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ABSTRACT. The timing of a time-dependent treatment—e.g., when to

perform a kidney transplantation—is an important factor for evaluating

treatment efficacy. A näıve comparison between the treated and un-

treated groups, while ignoring the timing of treatment, typically yields

biased results that might favor the treated group because only patients

who survive long enough will get treated. On the other hand, studying

the effect of a time-dependent treatment is often complex, as it involves

modeling treatment history and accounting for the possible time-varying

nature of the treatment effect. We propose a varying-coefficient Cox

model that investigates the efficacy of a time-dependent treatment by

utilizing a global partial likelihood, which renders appealing statistical

properties, including consistency, asymptotic normality and semipara-

metric efficiency. Extensive simulations verify the finite sample perfor-

mance, and we apply the proposed method to study the efficacy of kidney

transplantation for end-stage renal disease patients in the U.S. Scientific

Registry of Transplant Recipients (SRTR).

Key words: Cox proportional hazards model; semiparametrically efficient; survival

data; time-dependent treatment; varying-coefficient.
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1 Introduction

This paper is motivated by the study of a national cohort of kidney transplant patients

from the U.S. Scientific Registry of Transplant Recipients (SRTR), which is collected by the

United Network for Organ Sharing and Organ Procurement and Transplantation Network

(UNOS/OPTN) for all wait-listed kidney transplant candidates and transplant recipients in

the United States. When a donor kidney becomes available, medical judgment is used to

select the patient who should receive it. In the state of Michigan, 1446 of the 3115 patients

on the waitlist between 2008 and 2011 received a kidney transplant. A näıve comparison

of the survival times of nontransplanted patients with those of transplanted patients will

yield biased results, as only those who survive long enough to receive a kidney will receive

the treatment. Moreover, the risks associated with surgery lead to an immediate peak in a

patient’s death hazard following transplantation, which gradually decreases when the patient

stabilizes.

To accommodate these two distinguishing features—the time dependence of the treatment

and the time-varying nature of the treatment effect—we propose the following time-varying

Cox model. For each patient indexed by i = 1, . . . , n, we define a binary time-dependent

covariate xi(t), which is equal to 1 if this patient has received the treatment (kidney trans-

plant) by time t and equal to 0 otherwise. If ti is the time of treatment, then xi(t) = I(t ≥ ti)

describes the treatment process of patient i. If a patient would never receive the treatment

in his or her lifetime, ti = ∞ or xi(t) ≡ 0 for t ≥ 0. Conditional on the treatment history,

we model the hazard of death for patient i as follows

λi(t) = λ0(t) exp{xi(t)β(t− ti)}, (1.1)

where t = 0 is the time when a transplant candidate became wait-listed and β(s) is an

unknown smooth function defined when s ≥ 0, to explore whether and how the treatment

effect varies over time since treatment. To avoid ambiguity, we define β(s) = 0 for s < 0.

Model (1.1) reveals that patient i has the baseline hazard λ0(t) at time t < ti (i.e., prior

to treatment). Once t ≥ ti, patient i enters the treatment group, with the treatment effect

initiating at ti. The size of the effect depends on t − ti, as observed in transplant studies,

in that the risk of death peaks right after treatment and then gradually decreases after the

kidney transplant shows protective effects.

To allow for a multi-level treatment (e.g., different dose levels or different modalities of

a treatment) we consider a vectorial form of xi(t), denoted by xi(t). Also let zi(t) denote

possible confounders (e.g., gender, BMI, previous malignancy, diabetes), some of which are

possibly time-dependent. We consider a general partial time-varying coefficient Cox model

λi(t) = λ0(t) exp{zi(t)
′α + xi(t)

′β(t− ti)}, (1.2)
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where α are unknown regression coefficients of zi(t) and β(·) measure the effects correspond-

ing to various treatment options.

Although model (1.2) resembles the time-dependent coefficient (TDC) Cox model pro-

posed by a number of authors, including Zucker and Karr (1990), Murphy and Sen (1991),

Gamerman (1991), Murphy (1993), Marzec and Marzec (1997), Martinussen et al. (2002),

Cai and Sun (2003), Tian, Zuker and Wei (2005) and Fan, Lin and Zhou (2006), it differs

in that β(·) in our model is a vector of functions of the gap time t − ti, as opposed to the

current “calendar” time t. The estimation of model (1.2) is more difficult than that for

the traditional TDC Cox model, because the existing nonparametric technique (e.g., kernel

smoothing) is not directly applicable to the model (1.2). In the context of recurrent events,

Chen et al. (2013) proposed a similar model and used the sieve approach to draw inference.

However, their estimator involves a maximization over a functional parameter space with

dimension increasing with the sample size, and the computational burden limits its usage

in the analysis of large-scale data such as our motivating dataset. Further, for the sieve

approach, the inference is obtained only for the cumulative function
∫ t

0
β(u)du, but not for

the effect function β(·) per se, which is of our main interest.

The local partial likelihood, which is based on observations with survival time Ti in a

small neighborhood of a given t, has been widely used to estimate the TDC Cox model

(Cai and Sun, 2003; Tian, Zuker and Wei, 2005; Fan, Lin and Zhou, 2006). However,

it suffers efficiency loss, as the observations outside the neighborhood, which may carry

information about β(t), are not used. Instead, we propose to draw inference based on a full

partial likelihood function and local smoothing technique. The main intuition is to utilize all

observations for the estimation of β(t). The superiority of this proposed method is reflected

in its semiparametric efficiency in terms of linear functionals (Bickel et al., 1993). Finally,

we also show that the proposed estimator is uniformly consistent and asymptotically normal.

The remainder of the paper is organized as follows. Section 2 presents the estimators of

α and β(·). Asymptotic distribution properties, including efficiency, of the estimators are

provided in Section 3. The simulation studies are presented in Section 4. Our analysis of

the kidney transplantation data is given in Section 5. Technical proofs are relegated to the

Appendix.
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2 Estimation

2.1 Global Partial Likelihood Approach

Consider n independent patients drawn from a population of interest. For the ith individual,

let Ti be the potential failure time, Ci the potential censoring time and Ti = min(Ti, Ci) the

observed failure time. To avoid the technicality at the tail of the survival distribution, we

study patients’ survival experience over [0, τ ], where τ is such that P (min(Ti, Ci) > τ) > 0

and, in practice, is often the study duration. Assume that Ti and Ci are independent given

the observed covariate process Xi = {(xi(t), zi(t)), 0 ≤ t ≤ Ti}, where xi(t), zi(t) are p- and

q-dimensional vector functions respectively. Let ∆i be an indicator that equals 1 if Ti is a

failure time and 0 otherwise. Let ti be the treatment time; if the treatment does not occur

prior to τ , we set ti = ∞. The observed data {Ti,∆i,Xi, ti} are independent samples for

i = 1, · · · , n.

Under model (1.2), if β(·) had been parameterized it could have been estimated by

maximizing the partial likelihood:

L(β) =
n∏

i=1

{
exp [α′zi(Ti) + xi(Ti)

′β(Ti − ti)]∑
`∈R(Ti)

exp [α′z`(Ti) + x`(Ti)′β(Ti − t`)]

}∆i

, (2.1)

where β(·) and α are p− and q−dimensional vectors, respectively, and R(t) = {i : Ti ≥ t}

denotes the set of the individuals at risk just prior to time t. If the functional form of β(·)

is not available, it may seem natural to take the local likelihood approach; however, a direct

application of the local likelihood approach does not work.

To be specific, we assume that each component of β(s) = (β1(s), . . . , βp(s))
′ is smooth

when s > 0 and admits a Taylor expansion. For a given t > 0 and v > 0, we Taylor expand

each component of β(v) around t and obtain that

β(v) ≈ β(t) + β̇(t) × (v − t). (2.2)

Denote δ = β(t) and η = β̇(t) = (dβ1(t)/dt, . . . , dβp(t)/dt)
′. Let Kh(·) = K(·/h)/h, where

the kernel function K(x) is a symmetric density with support [−1, 1] and h represents the size

of the local neighborhood. Substituting (2.2) into (2.1), we estimate δ and η by maximizing

the following logarithm of the local partial likelihood:

n∑

i=1

∆i log

{
exp (α′zi(Ti) + xi(Ti)

′[δ + η × (Ti − ti − t)])∑
`∈R(Ti)

exp [α′z`(Ti) + x`(Ti)′β(Ti − t`)]

}
Kh(Ti − ti − t). (2.3)

When the weight Kh(Ti − ti − t) > 0, it implies that Ti − ti is in the neighborhood of t,

and hence β(Ti − ti) can be replaced by δ + η(Ti − ti − t). However, the β(Ti − t`) in the
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denominator of (2.3) cannot be approximated by δ + η(Ti − t` − t) because Ti − t` could be

outside the neighborhood of t when ` 6= i, nullifying the Taylor expansion. Thus, with an

unknown β(·), the local partial likelihood method (2.3) cannot estimate β(·) in our model

(1.2), as would be the case with the traditional TDC Cox model.

Our new approach stems from the following observations. Let ψi(u) = α′zi(u)+xi(u)
′[δ+

η × (u− ti − t)] and ψi(u) = α′zi(u) + xi(u)
′β(u− ti). Thus,

ψi(u) = hKh(u− ti − t)ψi(u) + {1 − hKh(u− ti − t)}ψi(u)

≈ hKh(u− ti − t)ψi(u) + {1 − hKh(u− ti − t)}ψi(u). (2.4)

Substituting (2.4) into (2.1), we estimate δ and η by maximizing the following logarithm of

the full partial likelihood:

l(β) =
n∑

i=1

∆i

{
hKh(Tii − t)ψi(Ti) + {1 − hKh(Tii − t)}ψi(Ti)

− log


 ∑

`∈R(Ti)

exp
[
hKh(Ti` − t)ψ`(Ti) + {1 − hKh(Ti` − t)}ψ`(Ti)

]




 ,

(2.5)

where Ti` = Ti − t`. Since the estimator based on (2.5) is a standard partial likelihood

estimator rather than a local partial likelihood estimator, we term the proposed estimator as

global partial likelihood estimator. Notice that the proposed method (2.5) uses observations,

both within and outside the neighborhood of t, to estimate β(t). As a result, our estimator

is shown to be semiparametrically efficient by Theorem 3 in Section 3.

In a related context, Chen et al. (2012) estimated nonparametric functions in a varying

coefficient Cox model (Fan et al., 2006) by maximizing the full partial likelihood function.

However, our proposed framework largely differs from that work. First, Chen et al. (2012)

focused on the cases where covariates interact nonlinearly with other exposure variables.

More specifically, the effects of a medical treatment Z vary with age W (Chen et al., 2012),

but the treatment Z per se is fixed for each individual. In contrast, our model accounts for the

dynamic nature of a time-varying treatment. Directly applying Chen et al. (2012) to compare

the treated and untreated groups, while ignoring the time-varying nature of the treatment,

yields biased results that favor the treatment group. Second, it is unclear whether Chen et al.

(2012) could be readily extended to accommodate time-dependent covariates, whereas our

framework accommodates time-dependent covariates with established asymptotic properties.

Indeed, as mentioned by Chen et al. (2012; p385), theoretical justifications for the global

partial likelihood approaches are often difficult and should be made on a case-by-case basis.
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2.2 An Iterative Algorithm for Estimation

Because (2.5) depends on the unknown β(·), it is not directly useful for estimation. However,

the form of (2.5) naturally leads to an iterative algorithm below.

Step 1 of iteration m. Taking derivatives of (2.5) respect to δ and η, we have for every

given t ∈ [0, τ ], solving the following equations for ξ = (δ ′, hη′)′:

1

n

n∑

i=1

∆i

{
wi(Ti)Kh(Tii − t) −

[∑
`∈R(Ti)

w`(Ti)Kh(Ti` − t) exp (ϑi`(ξ; h))
∑

`∈R(Ti)
exp (ϑi`(ξ; h))

]}
= 0,

where ϑi`(ξ; h) = hKh(Ti` − t)ψ`(Ti) + {1 − hKh(Ti` − t)}ψ`(Ti). Using (2.4), we have

ϑi`(ξ; h) ≈ ψi(Ti). Hence Kh(Ti` − t) exp (ϑi`(ξ; h)) ≈ Kh(Ti` − t) exp (ψi(Ti)) ≈ Kh(Ti` −

t) exp
(
ψ`(Ti)

)
, and we then consider the following set of equations for ξ,

1

n

n∑

i=1

∆i {wi(Ti)Kh(Tii − t)

−



∑

`∈R(Ti)
w`(Ti)Kh(Ti` − t) exp

(
α[m−1]′z`(Ti) + ξ′w`(Ti)

)

∑
r∈R(Ti)

exp
(
α[m−1]′zr(Ti) + xr(Ti)′β

[m−1](Tir)
)





 = 0, (2.6)

where wi(u) =

(
xi(u)

(u− ti − t)xi(u)/h

)
. Let δ̂ and η̂ be the solutions of δ and η. Thus,

β[m](t) = δ̂. The entire estimated function β[m](·) is obtained by using the above procedures

with t varying in [0, τ ].

Step 2 of iteration m. Update α by solving the following equations for α:

n∑

i=1

∆i



zi(Ti) −

∑
`∈R(Ti)

z`(Ti) exp
[
α′z`(Ti) + x`(Ti)

′β[m](Ti`)
]

∑
`∈R(Ti)

exp
[
α′z`(Ti) + x`(Ti)′β

[m](Ti`)
]



 = 0. (2.7)

To facilitate further derivations, we express our global partial likelihood by using the

counting process notation. Let Ni(t) = I(Ti ≤ t,∆i = 1) and Yi(t) = I(Ti ≥ t). Then, (2.6)

and (2.7) can be expressed as

1

n

n∑

i=1

∫ τ

0

{
wi(u)Kh(u− ti − t) −

n∑

`=1

w`(u)Kh(u− t` − t)

×
Y`(u) exp

(
α[m−1]′z`(u) + ξ′w`(u)

)
∑n

r=1 Yr(u) exp
(
α[m−1]′zr(u) + xr(u)′β

[m−1](u− tr)
)



 dNi(u) = 0, (2.8)
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and

1

n

n∑

i=1

∫ τ

0



zi(u) −

∑n
`=1 Y`(u)z`(u) exp

[
α′z`(u) + x`(u)

′β[m](u− t`)
]

∑n
`=1 Y`(u) exp

[
α′z`(u) + x`(u)′β

[m](u− t`)
]



 dNi(u) = 0.

(2.9)

Without ambiguity, we let ξ̂(t) and α̂ be the solutions of (2.8) and (2.9), respectively,

and β̂(t) = δ̂(t), the first component of ξ̂(t).

3 Large Sample Properties

We establish the uniform consistency, asymptotic normality and semiparametric efficiency

of the proposed estimator. The required regularity conditions are presented in the Appendix

and the detailed proofs are given in the Supplementary Materials.

Theorem 1 Under Conditions 1-8 listed in the Appendix, we have

sup
0<t<τ

‖β̂(t) − β(t)‖ → 0 in probability

and

‖α̂ − α‖ → 0 in probability.

Theorem 2 Under Conditions 1-8 listed in the Appendix and if nh4 = o(1), then

n1/2 (α̂ − α0) → N(0,A−1B
(
A−1

)′
),

where A and B are defined in the Appendix.

To estimate the parameter α at the rate n−1/2, one must undersmooth the nonparametric

part, requiring nh4 = o(1). The need to undersmooth for achieving usual parametric rates

of convergence is standard in the kernel literature and has analogs in the spline literature

(Carroll et al., 1997; Hastie and Tibshirani, 1990). Our estimator for β(·) is consistent and

asymptotically normal as implied by the following theorem.

Theorem 3 Under Conditions 1-8 stated in the Appendix and for 0 < t < τ , we have the

following Fredholm integral equation,

β̂(t) − β(t) = ϑ−1
2 (t)

∫ τ

0

ϑ1(t, v)
(
β̂(v) − β(v)

)
dv

+(nh)−1/2Σ0(t)ϕ+
1

2
h2µ2β̈(t) + op(h

2 + (nh)−1/2),

where Σ0(t)Σ
′
0(t) = ν0ϑ

−1
2 (t) − ϑ−1

2 (t)ϑ1(t, t)ϑ
−1
2 (t), ϕ is a standard normal random vector,

ϑ1(·, ·) and ϑ2(·) are defined in the Appendix, and ν0 =
∫
K2(x)dx.
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Denote with B the linear operator satisfying

B(φ)(t) = ϑ−1
2 (t)

∫ τ

0

ϑ1(t, v)φ(v)dv

for any function φ. Theorem 3 implies that

β̂(t) − β(t) = (nh)−1/2(I − B)−1(Σ0)(t)ϕ+
1

2
h2ν2(I − B)−1(β̈)(t) + op(h

2 + (nh)−1/2).

Hence, β̂(t)−β(t) is asymptotically normal, the order of the asymptotic bias of β̂(t)−β(t)

is h2 and the order of the asymptotic covariance is (nh)−1. Theorem 3 also implies that the

bias and variance of β̂(t)−β(t) are the same as if α were known. This result comes from the

fact that the rate of convergence for α̂ is faster than that for β̂(t), so that the uncertainty

from α̂ can be ignored.

Theorem 2 shows that α̂ is an n1/2− consistent and asymptotically normal estimator of

α. Moreover, the following Theorem shows that α̂ is also an efficient estimator of α. For any

vector of functions φ(t) = (φ′
1, φ2(t)

′)′, which has a continuous second derivative on [0, τ ],

let φ′
1α̂ +

∫ τ

0
φ′

2(t)β̂(t)dt be an estimator of φ′
1α0 +

∫ τ

0
φ′

2(t)β(t)dt, we have the following

efficiency result.

Theorem 4 Under Conditions 1-8 stated in the Appendix and if nh4 = o(1), then φ′
1α̂ +∫ τ

0
φ′

2(t)β̂(t)dt is an efficient estimator of φ′
1α0 +

∫ τ

0
φ′

2(t)β(t)dt.

Hence, by taking φ2(t) = 0, we know that α̂ is an efficient estimator of α0. By taking

φ1(t) = 0, then
∫ τ

0
φ′

2(t)β̂(t)dt is an efficient estimator of
∫ τ

0
φ′

2(t)β(t)dt.

To use (2.6), we need to choose the bandwidth h. Theorem 2 implies that the bandwidth

h is not crucial for the asymptotic performance of the estimates for the parameters α, as

confirmed in our simulation studies. Hence, our estimates are not sensitive to the bandwidth

h and a roughly estimated h would be sufficiently good for the estimation of α.

However, the selection of h is crucial for the asymptotic performance of β̂(·). We use

the K−fold cross-validation procedure for bandwidth selection, which is commonly used in

the literature (Efron and Tibshirani, 1993; Tian, Zucker and Wei, 2005; Fan, Lin and Zhou,

2006). Tian, Zucker and Wei (2005) and Fan, Lin and Zhou (2006) have shown empirically

that the choice of the smoothing parameter can be quite flexible. Our simulations and data

application also show that the cross-validation approach works well. See Section 5 for a

detailed description.

It is difficult to obtain an estimate for the covariance matrices based on Theorems 2 and 3

because their expressions involve complicated unknown functions. As a remedy, we propose

to use a resampling scheme, First, we generate n independent positive random variables
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ζi, i = 1, · · · , n, with mean 1 and variance 1. Fixing the data at their observed values, we

estimate β(t) and α by iteratively solving the following ζi−weighted estimation equations

for any t:

1

n

n∑

i=1

ζi

∫ τ

0

{
wi(u)Kh(u− ti − t) −

n∑

`=1

ζ`w`(u)Kh(u− t` − t)

×
Y`(u) exp

(
α[m−1]′z`(u) + ξ′w`(u)

)
∑n

r=1 ζrYr(u) exp
(
α[m−1]′zr(u) + xr(u)′β

[m−1](u− tr)
)



 dNi(u) = 0, (3.1)

and

1

n

n∑

i=1

ζi

∫ τ

0



zi(u) −

∑n
`=1 ζ`Y`(u)z`(u) exp

[
α′z`(u) + x`(u)

′β[m](u− t`)
]

∑n
`=1 ζ`Y`(u) exp

[
α′z`(u) + x`(u)′β

[m](u− t`)
]





×dNi(u) = 0. (3.2)

The traditional bootstrap is a resampling method with ζi independently generated from a

binomial distribution with parameters n and p = 1/n. The estimates β∗(·) and α∗ can be

obtained using the same iterative algorithm proposed in Section 2. Following the proofs of

Theorems 1 to 3, we can show that β∗(·) and α∗ have the same asymptotic expansions as

those for β̂(·) and α̂, respectively, except that each individual i is weighted by ζi. Then by

Jin et al. (2001), we establish the validity of the proposed resampling method.

Proposition 1. Under Conditions 1-8 stated in the Appendix, the conditional distributions

of n1/2(α∗−α̂) and (nh)1/2{β∗(t)−β̂(t)}, given the observed data, converge to the asymptotic

distributions of n1/2(α̂ − α0) and (nh)1/2{β̂(t) − β(t)}, respectively.

Hence, by repeatedly generating ζi, i = 1, · · · , n many times, we obtain a large number

of realizations of β∗(·) and α∗. The variance estimates of β̂(·) and α̂ can be approximated

by the empirical variances of β∗(·) and α∗, respectively. The number of replications is

determined by monitoring the stability of the standard errors. Our numerical studies hint

that 250-300 would be sufficient.

4 Simulation

We conduct simulation studies to investigate the finite sample performance of the proposed

method. In the following simulations and examples, we use the Epanechnikov kernel. We

conduct 1000 simulations for each configuration.

Simulation 1: We first consider a nonparametric model

λi(t) = exp {Xi(t)β(t− ti)} , (4.1)
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where β(t) = −2t(t − 0.8), Xi(t) = I(t > ti) and ti is uniformly distributed on [0, 1]. The

censoring random variable Ci is distributed uniformly on [0, 4], so that about 25% ∼ 35% of

data is censored. We simulated 1000 datasets each consisting of n = 400 subjects.

To investigate the performance of our estimator, we compare the proposed method with

an ideal model, wherein β(·) is correctly specified up to a finite-dimensional parameter. In

particular, we fit the data using the following ideal model: λi(t) = λ0(t) exp{Xi(t)β0(t− ti)},

where β0(t) = θ1t
2 + θ2t + θ3, and θ1, θ2 and θ3 are unknown parameters. The estima-

tor based on the ideal model is designated as “ideal” and serves as the gold standard to

investigate the efficiency of the proposed estimator. Denote the linear function of β(·) by

ν =
∑ngrid

k=1 β(wk)/ngrid, where {wk, k = 1, · · · , ngrid} are the uniformly distributed grid

points in which the function β(·) is estimated and ngrid = 200. The estimator for ν is used

to evaluate the semiparametric efficiency.

For each generated dataset, we estimate β(·) and ν using the proposed method with

h = 0.4 and the ideal method. We assess the performance of estimator ν̂ via the absolute

errors (AEs), AE = |ν̂−ν|. Figure 1(a) displays the averaged estimated function for β(·) and

its 95% empirical point-wise confidence limits using the proposed method, which shows that

the proposed estimates are close to the true functions. The empirical pointwise confidence

limits are calculated by mean(β̂(t))± 1.96×SD(β̂(t)), where mean(β̂(t)) and SD(β̂(t)) are

the average and the standard deviation of β̂(t) over 1000 replications for given t. Figure 1(b)

displays the distribution of AE based on the 1000 simulated datasets using the proposed

method and the ideal model. The proposed method failed to converge in only 5 of the 1000

replications. It appears that the AE of the proposed estimator is comparable to that of

the ideal estimator, confirming the semiparametric efficiency of our estimator. Finally, we

compare the proposed estimator with the ideal estimator by displaying the distribution of

the point-wise absolute errors PAE =
∑

k |β̂(wk) − β(wk)|/nk in Figure 1(c). The PAE of

the proposed estimator is larger than that of the ideal estimator, which is hardly surprising

as the ideal estimation is made under the true coefficient function.

Simulation 2: Now we consider the following mixed model

λi(t) = t2/5 exp {α′Zi +Xi(t)β(t− ti)} , (4.2)

where β(t) = log(t), α = (1/2, 1/2)′, Zi = (Zi1, Zi2)
′, Zi1 is a Poisson variable with mean

0.2, Zi2 is a uniform variable on [0, 0.7], Xi(t) = I(t ≥ ti), and ti is uniformly distributed

on [0, 1]. The censoring random variable C is distributed uniformly on [0, 4], yielding a

censoring proportion around 25 ∼ 35%.

For each generated dataset consisting of n = 500 subjects, we use the proposed method

and the ideal model: λi(t) = λ0(t) exp{α′Zi +Xi(t)β0(t− ti)}, where β0(t) = θ1 + θ2log(t),

and α, θ1 and θ2 are unknown parameters.
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Fig. 1: (a) The averaged estimates of β(t) for simulation 1 (Solid— : true functions; dashed—

: estimated; dotted— : 95% confidence limit). (b) The distribution of AE for the 1000 repli-

cations in Simulation 1. (c) The distribution of PAE for the 1000 replications in Simulation

1.

We estimate α, β(·) and ν using the proposed method with h = 0.5 and the ideal method.

The proposed method only failed to converge in one of the 1000 replications for Simulation 2.

Figure 2(a) displays the averaged estimated function for β(·) and the 95% empirical pointwise

confidence limits of the proposed method, Figures 2(b) and 2(c) display the distributions of

AE and PAE, respectively, based on the 1000 simulated datasets. Figure 2 yields similar

conclusions to Figure 1 for Simulation.

Table 1 provides the bias, empirical standard deviation (SD) and the root of mean squared

error (RMSE) of the coefficient parameter estimators based on the 1000 replications, using

the proposed method and the ideal method. It is apparent that these two estimators perform

similarly, indicating the high efficiency of our estimator.
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Table 1. Simulation results of the parameters for Simulation 2.

Proposed Ideal

α1 Bias 0.0129 0.0101

SD 0.1215 0.1205

RMSE 0.1222 0.1209

α2 Bias 0.0147 0.0114

SD 0.2643 0.2618

RMSE 0.2647 0.2620

0.5 1.0 1.5 2.0 2.5

−3
−2

−1
0

1
2

3

t

bet
a(t)

(a)  Estimated  beta

Proposed Ideal

0.0
0.2

0.4
0.6

0.8
1.0

AE

(b) The distribution of AE

Proposed Ideal

0.0
0.2

0.4
0.6

0.8
1.0

AE
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Fig. 2: Results of Simulation 2. (a) The averaged estimates of β(t) (Solid— : true functions;

dashed— : estimated; dotted— : confidence limit); (b) The distribution of AE for the

1000 replications in Simulation 2. (c) The distribution of PAE for the 1000 replications in

Simulation 2.

5 The Kidney Transplant Program

We study survival experience of kidney transplant patients from the U.S. Scientific Registry of

Transplant Recipients (SRTR), which is collected by the United Network for Organ Sharing
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and Organ Procurement and Transplantation Network (UNOS/OPTN) for all wait-listed

kidney transplant candidates and transplant recipients in the United States. As the state

of Michigan has a high incident of renal failure, we focus on the renal failure patients with

no history of kidney transplant who were on the waitlist between January 1, 2008 and

December 31, 2011 in Michigan (n = 3115 patients). Of these, 1446 patients received

a kidney transplant, with the waiting time for a transplant ranging from 0 to 1787 days

(mean= 341.7 days; SD= 380.3 days). For each patient, the time origin is when the patient

was placed on the wait list. The predictors used to adjust for transplant effect are gender

(Zi1), BMI (Zi2), previous malignancy (PM; Zi3), maximum acceptable cold ischemic time

(MACIT; Zi4) and diabetes (Zi5); see Table 2. The analytical goal is to investigate the

effect of transplant on patient’s survival and how the effect might evolve with time. Such

information is much needed for post-transplantation care.

Table 2. Descriptive statistics patients in the 2008-2011 SRTR data (n=3115).

Variable Count(%) Variable Mean(± SD)

Transplantation 1446(46.4%) Waiting time 341.7(±380.3)

Death 329(10.6%) BMI 29.49(±5.86)

Female 1194(38.3%) Age at listing 53.16(±12.80)

PM 233(7.5%) MACIT 34.09(±5.09)

Diabetes 1398(44.9%)

Because the treatment is time dependent, we analyze the SRTR data using the proposed

method. Denote Zi = (Zi1, Zi2, · · · , Zi5)
′, ti is the transplant time for patient i, xi(t) =

I(t ≥ ti) is the indicator for patient i having received a kidney transplant at time t. We fit

the following model

λi(t) = λ0(t) exp{Z′
iα + xi(t)β(t− ti)}.

Due to the long span of follow-up time (more than 4 years) and non-uniformly distributed

event times (number of death decreases linearly after about 3 years), we use the adaptive

bandwidth (Brockmann et al., 1993). We select the adaptive bandwidth for each time point

so that it covered a fixed quantile, q, of total number of events. We propose to choose q by

a K-fold cross-validation (Cai et al., 2000; Fan, Lin and Zhou, 2006), which is to minimize

the prediction error
n∑

i=1

∫ τ

0

(
Ni(t) − ÊNi(t)

)2

d

{
n∑

k=1

Nk(t)

}
,

where ÊNi(t) =
∫ t

0
Yi(u) exp

(
Z′

iα̂ + xi(u)β̂(u− ti)
)
dΛ̂0(u) is the estimate of the expected

failure number up to time t, Λ̂0(t) = 1
n

∑n
i=1

∫ t

0
dNi(u)

n−1
∑n

j=1
Yj(u) exp

(
Z′

jα̂+xj(u)β̂(u−tj)
) . For our

data, we choose K = 5 and find that the optimal q = 0.15. Figure 3 displays the estimated
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transient effect of kidney transplantation and its 95% confidence limits (dotted lines) ob-

tained from the 200 bootstrap samples. The choice of 200 is determined by monitoring the

stability of the standard errors. Table 3 displays the estimated coefficients of the adjusting

covariates. A lower BMI is associated with a protective effect on reducing the hazard of

death, and patients without PM or diabetes experience have a better survival outcome than

those with one or both of these two conditions. Gender and MACIT have no significant

effects. As a comparison, we also analyze the data using the classical Cox proportional

hazards model,

λi(t) = λ0(t) exp{Z′
iα + xi(t)β}. (5.1)

The model yields an estimate of α that is similar to those presented in Table 3.

Figure 3 shows that if the patient survives the first 115 days after transplantation, she

or he would gain a statistically significant benefit from the transplantation. This large-

scale, data-based result is significant, as it has implications for optimal organ allocation and

post-transplant care.

In practice, selection of the patients for organ transplantation is not entirely at random

as it depends on a cohort of medical issues and many other logistical considerations, includ-

ing patients’ commorbidity conditions (e.g. diabetes, BMI). We have tried to adjust these

factors as in Table 3, though the list certainly is not complete. Adjustment for unobserved

confounders, using causal inference techniques, may thus be necessary. However, this may

be out of the scope of this paper. Nevertheless, our results might give some useful estimates

for the association between transplantation and patients’ survival in an observational study

setting and could give practitioners some evidence for the regulation of medical practice and

the allocation of medical resources.
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Fig. 3: Estimated effect of time on survival after transplant.

Table 3. Estimated parameters from the proposed and Cox survival models.

Cox model (5.1) Proposed

Variable Est. SD p−value Est. SD p−value

Transplantation -.914 0.13 < 0.0001 - - -

Age .019 .0045 < 0.0001 .022 .0048 < 0.0001

BMI -.038 .009 < 0.0001 -.040 .011 0.0002

Female -.077 .10 0.46 -.024 .12 0.84

PM .437 .16 0.005 .38 .18 0.0036

MACIT .014 .009 0.114 .016 .010 0.11

Diabetes .476 .11 < 0.0001 .55 .13 < 0.0001

Finally, we propose a procedure to check the validity of the assumed model (5.1), along

the line of Lin, Wei, and Ying (1993) and Peng and Huang (2008). We investigate the class

of stochastic processes

Kn(t) =
∑n

i=1 q(Zi)Mi(t; θ̂),
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where q(.) is a known bounded function and the martingale residual

Mi(t; θ̂) = Ni(t) −
∫ t

0
Yi(u) exp(Z′

iα̂ + xi(u)β̂(u− ti))dΛ̂0(u).

Under the null hypothesis that the proposed model is correctly specified, Kn(t) would be

a random Gaussian process with mean zero. Thus, a natural measure of lack-of-fit would

be supt |Kn(t)|. To calculate the P-value for the lack-of-fit test, we approximate the null

distribution of Kn(t) by realizations of

K?(t) =
∑n

i=1 q(Zi)Mi(t; θ̂)(1 − ζi) +
∑n

i=1 q(Zi)(Mi(t; θ
?) −Mi(t; θ̂)),

where ζi’s are weights with mean 1 and variance 1 that generated the weighted Bootstrap

samples (as in Section 3) and θ? is the estimate from the corresponding re-weighted estima-

tion as in (3.1) and (3.2), and the estimate

Λ?
0(t) =

1

n

n∑

i=1

ζi

∫ t

0

dNi(u)

n−1
∑n

j=1 ζjYj(u) exp
(
Z′

jα
? + xj(u)β?(u− tj)

)

for the cumulative baseline hazard. We choose q(.) as a quadratic function of age for our data,

((Age − mean(Age))/max(Age))2, so that it is smooth and bounded. Then, a P-value of

0.65 for the lack-of-fit test is calculated as the empirical proportion of supt |K
?(t)| exceeding

supt |Kn(t)| from 200 Bootstrap samples, indicating there is no evidence of lack-of-fit for our

model.

6 Conclusion

To properly account for the timing of a time-dependent treatment when evaluating treatment

efficacy, we propose a varying-coefficient Cox model. To increase efficiency, we utilize a

global partial likelihood, which renders appealing statistical properties, including consistency,

asymptotic normality and semiparametric efficiency. Simulation studies confirm the finite

sample performance; we have applied the proposed method to study the efficacy of kidney

transplantation among patients with end-stage renal disease, which yields some interesting

results.

Moreover, there are several opportunities for future research. First, we have implicitly

assumed that for each individual the treatment time is a scalar. Although this is a useful

assumption for the current examination of kidney transplant patients, in reality, a single

patient may have data available on multiple treatments and multiple treatment times. Our

method can be extended to cover this case, using more involved computation. Second, in

an observational setting healthier patients may be more likely to receive a treatment; thus,
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efficacy analyses should account for possible selection bias. Finally, it is worth investigating

the integration of marginal structural equations or propensity matching into our framework.
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Appendix: Notations and Conditions

Notations.

To express explicitly the asymptotic expression of the estimators α̂−α0 and β̂(t)−β(t),

we introduce necessary notation. Denote νk =
∫
xkK2(x)dx, µk =

∫
xkK(x)dx, Xi =

{(xi(u), zi(u) : u ≤ τ},P (u|Xi, ti) = Pr(Ti ≥ u|Xi, ti),

Γi(u,α, δ) = P (u|Xi, ti) exp (zi(u)
′α + xi(u)

′δ(u− ti)) , Γi(u) = Γi(u,α0,β)

sr0(u,α, δ) = E
{
Γi(u,α, δ)zi(u)

⊗r
}
, sr0(u) = sr0(u,α0,β) r = 0, 1, 2,
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s0r(u,α, δ, t) = E
{
Γi(u,α, δ)xi(u)

⊗r|ti = t
}
f(t), s0r(u, t) = s0r(u,α0,β, t) r = 1, 2,

s11(u,α, δ, t) = E {Γi(u,α, δ)zi(u)xi(u)
′|ti = t} f(t), s11(u, t) = s11(u,α0,β, t),

ϑ1(t, v) =

∫ τ

0

s01(u, u− t)s′01(u, u− v)

s00(u)
λ0(u)du, ϑ2(t) =

∫ τ

0

s02(u, u− t)λ0(u)du,

Ξ0 =

∫ τ

0

(
s10(u)s

′
10(u)

s00(u)
− s20(u)

)
λ0(u)du,

Ξ1(t) =

∫ τ

0

(
s10(u)s01(u, u− t)′

s00(u)
− s11(u, u− t)

)
λ0(u)du.

Let G(t) satisfy the following integral equation:

Ξ1(t) = −G(t)ϑ2(t) +

∫ τ

0

G(w)ϑ1(w, t)dw,

sG(rs)(u) = E
{
(G(u− ti)xi(u))

⊗s zi(u)
⊗rΓi(u)

}
. Denote

A = Ξ0 −

∫ τ

0

G(t)Ξ1(t)
′dt, and

B =

∫ τ

0

[
sG(02)(u) − sG(11)(u) − sG(11)(u)

′ + s20(u)
]
λ0(u)du

−

∫ τ

0

[
sG(01)(u) − s10(u)

] [sG(01)(u) − s10(u)

s00(u)

]′
λ0(u)du.

Denote Θ to be the bounded support of α, and

C0 = {δ(t) : t ∈ [0, τ ], ‖δ(t+ h) − δ(t)‖ = O(h) }.

Conditions:

1. The kernel function K(·) is a symmetric density function with a compact support

[−1, 1] and bounded derivative.

2. ti, i = 1, · · · , n are independent random variables of the density function f(·), which is

positive and has a continuous second derivative on [0, τ ].

3. xi(t) is bounded with compact support. P (Ci = 0|Xi) < 1.

4. The functions β(·) have a continuous second derivative on the corresponding compact

support, α ∈ Θ.

5. The conditional probability P (u|Xi = x, ti = t) is positive and has a continuous second

derivative on [0, τ ] for each x and t over the corresponding compact support.

6. Denote

u1(α, δ) =

∫ τ

0

{
s10(u) −

s10(u,α, δ)

s00(u,α, δ)
s00(u)

}
λ0(u)du,

u2(α, δ; t) =

∫ τ

0

[
s01(u, u− t) −

s01(u,α, δ, u− t)

s00(u,α, δ)
s00(u)

]
λ0(u)du.

Then, there exists a unique root to u(α, δ; t) ≡ (u1(α, δ)′, u2(α, δ; t)′)′ = 0 in Θ ⊗ C0.
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7. sr0(u), s0r(u, t) and s11(u, t) have a continuous second derivative on (u, t) ∈ [0, τ ]×[0, τ ].

8. h(log n)2 → 0, (nh)/(logn)2 → ∞ and nh3 → ∞.
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