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Abstract

Classification is an everyday instinct as well as a full-fledged scientific discipline. Throughout the history of medicine,
disease classification is central to how we develop knowledge, make diagnosis, and assign treatment. Here, we
discuss the classification of cancer and the process of categorizing cancer subtypes based on their observed clinical
and biological features. Traditionally, cancer nomenclature is primarily based on organ location, e.g., “lung cancer”
designates a tumor originating in lung structures. Within each organ-specific major type, finer subgroups can be
defined based on patient age, cell type, histological grades, and sometimes molecular markers, e.g., hormonal
receptor status in breast cancer or microsatellite instability in colorectal cancer. In the past 15+ years, high-throughput
technologies have generated rich new data regarding somatic variations in DNA, RNA, protein, or epigenomic features
for many cancers. These data, collected for increasingly large tumor cohorts, have provided not only new insights into
the biological diversity of human cancers but also exciting opportunities to discover previously unrecognized cancer
subtypes. Meanwhile, the unprecedented volume and complexity of these data pose significant challenges for
biostatisticians, cancer biologists, and clinicians alike. Here, we review five related issues that represent contemporary
problems in cancer taxonomy and interpretation. (1) How many cancer subtypes are there? (2) How can we evaluate
the robustness of a new classification system? (3) How are classification systems affected by intratumor heterogeneity
and tumor evolution? (4) How should we interpret cancer subtypes? (5) Can multiple classification systems co-exist?
While related issues have existed for a long time, we will focus on those aspects that have been magnified by the
recent influx of complex multi-omics data. Exploration of these problems is essential for data-driven refinement of
cancer classification and the successful application of these concepts in precision medicine.
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Introduction
Classification and labeling represent the most intuitive
forms of learning. According to Confucius, “If the name
is not right then speech will not be in order, and if
speech is not in order then nothing will be accom-
plished.” Instances of classification can be found in every
aspect of life: the Linnaean system in biology is a seven-
level framework for cataloging living organisms; E-
commerce companies must organize their holdings in an
easy-to-search system. Whether the goal is to recom-
mend movies, screen job candidates, or rank colleges, a
system of summarizing and dividing is involved, and un-
certainties inherent to this task are common. In a quote
attributed to Albert Einstein [1], classification is “an

attempt to make the chaotic diversity of our sense ex-
perience correspond to a logically uniform system of
thought.” The tension between “chaotic diversity” on
one hand and a “logically uniform system” on the other
makes classification a long-standing subject in scientific
research. In practice, it was regarded more often as an
art than a science, as there is no axiomatic classification
theory that applies to all problems. This review will dis-
cuss the topic of cancer classification. Instead of offering
a systematic review of specific cancers, we will focus on
the implicit assumptions and common caveats of classifi-
cation, especially how it has been confronted with new
challenges in the genomic era. We organize the many
strands of this topic under the heading of five contem-
porary problems, although in many ways they are new,
more acute forms of old problems. A recurring theme of
our discussion is that the merit of a classification system
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depends on what it will be used for. Often, a new map is
drawn, but its intended application is unclear. Only by
spelling out the purpose of a proposed system can we
evaluate its merit according to what it aims to achieve.
The potential measures of merit for classification sys-
tems include statistical robustness, connections with
existing standards, prognostic value [2], insights into
biological mechanisms, and predictive power of treat-
ment outcomes [3]. As we discuss below, sometimes
these merits cannot be achieved all at once, and multiple
classification systems can be simultaneously “correct”
depending on which purpose they are designed to serve.
A few notes of terminology before we begin. In the

field of statistical learning, the term “classification” refers
to supervised sample assignment, using features identi-
fied in a training set containing samples with known
class labels. Here, we adopt its other, more commonly
understood meaning, referring to ab initio pattern recog-
nition, also known as unsupervised class discovery. We
will use the terms (sub)class and (sub)type interchange-
ably and will only discuss sample classification, not gene
clustering. We sometimes use “genomics” to refer to all
high-throughput -omics data. We will focus on subtype
discovery within a major organ-specific cancer type, not
between the major types.

How many cancer types are there?
The short answer is about 200: the National Cancer In-
stitute keeps an A–Z list of nearly 200 cancer types
(http://www.cancer.gov/types/by-body-location), organized
by organ location, although with some exceptions, such as
“HIV-related” or “unknown primary.” This organ-centric
system is further stratified, most often by the known cell
type of origin within the organ, e.g., “astrocytomas,” as a
subtype of brain tumors [4], or by patient age, e.g., “child-
hood leukemia.” If each of these major types has four sub-
types, there will be 800 subtypes of cancer. As stated
above, we will focus on how to identify subtypes within a
broadly recognized organ-specific entity.

“Endless forms most beautiful”
While the organ-derived naming system has been used
for over a century by doctors, patients, and cancer regis-
tries, there has always been the drive to recognize finer
subtypes, and this trend has accelerated dramatically
with genomic data. For example, in the clinic, primary
breast cancers have traditionally been classified by their
expression status of hormone receptors into three sub-
types: estrogen receptor (ER) positive or progesterone
receptor (PR) positive, human epidermal growth factor
receptor 2 (HER2) positive, and triple negative [5]. The
result of the immunohistochemical (IHC) assays of these
receptors can thus guide the selection of patients for dif-
ferent hormonal therapies or targeted therapies [6, 7].

The arrival of microarray-based gene expression data led
to the division of breast cancers into five intrinsic mo-
lecular subtypes: luminal A, luminal B, HER2 overex-
pression, normal like, and basal like, and they showed
notable differences in clinical outcome [8, 9]. More re-
cently, analyses of copy number and gene expression
data for several thousand malignant breast tumor sam-
ples revealed 10 molecular subtypes [10, 11]. Meanwhile,
the triple-negative subtype was further divided [12, 13],
and with a sample size of >10,000 and additional basal
markers, Blow et al. [14] identified six IHC subtypes for
breast cancer by splitting the basal group.
At least three factors contribute to the continued frac-

turing of cancer subtypes. First, increasingly larger sam-
ple cohorts are being used—they contain not only more
phenotypic heterogeneity but also greater power to de-
fine and replicate rare subtypes. Second, simultaneous
collection of diverse -omics data types, for aberrations in
DNA, gene expression, epigenetic features, etc., tends to
recognize additional “structures” in a given tumor series
[15–17]. Third, intrinsic gene-gene correlations in the
data, often unrelated to the disease itself, may create il-
lusions of stable clusters with the use of some methods
[18] even in cases where the structure is weak.
An ever finer classification system has many potential

benefits. It is needed to capture the full spectrum of bio-
logical diversity—the “endless forms” that Darwin spoke
of. It could lead to a better recognition of patient-
specific disease mechanisms and, importantly, could sug-
gest treatment options that are more accurately matched
to the patient’s tumor [2, 3]. Precision medicine, at its
very foundation, relies on valid and constantly optimized
disease classification that reflects the underlying mecha-
nisms. However, a fine-grained classification system also
has many potential drawbacks. The newly proposed splits
may not be technically robust (see “Is the classification
system robust?”). Even when the finer categories are ro-
bustly supported by statistical significance and by replica-
tion, they may still lack a clear biological meaning, or have
little impact on treatment options (“Can classification cap-
ture intratumor heterogeneity and evolutionary progres-
sion?” and “Caveats in interpreting cancer subtypes”
below) if it turns out that some subtypes share the same
clinical endpoint, or if treatment options are limited.

Is the classification system robust?
Here, we delve into the issue of robustness: how can we
tell if a classification scheme is more reliable than alter-
native systems? The value of any classification depends
critically on its robustness. Without evaluating robust-
ness, we face profound problems in downstream ana-
lyses, including integration across studies and clinical
translation. For example, the reported number of subtypes
for a certain cancer could differ between two studies,
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simply because one or neither study had strong evidence
to formally distinguish K clusters from (K − 1) or (K + 1).
Similarly, if the reported optimal K varies among DNA,
mRNA, and methylation data, the discrepancy could ei-
ther reflect a real biological distinction or be explained by
trivial methodological differences or by the mere absence
of a strong cluster signal.

Is there a p value?
In epidemiological or genetic association studies, evi-
dence of credible association is measured by effect size
and statistical significance, the latter being expressed by
a p value and a hypothesis-testing procedure used to cal-
culate it. For example, a DNA variant’s additive effect on
a continuous trait can be evaluated by linear regression.
However, the task of classification cannot be easily cast
into a hypothesis-testing framework: when declaring K
clusters for a sample, is the null hypothesis “no cluster”
or “K − 1 and K + 1 clusters”? While the confidence of
class assignment can be assessed by cross-validation in
test samples for which the class labels are already
known, there is no well-established statistics to compare
the performance of class discovery. In theory, one can
quantify the degree of clustering by indices such as com-
pactness, connectedness, separation [19], or silhouette
width [20]; however, there is no universally accepted
quantitative measure—a p value-like index—to report
how likely the observed clusters could arise merely due
to naturally occurring data “structure.” Two types of struc-
ture are frequently encountered in high-dimensional mo-
lecular profiling data: that due to separations between
groups, i.e., stratification, and that due to locally tight clus-
ters, i.e., cryptic relatedness. These terms are borrowed
from human population genetics studies, where both types
of structure ultimately came from shared ancestry of sam-
pled individuals at different time depths. Their impact on
association tests can be monitored and corrected by well-
established procedures [21, 22]. However, for gene ex-
pression or other functional genomics data (such as
proteomic, metabolomic, epigenomic data), the informa-
tion used in classification is sample-sample similarity in
high-dimensional feature space, and the basis of co-
ancestry is lacking, at least not self-evident. Indeed, how
to evaluate competing algorithms or alternative results is
an active topic of research [23]. Many groups have studied
the issue of cluster validation and have proposed the use
of either internal or external standards [24–26]. More
often, however, there is no real dataset that can serve as a
reliable external standard. Our recent analyses have shown
that even the datasets that are said to contain well-
separated clusters can have an uncertain number of clus-
ters (i.e., the true K), thus making it difficult to use them
as benchmarks for comparing class discovery methods
[18]. As sample size increases, the number of clusters will

increase and exhibit increasing apparent stability [18, 27].
Given this, we recommend the use of simulations to cre-
ate fully transparent standard data, in which the number
of clusters (K) and the degree of separation are known,
and the gene-gene correlations can be introduced based
on empirical data. Using such simulated data as a bench-
mark, we can systematically compare different clustering
methods for their performance, especially their rate of
over- and under-calling K over data that span a wide range
of known K values and pre-specified degrees of cluster
separation.
Quantitative reporting of the robustness of clustering

results is often lacking in publications that propose new
classification systems. Sometimes the data structure was
illustrated by pre-selecting the best discriminating genes
and showing how they could visually separate the re-
ported clusters crisply. Although this form of presenta-
tion is well suited for annotation—showing which genes
appeared in which group—it is not appropriate as a
demonstration of cluster strength, because with many
more genes than samples (i.e., the p >> n situation),
seemingly informative discriminators can always be
found for any random partition, even for samples with-
out clear groupings. When classification strength is not
properly assessed, visual display of clusters using the
best genes can inadvertently turn into an exaggerated
inference, even if subsequent interpretations seem ap-
pealing [18].

Can classification capture intratumor heterogeneity and
evolutionary progression?
Every living cancer inevitably changes its character in
time and every solid tumor is spatially heterogeneous,
yet most samples used in research so far are bulk tissue
blocks collected as a single time point. Thus, most of
today’s cancer genomics data, by the very nature of sam-
pling, provide a one-time view of a mixed pool of change-
able cells. Standard cancer classifications are aimed at
capturing intertumor heterogeneity, while treating each
tumor as homogeneous and unvarying. For a given cohort
of patients, classifying their bulk tumor data is an attempt
to find natural groupings among many mixed cell popula-
tions, while ignoring the within-population diversity and
its variation in space and time. Not surprisingly, the can-
cer subtypes reported are often driven by, and therefore
reflect, intratumor heterogeneity and tumor evolution.

Spatial heterogeneity
With bulk tissue data, spatial heterogeneity is an unob-
served property. If the sample consists of a limited num-
ber of clonal populations, the number and molecular
features of these component populations can be poten-
tially “deconvolved” computationally. As sequencing costs
drop, spatial heterogeneity can be analyzed with increasing
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resolution: first by multi-region analysis of smaller sectors
of the same tumor [28–30], ultimately by DNA or RNA
sequencing of single cells [31, 32]. In multi-region ana-
lyses, a typical assumption is that individual regions are
clonally “pure,” and the results can be presented as such.
However, it remains the rule rather than the exception
that each region still contains a mixture of many cell
types, albeit with presumed lower heterogeneity compared
to the entire tumor [33]. Single-cell analysis provides the
ultimate solution, as it describes the smallest unit of can-
cer heterogeneity and provides truly clonal data for use in
classification. Single-cell studies have identified many
more cell types than previously seen with bulk tissue ana-
lysis. For example, a single-cell RNAseq study of cortical
tissues [34] has found nine major classes and 47 “molecu-
larly distinct” subclasses of brain cells, significantly ex-
panding the known cellular repertoire of the mammalian
cortex. Due to the higher cost of single-cell analysis, bulk
tissue samples will remain the predominant source of can-
cer genomics data for the foreseeable future, both in basic
research and in real-time clinical testing. By sampling
smaller and smaller “core” regions, the spatial heterogen-
eity can be reduced, but it cannot be fully removed. In this
regard, the traditional, hard classification into disjoint cat-
egories is a poor fit for admixed samples, as they contain
cancer cells carrying somatic mutations or aneuploid seg-
ments as well as surrounding normal-like cells that are
euploid and carrying only germline mutations. Partial
membership modeling has been proposed to address this
scenario [35, 36], reminiscent of similar methods for an-
cestry inference using genotype data for individuals with
mixed ancestry [37, 38]. Alternatively, phylogeny-based
methods can be applied to explicitly account for the poly-
clonal nature of each regional sample in a multi-region
dataset [39, 40].

Cancer life history and impact on classification
Classification of cancers can also be viewed as a task of
cataloging evolutionary trajectories of complex genomes
[41, 42]. Each cancer genome carries many variations,
with a distribution of fitness effects as defined in a spe-
cific but changeable environment. Each tumor thus
undergoes its own Darwinian evolution, with many intri-
cate details that make it distinct from all other tumors
[43]. However, our effort to classify them is predicated
on the notion that convergent evolution does happen,
such that a limited number of evolutionary paths are
traveled repeatedly by tumors from different patients,
leading to recognizable major hallmarks recurring in dif-
ferent tumors. The discovery of N subtypes of breast
cancer, for example, detects N destinations of convergent
evolution in this cancer type. But N needs not be a fixed
parameter. For example, if the tissue has K cell types
that could eventually turn to cancer cells, the pre-

cancerous cells have K starting points from which to ex-
plore the initial evolutionary paths, and multiple paths
may merge or split during the life history of a cancer be-
fore congregating to one of N major types at the time of
sampling. Metastasis and treatment response would fur-
ther extend, diversify, or reshuffle the evolutionary tra-
jectories [44, 45].
Current cancer classification systems can only reflect,

but not accurately portray, this complex succession of
events, as different tumors may be sampled at different
stages along their own life histories. In a typical lifespan
of a malignant tumor, some cells start acquiring onco-
genic potential, showing increased proliferation, escaping
apoptosis and immunosuppression, competing success-
fully for resources with other cells in the tissue niche,
and harnessing the right combination of driver muta-
tions with enough fitness gain to overcome the fitness
burden incurred by the larger number of passenger mu-
tations (for reviews of common hallmarks and pathways
for cancer, see [46–48]). To become more “successful,”
the cancer needs to grow sufficiently large and clonally
diverse before tissue turnover and, sometimes, to acquire
migration and invasion properties that are essential for
metastasis. It may also carry treatment-resistant sub-
clones that can thrive after therapy. Viewed in this light,
cancers are chronic diseases with changeable character,
punctuated by rare episodes of acceleration, essentially
slow-evolving populations that occasionally rush to a
new, more successful endpoint. A given sample collec-
tion may have captured the tumors at different “stations”
of their life history. For example, the mesenchymal sub-
type of glioblastoma multiforme (GBM) possesses the
signature of macrophages/microglial infiltration [49, 50]
and has a greater degree of mixing of aneuploid and eu-
ploid cells. More recently, Ozawa et al. reported that
most non-GCIMP mesenchymal GBMs may evolve from
another known subtype, a proneural-like precursor of
GBM [51].

Caveats in interpreting cancer subtypes
In most cases, the task after class discovery is to explain
the meaning of the found classes. Typical actions include
the following: describe the involvement of known cancer-
related genes as a way to report specific signaling path-
ways active in different subtypes; map the new class
nomenclature to those of the previously established
systems; assess differences in clinical outcome, e.g., sur-
vival time or treatment responsiveness; and dissect tissue-
specific signatures or enrichment of previously curated
gene clusters. In the following sections, we discuss three
caveats in such interpretations. Both marker selection and
analysis method have a strong impact on classification
results and how the resulting classes can be explained.
Further, the third factor affecting interpretation is the
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strength of clustering inherent in the dataset, which is not
known until a specific collection of tumors has been as-
sembled and analyzed.

Feature selection bias
We illustrate the importance of feature selection by first
drawing analogies with population genetics studies, where
DNA variation data can be used to (1) infer historical
demography or (2) detect natural selection. These two
tasks are related, but are also inherently different, even
conflicting with each other, and relying on different fea-
tures. Demographic inference tries to describe historical
changes of population size and distribution, including
migration, self-isolation, expansion, and admixture. The
best genetic features for this task are “neutral” varia-
tions, those not under natural selection, or more ac-
curately, those not likely to affect the Darwinian fitness
of the individuals. Typical examples of such neutral
markers are those found in intergenic regions of the
genome. In contrast, the second task, inference of nat-
ural selection, relies on markers with a fitness effect, and
they can be detected after specifying a null model of
genetic drift, because demographic forces could have
generated DNA variation patterns similar to those due
to natural selection.
In cancer evolution, the concept of driver and passen-

ger mutations are almost exact parallels of the adaptive
(positively selected) and neutral variants recognized in
population genetics [48, 52]. However, we rarely ask
whether the emphasis of cancer classification is for un-
derstanding the tumors’ past demography or their future
evolution. The story of the cancer’s past is shaped by the
drivers but may be best recorded by the passengers, and
the drivers in the past may not experience the forces of
selection acting in the future. The type of features se-
lected for use in classification will therefore directly
affect the downstream interpretation. For example, if the
analysis of gene expression data pre-selects transcripts
that correlate with survival time, these markers, by being
most informative for future outcome, are likely to reveal
tumor subtypes that differ in outcome, and this in turn
will lead to the interpretation that the subtypes thus dis-
covered have a stronger prognostic/predictive value than
classes discovered using other features. Alternatively, if
the selected transcripts correspond to cell type or
pathway-specific genes, the resulting classes will likely
exhibit differential loading of pathway or source cell
signals and make it easy to map the discovered clas-
ses to biological mechanisms. Even the presumably
“unbiased” choice of selecting the most variable genes
may have inadvertently loaded the interpretation towards
the most dynamic or most strongly co-expressed path-
ways, such as those for stress response or immune cell
infiltration.

Hidden assumptions in choosing a clustering method
Unsupervised clustering is the basic tool for ab initio
class discovery. The term “unsupervised” refers to statis-
tical inference of data structure without relying on existing
knowledge of sample labels. However, “unsupervised” does
not mean assumption-free. Some important assumptions
have always been made, sometimes unknowingly, in
marker selection, data processing (such as how to treat
outliers and how to deal with batch effects), and the
choice of the clustering method. This methodological
choice is already based on an implied data-generating
model, i.e., what type of biological heterogeneity could
have produced the observed data structure. If we assume
that the objects—different tumor samples—arise from dis-
tinct, non-overlapping causes, methods for finding disjoint
taxonomy, such as k-means clustering, are appropriate. If,
alternatively, we see each tumor sample as a mixed popu-
lation of cells comprising a small number of canonical
clones, a mixed membership model is more powerful
[35, 36, 53], as has been routinely applied in studies of
human population diversity involving individuals of mixed
ancestry [37]. The number of co-existing clones and the
rate of clonal replacement depend on population size, mu-
tation rate, and the distribution of fitness effects of the
new mutations. If the task is to classify cells in a single
evolving population with major branches, it would be best
to capture the lineage relationship by using hierarchical
clustering—akin to the coalescence analysis in classic
population genetics [54]—aiming to identify hierarchical
classes to reflect their shared ancestry as the historical
truth. When using simulated data to compare methods
such as k-means clustering or hierarchical clustering, the
data-generating model will usually dictate the winner: the
method that matches the model will fit the simulated data
best.

Inherent intensity of data structure
Perhaps it is worth reiterating that when the clustering
signal is strong, most methods will perform well and
they will be in good agreement. Conversely, when the
data structure is subtle, slight differences in sampling,
data processing, feature selection, or the choice of
method will yield highly discordant results, and it is dif-
ficult to tell which method is better. A recent example
of a strong clustering signal is from a joint analysis of
3527 specimens of 12 cancer types by the Cancer Gen-
ome Atlas (TCGA) Research Network [16]. Most identi-
fied classes follow the cancer’s known organ of origin,
undoubtedly due to the distinct cell types found in
different tissues. This result is as expected, because it af-
firms the earliest insight that cancer cells are trans-
formed normal cells rather than entirely “foreign” cells
(as is the case in bacterial infection). As cells are “cana-
lized” during differentiation, a tumor occurs in one of
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Waddington’s valleys and bears its local hallmark. Speak-
ing in more modern terms, the malignant transform-
ation, although a radical step in the adaptive evolution
of the cancer cells, usually could not have erased their
tissue-of-origin signature inherited from prior differenti-
ation. This identity, perhaps coded in the epigenomes of
the fate-committed cells, remains the most noticeable
molecular character in matured organs despite subse-
quent oncogenesis. Meanwhile, this study also revealed
remarkable examples of cross-tissue subtypes [16], e.g.,
squamous-like lung, head and neck, and bladder cancers
that are more similar to each other than other cancers
from the same organ, and they appear to have overcome
the ontological divergence of the source tissues. Is this
because convergent evolution—newly acquired onco-
genic characters overwriting history, or shared linea-
ge—the same group of differentiated cells “seeded” into
two different body sites? Either scenario would be im-
mensely interesting. In principle, it is entirely possible
that the same pathways are activated in different cell
types as the oncogenic driver and manifest as the same
subtype. Such cross-tissue classification is at the fore-
front of pan-cancer analysis today, made possible by the
availability of multi-cancer datasets collected under uni-
form technical conditions. With such data, we are enter-
ing the best time to study population genetics of somatic
cells. This discipline will stimulate new theoretic work
on the evolution of non-recombining populations, will
produce patterns that can be contrasted with experimen-
tal evolution of microbial systems, and will provide in-
creasingly strong knowledge support for the practice of
precision oncology.

Can multiple classification schemes co-exist?
Traditional classification methods rely on organ type,
appearance, and histological markers. Multiple systems,
such as tumor grade and stage, have co-existed for de-
cades. In recent years, the arrival of high-throughput
molecular studies has rapidly increased the number of
competing systems. For example, the analyses of human
breast tumors by the TCGA [55] produced multiple an-
swers to the “how many subtypes” question for the same
sample series. It found that breast tumors’ gene expression
data supported 13 classes with the use of a consensus
cluster-based method, 12 classes with a second method,
and five classes with the semi-supervised PAM50 method
[56]. The concordance rate among the three results was
modest, as the best-matched classes between any two
methods only account for 50–60 % of the samples (our
unpublished observation). Further, the study found seven
breast tumor subtypes from microRNA data, five subtypes
from methylation data, and five subtypes from copy num-
ber alterations, again with poor to modest agreement (per
our analysis). While the classification solutions were

described as “correlated” across data types, their differ-
ences impacted a large fraction of the samples, making it
difficult to find a straight answer to the simple question:
how many subtypes are there for breast cancer? To inte-
grate such complex data requires a quantitative assess-
ment of clustering strength within each data type and a
system to truly integrate the solutions rather than
recounting them side-by-side. Multiple methods have
been developed to meet this growing need [57–60].
When the same data type lead to two or more differ-

ent classifications by the use of different methods, it
becomes a methodological imperative to arrive at a con-
sensus: there is no sound reason for multiple “truths”
within the same raw data. However, across different gen-
omic data types, it is less clear that there must be a sin-
gle unifying classification. In the example of TCGA
breast tumor study mentioned above, it may not be pos-
sible, or necessary, to forge a single classification by rec-
onciling the observed groupings across all omics layers.
If we assume that biological information flows from
DNA to epigenetic marks, then RNA, and then to pro-
teins, if the cells commit to its differentiated fate primar-
ily using epigenetic codes yet react to short-term needs
by gene expression adaptation, further, if the cells inter-
act with their microenvironment chiefly through varia-
tions of metabolites, it is conceivable that different levels
of biology coalesce to different grouping patterns, and
the same sample could truly belong to different groups
depending on the level of inquiry. We think it remains
an open question whether different layers of genomic
data signify different archetypes of cellular states and
could lead to different but equally valid classification
systems. To test such a multi-layered classification
would require very large datasets that can validate the
class-to-class mapping across layers.

Conclusions
Cancer classification is both a scientific technique and a
living art, to be performed for each dataset with individ-
ualized care. Classification results are widely used and
form the foundational knowledge for both basic and
translational oncology. In this review, we outlined five
contemporary challenges at the interface of computa-
tional data mining, biological understanding, and clinical
utility. To classify late-stage tumors is to engage in prob-
abilistic cataloging and reverse storytelling, not unlike
other observational sciences such as archeology or an-
thropology. The arrival of genomic data has dramatically
increased the power to peer into the past, but even now,
in the midst of the excitement of many new opportun-
ities, it is useful to keep in mind that sometimes the
sample series at hand may not be sufficient to support
the full ambition of fine-grained classification or to trace
the entire evolutionary trajectories. Whether intratumor
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heterogeneity is so strong as to destabilize intertumor
classification, and whether a newly observed cluster rep-
resents a robust, recurrent, and meaningful subtype, ul-
timately need to be settled by empirical data for each
major tumor type. The usefulness of classification ultim-
ately rests on increased prognostic power or more pre-
cisely targeted therapies. Assessing and communicating
the strength of data, in quantitative terms whenever pos-
sible, is essential for the long-term management of pre-
dictive uncertainty and for the successful application of
genomics in patient care.
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