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Key Points.

◦ Aerosol lidar maps LA mixing depth in space (pilot mobile study) and

time (2 years data)

◦ Automatic mixing depth retrieval system finds daily variability far exceeds

seasonal difference

◦ PBL heights in models used for GHG monitoring show biases that will

carry over to flux estimates

Abstract. Atmospheric observations of greenhouse gases provide essen-4

tial information on sources and sinks of these key atmospheric constituents.5

To quantify fluxes from atmospheric observations, representation of trans-6

port – especially vertical mixing – is a necessity and often a source of error.7

We report on remotely sensed profiles of vertical aerosol distribution taken8

over a two-year period in Pasadena, California. Using an automated anal-9

ysis system, we estimate daytime mixing layer depth, achieving high confi-10

dence in the afternoon maximum on 51% of days with profiles from a Sigma11

Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala12

CL51 ceilometer. We note that considering ceilometer data on a logarithmic13

scale, a standard method, introduces an offset in mixing height retrievals.14

The mean afternoon maximum mixing height is 770 m AGL in summer and15

670 m in winter, with significant day-to-day variance (within-season σ =16

220 m ≈ 30%). Taking advantage of the MiniMPL’s portability, we demon-17

strate the feasibility of measuring the detailed horizontal structure of the mix-18

ing layer by automobile. We compare our observations to PBL heights from19

sonde launches, NARR reanalysis, and a custom WRF model developed for20
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GHG monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena21

are both systematically higher than measured, NARR by 2.5 times; these22

biases will cause proportional errors in GHG flux estimates using modeled23

transport. We discuss how sustained lidar observations can be used to re-24

duce flux inversion error by selecting suitable analysis periods, calibrating25

models, or characterizing bias for correction in post-processing.26
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1. Introduction

Improved understanding of sources, sinks, and controlling processes of CO2 and other27

greenhouse gases (GHGs) will require robust methods for estimating surface fluxes. Ob-28

servations of GHG concentrations capture the influence of known and unknown sources29

and sinks alike, making these observations an important complement to models and in-30

ventories. Top-down GHG inversions have been used for some time to estimate fluxes31

on global [Tans et al., 1990], continental [Bousquet et al., 2000], and regional [Lauvaux32

et al., 2013; Peters et al., 2007; Schuh et al., 2010] scales, and there is increasing focus33

on bringing a similar approach to individual cities [McKain et al., 2012; Lauvaux et al.,34

2013; Breon et al., 2014; Turnbull et al., 2015]. However, relating observed concentrations35

to surface fluxes requires a representation of atmospheric transport. On the regional and36

urban scales, the extent and variablity of vertical mixing is a dominant source of uncer-37

tainty [McKain et al., 2012] that can easily overwhelm the effects of instrument error. It38

is therefore critical to represent vertical mixing accurately.39

The spatiotemporal structure of vertical mixing and diffusion can be complex. However,40

it can be useful to approximate gases recently emitted from the surface as being confined41

to and uniformly distributed throughout a near-surface layer. A cluster of related concepts42

– atmospheric or planetary boundary layer (PBL), convective boundary layer, mixed layer43

– are commonly used to describe the part of the atmosphere which “responds to surface44

forcings with a timescale of about an hour or less.” [Stull , 1988] Various specific definitions45

of these layers are in use [Seibert et al., 2000], some referring to thermodynamic variables46
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and others directly to mixing or turbulence. Layers identified by different definitions can47

be conceptually distinct and therefore need to be considered differently.48

The layer relevant to the dilution of GHGs is that within which substantial vertical49

mixing takes place. The time scale of mixing under turbulent conditions has been es-50

timated at tens of minutes [Stull , 1988; van Stratum et al., 2012; Janssen and Pozzer ,51

2015]. Nonetheless, a fully well-mixed equilibrium may not exist; we therefore follow Seib-52

ert et al. [2000] in referring to the mixing layer. When we refer to the mixing height or53

mixing depth, we mean the altitude of the top of the mixing layer. In addition to GHGs,54

the mixing depth also controls the dilution of aerosols and of other trace gases produced55

primarily within the mixing layer, including those that contribute to poor air quality. It56

is well known that shallow mixing contributes to air quality exceedances as these species57

are trapped near the surface, and observations such as those presented here can help in58

defining the presence of these conditions.59

While it is difficult to measure the vertical distribution of GHGs directly, especially60

on an ongoing basis, we can measure the mixing height by observing the distribution61

of aerosol. Lidar systems measure the backscatter of a laser from particulate matter in62

the atmosphere, providing a vertical (or skew) profile of the concentration of scattering63

particles. We make use of such an instrument, the Sigma Space Mini-Micropulse LiDAR64

(MiniMPL), as well as a Vaisala CL51 ceilometer. These and other remote sensing in-65

struments benefit from continuous operation, making observations at a rate of once per66

minute or more. New models like the MiniMPL are smaller and more portable than earlier67

research lidars and have better signal-to-noise performance than ceilometers.68
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Note that the mixing layer may not always coincide with the boundary layer commonly69

diagnosed by applying thermodynamic criteria to data from radiosondes (e.g. using the70

parcel method). In Pasadena, comparison to results from a series of sonde launches71

suggests that the mixing depth is related to, though not identical with, the depth of72

the boundary layer as defined using thermodynamic criteria. This finding is consistent73

with past results. Working in Indiana and the Amazon basin, respectively, Coulter [1979]74

and Martin et al. [1988] found that mixing depths determined using lidar observations75

were similar to and well-correlated with, though generally somewhat higher than, those76

determined from temperature profiles. Marsik et al. [1995] found that mixing depths from77

lidar in Atlanta were slightly lower that those measured using sondes. We discuss the78

comparison to sonde data in greater detail in section 3.3.79

Given the high frequency of observations, operational use of lidar to measure the mixing80

height benefits from an at least partially automated method of analysis. A variety of81

schemes have been used. The simplest, the gradient method [Endlich et al., 1979], searches82

for the minimum (most negative) vertical gradient of the backscatter signal, indicating a83

sudden decrease in density of scatterers. Related is the inflection point method [Menut84

et al., 1999], which searches for zeros of the second spatial derivative of the backscatter.85

The wavelet method [Ehret et al., 1996; Davis et al., 1997, 2000; Baars et al., 2008], which86

we use, is a refinement of the gradient method that takes into account the typical spatial87

scale of the boundary region at the top of the mixing layer. The variance method [Hooper88

and Eloranta, 1986; Menut et al., 1999] identifies the entrainment zone at the top of the89

mixing layer by detecting a maximum in the temporal variance of backscatter, indicating90

the presence of turbulent vertical mixing. The idealized-profile method [Steyn et al., 1999;91
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Eresmaa et al., 2006; Münkel et al., 2006] attempts to fit the vertical backscatter profile92

to an ideal representation of aerosol density in and above the mixing layer – typically93

an error function. Some studies have applied a combination of methods: for example,94

using the gradient to refine a spatially [Lammert and Bösenberg , 2006] or temporally95

[Hennemuth and Lammert , 2006] coarse estimate generated by the variance method, or96

using gradient methods to select a number of candidate heights, then selecting between97

them by minimizing disagreement with a physical model [Di Giuseppe et al., 2012].98

In any method, the most serious challenge in automated mixing layer detection is to99

distinguish between the mixing layer top and other similar boundaries in the atmosphere,100

such as fog, low clouds, or residual layers of scatterers remaining aloft from previous days101

[Haeffelin et al., 2012; Lewis et al., 2013]. One approach to this challenge is to use the102

automated system only to generate a set of candidate heights and then rely on a human103

expert to distinguish between them. A person with some knowledge of atmospheric physics104

can often, though not always, identify the top of the mixing layer by visual inspection of a105

whole day’s backscatter data. We take a different approach, aiming to automate the entire106

process in order to allow for long-term continuous operation. Following recent work [Gan107

et al., 2011; Lewis et al., 2013], we apply criteria that constrain the detected boundary to108

behavior that is physically reasonable, and we automatically detect and exclude conditions109

in which the instrument beam is blocked by fog or clouds. Finally, modifying a method110

introduced by Lewis et al. [2013], we implement a voting scheme, processing the day’s111

data in several different ways and interpreting the degree of concurrence as a measure of112

confidence that our algorithm has selected the correct boundary.113
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In section 2, we describe the backscatter data, the instrument used to obtain them, and114

our automated method for extracting the mixing height. Section 3 presents our findings115

as to the climatological mixing state in the LA area and its temporal and spatial variation.116

We compare the results obtained with the MiniMPL to mixing depth estimates from a117

ceilometer, to a one-day sonde intensive, and to PBL heights from models and reanalysis.118

Finally, in section 4, we discuss the implications of our work for GHG flux estimation and119

suggest possible future applications.120

2. Method

2.1. Instrumentation

We collected aerosol backscatter data using a Sigma Space Mini-Micropulse LiDAR121

(MiniMPL) operating at the Caltech campus in Pasadena, California. The MiniMPL is a122

compact version of the standard MPL, also manufactured by Sigma Space, that populates123

the NASA MPLNET lidar network. The MiniMPL inherits many of the design features124

of the MPL, such as a fiber coupled detector and robust optical train. Compared to the125

MPL, the MiniMPL reduces the power-aperture product to minimize cost, size, weight,126

and power requirements. As a result, detection range is limited to the troposphere while127

the MPL measures into the stratosphere. For tropospheric applications such as GHG flux128

estimation and air quality monitoring, however, the MiniMPL is designed to match the129

data quality of a standard MPL.130

The MiniMPL transceiver shown in Fig. 1 weighs 13 kg and measures 380 x 305 x 480131

mm in width, depth and height. The system consists of a laptop and the lidar transceiver,132

which are connected by a USB cable and consume 100W during normal operation. The133

whole system fits in a storm case with a telescopic handle and wheels that can be checked134
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in as regular luggage during a domestic or international flight. The system’s portability135

allows for applications that would not be possible with the standard MPL. In section 3.6,136

we demonstrate the feasibility of operating the MiniMPL out of a moving car, enabling137

us to observe the spatial structure of the mixing layer without the use of aircraft.138

The MiniMPL’s Nd:YAG laser emits polarized 532 nm light at a 4 KHz repetition139

rate and 3.5 uJ nominal pulse energy. The laser beam is expanded to the size of the140

telescope aperture (80 mm) to satisfy the eye safe requirements in ANSI Z136.1.2000 and141

IEC 60825 standards. Laser light is scattered back toward the instrument by particles and142

molecules in the atmosphere and collected by an 80mm diameter receiver. Distance to the143

scattering event is calculated from the time of flight. The instrument reports the number144

of scattering events recorded during a user-defined accumulation time (in our case, 30 s)145

originating in each vertical bin. We use a vertical range resolution of 30 m. Although146

this study does not make use of it, the MiniMPL also measures the depolarization [Flynn147

et al., 2007] of the scattered light with a contrast ratio greater than 100:1.148

The receiver uses a pair of narrowband filters with bandwidth less than 180 pm to reject149

the majority of solar background noise. The filtered light is then collected by a 100 um150

multimode fiber and fed into a Silicon Avalanche Photodetector (Si APD) operating in151

photon-counting mode (Geiger mode). Photon-counting detection enables the MiniMPL152

design to be lightweight and compact with high signal-to-noise ratio (SNR) throughout153

the troposphere.154

To further maximize the SNR, MiniMPL uses a coaxial design; the transmitter and155

receiver Field of View (FOV) overlap with each other from range zero. This design156

eliminates the need for a wide FOV in order to minimize the overlap distance as in some157
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biaxial lidar systems [Kuze et al., 1998]. A wide FOV can result in measuring multiple158

scattering from aerosol [Spinhirne, 1982] and can distort depolarization measurements159

[Tatarov et al., 2000]. On the other hand, a very narrow receiver FOV could make the160

lidar system sensitive to external factors like shock, vibration and temperature, making161

the system unsuitable for field deployment. The design of MiniMPL balances the above162

requirements and constraints, with an FOV of 240 urad.163

Additional technical specifications of the MiniMPL, along with those of the standard164

MPL for comparison, are given in table 1.165

2.2. Calibration

The raw event count reported by the MiniMPL must be calibrated and normalized in166

order to arrive at the quantity of interest, Normalized Relative Backscatter (NRB), which167

is approximately proportional to the concentration of scatterers at a given distance above168

the instrument. First, the event count is corrected for the deadtime of the detector, a pe-169

riod after each photon incidence during which no additional photons can be detected. The170

likely number of missed incidences can be extrapolated from the rate of detected photons.171

After the deadtime correction, the background (no laser light) value is subtracted. The172

event rate is then scaled by the laser pulse energy, which prevents changes in pulse energy173

from appearing as variation of the measured backscatter. Next, a correction is applied174

to account for laser light, called afterpulse, that strikes the inside of the instrument and175

returns to the detector without interacting with the atmosphere.176

Finally, two corrections account for the fraction of scattered photons that are intercepted177

by the detector. The solid angle subtended by the collecting lens is inversely proportional178

to the square of the distance to the scattering event, so the event rate is multiplied by r2.179
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Since the MiniMPL laser beam overlaps with the receiver field of view from range zero,180

there is no need for an overlap correction in the sense required by a biaxial instrument.181

However, because not all of the light incident on the collecting lens is focused onto the182

photon counter, a geometric factor calibration is still required. For historical reasons, this183

factor is also referred to as an overlap correction.184

These steps are summarized in the following calibration equation:

Bnr =

[
x(z)C(x(z))− bC(b)

E
− xap(z)C(xap(z))− bapC(bap)

Eap

]
z2

O(z)
(1)

where x(z) is the raw event rate signal at distance z from the instrument, C(x) is the185

deadtime correction factor for event rate x, b is the background, E is the laser pulse energy,186

xap(z) is the afterpulse signal at the time corresponding to distance z, bap is the background187

of the afterpulse signal, Eap is the energy of the afterpulse, O(z) is the overlap correction188

factor at distance z, and Bnr is the Normalized Relative Backscatter (NRB). An example189

vertical profile of NRB can be seen in Figure 3. In order to reduce the impact of short190

time scale fluctuations on our mixing depth retrieval, we apply a additional two-minute191

sliding average to the NRB values already aggregated to a thirty-second accumulation192

time by the instrument.193

2.3. Observations

The MiniMPL collected backscatter data at Caltech on 530 days between August 1,194

2012 and October 23, 2014, operating between dawn and dusk. Of those, 54 included195

data gaps of longer than one hour, including late starts to data collection, persistent196

midday rain or fog, or obstruction of the beam by obstacles. We exclude those days from197

the analysis. The remaining 476 days are distributed across all months other than July.198
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Table 2 shows the number of days of data by month as well as the concurrence scores of199

the mixing depth estimates (see section 2.4).200

We analyze backscatter data in daily increments. Over the course of the day, the201

changing backscatter profile gives a picture of the distribution of scatterers in the lower202

atmosphere (Figure 2a). In the Los Angeles area, the scattering signal is typically quite203

strong due to the high levels of anthropogenic aerosols. Since they are produced primarily204

within the mixing layer, aerosols are concentrated near the surface. During the day, solar205

heating of the surface drives vertical mixing, causing the mixing layer to deepen and206

carrying aerosols to higher altitudes. As surface heating decreases in the late afternoon,207

the region of active vertical mixing shrinks, but the aerosols may remain aloft for some208

time. Frequently, aerosols carried aloft by one day’s mixing can still be observed the209

following day in a residual layer disconnected from the surface. In the coastal mountain210

environment of Los Angeles, aerosols can also be carried above the mixing layer by the211

dominant circulation pattern, resulting in a sometimes complex stratification structure212

with thin, lofted aerosol layers [Lu and Turco, 1994, 1995].213

2.4. Analysis

We use a Haar wavelet covariance method to identify boundaries between layers with214

high and low aerosol density. At a given height z, the wavelet covariance w is given by215

integrating the product of the backscatter profile with a Haar wavelet H centered at z:216

w(z) =
1

d

∫
dz′ Bnr(z

′)H(z, z′, d) (2)217

H(z, z′, d) =


1 z − d/2 < z′ < z

−1 z < z′ < z + d/2

0 |z′ − z| > d/2

(3)218
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The width d, or dilation, of the wavelet is chosen to correspond to the typical size of219

the transition zone at the top of the mixing layer, 200 m. As illustrated in Figure 3,220

the covariance is highest where the backscatter decreases rapidly with height. Because221

aerosols are concentrated within the mixing layer, such a rapid decrease in backscatter222

occurs at the top of the mixing layer. We therefore use high wavelet covariance values to223

identify the mixing layer top.224

In order to increase the likelihood of detecting the mixing layer top rather than some225

other boundary – for example, a structure within the mixing layer or a residual layer of226

aerosols further aloft – each day’s data is considered as a whole. Call the set of times227

during a single day at which backscatter data is available t1, . . . , tmax. First, designate a228

single time tk and compute the altitude zk(tk) at which the Haar covariance is maximum.229

Any later timepoints are then considered in order, beginning with tk+1. The altitude zk of230

the detected boundary is constrained to vary at a rate no faster than v. For the MiniMPL,231

we set v = 100 m/min, a conservative upper bound on typical rates of change of the mixing232

layer height [Stull , 1988]. This is equivalent to setting the Haar covariance to zero outside233

the range (zk(ti−1)− v(ti− ti−1), zk(ti−1) + v(ti− ti−1)). In addition, a multiplicative bias234

factor is applied to suppress the Haar covariance for unlikely but possible rates of change,235

decreasing linearly from one at (2/3)v to zero at v. Similarly, any timepoints earlier than236

tk are considered in reverse order, beginning with tk−1.237

For tk = t1, an additional physical constraint is applied: the mixing layer top must238

begin each day within 500 m of the ground. This aids in selecting a boundary that is239

continuous with the top of the nocturnal boundary layer, as the mixing layer should be.240
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This process is repeated for five values of tk distributed evenly throughout the day,241

including the earliest time t1 and the latest time tmax. The result is a set of estimates242

zk1(t), . . . , zkn(t) of the mixing height as a function of time.243

A voting procedure is then used to select one estimate from the set. First, estimates244

are checked for pairwise agreement according to one of several criteria. In this study,245

we consider two estimates to be in agreement if they differ by no more than one unit246

of instrument vertical resolution (30 m for the MiniMPL as we operate it) as to the247

maximum depth of the mixing layer during the midday period. This criterion is optimized248

for determining that maximum; other criteria, such as agreement to within a tolerance249

over a specified fraction of the data period, might be better suited for other purposes.250

Next, this pairwise agreement is used to calculate a concurrence score for each estimate.251

An estimate E has a concurrence score equal to the fraction of all estimates that agree252

with E according to the selected criterion – see Figure 2 for an example. A 3/10 penalty is253

applied to the concurrence score of any estimate that violates the start-of-day condition,254

i.e. that puts the mixing layer top above 500 m at the start of the day. This was already255

forbidden during processing for the estimate beginning at t1, but it may occur in other256

cases, and it generally indicates that the estimate has been fooled by a residual layer. After257

applying the penalty, the estimate with the highest score is selected for reporting, and the258

concurrence score can be used as a measure of confidence. Concurrence ties are broken by259

selecting the estimate with the earliest start time tk; note that for concurrence scores of260

better than one-half, the tied estimates necessarily agree as to the chosen criterion. We261

recommend excluding estimates with scores less than one-half.262
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Because fog or clouds can completely extinguish the instrument beam, preventing any263

information from being returned from higher altitudes, it is important that our processing264

algorithm be able to detect this circumstance. Under foggy conditions, the altitude of265

highest Haar wavelet covariance does not represent the top of the mixing layer – in fact,266

there likely is no mixing layer – but only the maximum altitude to which the beam was267

able to pierce the fog before being extinguished. This situation is common in Pasadena268

in the early morning. We detect fog by checking directly for beam extinction, i.e. a layer269

of very high backscatter values with close to zero signal from above, and do not report270

any mixing height while fog is present.271

Although the altitude of maximum Haar covariance on a foggy morning does not repre-272

sent the mixing layer top, it remains useful, since that altitude transitions smoothly into273

the mixing layer top as the fog burns off. Fog, clouds, or rain that occur in the middle of274

the day are more problematic, since they often produce discontinuous changes in signal.275

We treat such occurrences as data gaps, and we exclude days on which gaps, including fog276

or rain, persist for too much of the total data period. In any case, we report for each day277

the maximum length of any gap in data, including instrument malfunction, a late start278

to data gathering, or beam extinction. It is important to check the maximum gap length279

before making use of the data, and to establish a standard for maximum allowable gap280

length, since long gaps can produce nonsensical results.281

3. Results

3.1. Climatology and Variation

On the basis of our estimates, we emphasize the very large daily variability in the mixing282

height in the LA basin. The maximum depth of the mixing layer in afternoon may differ283
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by a factor of two from one day to the next. On average, the greater degree of insolation284

does produce deeper afternoon mixing layers in summer than in winter. Using backscatter285

data from the MiniMPL on days with concurrence scores of 4/5 or higher and without286

gaps longer than 1 hr, we find the mean afternoon maximum mixing depth to be 770 m287

AGL in summer (June and August) and 670 m AGL in winter (December-February).288

However, as illustrated in Figure 4, this seasonal difference is overwhelmed by the289

very large day- to week-scale variability. Within-season standard deviations in afternoon290

maximum mixing height are about 220 m in both summer and winter, representing 29%291

and 32% of the means, respectively. Similarly, a given day’s mixing height cannot reliably292

be extrapolated from measurements made on previous days. Across 105 cases across all293

seasons in which we achieve concurrence scores of 4/5 or higher on both of two consecutive294

days, the root-mean-square difference in afternoon maximum mixing depth at Caltech is295

230 m.296

The high variability reinforces that applications of climatological mixing depth values297

are subject to large uncertainties; sustained observations like those we present here can298

quantify those uncertainties. Such observations can also be used to calibrate models or299

to choose between parameterization schemes in meteorological models, as we discuss in300

sections 3.4 and 3.5. Comprehensive comparisons to a model and/or to other meteoro-301

logical observations over a long period could also provide a more granular understanding302

of the mixing dynamics. A robust explanation is needed for the variation we observe,303

which takes place too consistently and on too short a time scale to be attributed solely304

to unusual events such as forest fires or the LA basin’s periodic Santa Ana winds.305

3.2. Ceilometer
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Alongside the MiniMPL, we also operated a Vaisala CL51 ceilometer (a successor in-306

strument to the CL31, for details see e.g. Münkel and Rasanen [2004]; McKendry et al.307

[2009]; Münkel et al. [2011]) at the same site. The measurement principle of the ceilometer308

is similar to that of the lidar, but the overlap correction and other calibration steps are309

performed by proprietary software not visible to or modifiable by the user [Wiegner et al.,310

2014]. The resulting quantity is referred to simply as the backscatter profile. The CL51311

operates at 910 nm, in the near-infrared; it uses a 16 s temporal bin and a 10 m vertical312

range resolution.313

We apply a version of the same algorithm to estimate mixing depths based on ceilometer314

backscatter data as we use with the MiniMPL . An example is shown in Figure 2b for315

comparison to the MiniMPL results on the same day. As is visible in the figure, especially316

in regions of low backscatter signal, the ceilometer’s signal-to-noise performance is not as317

good as that of the MiniMPL. As a result, some adjustments are necessary. First, the318

maximum allowed rate of change v in the mixing layer height must be relaxed; for the319

ceilometer we set it to 150 m/min. This change is necessary because noise can temporarily320

disguise a change in the boundary location; the algorithm must be able to “snap back”321

to the true location of the boundary even after it has moved some distance away.322

Second, the ceilometer tends to show an unrealistically large signal in the near field.323

He et al. [2006] note a similar artifact, which they attribute to an imperfectly corrected324

overlap error [see also Wiegner et al., 2014]. Such errors are caused by differences in the325

optical geometry of the outgoing beam aperture and the detector that collects scattered326

photons. Because the erroneous backscatter signal associated with the artifact decays327

very rapidly, it has a high wavelet covariance. The algorithm therefore tends to detect the328
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artifact in place of the real boundary, estimating the mixing depth at the lowest possible329

altitude.330

To solve this problem, and to dampen noise in general, it is standard to take the331

logarithm of the ceilometer backscatter data prior to processing. Although physically332

unmotivated, this preprocessing step flattens out large signals, decreasing the influence of333

the low-altitude artifact. Figure 5 shows an example of a case in which the log transform334

allows the algorithm to detect the correct boundary. However, the log transform also335

introduces an offset. It suppresses the magnitude of the gradient of the backscatter more336

where backscatter values are higher:337

d

dz
log(b(z)) =

1

b(z)

db(z)

dz
(4)338

Backscatter decreases with height in the transition from the mixing layer to the free tropo-339

sphere above, so the strongest gradient in log(b(z)) generally occurs at a higher altitude340

than the strongest gradient in b(z). This effect carries over to the wavelet covariance341

method, causing a positive offset of about 50 m. The offset is due to a methodological342

choice to identify the altitude of greatest relative change in scattering, not a difference in343

physical reality. It should therefore be noted and compensated for in comparisons with344

estimates that identify the altitude of greatest absolute change, i.e. those that do not345

employ a log transform.346

The effect of the log transform on the whole dataset is shown in Figure 5. There are two347

distinct populations. On some days, the low-altitude artifact traps the maximum mixing348

depth at the bottom of the instrument range. Applying the log transform removes the349

effect of the artifact, allowing the true mixing depth (which is variable) to be detected.350

On days on which the algorithm is not fooled by the artifact, the offset introduced by the351
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log transform is visible: applying the transform results in an average increase of about 50352

m in the estimated mixing depth.353

Even with adjustments, our confidence in mixing height estimates derived from the354

ceilometer is not as high as in those derived from the MiniMPL. One proxy for confi-355

dence in a given day’s results is the degree of concurrence among estimates in the voting356

procedure (see section 2). As can be seen in Figure 6, the MiniMPL achieves unanimity357

(concurrence score of 5/5) or near-unanimity (score of 4/5) on 51% days for which data358

is available. By contrast, the ceilometer achieves a score of 4/5 or better on only 36% of359

days. It is for this reason that we focus our results on estimates derived from MiniMPL360

observations.361

3.3. Sonde Comparison

In September 2012, a one-day intensive campaign of sonde launches was conducted for362

comparison to mixing layer information from the MiniMPL. Sondes were launched every363

three hours between 7:00am and 7:00pm local time. The results are displayed in Figure364

7. In each case, the PBL height is extracted from the sonde using the method of Heffter365

[1980]. At 7:00am, morning fog is still present and the mixing layer has not yet developed.366

At 10:00am, 1:00pm, and 4:00pm, the mixing height identified using the backscatter data367

coincides with the sonde-derived PBL height to within 150 m. Since the top of the mixing368

layer is in fact a transitional zone of 100 to 200 m thickness, it should not be considered to369

have a well-defined exact location. Some discrepancy should therefore be expected even370

between methods that detect substantially the same layer. In this one-day comparison,371

the backscatter method displays no identifiable systematic bias with respect to the sonde372

method; of course, the comparison presented is too limited to conclude that no bias exists.373
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We emphasize that, while the sonde comparison provides some confidence that, at least374

during the day, the layer in which elevated aerosol levels are present does correspond to375

the thermodynamic boundary layer, it is in any case the former that is of most interest376

for interpreting atmospheric concentrations of trace gases. For the purpose of linking377

atmospheric measurements to emissions rates, the important question is what part of the378

atmosphere should be considered in contact with the surface. In other words, through379

what volume are species emitted from the surface dispersed?380

By 7:00pm, the mixing layer has begun to collapse and the structure is becoming more381

complicated. Two distinct boundaries are visible in both the potential temperature profile382

and the backscatter distribution, and both methods select the higher of these. Indeed,383

the day’s aerosol emissions are distributed up to the higher boundary at 920 m. However,384

with the decrease in solar heating to drive vertical motion, the upper part of the identi-385

fied layer (above about 500 m) is probably no longer interacting with the surface. Our386

method has therefore failed to detect a region of substantial, active vertical mixing. This387

case serves as a reminder that the mixing layer concept is not always straightforwardly388

applicable, particularly in the evening as vertical mixing tapers off. Care should be taken389

in interpreting and applying our or any other mixing depth estimates around sundown,390

even on days – like this one – with otherwise robust retrievals.391

3.4. North American Regional Reanalysis (NARR) Comparison

GHG flux inversion studies typically make use of PBL heights derived from meteoro-392

logical models or reanalysis products. We compare afternoon maximum mixing depth393

estimates based on MiniMPL data to PBL height estimates from the Weather Research394

and Forecasting model (WRF) and the North American Regional Reanalysis (NARR).395
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NARR is a reanalysis product providing a variety of atmospheric and surface variables396

over North America at 32 km spatial resolution and at 3 hour intervals [Mesinger et al.,397

2005]. We find a large and persistent difference between afternoon maxima of MiniMPL-398

derived mixing depths at Caltech and PBL height estimates at the nearest NARR grid399

location. Figure 8 shows the distributions of these quantities over 227 days on which400

the MiniMPL estimate achieves a concurrence score of at least 4/5 and without data401

gaps longer than one hour. The maximum NARR PBL height exceeds the maximum402

MiniMPL-derived mixing depth on all but one day, differing by a factor of two or more403

on 63% of days. Summary statistics are in Table 3.404

Interestingly, although maximum NARR PBL heights are an average of 2.5 times Min-405

iMPL derived mixing depths, the two quantities are similarly distributed. Both show406

substantial variability, with standard deviations about 32% of the respective means, and407

both are skewed toward high values, with skewness 0.84 (NARR) and 0.88 (MiniMPL).408

However, NARR does not reproduce the detailed timing of this variability. Even after409

scaling maximum NARR PBL heights down by a factor of 2.5 to account for the mean410

difference, a root-mean-square difference of 360 m remains between scaled NARR esti-411

mates and MiniMPL estimates on the same days. This is almost as large as the RMS412

difference of 370 m in a sample of 106 random pairs of MiniMPL estimates and scaled413

NARR estimates.414

We can attribute NARR’s failure to accurately represent the boundary layer in Pasadena415

at least in part to its coarse spatial grid. The meteorology of the Los Angeles basin is416

strongly influenced by the coastal mountain topography (see Figure 9), resulting in a417

complex pattern of circulation [Lu and Turco, 1994, 1995]. It comes as no surprise that418
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a product unable to resolve the rapid changes in elevation will struggle to predict PBL419

heights in this environment. If NARR is used to drive a transport model for GHG flux420

estimation in Los Angeles or in other areas with meteorology strongly influenced by the421

detailed topography, careful evaluation and correction of mixing depth biases will be422

critical for avoiding large errors. Since a biased mixing depth results in a proportional423

bias in flux estimates (see the general argument in section 4), we would expect a 250%424

bias in an LA flux inversion using NARR.425

3.5. Weather Research and Forecasting (WRF) Comparison

Given the difficulty posed by the rapidly-varying topography of the LA basin, one might426

expect a high-resolution model to better represent the mixing dynamics. We compare427

mixing depth estimates from MiniMPL data taken during a deployment of the instrument428

in October-November 2015 to PBL heights from such a high-resolution model, a WRF429

setup developed specifically for the Los Angeles environment by Feng et al. [2016] to430

simulate CO2 concentrations. The model is initialized with NARR and with sea surface431

temperatures from NCEP and uses three nested domains, with the innermost domain432

covering the LA basin at a resolution of 1.3 km. Using observations from the intensive433

Calnex campaign in 2010, including aircraft and ceilometer PBL measurements, Feng et al.434

[2016] tested a variety of WRF configurations. We employ only the MYNN UCM d03435

configuration, which they found to minimize errors.436

We redeployed the MiniMPL to Caltech for the three-week period of October 21 to437

November 9, 2015. Of these twenty days of observations, the mixing depth estimation438

algorithm achieves a concurrence score of 4/5 or better on six days and a score of 3/5439

on another nine days. Although this comparison period is too short to allow robust sta-440
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tistical conclusions, we make some preliminary observations. Like NARR, WRF PBL441

heights show variability that is similar in relative terms to that of Mini-MPL derived mix-442

ing heights. Over the three-week comparison period, the standard deviation of maximum443

afternoon WRF PBL heights is 540 m, about 37% of the mean. However, WRF estimates444

PBL heights that are greater than MiniMPL-derived mixing depths on all but one after-445

noon. On average, afternoon maximum WRF PBL height exceeds afternoon maximum446

MiniMPL mixing depth by 730 m. Considering only days with high concurrence scores447

reduces the discrepancy considerably. The mean difference on days with scores of 4/5 or448

better is 380 m, suggesting that the concurrence voting scheme effectively identifies days449

that are easier to analyze.450

The discrepancy we find between modeled PBL height and MiniMPL-derived mixing451

depth is surprising given the excellent agreement reported by Feng et al. [2016]. Dur-452

ing the 2010 Calnex campaign period, they report a mean WRF-derived daytime PBL453

height (using the same MYNN UCM d03 configuration we use here) of 828.8 m, in good454

agreement with a mean mixing depth of 835.7 m obtained from ceilometer measurements455

using the gradient method. They also report substantially less variability in modeled PBL456

height than in measured mixing depth. Further work, including a model-data comparison457

covering a longer period, is clearly needed to resolve this perplexing difference. While458

such a comparison is beyond the scope of this study, we do note that NARR PBL height459

estimates for May-June 2010 are generally similar to those from our comparison period460

in October-November 2015, with a mean daily maximum of 2.1 km.461

Our analysis here cannot distinguish between differences due to errors in mixing depth462

estimation, errors in modeled PBL depth, or conditions under which the mixing layer463
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fails to correspond to the thermodynamic PBL. Still, it is prudent to expect that the464

same complex stratification which can cause the mixing depth estimation algorithm to465

fail might also indicate challenging conditions for the model. By selecting days with high466

concurrence scores, MiniMPL observations can be used to choose “golden days” for model467

analysis. Alternately, if a model is run over a long period, days with good agreement468

between the model and lidar estimates can be selected for flux estimation. For example,469

Figure 10 shows a pair of days which would not be readily distinguished on the basis of470

model results alone. The additional information provided by the lidar estimates lets us471

assign greater confidence to modeling on the day with good agreement (panel a) than that472

with poor agreement (panel b).473

Sustained lidar can also inform the choice of model configurations or parameters, as Feng474

et al. [2016] and others [e.g., Nehrkorn et al., 2013] have done with PBL observations from475

limited campaigns. In addition to increasing confidence in that choice simply by virtue476

of a larger volume of data, long-term observations can provide more detailed information477

about how model errors depend on season or on other meteorological conditions. For478

example, Lewis et al. [2013] found that PBL height as estimated by the general circulation479

model GEOS-5 differs most from that measured by the lidar network MPLNET in winter.480

Unlike sondes, lidar data can validate not only the depth of the mixing layer but also the481

timing of its development and collapse. That timing can be critical; for example, in an482

urban setting, a difference of one hour may determine whether the mixing layer begins483

to develop before, during, or after the emissions peak associated with the morning rush484

hour.485
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An alternate method for integrating mixing depth observations into flux estimation is486

to characterize a known model bias and correct for it after the modeling stage. Zhao et al.487

[2009] use three months of wind profiler measurements to derive an empirical relationship488

between observed and modeled PBL heights. They apply that relationship to scale down489

modeled PBL height before computing fluxes, reducing the residual error by a factor of490

1.5. Among the advantages of postprocessing corrections of this kind are that they are491

simple to apply, allowing accuracy to be improved even in less detailed inversions, and492

that they can be combined with the strategies discussed above to further control any493

errors remaining after tuning model parameterization and/or selecting out “golden days.”494

3.6. Spatial Variation

Taking advantage of the MiniMPL’s portability, we also conducted a one-time pilot495

mobile study in which backscatter data was collected over a period of about twenty min-496

utes as the MiniMPL was transported due west toward the Pacific coast in the back of a497

passenger car. This observing strategy, which could not have been implemented with a498

full-size research lidar, is made possible by the compact size and low power requirements499

of the MiniMPL. Now that we have demonstrated its feasibility, we hope that this new500

approach will allow for both more regular mapping of the spatial structure of the mixing501

layer and more nimble mobile deployment of lidar in response to irregular events like fires502

and gas leaks.503

The spatial profile of aerosol backscatter near the Pacific coast is shown in Figure 11.504

The transition between the shallow marine layer, which extends two to three kilometers505

onto land, and the convective regime that dominates further inland is clearly visible. The506

vertical structure in this case is simple, with a well-defined mixing layer of high backscatter507

D R A F T August 3, 2016, 2:22pm D R A F T

This article is protected by copyright. All rights reserved.



X - 26 WARE ET AL.: LIDAR OBSERVATIONS OF ATMOSPHERIC MIXING

adjacent to the ground and a sharp decrease in backscatter at the top of that layer. The508

mixing depth as estimated by the minimum backscatter gradient is indicated in the figure509

by the black circles (our retrieval algorithm is not suitable, since it relies on the temporal510

evolution of the boundary at a fixed location).511

Figure 11 also shows the PBL height as predicted by WRF. The WRF prediction agrees512

well with the MiniMPL-derived mixing depth near the coast, but does not increase as513

sharply further inland. Unlike at Caltech, in this case the WRF PBL height is lower than514

the observed mixing depth. Repeated measurements of this kind could reveal whether the515

difference is consistent with time and at locations elsewhere along the coast, both in the516

immediate Los Angeles area and elsewhere, which could contribute to model development517

in the challenging coastal environment. Further work characterizing the coastal transition518

could also aid in understanding the fate of GHG emissions from sources like ports and519

marine industry.520

4. Conclusions

Researchers have recognized that the representation of mixing dynamics is both critical521

for the interpretation of top-down emissions estimates and also a major source of uncer-522

tainty [e.g., Newman et al., 2013; Zimnoch et al., 2010]. McKain et al. [2012] advocate523

the use of column-integrated concentration measurements in urban studies, among other524

reasons in order to avoid the impact of mixing height errors. A common strategy [Breon525

et al., 2014] is to rely only on observations made during midafternoon, when the mixing526

layer is at or near its maximum depth and the detailed timing of its dynamics are less527

important. But we observe even afternoon maximum mixing height in Los Angeles to528

vary substantially from day to day, typically differing from the seasonal mean by 30%.529
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A simple dimensional argument demonstrates the impact of such variations. Suppose530

that an instrument measures the in situ concentration of a trace gas at a particular531

location. This concentration is expressed as a molar fraction, or, equivalently given the532

local density of dry air, as a volume concentration C in moles of gas per unit volume, i.e.533

in n/L3. The goal is to use the measurement to infer a surface flux F , expressed in moles534

of gas emitted or absorbed per unit area per unit time, i.e. as n/(L2T ). On dimensional535

grounds, any method for relating the concentration to the flux must incorporate some536

temporal information, such as the time τ during which the sampled air mass was exposed537

to the flux, and also some vertical length scale.538

The relevant vertical length scale is the mixing height h, which controls the height of539

the space into which the emitted gas is diluted. We therefore expect540

F ∝ hC/τ (5)541

in which case an error in the mixing height h will result in a proportional error in the542

flux estimate. In detailed models, this picture is complicated to some degree by higher-543

order effects, e.g. the coupling between vertical motion and horizontal wind shear, but544

the essential proportionality remains. Applying sustained observations to control mixing545

depth errors, whether by validating models, choosing suitable periods for analysis, or546

characterizing and correcting for errors in postprocessing, is critical for accurate GHG547

flux estimation.548

We have focused above on determining the depth of the mixing layer, especially at549

its afternoon maximum. But the mixing layer concept is not always applicable. Even550

when the mixing height is applicable, it does not fully describe the complex structure551

of the lower troposphere. The potential exists to extract much more information about552
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that structure from lidar backscatter data. Among other applications, a more complete553

picture of the mixing state could contribute to our understanding of the transport of554

species emitted from the surface. Here we suggest one direction in particular for future555

work.556

The mixing layer itself may exhibit internal structure. For example, in Los Angeles, the557

sea breeze circulation pushes near-surface air inland during the day. As a result, the air558

mass within the mixing layer over Pasadena in the afternoon has traveled over downtown in559

the preceding hours. The time scale of this horizontal motion, and the varying emissions560

rates and compositions from the traversed areas, may create a stratification, in which561

fresh emissions from Pasadena are concentrated in the lowest part of the mixing layer562

while those from downtown are more thoroughly mixed throughout. If we were able to563

observe and understand within-layer dynamics of this kind, we could much more precisely564

link trace gases observed in the atmosphere to their points of emission, allowing us to565

answer more specific questions about the sources and composition of emissions in the566

urban environment.567

Since the lidar is primarily sensitive to aerosols and not to trace gases, the distribution568

of aerosol would need to be used as a proxy for the distribution of co-emitted trace gases,569

assuming that the two are transported within the mixing layer in a similar way, at least570

on short time scales and over small distances. That assumption would need to be tested571

before it could form the basis of any future work. Challenges notwithstanding, this is an572

exciting possibility for future applications, including more detailed validation of transport573

models and finer-scale attribution of emissions sources within complex urban environments574

like that of Los Angeles.575
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Automatic detection of atmospheric boundary layer height using ceilometer backscatter608

data assisted by a boundary layer model, Quarterly Journal of the Royal Meteorological609

Society, 138, 649–663, doi:10.1002/qj.964.610

Ehret, G., A. Giez, C. Kiemle, K. J. Davis, D. H. Lenschow, S. P. Oncley, and R. D. Kelly611

(1996), Airborne water vapor DIAL and in situ observations of a sea-land interface,612

Contributions to Atmospheric Physics, 69, 215–228.613

Endlich, R. M., F. L. Ludwig, and E. E. Ludwig (1979), An automatic method for de-614

termining the mixing depth from lidar observations, Atmospheric Environment, 13,615

1051–1056.616

Eresmaa, N., A. Karppinen, S. M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing617

height determination by ceilometer, Atmospheric Chemistry and Physics, 6 (6), 1485–618

1493, doi:10.5194/acp-6-1485-2006.619

D R A F T August 3, 2016, 2:22pm D R A F T

This article is protected by copyright. All rights reserved.



WARE ET AL.: LIDAR OBSERVATIONS OF ATMOSPHERIC MIXING X - 31

Feng, S., T. Lauvaux, S. Newman, P. Rao, R. Ahmadov, A. Deng, L. I. Diaz-Isaac, R. M.620

Duren, M. L. Fischer, C. Gerbig, K. R. Gurney, J. Huang, S. Jeong, Z. Li, C. E. Miller,621

D. O’Keeffe, R. Patarasuk, S. P. Sander, Y. Song, K. W. Wong, and Y. L. Yung (2016),622

Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban623

CO2 emissions, Atmospheric Chemistry and Physics, 16, 9019-9045, doi:10.5194/acp-624

16-9019-2016.625

Flynn, C. J., A. Mendoza, Y. Zheng, and S. Mathur (2007), Novel polarization-626

sensitive micropulse lidar measurement technique, Optics Express, 15 (6), 2785–2790,627

doi:10.1364/oe.15.002785.628

Gan, C. M., Y. Wu, B. L. Madhavan, B. Gross, and F. Moshary (2011), Application of629

active optical sensors to probe the vertical structure of the urban boundary layer and630

assess anomalies in air quality model PM 2.5 forecasts, Atmospheric Environment, 45,631

6613–6621, doi:10.1016/j.atmosenv.2011.09.013.632

Haeffelin, M., F. Angelini, G. P. Gobbi, Y. Morille, G. Martucci, C. D. O’Dowd, S. Frey,633
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Figure 1. A complete MiniMPL lidar system consists of an optical transceiver (shown) and a

laptop running data acquisition and post-processing software.

Figure 2. A sample day of backscatter data (heatmap) from the MiniMPL (panel a) and

ceilometer (panel b, see section 3.2) with mixing heights as estimated by our algorithm (black

symbols: majority opinion; green symbols: estimates initialized at other times of day). Prior

to 8am, both instrument beams are completely extinguished near the surface; the algorithm

recognizes the presence of fog and does not attempt to make an estimate. In the late afternoon –

and in the morning in the case of the ceilometer – the various estimates disagree as to the mixing

height, identifying two different boundaries. We report the majority opinion together with the

degree of concurrence (4/5 for the MiniMPL, 2/5 for the ceilometer). Note that MiniMPL NRB

values and ceilometer backscatter values do not use comparable scales.

Figure 3. An illustration of the wavelet method. The instrument returns a vertical profile

of normalized relative backscatter (NRB, left). To compute the wavelet covariance at a given

altitude z, the backscatter profile is integrated against a Haar wavelet centered at z (middle). In

this example, the covariance is given by the difference in area between the orange (upper) shaded

region and the blue (lower) region, which indicates the decrease in backscatter over the scale of

the wavelet. The resulting Haar wavelet covariance is shown at right.

Figure 4. Solid curves: average diurnal cycles of mixing height in June-August (orange) and

December-February (blue). Shaded regions: one standard deviation of between-days variability.

Estimates according to the MiniMPL, retaining only days on which the concurrence score was

at least 4/5.
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Figure 5. (a) Representative backscatter profiles from the ceilometer, with (orange, triangular

symbols) and without (blue, round symbols) applying a log transform. The horizontal lines

show the corresponding mixing height as estimated by the algorithms: solid blue line, without

transform; dashed orange line, with transform. Note the very high backscatter values at low

altitudes in the untransformed data, which fool the algorithm into selecting an unrealistically

low mixing height.

(b) Maximum afternoon mixing depths as estimated using ceilometer data with (vertical axis)

or without (horizontal axis) applying the log transform. Days on which the untransformed data

is affected by the low-altitude artifact are indicated by the dashed green ellipse; taking the log

transform removes the effect of the artifact. On other days (indicated by the solid pink ellipse),

the bias introduced by the transform is visible. The solid black line is the 1-1 line. Only days

with concurrence scores of at least 3/5 are shown.

Figure 6. Degree of concurrence achieved by the algorithm using backscatter data from the

MiniMPL (blue, solid) or from the ceilometer (orange, dashed), shown as a fraction of days on

which both instruments were operating.

Figure 7. Orange: potential temperature profiles from sonde launches, with the corresponding

PBL height as calculated using Heffter’s method (horizontal dashed line). Blue with trian-

gles: contemporaneous MiniMPL backscatter profiles, with the mean (center horizontal line) and

range (shaded area) of the algorithmically-estimated mixing height over the 30-minute period

surrounding the sonde launch.

Table 1. Technical specifications for the MiniMPL (used in this study) and the standard

MPL.
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Figure 8. Gaussian kernel density (smoothed relative frequency) of maximum afternoon

mixing depth according to the MiniMPL (pink, left peak) and according to NARR (green, right

peak) over 227 days with MiniMPL concurrence score at least 4/5. Solid vertical lines: median;

dashed vertical lines: quartiles.

Figure 9. (a) Elevation map of the Los Angeles Basin [U.S. Geological Survey , 2015]. The

labeled diamonds indicates the location of the measurement site at Caltech (in Pasadena). The

solid line shows the route taken in the mobile study; the dashed line corresponds to the cross

section in panel (b).

(b) Elevation cross section along the dashed line in panel (a); the longitude scale is the same for

both panels.

Figure 10. Examples of days with good (panel a) and poor (panel b) agreement between

MiniMPL-derived mixing depths (small circles) and PBL heights as estimated by WRF (large

diamonds). NARR PBL heights (large triangles) show large discrepancies in both cases.

Figure 11. Heatmap: MiniMPL backscatter intensity near the Pacific coast (located at

longitude -118.41). Small black circles: mixing depth as estimated by the gradient method

using MiniMPL data. Large black diamonds: PBL height as estimated by WRF. Black curve at

bottom: topography (same vertical scale).
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Table 2. Number of days of MiniMPL data collection without gaps longer than one hour, by

month and by concurrence score of the mixing depth estimation algorithm.

Month Total 1/5 2/5 3/5 4/5 5/5
January 52 3 4 11 10 24
February 26 4 7 4 5 6
March 29 1 5 8 7 8
April 31 1 3 12 10 5
May 26 0 7 5 8 6
June 14 1 2 1 3 7
July 0 0 0 0 0 0
August 49 1 5 15 14 14
September 85 1 18 24 16 26
October 64 5 13 16 13 17
November 48 4 13 15 11 5
December 52 4 14 16 7 11
All Months 476 25 91 127 104 129

Table 3. Mean, median, 1st and 3rd quartiles, and standard deviation of afternoon maximum

PBL height (NARR) or mixing depth (MiniMPL), in km AGL, over 227 days with concurrence

score at least 4/5 and without data gaps longer than on hour.

Method Q1 Median Mean Q3 σ σ/Mean
MiniMPL 0.63 0.75 0.84 0.98 0.27 32%
NARR 1.46 1.84 1.92 2.20 0.62 32%
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