used for some time to estimate fluxes
on global TTGns et al., 1990], continental [Bousquet et al., 2000], and regional [Lauvaux
et al., 201Qters et al., 2007; Schuh et al., 2010] scales, and there is increasing focus
on bringimmilar approach to individual cities [McKain et al., 2012; Lauvaux et al.,
2013; Breon etdhl., 2014; Turnbull et al., 2015]. However, relating observed concentrations
to surface@s requires a representation of atmospheric transport. On the regional and
urban scame extent and variablity of vertical mixing is a dominant source of uncer-
tainty | & ¢l al., 2012] that can easily overwhelm the effects of instrument error. It
is theref itical to represent vertical mixing accurately.

The spatiotemporal structure of vertical mixing and diffusion can be complex. However,
it can be 1%&7 to approximate gases recently emitted from the surface as being confined
to and uni y distributed throughout a near-surface layer. A cluster of related concepts
— atmos@r planetary boundary layer (PBL), convective boundary layer, mixed layer
— are COI‘HHOHy used to describe the part of the atmosphere which “responds to surface
forcings Waimescale of about an hour or less.” [Stull, 1988] Various specific definitions

of thesere in use [Seibert et al., 2000], some referring to thermodynamic variables
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and others directly to mixing or turbulence. Layers identified by different definitions can
be conceptually distinct and therefore need to be considered differently.

The layer relevant to the dilution of GHGs is that within which substantial vertical
mixing takes place. The time scale of mixing under turbulent conditions has been es-
timatedqﬁﬁd of minutes [Stull, 1988; van Stratum et al., 2012; Janssen and Pozzer,
2015]. No%s, a fully well-mixed equilibrium may not exist; we therefore follow Seib-
ert et alt @ in referring to the mizing layer. When we refer to the mizing height or
mizing degih,wge mean the altitude of the top of the mixing layer. In addition to GHGs,
the mixing dgpth also controls the dilution of aerosols and of other trace gases produced
primarily within the mixing layer, including those that contribute to poor air quality. It
is well kn at shallow mixing contributes to air quality exceedances as these species
are trapp@r the surface, and observations such as those presented here can help in
defining t(egsence of these conditions.

Whil fficult to measure the vertical distribution of GHGs directly, especially
on an mmmm hasis, we can measure the mixing height by observing the distribution

of aerosol! Lidar systems measure the backscatter of a laser from particulate matter in

the atmos , providing a vertical (or skew) profile of the concentration of scattering
particles. ake use of such an instrument, the Sigma Space Mini-Micropulse LiDAR
(MiniMPT))as well as a Vaisala CL51 ceilometer. These and other remote sensing in-

strumentsjﬁt from continuous operation, making observations at a rate of once per
minute or morg, New models like the MiniMPL are smaller and more portable than earlier

research nd have better signal-to-noise performance than ceilometers.

DRAFT August 3, 2016, 2:22pm DRAFT

This article is protected by copyright. All rights reserved.



69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

X-6 WARE ET AL.: LIDAR OBSERVATIONS OF ATMOSPHERIC MIXING

Note that the mixing layer may not always coincide with the boundary layer commonly
diagnosed by applying thermodynamic criteria to data from radiosondes (e.g. using the
parcel method). In Pasadena, comparison to results from a series of sonde launches
suggests that the mixing depth is related to, though not identical with, the depth of
the boun*ﬂg-kyer as defined using thermodynamic criteria. This finding is consistent
with past @s_ Working in Indiana and the Amazon basin, respectively, Coulter [1979]
and Ma?tEal. [1988] found that mixing depths determined using lidar observations
were simil and well-correlated with, though generally somewhat higher than, those
determined frgm temperature profiles. Marsik et al. [1995] found that mixing depths from
lidar in Am;tan were slightly lower that those measured using sondes. We discuss the
comparis onde data in greater detail in section 3.3.

Given tmh frequency of observations, operational use of lidar to measure the mixing
height be%from an at least partially automated method of analysis. A variety of
schemesE‘in used. The simplest, the gradient method [Endlich et al., 1979], searches
for the : (most negative) vertical gradient of the backscatter signal, indicating a
sudden d@e in density of scatterers. Related is the inflection point method [Menut
et al., 199 ich searches for zeros of the second spatial derivative of the backscatter.
The wavele thod [Ehret et al., 1996; Davis et al., 1997, 2000; Baars et al., 2008], which
we use, fla:;i;nement of the gradient method that takes into account the typical spatial
scale of t ndary region at the top of the mixing layer. The variance method [Hooper
and Eloranta 4986; Menut et al., 1999] identifies the entrainment zone at the top of the
mixing laﬁ detecting a maximum in the temporal variance of backscatter, indicating

the presence of turbulent vertical mixing. The idealized-profile method [Steyn et al., 1999;
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Eresmaa et al., 2006; Miinkel et al., 2006] attempts to fit the vertical backscatter profile
to an ideal representation of aerosol density in and above the mixing layer — typically
an error function. Some studies have applied a combination of methods: for example,
using the gradient to refine a spatially [Lammert and Bdsenberg, 2006] or temporally
[Hennen“d Lammert, 2006] coarse estimate generated by the variance method, or
using grathods to select a number of candidate heights, then selecting between
them by mimimizing disagreement with a physical model [Di Giuseppe et al., 2012].

In any geethpd, the most serious challenge in automated mixing layer detection is to
distinguish bgtween the mixing layer top and other similar boundaries in the atmosphere,
such as fog, low clouds, or residual layers of scatterers remaining aloft from previous days
[Haeﬁelm:, 2012; Lewis et al., 2013]. One approach to this challenge is to use the
automate&em only to generate a set of candidate heights and then rely on a human
expert to @uish between them. A person with some knowledge of atmospheric physics
can oft h not always, identify the top of the mixing layer by visual inspection of a
whole d scatter data. We take a different approach, aiming to automate the entire
process inirdjr to allow for long-term continuous operation. Following recent work [Gan
et al., 201 is et al., 2013], we apply criteria that constrain the detected boundary to
behavior thatis physically reasonable, and we automatically detect and exclude conditions
in Which-gstrument beam is blocked by fog or clouds. Finally, modifying a method

—t—

introduceﬁewis et al. [2013], we implement a voting scheme, processing the day’s

our algorithm has selected the correct boundary.

data in severaldifferent ways and interpreting the degree of concurrence as a measure of
confidenc
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In section 2, we describe the backscatter data, the instrument used to obtain them, and
our automated method for extracting the mixing height. Section 3 presents our findings
as to the climatological mixing state in the LA area and its temporal and spatial variation.
We compare the results obtained with the MiniMPL to mixing depth estimates from a
ceilometﬁi'-ﬁﬁ-‘ one-day sonde intensive, and to PBL heights from models and reanalysis.
Finally, in 4, we discuss the implications of our work for GHG flux estimation and

suggest Dassibie future applications.

2. Methw
2.1. Instwntation

We Collecﬁ aerosol backscatter data using a Sigma Space Mini-Micropulse LiDAR
(MiniMP[Crating at the Caltech campus in Pasadena, California. The MiniMPL is a
compact vegsign of the standard MPL, also manufactured by Sigma Space, that populates
the NASAmNET lidar network. The MiniMPL inherits many of the design features
of the M§h as a fiber coupled detector and robust optical train. Compared to the
MPL, the MiniMPL reduces the power-aperture product to minimize cost, size, weight,
and powelkeq&irements. As a result, detection range is limited to the troposphere while
the MPL res into the stratosphere. For tropospheric applications such as GHG flux
estimatiﬂair quality monitoring, however, the MiniMPL is designed to match the
data quWa standard MPL.

The MiniMER, transceiver shown in Fig. 1 weighs 13 kg and measures 380 x 305 x 480
mm in v depth and height. The system consists of a laptop and the lidar transceiver,

which are connected by a USB cable and consume 100W during normal operation. The

whole system fits in a storm case with a telescopic handle and wheels that can be checked
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in as regular luggage during a domestic or international flight. The system’s portability
allows for applications that would not be possible with the standard MPL. In section 3.6,
we demonstrate the feasibility of operating the MiniMPL out of a moving car, enabling
us to observe the spatial structure of the mixing layer without the use of aircraft.

The Mifunadd's Nd:YAG laser emits polarized 532 nm light at a 4 KHz repetition
rate and nominal pulse energy. The laser beam is expanded to the size of the
telescope @re (80 mm) to satisfy the eye safe requirements in ANSI Z136.1.2000 and
IEC 60825(5dards. Laser light is scattered back toward the instrument by particles and
molecules i e atmosphere and collected by an 80mm diameter receiver. Distance to the
scattering event is calculated from the time of flight. The instrument reports the number
of scatteri ents recorded during a user-defined accumulation time (in our case, 30 s)
originatinEach vertical bin. We use a vertical range resolution of 30 m. Although
this study@@not make use of it, the MiniMPL also measures the depolarization [Flynn
et al., ZEhe scattered light with a contrast ratio greater than 100:1.

The r ses a pair of narrowband filters with bandwidth less than 180 pm to reject

the majorg' y of solar background noise. The filtered light is then collected by a 100 um

multimod and fed into a Silicon Avalanche Photodetector (Si APD) operating in
photon—iﬁm mode (Geiger mode). Photon-counting detection enables the MiniMPL

design to-.:ﬁhtweight and compact with high signal-to-noise ratio (SNR) throughout

the tropo .

To further aximize the SNR, MiniMPL uses a coaxial design; the transmitter and
if View (FOV) overlap with each other from range zero. This design

receiver

eliminates the need for a wide FOV in order to minimize the overlap distance as in some
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biaxial lidar systems [Kuze et al., 1998]. A wide FOV can result in measuring multiple
scattering from aerosol [Spinhirne, 1982] and can distort depolarization measurements
[ Tatarov et al., 2000]. On the other hand, a very narrow receiver FOV could make the
lidar system sensitive to external factors like shock, vibration and temperature, making
the systﬁlﬁﬁﬂlitable for field deployment. The design of MiniMPL balances the above
requireme@ constraints, with an FOV of 240 urad.

Additfoial technical specifications of the MiniMPL, along with those of the standard

MPL for ccjrison, are given in table 1.

2.2. Calfﬁon

The ravﬂt count reported by the MiniMPL must be calibrated and normalized in
order to arg t the quantity of interest, Normalized Relative Backscatter (NRB), which
is approxingl proportional to the concentration of scatterers at a given distance above
the instrum, First, the event count is corrected for the deadtime of the detector, a pe-
riod after ealgwhoton incidence during which no additional photons can be detected. The
likely number of missed incidences can be extrapolated from the rate of detected photons.
After the Mime correction, the background (no laser light) value is subtracted. The
event rate@n scaled by the laser pulse energy, which prevents changes in pulse energy
from ap@ as variation of the measured backscatter. Next, a correction is applied
to accou.nﬂﬂaser light, called afterpulse, that strikes the inside of the instrument and
returns to@etector without interacting with the atmosphere.

Finall{orrections account for the fraction of scattered photons that are intercepted
by the detector: The solid angle subtended by the collecting lens is inversely proportional

to the square of the distance to the scattering event, so the event rate is multiplied by 72.
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Since the MiniMPL laser beam overlaps with the receiver field of view from range zero,
there is no need for an overlap correction in the sense required by a biaxial instrument.
However, because not all of the light incident on the collecting lens is focused onto the
photon counter, a geometric factor calibration is still required. For historical reasons, this
factor is“erred to as an overlap correction.

These 3@2 summarized in the following calibration equation:

e L [ER)C(2) = bC(b)  wap(2)C(wap(2)) = bupC(bap) | 7
S { E N Eup 0(2) @

where x(the raw event rate signal at distance z from the instrument, C'(z) is the
deadtime mtion factor for event rate x, b is the background, F is the laser pulse energy,
Zap(2) is the affprpulse signal at the time corresponding to distance z, b, is the background

of the afte!pu!se signal, E,, is the energy of the afterpulse, O(z) is the overlap correction

factor at dg e z, and B, is the Normalized Relative Backscatter (NRB). An example
vertical f NRB can be seen in Figure 3. In order to reduce the impact of short
time sc ctuations on our mixing depth retrieval, we apply a additional two-minute

sliding average to the NRB values already aggregated to a thirty-second accumulation

-

time by the instrument.

O

2.3. O'\l;mjons
The Mini collected backscatter data at Caltech on 530 days between August 1,
-

2012 and S)er 23, 2014, operating between dawn and dusk. Of those, 54 included
data gaps of J@nger than one hour, including late starts to data collection, persistent
midday rail og, or obstruction of the beam by obstacles. We exclude those days from

the analysis. The remaining 476 days are distributed across all months other than July.
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Table 2 shows the number of days of data by month as well as the concurrence scores of
the mixing depth estimates (see section 2.4).

We analyze backscatter data in daily increments. Over the course of the day, the
changing backscatter profile gives a picture of the distribution of scatterers in the lower
atmosphe#ﬁlgure 2a). In the Los Angeles area, the scattering signal is typically quite
strong duhigh levels of anthropogenic aerosols. Since they are produced primarily
within tﬁeﬁng layer, aerosols are concentrated near the surface. During the day, solar
heating ofCh)surface drives vertical mixing, causing the mixing layer to deepen and
carrying a Is to higher altitudes. As surface heating decreases in the late afternoon,
the region of active vertical mixing shrinks, but the aerosols may remain aloft for some
time. Fr ly, aerosols carried aloft by one day’s mixing can still be observed the
following E a residual layer disconnected from the surface. In the coastal mountain
environm Los Angeles, aerosols can also be carried above the mixing layer by the
domina ation pattern, resulting in a sometimes complex stratification structure

with th aerosol layers [Lu and Turco, 1994, 1995].

2.4. Anz&ﬁjﬁ

We use @r wavelet covariance method to identify boundaries between layers with
high and PPw aerosol density. At a given height z, the wavelet covariance w is given by

integratiwproduct of the backscatter profile with a Haar wavelet H centered at z:

3/dz B (ZYH(z,2',d) (2)

z—d/f2<Z <z
H(z, 2 d) =™ -1 z<z2 <z+4d/2 (3)
0 | —z>d/2
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The width d, or dilation, of the wavelet is chosen to correspond to the typical size of
the transition zone at the top of the mixing layer, 200 m. As illustrated in Figure 3,
the covariance is highest where the backscatter decreases rapidly with height. Because
aerosols are concentrated within the mixing layer, such a rapid decrease in backscatter
occurs ahMp of the mixing layer. We therefore use high wavelet covariance values to

identify t%g layer top.

In or(ﬂérElcrease the likelihood of detecting the mixing layer top rather than some
other bougslamy — for example, a structure within the mixing layer or a residual layer of
aerosols further aloft — each day’s data is considered as a whole. Call the set of times
during a single day at which backscatter data is available ¢y, ..., ... First, designate a
single timﬁnd compute the altitude zj(t)) at which the Haar covariance is maximum.
Any later Eoints are then considered in order, beginning with ¢;,1. The altitude z; of
the detect(o@mdary is constrained to vary at a rate no faster than v. For the MiniMPL,
we set v /min, a conservative upper bound on typical rates of change of the mixing
layer he I1, 1988]. This is equivalent to setting the Haar covariance to zero outside
the range @_1) —u(t; —ti—1), ze(tic1) +v(t; — ti—1)). In addition, a multiplicative bias
factor is a@l to suppress the Haar covariance for unlikely but possible rates of change,
decreasing lyearly from one at (2/3)v to zero at v. Similarly, any timepoints earlier than
ly are coiiﬂd in reverse order, beginning with ;.

For t; an additional physical constraint is applied: the mixing layer top must

begin each dayg within 500 m of the ground. This aids in selecting a boundary that is
continu(@ the top of the nocturnal boundary layer, as the mixing layer should be.
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This process is repeated for five values of ¢, distributed evenly throughout the day,
including the earliest time #; and the latest time t,,,,. The result is a set of estimates
2k, (1), ..., 2k, (t) of the mixing height as a function of time.

A voting procedure is then used to select one estimate from the set. First, estimates
are Checkﬁdil pairwise agreement according to one of several criteria. In this study,
we consid estimates to be in agreement if they differ by no more than one unit
of instrl-mLe_n:/ertical resolution (30 m for the MiniMPL as we operate it) as to the
maximum gepgh of the mixing layer during the midday period. This criterion is optimized
for determjnjge that maximum; other criteria, such as agreement to within a tolerance
over a specified fraction of the data period, might be better suited for other purposes.
Next, this ise agreement is used to calculate a concurrence score for each estimate.
An estimaEhas a concurrence score equal to the fraction of all estimates that agree
with £ ac@g to the selected criterion — see Figure 2 for an example. A 3/10 penalty is
applied oncurrence score of any estimate that violates the start-of-day condition,
i.e. tha e mixing layer top above 500 m at the start of the day. This was already
forbidden ﬂlg processing for the estimate beginning at ¢;, but it may occur in other
cases, and 4 erally indicates that the estimate has been fooled by a residual layer. After
applying th alty, the estimate with the highest score is selected for reporting, and the
concurrence score can be used as a measure of confidence. Concurrence ties are broken by
selecting imate with the earliest start time ¢;; note that for concurrence scores of
better than ong-half, the tied estimates necessarily agree as to the chosen criterion. We

recommeir luding estimates with scores less than one-half.
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Because fog or clouds can completely extinguish the instrument beam, preventing any
information from being returned from higher altitudes, it is important that our processing
algorithm be able to detect this circumstance. Under foggy conditions, the altitude of
highest Haar wavelet covariance does not represent the top of the mixing layer — in fact,
there likﬁFﬁJo mixing layer — but only the maximum altitude to which the beam was
able to pi fog before being extinguished. This situation is common in Pasadena
in the egr]Erning. We detect fog by checking directly for beam extinction, i.e. a layer
of very hi ckscatter values with close to zero signal from above, and do not report
any mixin icht while fog is present.

Although the altitude of maximum Haar covariance on a foggy morning does not repre-
sent the layer top, it remains useful, since that altitude transitions smoothly into
the mixinﬁr top as the fog burns off. Fog, clouds, or rain that occur in the middle of
the day a%e problematic, since they often produce discontinuous changes in signal.
We trea ccurrences as data gaps, and we exclude days on which gaps, including fog
or rain, mim(or too much of the total data period. In any case, we report for each day
the maxirilm_length of any gap in data, including instrument malfunction, a late start
to data g y12, or beam extinction. It is important to check the maximum gap length
before maki'fi nse of the data, and to establish a standard for maximum allowable gap

length, smcelong gaps can produce nonsensical results.

3. ResuD

3.1. Cl ology and Variation
On the basis of our estimates, we emphasize the very large daily variability in the mixing

height in the LA basin. The maximum depth of the mixing layer in afternoon may differ
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by a factor of two from one day to the next. On average, the greater degree of insolation
does produce deeper afternoon mixing layers in summer than in winter. Using backscatter
data from the MiniMPL on days with concurrence scores of 4/5 or higher and without
gaps longer than 1 hr, we find the mean afternoon maximum mixing depth to be 770 m
AGL in sujusssedt (June and August) and 670 m AGL in winter (December-February).

Howeveustrated in Figure 4, this seasonal difference is overwhelmed by the
very largeEto week-scale variability. Within-season standard deviations in afternoon
maximum gnimgng height are about 220 m in both summer and winter, representing 29%
and 32% of the means, respectively. Similarly, a given day’s mixing height cannot reliably
be extrap(@i from measurements made on previous days. Across 105 cases across all
seasons in we achieve concurrence scores of 4/5 or higher on both of two consecutive
days, the Enean—square difference in afternoon maximum mixing depth at Caltech is
230 m. (U

The ability reinforces that applications of climatological mixing depth values
are sub arge uncertainties; sustained observations like those we present here can
quantify those uncertainties. Such observations can also be used to calibrate models or
to choose en parameterization schemes in meteorological models, as we discuss in
sections 3. 3.5. Comprehensive comparisons to a model and/or to other meteoro-
logical ogx;ons over a long period could also provide a more granular understanding
of the mixi ynamics. A robust explanation is needed for the variation we observe,
which takes plgce too consistently and on too short a time scale to be attributed solely

to unusua ts such as forest fires or the LA basin’s periodic Santa Ana winds.

3.2. Ceilometer
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Alongside the MiniMPL, we also operated a Vaisala CL51 ceilometer (a successor in-
strument to the CL31, for details see e.g. Miinkel and Rasanen [2004]; McKendry et al.
[2009]; Miinkel et al. [2011]) at the same site. The measurement principle of the ceilometer
is similar to that of the lidar, but the overlap correction and other calibration steps are
performa“oprietary software not visible to or modifiable by the user | Wiegner et al.,
2014]. Th! lting quantity is referred to simply as the backscatter profile. The CL51
operates. aE nm, in the near-infrared; it uses a 16 s temporal bin and a 10 m vertical
range resojmtisg.

We appl ersion of the same algorithm to estimate mixing depths based on ceilometer
backscatter data as we use with the MiniMPL . An example is shown in Figure 2b for
comparis he MiniMPL results on the same day. As is visible in the figure, especially

in regionsm backscatter signal, the ceilometer’s signal-to-noise performance is not as

good as t(aﬁ the MiniMPL. As a result, some adjustments are necessary. First, the

maxim?ed rate of change v in the mixing layer height must be relaxed; for the

ceilome t it to 150 m/min. This change is necessary because noise can temporarily

disguise aihange in the boundary location; the algorithm must be able to “snap back”

to the tru tion of the boundary even after it has moved some distance away.
Second, eilometer tends to show an unrealistically large signal in the near field.

He et al. note a similar artifact, which they attribute to an imperfectly corrected

overlap er e also Wiegner et al., 2014]. Such errors are caused by differences in the

optical geometgy of the outgoing beam aperture and the detector that collects scattered
photons. 1se the erroneous backscatter signal associated with the artifact decays

very rapidly, it has a high wavelet covariance. The algorithm therefore tends to detect the
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artifact in place of the real boundary, estimating the mixing depth at the lowest possible
altitude.

To solve this problem, and to dampen noise in general, it is standard to take the
logarithm of the ceilometer backscatter data prior to processing. Although physically
unmotivwis preprocessing step flattens out large signals, decreasing the influence of
the low-al artifact. Figure 5 shows an example of a case in which the log transform
allows tﬁe@ﬂthm to detect the correct boundary. However, the log transform also

introducesganwgffset. It suppresses the magnitude of the gradient of the backscatter more

where bacmter values are higher:
4y, (b(z)) = — (4)
i 4z % Cb(2) dz

Backscattg gecreases with height in the transition from the mixing layer to the free tropo-

sphere abm the strongest gradient in log(b(z)) generally occurs at a higher altitude
than th est gradient in b(z). This effect carries over to the wavelet covariance
method ng a positive offset of about 50 m. The offset is due to a methodological
choice to identify the altitude of greatest relative change in scattering, not a difference in
physical reality. It should therefore be noted and compensated for in comparisons with
estimates Oidentify the altitude of greatest absolute change, i.e. those that do not
employ aEansform.

The the log transform on the whole dataset is shown in Figure 5. There are two
distinct pgions. On some days, the low-altitude artifact traps the maximum mixing
depth a{bottom of the instrument range. Applying the log transform removes the
effect of the artifact, allowing the true mixing depth (which is variable) to be detected.

On days on which the algorithm is not fooled by the artifact, the offset introduced by the
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log transform is visible: applying the transform results in an average increase of about 50
m in the estimated mixing depth.

Even with adjustments, our confidence in mixing height estimates derived from the
ceilometer is not as high as in those derived from the MiniMPL. One proxy for confi-
dence in-*idl day’s results is the degree of concurrence among estimates in the voting
procedurection 2). As can be seen in Figure 6, the MiniMPL achieves unanimity
(concurr-mie_iore of 5/5) or near-unanimity (score of 4/5) on 51% days for which data
is availabl contrast, the ceilometer achieves a score of 4/5 or better on only 36% of
days. It i%his reason that we focus our results on estimates derived from MiniMPL

observations.

>

3.3. Son mparison

In Septe;;ﬁer) 2012, a one-day intensive campaign of sonde launches was conducted for
compariso ixing layer information from the MiniMPL. Sondes were launched every
three hours Maween 7:00am and 7:00pm local time. The results are displayed in Figure
7. In each case, the PBL height is extracted from the sonde using the method of Heffter
[1980]. Athﬂam, morning fog is still present and the mixing layer has not yet developed.

At 10:00a #0pm, and 4:00pm, the mixing height identified using the backscatter data

coincides fith the sonde-derived PBL height to within 150 m. Since the top of the mixing
layer is iﬂ.‘ﬁ“ transitional zone of 100 to 200 m thickness, it should not be considered to
have a we@ned exact location. Some discrepancy should therefore be expected even
between qu that detect substantially the same layer. In this one-day comparison,
the backscatter method displays no identifiable systematic bias with respect to the sonde

method; of course, the comparison presented is too limited to conclude that no bias exists.
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We emphasize that, while the sonde comparison provides some confidence that, at least
during the day, the layer in which elevated aerosol levels are present does correspond to
the thermodynamic boundary layer, it is in any case the former that is of most interest
for interpreting atmospheric concentrations of trace gases. For the purpose of linking
atmosphe‘ﬁdasurements to emissions rates, the important question is what part of the
atmosphe uld be considered in contact with the surface. In other words, through
what voTu@e species emitted from the surface dispersed?

By 7:00gmm,she mixing layer has begun to collapse and the structure is becoming more
complicated. Zl'wo distinct boundaries are visible in both the potential temperature profile
and the backscatter distribution, and both methods select the higher of these. Indeed,
the day’s | emissions are distributed up to the higher boundary at 920 m. However,
with the Ese in solar heating to drive vertical motion, the upper part of the identi-
fied layer G@e about 500 m) is probably no longer interacting with the surface. Our
methodErefore failed to detect a region of substantial, active vertical mixing. This
case ser reminder that the mixing layer concept is not always straightforwardly
applicableﬂicularly in the evening as vertical mixing tapers off. Care should be taken

in interpr and applying our or any other mixing depth estimates around sundown,

even on daﬁlike this one — with otherwise robust retrievals.

3.4. Nqujmdfmerican Regional Reanalysis (NARR) Comparison

GHG ﬂ@ersion studies typically make use of PBL heights derived from meteoro-
logical m. or reanalysis products. We compare afternoon maximum mixing depth
estimates based on MiniMPL data to PBL height estimates from the Weather Research

and Forecasting model (WRF) and the North American Regional Reanalysis (NARR).
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NARR is a reanalysis product providing a variety of atmospheric and surface variables
over North America at 32 km spatial resolution and at 3 hour intervals [Mesinger et al.,
2005]. We find a large and persistent difference between afternoon maxima of MiniMPL-
derived mixing depths at Caltech and PBL height estimates at the nearest NARR, grid
location-lﬁgﬂe 8 shows the distributions of these quantities over 227 days on which
the Minil\%ima’ce achieves a concurrence score of at least 4/5 and without data
gaps lorfgi_fm one hour. The maximum NARR PBL height exceeds the maximum
MiniMPL-gerged mixing depth on all but one day, differing by a factor of two or more
on 63% of . Summary statistics are in Table 3.

Interestingly, although maximum NARR PBL heights are an average of 2.5 times Min-
iMPL derjmixing depths, the two quantities are similarly distributed. Both show
substantiaGabﬂity, with standard deviations about 32% of the respective means, and
both are @ toward high values, with skewness 0.84 (NARR) and 0.88 (MiniMPL).
HOWGVGE does not reproduce the detailed timing of this variability. Even after

scaling m NARR PBL heights down by a factor of 2.5 to account for the mean
differencelaiot—mean—square difference of 360 m remains between scaled NARR esti-
mates an iMPL estimates on the same days. This is almost as large as the RMS
difference 0 m in a sample of 10° random pairs of MiniMPL estimates and scaled
NARR e-s;ﬁmaes.

We can 3ute NARR's failure to accurately represent the boundary layer in Pasadena
at least in parf to its coarse spatial grid. The meteorology of the Los Angeles basin is

strongly 1 ced by the coastal mountain topography (see Figure 9), resulting in a

complex pattern of circulation [Lu and Turco, 1994, 1995]. It comes as no surprise that
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a product unable to resolve the rapid changes in elevation will struggle to predict PBL
heights in this environment. If NARR is used to drive a transport model for GHG flux
estimation in Los Angeles or in other areas with meteorology strongly influenced by the
detailed topography, careful evaluation and correction of mixing depth biases will be
critical ﬁﬁi-ﬁdding large errors. Since a biased mixing depth results in a proportional
bias in ﬂates (see the general argument in section 4), we would expect a 250%

bias in anEux inversion using NARR.

3.5. Wedtheg Research and Forecasting (WRF) Comparison

Given thulty posed by the rapidly-varying topography of the LA basin, one might
expect a Eesolution model to better represent the mixing dynamics. We compare
mixing de timates from MiniMPL data taken during a deployment of the instrument
in Octobegember 2015 to PBL heights from such a high-resolution model, a WRF
setup dev specifically for the Los Angeles environment by Feng et al. [2016] to
simulate ncentrations. The model is initialized with NARR and with sea surface
temperatures from NCEP and uses three nested domains, with the innermost domain
covering tw basin at a resolution of 1.3 km. Using observations from the intensive
Calnex can in 2010, including aircraft and ceilometer PBL measurements, Feng et al.
2016] tﬂv&riety of WRF configurations. We employ only the MYNN_UCM_d03
ConﬁgurWhich they found to minimize errors.

We redeploy§d the MiniMPL to Caltech for the three-week period of October 21 to
Novembe 15. Of these twenty days of observations, the mixing depth estimation
algorithm achi@ves a concurrence score of 4/5 or better on six days and a score of 3/5

on another nine days. Although this comparison period is too short to allow robust sta-
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tistical conclusions, we make some preliminary observations. Like NARR, WRF PBL
heights show variability that is similar in relative terms to that of Mini-MPL derived mix-
ing heights. Over the three-week comparison period, the standard deviation of maximum
afternoon WRF PBL heights is 540 m, about 37% of the mean. However, WRF estimates
PBL heiMat are greater than MiniMPL-derived mixing depths on all but one after-
noon. One, afternoon maximum WRF PBL height exceeds afternoon maximum
MiniMﬁJEng depth by 730 m. Considering only days with high concurrence scores
reduces theg digrepancy considerably. The mean difference on days with scores of 4/5 or
better is 380 gn, suggesting that the concurrence voting scheme effectively identifies days
that are easier to analyze.

The dis ncy we find between modeled PBL height and MiniMPL-derived mixing
depth is sEing given the excellent agreement reported by Feng et al. [2016]. Dur-
ing the Q@IHQX campaign period, they report a mean WRF-derived daytime PBL
height Ee same MYNN_UCM_d03 configuration we use here) of 828.8 m, in good
agreem w2 mean mixing depth of 835.7 m obtained from ceilometer measurements
using the &dient method. They also report substantially less variability in modeled PBL
height tha@qeasured mixing depth. Further work, including a model-data comparison
covering a er period, is clearly needed to resolve this perplexing difference. While
such a comparison is beyond the scope of this study, we do note that NARR PBL height
estimates ay-June 2010 are generally similar to those from our comparison period
in October-Nogember 2015, with a mean daily maximum of 2.1 km.

Our aﬁere cannot distinguish between differences due to errors in mixing depth

estimation, errors in modeled PBL depth, or conditions under which the mixing layer
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fails to correspond to the thermodynamic PBL. Still, it is prudent to expect that the
same complex stratification which can cause the mixing depth estimation algorithm to
fail might also indicate challenging conditions for the model. By selecting days with high
concurrence scores, MiniMPL observations can be used to choose “golden days” for model
analysis-lﬂiillately, if a model is run over a long period, days with good agreement
between tel and lidar estimates can be selected for flux estimation. For example,
Figure ﬂ)@s a pair of days which would not be readily distinguished on the basis of
model restt-sjlone. The additional information provided by the lidar estimates lets us

assign greafepggonfidence to modeling on the day with good agreement (panel a) than that

with poor agreement (panel b).

Sustain:mr can also inform the choice of model configurations or parameters, as Feng
et al. [201@ others [e.g., Nehrkorn et al., 2013] have done with PBL observations from
limited cns. In addition to increasing confidence in that choice simply by virtue
of a larE“e of data, long-term observations can provide more detailed information
about el errors depend on season or on other meteorological conditions. For
example, wet al. [2013] found that PBL height as estimated by the general circulation
model GE differs most from that measured by the lidar network MPLNET in winter.
Unlike son idar data can validate not only the depth of the mixing layer but also the
timing (gvelopmem and collapse. That timing can be critical; for example, in an

-t

urban set”j difference of one hour may determine whether the mixing layer begins

to develop befgre, during, or after the emissions peak associated with the morning rush
hour.
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An alternate method for integrating mixing depth observations into flux estimation is
to characterize a known model bias and correct for it after the modeling stage. Zhao et al.
[2009] use three months of wind profiler measurements to derive an empirical relationship
between observed and modeled PBL heights. They apply that relationship to scale down
modeled-ﬂ-leight before computing fluxes, reducing the residual error by a factor of
1.5. Amo@advantages of postprocessing corrections of this kind are that they are
simple {0 @/, allowing accuracy to be improved even in less detailed inversions, and
that they @be combined with the strategies discussed above to further control any

errors remaingae after tuning model parameterization and /or selecting out “golden days.”

3.6. Spagfariation

Taking tage of the MiniMPL’s portability, we also conducted a one-time pilot
mobile stug which backscatter data was collected over a period of about twenty min-
utes as th iMPL was transported due west toward the Pacific coast in the back of a
passenger carsw'his observing strategy, which could not have been implemented with a
full-size research lidar, is made possible by the compact size and low power requirements
of the Mim. Now that we have demonstrated its feasibility, we hope that this new
approach low for both more regular mapping of the spatial structure of the mixing
layer anﬁnimble mobile deployment of lidar in response to irregular events like fires
and gas W

The spa@roﬁle of aerosol backscatter near the Pacific coast is shown in Figure 11.
The trangjj etween the shallow marine layer, which extends two to three kilometers
onto land, and the convective regime that dominates further inland is clearly visible. The

vertical structure in this case is simple, with a well-defined mixing layer of high backscatter
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adjacent to the ground and a sharp decrease in backscatter at the top of that layer. The
mixing depth as estimated by the minimum backscatter gradient is indicated in the figure
by the black circles (our retrieval algorithm is not suitable, since it relies on the temporal
evolution of the boundary at a fixed location).

Figureﬂi—aﬂ shows the PBL height as predicted by WRF. The WRF prediction agrees
well with ’@', iniMPL-derived mixing depth near the coast, but does not increase as
sharply Tu@inland. Unlike at Caltech, in this case the WRF PBL height is lower than
the observ, ixing depth. Repeated measurements of this kind could reveal whether the
difference is gansistent with time and at locations elsewhere along the coast, both in the
immediate@ Angeles area and elsewhere, which could contribute to model development

in the cha ng coastal environment. Further work characterizing the coastal transition

could alsoEn understanding the fate of GHG emissions from sources like ports and

marine in@’.

Researchers have recognized that the representation of mixing dynamics is both critical
for the int%@tation of top-down emissions estimates and also a major source of uncer-
tainty [e.g@wman et al., 2013; Zimnoch et al., 2010]. McKain et al. [2012] advocate
the use offgolumn-integrated concentration measurements in urban studies, among other
reasons iﬁlwe'r to avoid the impact of mixing height errors. A common strategy [Breon
et al., 201D0 rely only on observations made during midafternoon, when the mixing
layer is @ear its maximum depth and the detailed timing of its dynamics are less
important. But we observe even afternoon maximum mixing height in Los Angeles to

vary substantially from day to day, typically differing from the seasonal mean by 30%.
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A simple dimensional argument demonstrates the impact of such variations. Suppose
that an instrument measures the in situ concentration of a trace gas at a particular
location. This concentration is expressed as a molar fraction, or, equivalently given the
local density of dry air, as a volume concentration C' in moles of gas per unit volume, i.e.
inn/L3 .-’Fﬁd)al is to use the measurement to infer a surface flux F', expressed in moles
of gas em @'a absorbed per unit area per unit time, i.e. as n/(L?T). On dimensional
grounds; tT_method for relating the concentration to the flux must incorporate some
temporal gfomgpation, such as the time 7 during which the sampled air mass was exposed
to the flux also some vertical length scale.

The relevant vertical length scale is the mixing height h, which controls the height of

the space hich the emitted gas is diluted. We therefore expect

F o hC/T (5)
in whic n error in the mixing height h will result in a proportional error in the
flux esti - In detailed models, this picture is complicated to some degree by higher-

order effects, e.g. the coupling between vertical motion and horizontal wind shear, but
the essenth_roportionality remains. Applying sustained observations to control mixing
depth eerhether by validating models, choosing suitable periods for analysis, or
charactg'mnd correcting for errors in postprocessing, is critical for accurate GHG

flux estim!tion.

We havz_lsed above on determining the depth of the mixing layer, especially at

its afte\@naximum. But the mixing layer concept is not always applicable. Even

when the mixing height is applicable, it does not fully describe the complex structure

of the lower troposphere. The potential exists to extract much more information about
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that structure from lidar backscatter data. Among other applications, a more complete
picture of the mixing state could contribute to our understanding of the transport of
species emitted from the surface. Here we suggest one direction in particular for future
work.

The miilﬁg-lyer itself may exhibit internal structure. For example, in Los Angeles, the
sea breeztion pushes near-surface air inland during the day. As a result, the air
mass Wiﬂi@ mixing layer over Pasadena in the afternoon has traveled over downtown in
the preced'cgjours. The time scale of this horizontal motion, and the varying emissions
rates and cogapositions from the traversed areas, may create a stratification, in which
fresh emissions from Pasadena are concentrated in the lowest part of the mixing layer
while tho m downtown are more thoroughly mixed throughout. If we were able to
observe ax@erstand within-layer dynamics of this kind, we could much more precisely
link trace observed in the atmosphere to their points of emission, allowing us to
answer ecific questions about the sources and composition of emissions in the
urban e ent.

Since the lidar is primarily sensitive to aerosols and not to trace gases, the distribution
of aerosol @l need to be used as a proxy for the distribution of co-emitted trace gases,
assuming t, he two are transported within the mixing layer in a similar way, at least
on shorrﬁescales and over small distances. That assumption would need to be tested
before it orm the basis of any future work. Challenges notwithstanding, this is an
exciting possibglity for future applications, including more detailed validation of transport
models an -scale attribution of emissions sources within complex urban environments

like that of Los Angeles.
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Figure 1. A complete MiniMPL lidar system consists of an optical transceiver (shown) and a

laptop running data acquisition and post-processing software.

Figure 2. A sample day of backscatter data (heatmap) from the MiniMPL (panel a) and
ceilometer (panel b, see section 3.2) with mixing heights as estimated by our algorithm (black
symbols: haiority opinion; green symbols: estimates initialized at other times of day). Prior

to 8am, trument beams are completely extinguished near the surface; the algorithm

recogniz.e@resence of fog and does not attempt to make an estimate. In the late afternoon —
and in thgmotjing in the case of the ceilometer — the various estimates disagree as to the mixing
height, idming two different boundaries. We report the majority opinion together with the
degree of jrrence (4/5 for the MiniMPL, 2/5 for the ceilometer). Note that MiniMPL NRB
values and_ceilometer backscatter values do not use comparable scales.

Figure 3:n illustration of the wavelet method. The instrument returns a vertical profile
of normamelative backscatter (NRB, left). To compute the wavelet covariance at a given
altitude z, ackscatter profile is integrated against a Haar wavelet centered at z (middle). In
this example, the covariance is given by the difference in area between the orange (upper) shaded

region anhﬁblue (lower) region, which indicates the decrease in backscatter over the scale of

the Wavel@e resulting Haar wavelet covariance is shown at right.

Figure ﬁ Eolid curves: average diurnal cycles of mixing height in June-August (orange) and
Decembasjeualadhuary (blue). Shaded regions: one standard deviation of between-days variability.

Estimates acc@rding to the MiniMPL, retaining only days on which the concurrence score was

at least {
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Figure 5. (a) Representative backscatter profiles from the ceilometer, with (orange, triangular
symbols) and without (blue, round symbols) applying a log transform. The horizontal lines
show the corresponding mixing height as estimated by the algorithms: solid blue line, without
transform; dashed orange line, with transform. Note the very high backscatter values at low

altituMhe untransformed data, which fool the algorithm into selecting an unrealistically

low mb@dgh’u.

(b) Ma&inim afternoon mixing depths as estimated using ceilometer data with (vertical axis)
or Wi‘ﬁh@iorizontal axis) applying the log transform. Days on which the untransformed data
is aﬁecm the low-altitude artifact are indicated by the dashed green ellipse; taking the log
transfo oves the effect of the artifact. On other days (indicated by the solid pink ellipse),
the bias introduced by the transform is visible. The solid black line is the 1-1 line. Only days
with ¢ nce scores of at least 3/5 are shown.

Figurem Degree of concurrence achieved by the algorithm using backscatter data from the
Mini ue, solid) or from the ceilometer (orange, dashed), shown as a fraction of days on
which both instruments were operating.

Figureh_Orange: potential temperature profiles from sonde launches, with the corresponding
PBL has calculated using Heffter’s method (horizontal dashed line). Blue with trian-
gles: ﬂporaneous MiniMPL backscatter profiles, with the mean (center horizontal line) and
rangeMd area) of the algorithmically-estimated mixing height over the 30-minute period

surroundingythe sonde launch.

Tab& Technical specifications for the MiniMPL (used in this study) and the standard
MPL.
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Figure 8. Gaussian kernel density (smoothed relative frequency) of maximum afternoon
mixing depth according to the MiniMPL (pink, left peak) and according to NARR (green, right

peak) over 227 days with MiniMPL concurrence score at least 4/5. Solid vertical lines: median;

dashed wjssad lines: quartiles.

QO

Figure QL@@) Elevation map of the Los Angeles Basin [U.S. Geological Survey, 2015]. The
labeled df ds indicates the location of the measurement site at Caltech (in Pasadena). The

solid linew the route taken in the mobile study; the dashed line corresponds to the cross

section in pansl (b).

(b) Elevanss section along the dashed line in panel (a); the longitude scale is the same for
both panem

Figur = [ xamples of days with good (panel a) and poor (panel b) agreement between
MiniMPIgderived mixing depths (small circles) and PBL heights as estimated by WRF (large

diamonds@RR PBL heights (large triangles) show large discrepancies in both cases.

L

Figure Ill Heatmap: MiniMPL backscatter intensity near the Pacific coast (located at
longitude341). Small black circles: mixing depth as estimated by the gradient method
using V\@ data. Large black diamonds: PBL height as estimated by WREF. Black curve at

bottom: topography (same vertical scale).
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Table 2. Number of days of MiniMPL data collection without gaps longer than one hour, by

month and by concurrence score of the mixing depth estimation algorithm.

Month Total 1/5 2/5 3/5 4/5 5/5
January 52 3 4 11 10 24
February 26 4 7 4 5 6
March 29 1 5 8 7 8
April 31 1 3 12 10 5
May 26 O 7 5 8 6
June 14 1 2 1 3 7
July 0 O O o0 o0 0
August 49 1 5 15 14 14
September | 85 1 18 24 16 26
October 64 5 13 16 13 17
November 48 4 13 15 11 5
December 52 4 14 16 7 11
All Months | 476 25 91 127 104 129

r Manuscript

Table

O

ean, median, 1st and 3rd quartiles, and standard deviation of afternoon maximum

PBL TNARR) or mixing depth (MiniMPL), in km AGL, over 227 days with concurrence

score aa leagg 4/5 and without data gaps longer than on hour.

3 Method @y Median Mean ()3 o o/Mean

MiniMPL 0.63 0.75  0.84 0.98 0.27  32%
NARR 146 1.84 1.92 220 062 32%
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MPL

MiniMPL

range resolution

5/15/30/75 m
(software programmable)

5/15/30/75 m
(software programmable)

PERFORMANCE

minimum range

150 m

150 m

accumulation time

1sec-15min

1sec-15 min

detection range up to 25 km up to 25 km
polarization standard standard
scanning optional optional
laser wavelength 532 nm 532 nm

laser pulse energy

6-10 W @ 2500 Hz

3-4 @ 2500 Hz

eye-safety

ANSI Z136.1 2000
IEC 60825

ANSI Z136.1 2000
IEC 60825

OPTICS

receiver diameter

178 mm

80 mm

pump laser diode

fiber coupled
user replaceable

detector

fiber coupled

user replaceable

fiber coupled

user replaceable

size

1300 x 350 x 850 mm

240 x 305 x 480 mm

weight (portability)

[25+2kg

13 kg

operating system

Windows 7/10

Windows 7/10

computer interface

usB

usB

data transfer

LAN ethernet

LAN ethernet

temperature

[NEMA-4 enclosure

[NEMA-4 enclosure

ENVIRONMENT

humidity

[enclosure

[enclosure

supply

]100/240 VACS50 - 6- Hz

]100/240 VACS50-6-Hz

consumption

[s00w

[100wW
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