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Capacity Expansion and Cost Efficiency Improvement

in the Warehouse Problem

Majid Al-Gwaiz∗, Xiuli Chao†, and H. Edwin Romeijn‡

Abstract

The warehouse problem with deterministic production cost, selling prices, and demand was
introduced in the 1950’s and there is a renewed interest recently due to its applications in energy
storage and arbitrage. In this paper we consider two extensions of the warehouse problem,
and develop efficient computational algorithms for finding their optimal solutions. First, we
consider a model where the firm can invest in capacity expansion projects for the warehouse
while simultaneously making production and sales decisions in each period. We show that this
problem can be solved with a computational complexity that is linear in the product of the length
of the planning horizon and the number of capacity expansion projects. We then consider a
problem in which the firm can invest to improve production cost efficiency while simultaneously
making production and sales decisions in each period. The resulting optimization problem is
non-convex with integer decision variables. We show that under some mild conditions on the
cost data, the problem can be solved in linear computational time.

1 Introduction

Cahn [3] introduces the deterministic warehouse problem as follows: “Given a warehouse with fixed

capacity and an initial stock of a certain product, which is subject to known seasonal price and

cost variations, what is the optimal pattern of purchasing (or production), storage and sales?” This

problem has a finite planning horizon, and a procurement and a sales quantity are determined for

each period, with costs and revenues proportional to the chosen volumes. As a linear programming

(LP) with very special structure, Charnes and Cooper [4] showed that it can be solved with a linear

time algorithm. Under the optimal policy, in each period only one of four possible actions is taken,

a property already shown by Bellman [2]:
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(i) produce and sell nothing;

(ii) produce nothing and sell all available inventory;

(iii) produce up to the available capacity and sell nothing;

(iv) produce up to the available capacity and sell all available inventory.

Moreover, the action choice for each period is independent of the prevailing capacity volumes.

In this paper we address two generalizations of the warehouse problem. In the first general-

ization, we allow the decision maker to expand the capacity in any period by implementing one

of n distinct expansion projects. Any given project may be implemented in at most one period

and the expansion costs are time and project dependent. We exploit the fact that the optimal

operational policy is independent of the capacity values, to project the problem into one in which

only capacity expansion decisions need to be made, and show that this problem can be solved in an

amount of time that is linear in the product of the number of periods and the number of projects.

We then consider the cost efficiency improvement problem in which the firm can invest to reduce

production costs while simultaneously making purchasing and sales decisions. This gives rise to a

non-convex optimization problem with integer decision variables. We focus on a special case of this

problem and present an efficient algorithm to solve it. These models can be useful in investment

related optimization problems in energy storage and arbitrage. For example, the warehouse capac-

ity expansion problem may be used for scheduling the installation of additional storage units, while

the warehouse cost efficiency improvement problem could be used to determine the measures that

should be taken to attain high storage efficiency.

This work is motivated by the first author’s industrial experience in petrochemical plants. In

these production facilities the firm is always searching for ways to improve profits and teams of

consultants are usually hired to study options to improve productivity. The outcome of these

studies is a list of project proposals, each with different impacts on the facility’s profits, that range

from zero or low cost operational improvements (such as equipment load management) to major

capital intensive projects (e.g., installing steam turbine generators to produce electricity from the

plant’s excess heat). Timing of the project execution is critical as early execution can have longer

lasting benefits, while delaying the execution could also have merit because the economic factors

(such as construction raw material and production interruption costs) may become favorable in

later time periods. The majority of these project opportunities are categorized as either capacity

debottlenecking or cost efficiency projects. The firm needs to determine which projects to implement

and when to implement them, while maintaining an optimal operations schedule.
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The warehouse problem can also be considered as an Economic Lot Sizing (ELS) problem with

pricing and inventory bounds. The ELS problem with pricing, first introduced by Thomas [12],

considers an ELS problem in which a facility simultaneously chooses its production level and selling

price in every time period, where the demand in a period is a known decreasing function of the selling

price. Subsequent formulations, such as Geunes et al. [6], use the demand and production levels as

decision variables, with the revenue given as a function of the demand. Note that since the demand

is a decreasing function of selling price, the pricing decision can be transformed to demand or

sales quantity decision, and the ELS problem reduces to the warehouse problem when the demand

is linearly decreasing in price. Although this ELS formulation captures most of the warehouse

problem’s dynamics, the ELS with pricing literature does not impose warehouse capacity limits.

The warehouse capacity limits are accounted for using inventory bound constraints as studied in

Hwang and van den Heuvel [7] and Hwang et al. [8], among others, in which no pricing decisions

are considered.

Recent years have shown a renewed research interest in the warehouse problem. An energy

storage element (e.g., underground gas storage or electric batteries) can be modeled as a warehouse,

and the warehouse problem lends itself to the analysis of price arbitrage and commodity trading as

well as operational policies for fixed storage capacities (see for example [5], [9], [11], [13], and [14]).

Several extensions of the warehouse model have been studied to address these applications. For

example, Rempala [10] introduces a production rate capacity limitation, Secomandi [11] applies rate

capacities on both production and sales, and Lai et al. [9] study the case when prices in different

periods are dependent.

The classic warehouse problem is introduced in the following section together with its optimal

solution. Section 3 studies the capacity expansion while Section 4 studies cost efficiency improve-

ment in the warehouse problem. The paper concludes with a discussion in Section 5.

2 Warehouse Production and Sales Planning

In this section we introduce a slightly generalized version of the original warehouse problem solved

by Charnes and Cooper [4], and derive some simple results; these preliminary analyses will be used

in the subsequent sections on capacity expansion and cost efficiency improvement problems.

In the classic warehouse problem, the firm determines its production quantities xt and the sales

quantities yt of a single product in every time period over a planning horizon of T periods. The

sales in time t, yt, take place at the beginning of the time period at a known price of pt, and the

production in time t, xt, is completed by the end of the period at a known cost of ct, so products
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made in period t can be sold starting from period t+ 1, i.e., the production lead time is one period.

Both the selling prices pt and product costs ct are known in advance. Unsold products can be

stored in the warehouse and sold in later periods. The objective of the firm is to maximize its total

profit over the planning horizon.

To formulate the warehouse problem, we denote by It the warehouse’s inventory at the end

of period t. The system dynamics can be written as It = It−1 + xt − yt with yt ≤ It−1. The

initial inventory level I0 is known. There is no limit on the production and sales rates, but the

warehouse has a known storage capacity Bt > 0 in time t which is non-decreasing over time, thus

It ≤ Bt for t = 0, 1, . . . , T . Note that the original warehouse problem has a single capacity B for all

time periods, but we need this generalization for our model in §3 where the Bt’s become decision

variables.

The formulation above can be simplified by noticing

It = I0 +

t∑
τ=1

(xτ − yτ ), t = 1, . . . , T, (1)

which allows us to eliminate the decision variables It, t = 1, . . . , T . This substitution would also

reduce the number of constraints by T because there would be no need to specify It = It−1+xt−yt.
This problem can be formulated as the linear programming WH below.

WH: max

T∑
t=1

(ptyt − ctxt) (2)

s. t.

t∑
τ=1

yτ −
t−1∑
τ=1

xτ ≤ I0, t = 1, . . . , T, (3)

t∑
τ=1

(xτ − yτ ) ≤ Bt − I0, t = 1, . . . , T, (4)

xt, yt ≥ 0, t = 1, . . . , T. (5)

The WH problem has linear objective function and linear constraints, hence the KKT conditions

are both necessary and sufficient for optimality. We associate the dual variables λt and µt for

t = 1, . . . , T to the sets of constraints (3) and (4) respectively, then the Lagrangian for this problem

is

LWH(x,y;λ, µ) =

T∑
t=1

(ptyt − ctxt) +

T∑
t=1

λt

(
I0 +

t−1∑
τ=1

xτ −
t∑

τ=1

yτ

)
(6)

+

T∑
t=1

µt

(
Bt − I0 −

t∑
τ=1

xτ +

t∑
τ=1

yτ

)
.
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The first order optimality conditions are obtained by taking the derivative of the Lagrangian

with respect to each variable then imposing complementary slackness. We will denote the partial

derivatives of LWH with respect to xt, yt, λt, and µt by LWH
xt , LWH

yt , LWH
λt

, and LWH
µt . We use It

in (1) to simplify notation. The KKT optimality conditions are

xt ≥ 0; LWH
xt = −ct +

∑T
τ=t+1 λτ −

∑T
τ=t µτ ≤ 0; xt · LWH

xt = 0, t = 1, . . . , T (7)

yt ≥ 0; LWH
yt = pt −

∑T
τ=t λτ +

∑T
τ=t µτ ≤ 0; yt · LWH

yt = 0, t = 1, . . . , T (8)

λt ≥ 0; LWH
λt

= It−1 − yt ≥ 0; λt · LWH
λt = 0, t = 1, . . . , T (9)

µt ≥ 0; LWH
µt = Bt − It−1 + yt − xt ≥ 0; µt · LWH

µt = 0, t = 1, . . . , T. (10)

Each of the formulas (7)-(10) has two inequalities and one equality that must be satisfied

to ensure optimality. The two inequalities achieve primal and dual feasibility, respectively. The

complementary slackness requires that at least one of these inequalities holds with equality, which

is guaranteed by the third condition. We will solve this problem by developing an algorithm that

satisfies these optimality conditions next.

The variables λt are duals to the constraints yt ≤ It−1, so λt has an economic interpretation of

the marginal benefit due to increasing inventory in period t − 1, which is desirable when we want

to sell more products in period t. The µt variables are duals to It ≤ Bt, so µt can be interpreted

as the marginal benefit due to increasing capacity in period t, which can be used to produce and

store more products xt. Based on this observation, the values of λt and µt for t = 1, . . . , T can

be used to determine xt and yt for t = 1, . . . , T . We obtain the optimal solution to WH by first

finding the optimal λt and µt values, and then use them to calculate the optimal production and

sales quantities xt and yt. To simplify notation, we will denote µt =
∑T

τ=t µτ and λt =
∑T

τ=t λτ .

Then they can be obtained recursively by, λT+1 = µT+1 = 0, and for t ≤ T ,

µt = max{λt+1 − ct, µt+1}, λt = max{µt + pt, λt+1}.

The above analysis immediately extends the algorithm in [4] for the case with constant capacity

Bt ≡ B, t = 1, . . . , T . In the rest of this paper, we use the notation a+ = max{a, 0} and the

indicator function 1{A} = 1 if event A is true and 0 if A is false.

Algorithm 1 (Optimal Production and Sales Schedule).

Step 1: Start from the last time period t = T and recursively calculate µt =
(
λ̄t+1 − µ̄t+1 − ct

)+
then λt =

(
µ̄t − λ̄t+1 + pt

)+
down to the first period t = 1.

Step 2: Start from the first period t = 1 and recursively calculate yt = It−1 · 1{λt>0} then

xt = (Bt − It−1 + yt) · 1{µt>0} up to the last period t = T .
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This algorithm has linear computational complexity O(T ). It is straightforward to verify its

optimality by checking that the KKT conditions of (7)-(10) are satisfied for a solution produced

by this algorithm, implying that the algorithm produces the optimal solution.

Algorithm 1 gives a policy with the following 4 actions based on the values of λt and µt:

(i) (Sell all inventory, produce to capacity): when λt > 0 and µt > 0;

(ii) (Sell all inventory, do not produce): when λt > 0 and µt = 0;

(iii) (Do not sell, produce to capacity): when λt = 0 and µt > 0; and

(iv) (Do not sell, do not produce): when λt = 0 and µt = 0.

This policy is in line with Bellman’s characterization of the four decision options. Using this

policy, the firm can make an optimal decision knowing only λt and µt for every period t = 1, . . . , T .

An important observation to make is that the marginal sales and production benefits λt and µt

are independent of the warehouse’s capacities Bt and the inventory It for all periods t = 1, . . . , T

because they are calculated independently from Bt and It in Step 1 of Algorithm 1. In essence,

this implies that the λt and µt values only depend on the production costs ct and sales prices pt,

so modifying the capacities for the different periods does not change the λt and µt values. This

important observation will be used in solving the capacity expansion problem in §3.

A special case of problem WH is when production costs are non-increasing over time, i.e.,

ct is non-increasing in t. It may seem beneficial in this case to withhold from production unless

it is profitable to sell the entire production quantity in the immediate following period. In that

scenario, the plant would naturally produce if the sales price in the following period is greater

than the production cost in the current period, and refrain from production otherwise. Indeed, the

following result shows that if the problem has no starting inventory and the costs are non-increasing

over time, then Algorithm 1 gives a simple solution under which whatever is produced is sold in

the following period.

Proposition 1. If I0 = 0 and costs are non-increasing over time, i.e., c1 ≥ c2 ≥ · · · ≥ cT , an

optimal solution to WH is

xt = It = yt+1 = 1{pt+1>ct}Bt, t < T. (11)

Proof. This result can be proved by verifying that the given solution satisfies the KKT condition.

Here we apply a simpler argument, suggested by a referee.
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Suppose that, in an optimal solution the firm produces a unit in period t − 2 and sells it in

period t for some period t > 2. Then this unit occupies the warehouse capacity in period t − 1.

Now, delay the production of this unit to period t − 1 (this can be done because the demand for

period t−1 is the same for both cases). By ct−2 ≥ ct−1, the profit margin for the sale of this unit in

period t is at least as high, but it frees up an additional unit of warehouse capacity for period t−2.

Continuing this argument we either contradict the optimality of the assumed optimal solution, or

we obtain an alternative optimal solution that produces only when it sells in the following period.

Furthermore, if it is profitable to produce in a period t and sell it at the beginning of the next

period t + 1 (implying ct ≤ pt+1), then it is clearly beneficial to produce as much as possible in

period t, i.e., produce the capacity level xt = Bt; and otherwise, the firm should produce nothing

in period t. This shows that (11) is an optimal solution.

3 Capacity Expansion Investment Problem

Consider the warehouse problem of the previous section, but now the firm can invest in projects

to increase the warehouse capacity while scheduling production and sales. Specifically, suppose the

firm can choose from N project options that have different expansion increments and costs. An

investment in project n ∈ {1, . . . , N} in time t ∈ {1, . . . , T} costs gnt and expands the capacity by

bn units. This capacity expansion becomes effective in period t and lasts to the end of the time

horizon, so we assume that the project execution duration is negligible (but the results can be

easily extended to include project execution lead times). The firm can execute a project at most

once over the planning horizon and cannot have partial project execution decisions, and it needs to

decide whether or not to execute each project, and if so in which time period. The firm’s objective

remains to maximize its total profit.

To formulate the mathematical programming problem, we use the binary decision variable

znt ∈ {0, 1} for n = 1, . . . , T and t = 1, . . . , N to choose between project options, so znt = 1 if

project n is executed in time t and 0 otherwise. The constraints
∑T

t=1 znt ≤ 1 for n = 1, . . . , N

ensure that each project is executed at most once over the planning horizon. The warehouse

capacity in time t becomes Bt = Bt−1 +
∑N

n=1 bnznt. Similar to (1) in the previous section, we

can eliminate decision variables Bt by expressing it in terms of the initial capacity B0 and the

investment decisions as

Bt = B0 +

N∑
n=1

bn

t∑
τ=1

znτ , t = 1, . . . , T. (12)

We relax the integer constraints of the znt variables and express this problem as the following
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linear program WH-B:

WH-B: max

T∑
t=1

(ptyt − ctxt −
N∑
n=1

gntznt) (13)

s. t. (3), (4), (5)
T∑
t=1

znt ≤ 1, n = 1, . . . , N (14)

znt ≥ 0, n = 1, . . . , N, t = 1, . . . , T, (15)

where Bt in (4) is defined by (12). Notice that we do not need to specify the constraint znt ≤ 1 in

WH-B because it is implied by (14) and (15). Although znt’s integrality constraints are ignored

in this formulation, we will show in Theorem 2 that there exists an integer optimal solution to this

LP relaxation.

As in WH, the optimization problem WH-B has a linear objective function and a set of linear

constraints, which means that a solution that satisfies the first order KKT optimality conditions

is optimal. We will use the same dual variables λt and µt, t = 1, . . . , T for constraints (3) and

(4) defined in the previous section. We will also use the dual variables αn, n = 1, . . . , N for the

constraints (14), where αn can be interpreted as the marginal benefit from executing project n,

i.e., αn = 0 if the project is not implemented and should be implemented whenever αn > 0. The

Lagrangian of problem WH-B is

LWH-B(x,y, z;λ, µ, α) = LWH(x,y, z;λ, µ)−
T∑
t=1

N∑
n=1

gntznt +
N∑
n=1

αn

(
1−

T∑
t=1

znt

)
. (16)

Notice that we include the index z in LWH because the Bt variables in problem WH were

fixed, but we assume here that Bt depends on znτ , n = 1, . . . , N, τ = 1, . . . , t, as given by (12).

Equivalently, the last term in (6) can be written as

T∑
t=1

µt

(
B0 +

N∑
n=1

bn

t∑
τ=1

znτ − I0 +

t∑
τ=1

(yτ − xτ )

)
.

Because none of the xt, yt, λt, and µt variables appear outside LWH in (16), the KKT conditions

(7)-(10) apply to problem WH-B. Note that the znt variables appear in the Bt terms in (10).

Furthermore, if we let LWH-B
znt

and LWH-B
αn

be LWH-B’s partial derivatives with respect to znt and

αn, then the following KKT conditions must also hold in an optimal solution to WH-B:

znt ≥ 0; LWH-B
znt

= −gnt + bn
∑T

τ=t µτ − αn ≤ 0; znt · LWH-B
znt

= 0, t = 1, . . . , T, n = 1, . . . , N

(17)

αn ≥ 0; LWH-B
αn

= 1−
∑T

t=1 znt ≥ 0; αn · LWH-B
αn

= 0, n = 1, . . . , N. (18)
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To obtain an optimal solution, we need to ensure that all the inequalities hold in the conditions

(7)-(10), (17), and (18) and that at least one inequality holds with equality for each condition. We

will present an algorithm that attains such a solution.

Notice that the KKT conditions (17) and (18) only depend on znt, αn, and µt, and can be

satisfied independently of xt, yt, and λt. Therefore, if we can find the optimal µt values from

Step 1 of Algorithm 1 then pass them to another algorithm that finds znt and αn for which the

KKT conditions (17) and (18) hold, then the relaxed capacity expansion problem WH-B would

be solved. Algorithm 2 below does just that.

Algorithm 2 (Optimal Capacity Expansion Algorithm).

Step 1: Run Step 1 of Algorithm 1 to get λt and µt for t = 1, . . . , T .

Step 2: Start with znt = 0 for n = 1, . . . , N and t = 1, . . . , T . Then, for n = 1, . . . , N , set

tn = argmaxt {bnµ̄t − gnt} (ties can be resolved arbitrarily), αn = [bnµ̄tn − gntn ]+, and zntn =

1{αn>0}.

Step 3: Perform Step 2 of Algorithm 1 to get the production and sales schedules xt and yt

for t = 1, . . . , T .

The following theorem establishes the optimality of the algorithm.

Theorem 2. Algorithm 2 gives an optimal capacity expansion and implementation solution in time

O(NT ).

Proof. Notice that all the znt and αn values from Algorithm 2 are nonnegative, all znt assignments

are binary, at most a single znt is 1, and since tn is selected as the time period with the largest

bnµ̄t − gnt among all time periods, we have αn ≥ bnµ̄t − gnt for n = 1, . . . , N and t = 1, . . . , T .

Therefore, primal and dual feasibility hold for (17) and (18) and we need only to demonstrate

complementary slackness to show optimality.

For a given n, the complementary slackness for (17) holds for t 6= tn since znt = 0 for t 6= tn, so

we need only to verify that complementary slackness holds for (17) in time period tn. Now consider

a project n for which bnµ̄tn ≤ gntn . In this case αn = (bnµtn − gntn)+ = 0 and zntn = 1{αn>0} = 0,

so complementary slackness holds for (17) and (18). If on the other hand bnµ̄tn > gntn , then

αn = bnµtn − gntn > 0 and complementary slackness would hold for (17), and zntn = 1{αn>0} = 1,

hence complementary slackness would also hold for (18) since
∑T

t=1 znt = zntn = 1. Finally, since

9
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the znt values are binary, it follows that the algorithm also gives an optimal solution to the original

problem.

To find the computational complexity of the algorithm, consider a project option n. The largest

term bnµ̄t−gnt can be found by evaluating every term for t = 1, · · · , T , which can be done in O(T ).

Since we have N project options, the algorithm runs in O(NT ).

4 Cost Efficiency Improvement Problem

In this problem, we are given a set of warehouse capacities B1, . . . , BT , a set of prices in every period

p1, . . . , pT , a starting inventory level I0, and a starting production cost c0. Given M cost efficiency

improvement projects, the firm decides on the projects to implement and their execution time peri-

ods to maximize its total profit. A project m ∈ {1, . . . ,M} executed in time t ∈ {1, . . . , T} costs qmt

and leads to a constant unit production cost decrement km, which becomes effective immediately,

so the production cost in time t is ct = ct−1 − km. Therefore, if all cost efficiency improvements

projects are implemented then the production cost would be reduced to c0 −
∑M

m=1 km. A project

may be executed at most once over the planning horizon and a selected project must be fully ex-

ecuted (i.e., partial project implementations are not allowed). Naturally, the production cost will

still be positive even after implementing all projects, thus we assume c0 >
∑M

m=1 km. We further

assume in this section that ct are non-increasing over time. As in the capacity investment problem,

we assume without loss of generality that the project execution duration is negligible.

As with the capacity expansion problem, we let the binary variable wmt ∈ {0, 1} be 1 if project

m is implemented in period t and 0 otherwise, m ∈ {1, . . . ,M} and t ∈ {1, . . . , T}. Following the

simplification for It and Bt in (1) and (12), we express the cost in time t in terms of c0 and the

investment decisions as

ct = c0 −
M∑
m=1

km

t∑
τ=1

wmτ , t = 1, . . . , T. (19)

To ensure that projects are never executed more than once, we need to include the constraint∑T
t=1wmt ≤ 1, m = 1, . . . ,M . The objective function for this problem is

T∑
t=1

(
ptyt − ctxt −

M∑
m=1

qmtwmt

)
.

Observe that the optimal operational policy given in §2 depends only on λt and µt, that are

independent of the starting inventory level. In particular, when a sale is made under this policy, all

inventory is sold, which means that the starting inventory level may only affect the first production

period τ , i.e., the smallest τ ∈ {1, . . . , T} with µτ > 0, which produces to raise the inventory level
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to the warehouse capacity Bτ . We will therefore assume without loss of generality that I0 = 0

for this problem, which also implies that y1 = 0. Moreover, given that the production costs are

non-increasing over time, we can apply Proposition 1 to conclude that

yt+1 = xt = It = 1{pt+1>ct}Bt, for t = 1, . . . , T − 1. (20)

We further simplify our formulation by noticing that it is never economical to produce or invest

in the last period, i.e., xT = wnT = 0 for all n. Substituting (20) into the objective function, we

obtain the cost efficiency improvement problem as the following mathematical program:

WH-C : max
T−1∑
t=1

(
(pt+1 − ct)+Bt −

M∑
m=1

qmtwmt

)
(21)

s. t.

T−1∑
t=1

wmt ≤ 1, m = 1, . . . ,M, (22)

wmt ∈ {0, 1}, m = 1, . . . ,M. (23)

The decision variables in this problem are wmt for m = 1, . . . ,M and t = 1, . . . , T − 1. Note

that the objective function (21) is non-concave because the costs ct depend on the wmt variables

as given by (19), hence this problem is difficult in general, and we do not have a polynomial time

algorithm for finding its global optimal solution. In Al-Gwaiz et al. [1], we developed an O(M2T 2)

algorithm that obtains a local optimal solution. In this note we focus on the special case that the

selling prices are not lower than the initial production cost, for which we can find the global optimal

solution in polynomial time.

When pt+1 ≥ c0, we have pt+1 ≥ ct and the objective function for the mathematical program

above is simplified to

T−1∑
t=1

(
(pt+1 − ct)Bt −

M∑
m=1

qmtwmt

)

=
T−1∑
t=1

(pt+1 − c0)Bt +
T−1∑
t=1

M∑
m=1

km

t∑
τ=1

wmτBt −
T−1∑
t=1

M∑
m=1

qmtwmt

=
T−1∑
t=1

(pt+1 − c0)Bt +
T−1∑
t=1

M∑
m=1

(
km

T−1∑
τ=t

Bτ − qmt
)
wmt.

Since the first term is a constant, the optimization problem is equivalent to maximizing the second

term, subjecting to constraints (22) and (23).

This simplified optimization problem is easy to solve, and it can be decomposed into M opti-
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mization subproblems, one for each cost efficiency project m:

max

T−1∑
t=1

(
km

T−1∑
τ=t

Bτ − qmt
)
wmt

s. t.

T−1∑
t=1

wmt ≤ 1,

wmt ∈ {0, 1}.

The optimal solution for the optimization problem above is easy to find: For cost efficiency

project m = 1, . . . ,M , if km
∑T−1

τ=t Bτ − qmt ≤ 0 for all t = 1, . . . , T − 1, then do not execute this

project; otherwise, execute project m in period

t∗m = argmax
t=1,...,T−1

{
km

T−1∑
τ=t

Bτ − qmt
}
.

Standard method can be applied to find t∗m in O(T ).

Proposition 3. If pt ≥ c0 for all t, i.e., the selling price in each period is no less than the

initial production cost, then the cost efficiency improvement problem can be solved in polynomial

computational time O(MT ).

5 Conclusion

In this note, we have considered the capacity expansion and cost efficiency improvement extensions

of the classic warehouse problem and developed efficient computational algorithms to solve them.

Other extensions are possible. For example, holding costs were not included in our models, but

they can be easily incorporated. Since accounting for linear holding cost would introduce constant

multiples to the inventory terms, it can be transformed into our problem with no holding costs

but modified purchasing costs and selling prices. Another extension could be to include lead times

for investments, which is also trivial because, given the deterministic nature of our problem, we

can shift the investment times back by the lead time periods. A project to invest to boost sales

prices would be similar in spirit to the cost efficiency improvement problem because it introduces

the same nonlinear positive term in the objective function but on the yt variables instead of xt.

Similarly, the cost efficiency improvement problem can also be used for a problem with holding

cost reduction projects. More complicated options can be considered for future research, such as

options that simultaneously increase capacity and reduce costs. Finally, we have assumed that all

project options are independent in the sense that the cost of one project is not correlated with the

cost of another one. It will be interesting to study the case where the cost of one project influences

the cost of another.
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