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In this paper, we empirically examine the impact of performance feedback on the outcome of crowd-

sourcing contests. We develop a dynamic structural model to capture the economic processes that drive

contest participants’ behavior, and estimate the model using a rich data set collected from a major online

crowdsourcing design platform. The model captures key features of the crowdsourcing context, including a

large participant pool, entries by new participants throughout the contest, exploitation (revision of previous

submissions) and exploration (radically novel submissions) behaviors by contest incumbents, and the partic-

ipants’ strategic choice among these entry, exploration, and exploitation decisions in a dynamic game. We

find that the cost associated with exploratory actions is higher than the cost associated with exploitative

actions. High-performers prefer the exploitative strategy, while low-performers tend to make fewer follow-up

submissions and prefer the exploratory strategy. Using counter-factual simulations, we compare the outcome

of crowdsourcing contests under alternative feedback disclosure policies and award levels. Our simulation

results suggest that the full feedback policy (providing feedback throughout the contest) may not be optimal.

The late feedback policy (providing feedback only in the second half of the contest) leads to a better overall

contest outcome.

Key words : Crowdsourcing contests, Feedback, Econometric analysis, Structural modeling, Dynamic game

1. Introduction

Recent technological advances have enabled organizations to better engage customers, freelance

service providers, and independent experts in various business processes, such as customer informa-

tion acquisition, product development, sourcing, and innovation. A wide variety of large-scale online

platforms have emerged as platforms to facilitate these “crowdsourcing” applications. Depend-

ing on the design of such platforms, crowd workers or service providers may work independently,

competitively, or cooperatively. Crowdsourcing contests are a popular form of competitive crowd-

sourcing; they often used to source innovations, and this use is the focus of our paper. Compared
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to traditional innovation sourcing approaches, crowdsourcing contests allow an innovation seeker

to access and interact with a much larger pool of innovators, to choose from a large number of

submissions, and to pay only for the successful ones. This new way of sourcing innovation increases

the variety and novelty of innovations, and lowers the risk of innovation failure. Recognizing the

advantages of crowdsourcing contests, over the past several years, a rapidly increasing number of

governments and corporations – including Google, Netflix, and even NASA – hosted crowdsourcing

contests to leverage external human resources for sourcing innovation. There are also emerging

crowdsourcing contest platforms, such as Innocentive, TopCoder, Kaggle, and 99Design, which

serve as intermediaries between innovation seekers and crowd-innovators.

To be effective, crowdsourcing contests must be carefully designed and managed. The choices

of award structure, competition size and problem specification can all influence the effectiveness

of a crowdsourcing contest. Another important, but somewhat overlooked design element is the

feedback disclosure policy. Many crowdsourcing contests are dynamic in nature – new solvers can

join the contest at any time before the contest ends, and solvers who have made submissions can

revise their existing submissions (exploit existing ideas) or submit new ideas/solutions (exploring

new possibilities). The innovation seeker can in turn provide real-time feedback on the performance

of existing submissions during a contest. Such performance feedback is an available feature on most

crowdsourcing platforms. For example, Kaggle contests provide public leader boards displaying

rankings based on the performance of submitted algorithms on a testing data set; crowdsourcing

design platforms, 99design and Crowdspring, allow design-seekers to rate submitted designs using

a 5-star rating system, and the rating distribution is publicly viewable. Most of these platforms

strongly encourage seekers to provide feedback to contest participants: for example, the FAQ site

of one platform states “the more feedback you can give, the better!” and “be sure to score EVERY

entry.” Such recommendations are primarily based on the intuition that feedback can guide par-

ticipants’ submissions towards seekers’ preference; as another platform states, “star ratings show

how much the contest holder likes or dislikes a design”.

However, the effect of feedback is likely to be more complicated than that. In addition to convey-

ing seekers’ preference, performance feedback also discloses the current status of the competition,

and thus is likely to affect existing and potential contest participants’ participation decisions.

Dating back to Fudenberg et al. (1983), theoretical literature on feedback in small-scale (mostly

two-player) contests has generally concluded that the revealed performance gap will lead to both

the low performer and the high performer reducing their efforts due to decreased competition.

But this conclusion may not hold in crowdsourcing contests, because crowdsourcing contests are

large-scale; new entrants can join the contest throughout the contest period; the notion of quality
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can be quite subjective; existing creators can choose between exploitative and exploratory inno-

vation strategies; and there are often multiple high performers competing against each other. In

the presence of these unique features of crowdsourcing contests, revealing performance gaps may

encourage participants to exert effort: new entrants are encouraged to join the contest when the

feedback indicates a low level of competition; top performers want to secure their leading position;

and low performers may endeavor to catch up – due to the subjectivity of the notion of “quality” in

many crowdsourcing contests, innovators whose current submissions fall far behind have the option

of submitting a completely new innovation, which gives them a chance to leapfrog the competition.

Given the co-existence of all these effects, there is no easy answer to the important question of

whether (and if so when) to release performance feedback during crowdsourcing contests. The goal

of this study is to examine this complicated process and disentangle the intertwining effects that in-

process feedback may have on the outcome of crowdsourcing contests. More specifically, this study

attempts to address the following research questions: (1) How does performance feedback affect

existing contest participants’ follow-up innovation actions and potential entrants’ entry decisions?

(2) What is the impact of the availability of feedback on the contest outcome, in terms of the total

number of innovators participating in the contest, the highest quality achieved by their submissions,

and the number of top performers/submissions? Does the timing of the feedback availability matter

or not? (3) What is the value (disvalue) of providing feedback in crowdsourcing contests?

To answer these questions, we construct a dynamic structural model to analyze the effect of

performance feedback on creators’ participation behavior in graphic design contests. The model

explicitly captures how potential entrants decide whether to join an on-going contest, and how

incumbents decide whether to make additional submissions, and if so, how to choose between the

exploratory and exploitative strategies. We apply the structural model to a data set collected from

a major platform for crowdsourced custom logo designs. In order to classify observed incumbents’

follow-up submissions into exploratory action (redesign) and exploitative action (revision), we

employ the Scale-Invariant Feature Transform (SIFT) algorithm to quantify the similarity between

each pair of submissions made by the same creator. We estimate the parameters governing cre-

ators’ (designers’) participation behavior, and find the following results. The cost associated with

exploratory actions (redesigns) is higher than the cost associated with exploitative actions (revi-

sions). High-performers prefer the exploitative strategy, while low-performers tend to make fewer

follow-up submissions and prefer the exploratory strategy. In that sense, feedback not only helps

encourage the leading creators, but also helps individual creators choose the most productive follow-

up action and hone, or revamp, their designs according to how well the seeker likes, or dislikes,

them.
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Using the estimated parameters, we conduct counterfactual simulations to compare contest out-

comes across four feedback policies: full/early/late/no feedback, where the seeker provides feedback

throughout/only early/only late/not at all in the contest. The simulation results reveal that the

maximum quality achieved is higher in the full feedback and the late feedback policies than in

the no feedback and the early feedback policies. Between the full feedback and the late feedback

policies, the difference in the maximum quality achieved is very small. Moreover, compared to no

feedback, the same maximum submission quality can be achieved with 2/3 the award level, if the

seeker provides feedback, even only in the second half of the contest. If the seeker’s objective is to

maximize the number of top creators who achieve high ratings (5-star), or to maximize the total

number of contest participants, the late feedback policy is in fact a better option than the full

feedback policy. The full feedback policy performs worse in these two dimensions than the late

feedback and the early feedback policies when the contest award is relatively high, and performs

as poorly as the no feedback policy when the contest award is very high. These findings suggest

that the common intuition, “the more frequently the seeker provides feedback the better”, may be

misleading, even before we consider the cost the seeker incurs to evaluate submissions in real time

to be able to provide feedback throughout the contest.

Our study makes several contributions. First, to our knowledge, this is the one of the first studies

to investigate the impact of feedback on the outcome of crowdsourcing contests, and the first study

that that proposes a structural model to empirically analyze this impact. Second, the structural

model presented in this paper is one of the most comprehensive models of crowdsourcing contests,

as it explicitly models multiple stages, endogenous entry, and creators’ exploitation and exploration

innovation strategies, unique features of crowdsourcing contests that, to our knowledge, have not

been all incorporated in the existing literature. Third, our policy simulations yield very interesting

results, which not only quantify (in dollar terms) the value of the feedback, but also provide rich

managerial insights into whether, and if so, when should feedback be revealed, depending on the

objective(s) that the seeker wants to achieve.

The rest of the paper proceeds as follows. Section 2 reviews relevant literature. Section 3 intro-

duces the research context, describes the data used in the empirical analysis, and shows reduced-

form evidence. We then present the dynamic structural model in Section 4. Section 5 discusses the

estimation procedure and the estimation results. Section 6 describes how we conduct counterfactual

experiments and the results from them. We summarize and conclude the paper in Section 7.

2. Literature Review

Emerging large-scale online markets have attracted increasing academic interest from the oper-

ations management community. Researchers have studied the use of large-scale online markets
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in different application contexts, such as acquiring customer preferences (Marinesi and Girotra

2013) and forecasting sales and commodity price (Bassamboo et al. 2015) using crowd-based tools,

screening and managing human resources in large-scale online service marketplaces (Allon et al.

2012, 2014, Moreno and Terwiesch 2014), and raising funds from crowd donors (Hu et al. 2015,

Hu and Wang 2015). On the other hand, there is also a large literature in operations manage-

ment examining issues related to sourcing and procurement auctions (see Elmaghraby (2007) for a

detailed review). Our paper studies another application of large-scale online markets, crowdsourced

innovation or open innovation, which creates a new way of sourcing innovative products/ideas from

a large group of creators/innovators (Girotra et al. 2010, Erat and Krishnan 2012). More specifi-

cally, our focus is the crowdsourcing contest, in which a large crowd of innovators compete to solve

innovation-related problems.

Crowdsourcing contests have been examined as platforms for sourcing innovation (Terwiesch and

Xu 2008, Terwiesch and Ulrich 2009). Existing literature on the design of crowdsourcing contests

has looked at the impact of award structure (Moldovanu and Sela 2001, Yang et al. 2009, Liu

et al. 2014); optimal competition size (Taylor 1995, Fullerton and McAfee 1999, Che and Gale

2003, Terwiesch and Xu 2008, Boudreau et al. 2011, Körpeoğlu and Cho 2015, Ales et al. 2016a,

Boudreau et al. 2016); problem specification (Boudreau et al. 2011, Erat and Krishnan 2012); and

the disclosure of intermediate solutions (Boudreau and Lakhani 2015, Wooten and Ulrich 2016b)

on the outcome (both the quality and quantity of the crowdsourced solutions) of crowdsourcing

contests. Most of the previous research studies crowdsourcing contests as static problems; however,

in reality, a large portion of the crowdsourcing contests are dynamic in nature. Our paper explicitly

models the dynamics of crowdsourcing contests, and focuses specifically on an important but rarely

explored design element – feedback. To our knowledge, the only other study that looks at the role

of feedback in crowdsourcing contest is Wooten and Ulrich (2016a), in which the authors conduct a

field experiment to compare the performance of contests under three different feedback treatments

– no feedback, random feedback, and truthful feedback. However, this paper does not explicitly

model the contest dynamics, study the detailed mechanisms driving participants’ behavior, or

examine the impact of feedback timing on contest outcomes.

Feedback in a different but related context, tournaments/contests, has been studied in the eco-

nomics literature. The theoretical research focuses on small-scale contests, and until recently, most

studies in this stream of research conclude that performance feedback reduces contestants’ effort,

because when one player has a lead over the others, the subsequent contest will be biased in favor of

the leading contestant and the followers cannot catch up with the leader by making the same level

of effort (Fudenberg et al. 1983, Schotter and Weigelt 1992). A few recent papers (e.g., Gershkov

and Perry 2009, Aoyagi 2010, Ederer 2010, Goltsman and Mukherjee 2011) extend the literature
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by showing that the optimal feedback mechanism depends on the curvature of the agents’ cost

function, complementarity between effort and ability, complementarity between contestants’ effort,

etc. There are also laboratory experimental studies evaluating the role of feedback in contests.

These studies have mixed results in terms of whether and how feedback will affect top-performing

and low-performing contestants’ effort provision in various experimental settings (see Dechenaux

et al. (2015) for a detailed summary of this literature). There has been very little work featuring

feedback in contests for innovation. To our knowledge, there are only a few recent game-theoretic

papers on this topic. Bimpikis et al. (2014) and Halac et al. (2016) both study “innovation races”

and consider technical uncertainties in innovation races – namely whether it is feasible to solve

the problem at all. They illustrate that feedback on the one hand exposes a discouraging perfor-

mance gap, but on the other hand updates contestants’ perceptions of the feasibility of solving

the problem. Mihm and Schlapp (2015) evaluates the average design quality and the best design

quality under no feedback, public feedback and private feedback scenarios. They find that the best

feedback strategy depends on the contest uncertainty and the contest holder’s interest in average

design quality or the best design quality. A recent working paper by Gross (2016a) is one of the

few papers that use field data to examine the effect of feedback on small-scale, fixed-size innovation

contests. Concurrently but independently from our work, using a crowdsourcing data set similar

to ours, the author estimates how feedback affects contestants’ participation and the quality of

their subsequent submissions, in a model that treats each submission by the same participant as

an independent trial. Then the author uses the estimated model to simulate the dynamics of a

three-player, sequential-play contest, under alternative feedback policies, including the public, pri-

vate and partial feedback policies. The simulation results suggest that the net effect of feedback on

the number of high-quality submissions is positive; therefore, the author concludes that feedback

is desirable for a principal seeking innovation.

Our work considers a similar principal decision (feedback), but in a different setting – crowd-

sourcing contests held on large-scale online markets. The crowdsourcing contests we study differ

from small-scale fixed-size contests in the following crucial aspects: (1) the size of the participant

pool is large; (2) crowdsourcing contests allow endogenous entries of new participants throughout

the contest; and (3) there is large uncertainty in the relationship between effort and solution quality,

which depends highly on the contest holder’s preferences. The last feature gives rise to exploration-

and exploitation-type strategies; indeed, sourcing the best solution to an innovation problem has

been modeled as a search process (Dahan and Mendelson 2001, Terwiesch and Loch 2004, Girotra

et al. 2010, Kornish and Ulrich 2011, Erat and Krishnan 2012, Ales et al. 2016b, Gross 2016b),

where independent trials (exploration) and sequential trials (exploitation) contribute differently to

the contest outcomes. In the presence of these unique features, we expect that the role of feedback
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will be quite different in crowdsourcing contests, and that findings in the literature about the role

of feedback in traditional contests may not hold in the context of crowdsourcing contests.

The model we propose in this paper captures these unique features of crowdsourcing contests by

explicitly modeling potential entrants’ entry decisions and incumbents’ choices between exploratory

and exploitative strategies in this highly uncertain environment, and, as a result, provides novel

insights into the role of feedback in crowdsourcing contests. In addition, our study contributes to

the limited empirical literature on the design of crowdsourcing contests and on the sourcing of

innovative products. Using a structural modeling approach, we are able to recover the parameters

governing contest participants’ behavior from real-world data and conduct counterfactual simula-

tions to evaluate alternative feedback disclosure structures. Although the focus of our study is the

role of feedback, our structural model of contest participants’ behavior can be used to study other

features of crowdsourcing contests and other large-scale online open platforms.

Methodologically, our paper is based on the dynamic game structural estimation literature (see

Aguirregabiria and Mira (2010) for a detailed review). Our modeling and estimation approach

diverges from the more conventional framework where the market is assumed to be in a stationary

environment and the competition has an infinite horizon. Specifically, we embed discrete choice with

private information into a non-stationary, finite-horizon dynamic game, focus on type-symmetric

strategies to avoid multiple equilibria, and use Rust (1987)’s nested fixed-point (NFXP) estimation

approach to recover the parameters that govern creators’ decision making processes. Our work

contributes to the growing empirical operations management literature that employs structural

modeling approach to examine operations-related questions, such as pricing strategy (Li et al. 2014,

Moon et al. 2016), service provision (Allon et al. 2011, Lu et al. 2013, Aksin et al. 2013, Guajardo

et al. 2015, Yu et al. 2016, Xu et al. 2016), operational costs (Olivares et al. 2008, Musalem et al.

2010, Mani et al. 2015), and bullwhip effect in supply chains (Bray and Mendelson 2012, 2015).

Since the crowdsourcing contests can be viewed as a form of all-pay auctions, this study is most

closely related to Olivares et al. (2012), Kim et al. (2014), and Hyndman and Parmeter (2015),

which use the structural modeling approach to study bidder behavior in various types of auctions.

3. Research Context and Data

Our data are collected from a major online platform for crowdsourcing creative services in various

areas, including custom logo design, Web design, industrial design and writing services. We focus

on logo design contests because it is the largest category both in terms of the number of completed

contests and the number of active creators.

A typical logo design contest proceeds as follows. First, a seeker (“he”) in need of a design posts

a design request. In the posting, he describes what he needs, specifies when he needs it (i.e., the
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contest’s start date and end date), chooses whether he wants to make all existing submissions

public by choosing the “public-gallery” option, and announces the award structure (i.e., whether

the award is “assured1”, the number of winners, and the award(s) for the winner(s)). Once a

contest is posted, all creators (“she”) on the platform can join the contest and submit design(s) at

any time before the contest ends. At any time during the contest period, the seeker can rate each

submission based on a 5-star system. A submission’s rating is visible to its author. All ratings are

summarized in a table, called “Project Stats” (Figure 1), which is accessible to all participating

and potential creators.2 At the end of the contest, the seeker picks his favorite submission(s) and

gives the pre-announced award to its (their) author(s).

(a) Design Request
(b) Project Stats

Figure 1 Illustrative Screenshots of the Design Request and Project Stats

Note: “Buyer Assured”, “public-gallery”, “Award”, “Start-date and End-date” and “Project

length” are labeled on the contest list page and on a project’s header.

We collect data of “public-gallery” logo-design contests on this crowdsourcing platform from

March, 2012 to November, 2014. For each contest, we record all participating creators’ and the

seeker’s activities (including creators’ submissions and the seeker’s ratings) with corresponding

time stamps, and download all design images. To facilitate the empirical analysis, we focus on 7-day

contests where the design seekers promise to reward one and only one final winner, because it has

been documented (Moldovanu and Sela 2001, Yang et al. 2009, Liu et al. 2014) that the contest

length and award structure can affect creators’ behavior and contest outcomes; since the objective

of this study is to examine the role of feedback, we purposefully minimize the heterogeneity among

the contests in these other dimensions. The contests included in our sample are representative

1 In an “assured” contest the seeker promises to give out the pre-specified award.

2 It is worth pointing out that creators only observe the distribution of the existing ratings, i.e., how many 1-star,
2-star,..., 5-star submissions there are (e.g., there are eight 5-star submissions, forty 4-star submission in the example
displayed in Figure 1), but do not know which submissions are rated as 5-star, which ones receive a 4-star rating,
etc. This prevents creators from copying good designs.
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contests on the platform – 97% of the contests held on the platform have a single award, 61% are

“Buyer Assured”, and 7-day is the most common length among all contests. The final working

sample consists of 810 contests, 26,367 contest-creator combinations, 75,572 design images and

45,999 ratings. Table 1 reports summary statistics of contest-level characteristics.

Table 1 Contest-Level Summary Statistics

Variables Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Award ($) 260.84 97.57 200 200 200 300 1,000
No. Submissions 93.30 73.39 14 56 77 109 1,221
No. Creators 32.55 19.81 6 20 29 39 233
No. Submissions with Ratings 56.79 63.13 0 19 43 73 927
No. 1-Star Submissions 7.14 21.78 0 0 1 6 411
No. 2-Star Submissions 10.82 17.03 0 1 6 14 240
No. 3-Star Submissions 17.10 22.85 0 4 11 23 347
No. 4-Star Submissions 11.00 13.37 0 3 7 15 141
No. 5-Star Submissions 3.16 5.74 0 0 1 4 48

3.1. Classifying Creators’ Actions

When exploring creators’ submission patterns in our data, we find that an existing creator’s follow-

up submissions are sometimes similar to her previous submissions, while other times they are

very different. The former type of follow-up submissions can be considered revisions of a creator’s

previous submissions, akin to an “exploitative” innovation strategy; by contrast the latter type

involves creating new design(s) that are significantly different from any of the creator’s existing

designs (later defined as redesigns), corresponding to an “exploratory” innovation strategy.3

It is important to distinguish between these two types of submissions, as they have different

implications from both the seeker’s perspective and the creators’ perspective. For the seeker, these

different submission types contribute differently to the pool of designs seekers can choose from

– a revision may result in an incremental quality difference relative to prior designs, whereas a

radically different redesign may impart greater quality differences relative to previous designs and

increases the variety of the submission portfolio. From a creator’s stand point, it could cost them

different amounts of effort to make these two types of submissions: tweaking an existing design for

a revision is likely to require less effort, while creating a radically different redesign will possibly

require much more effort.

3 There are also a small number of cases where a follow-up submission is almost identical to one of the creator’s
previous submissions. We classify these submissions as replications, and in the later analysis, replications are not
counted as follow-up submissions and are removed from the data, since we assume “replicating” an existing design
incurs very little cost, and does not benefit the design seeker very much.
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To systematically classify creators’ follow-up submissions observed in the data into exploitative

actions (revisions) and exploratory actions (redesigns) on a large scale, we employ an image clas-

sification algorithm called Scale-Invariant Feature Transform (SIFT). SIFT is an algorithm used

to detect and describe local features in images proposed by Lowe (1999). The algorithm consists of

four steps. First, from a pair of design images (A and B), we extract descriptors of the key points

by identifying SIFT feature vectors in scale space, which robustly capture the structural properties

of the images. As a second step, we match SIFT feature vectors by calculating and comparing

the Euclidean distance between each of the SIFT feature vectors in image A and image B. Using

the obtained matched feature-vector pairs, we then calculate the Similarity Ratio (the percent-

age of matched SIFT features relative to the total number of SIFT features in images A and B).

Finally, we classify the image pair (image A and image B) as either similar or different based on

the Similarity Ratio. The higher the ratio is, the more similar the two images are. In our empirical

analysis, we classify a pair of submissions as similar if the Similarity Ratio is greater or equal to

0.4. Correspondingly, if a creator’s new submission is very similar to any of her prior submissions

(the similarity score between the two submissions is above 0.4), we classify the new submission a

“revision”; otherwise, we consider the new submission as a “redesign”. (See Appendix A for a more

detailed description of our algorithms and its performance.) To facilitate our empirical analysis,

we will divide the contest time horizon in the data into discrete intervals, or periods. Then based

on a creator’s submissions in a period being only “redesigns”, only “revisions”, or both “revisions”

and “redesigns”, we define her follow-up action decision within that period as redesign, revise, or

do-both(revise-and-redesign), respectively. If she submitted nothing during the period, her action

is do-nothing.

3.2. Reduced-Form Evidence

Before constructing our main structural model, we use regression analysis to explore how disclosed

ratings are associated with creators’ participation behavior. The purpose is to gain preliminary

insight from the data that we can then build upon with a more sophisticated and powerful structural

analysis. Specifically, we divide creators into “new entrants” and “existing creators”/“incumbents”,

and test separately whether the number of new entrants or incumbents’ follow-up actions are

affected by the ratings that the seeker has disclosed by the end of the previous day (Equations 1

and 2, respectively). Incumbents’ follow-up actions in a period (day) are classified into redesign,

revise, do-both, or do-nothing based on SIFT image comparison results from Section 3.1.

In the first regression (Equation 1), we regress the number of entrants joining contest q on

day t (∆(No. Creators)qt) on the numbers of 1-star, 2-star,..., 5-star ratings disclosed up to day

t− 1 ((No. 1-Star)qt−1, (No. 2-Star)qt−1,..., (No. 5-Star)qt−1), while controlling for the number of
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creators already in the contest ((No. Creators)qt−1) and the cumulative number of submissions

made by all existing participants ((No. Submissions)qt−1) up to day t − 1, as well as the time

dummies and contest-level fixed effects.

In the second regression (Equation 2), we apply a multinomial logit regression model to incum-

bents’ follow-up action choices. The dependent variable is a nominal variable denoting incum-

bent i’s choice Actioniqt among redesign, revise, do-both, or do-nothing, where the reference cate-

gory is do-nothing. We include three main sets of independent variables in this multinomial logit

regression: (1) the individual-level variables, including the number of submissions that the focal

creator has made previously ((No. Submissions)iqt−1), and among all her previous submissions

her best rating ((Best Rating)iqt−1), second-best rating ((SecondBest Rating)iqt−1), and aver-

age rating ((Avg Rating)iqt−1), (2) the contest-level rating variables, including (No. 1-Star)qt−1,

(No.2-Star)qt−1... (No.5-Star)qt−1, and (3) control variables, including (No.Submissions)qt−1 and

(No. Creators)qt−1. Additional controls include the amount of award for the contest (Awardq in

$) and time dummies. To simplify our notation, we group independent variables into three vectors

Wqt := {(No.Creators)qt, (No. Submissions)qt};
Yqt := {1, (No. 1-Star)qt, (No. 2-Star)qt, ..., (No. 5-Star)qt};
Ziqt := {(No. Submissions)iqt, (Avg Rating)iqt, (BestRating)iqt, (SecondBestRating)iqt}.

∆(No.Creators)qt =βYqt−1 + ΨWqt−1 +φq + δt +µqt (1)

ln
Pr(Actioniqt = k)

Pr(Actioniqt = do-nothing)
= ΓkZiqt−1 + ΛkYqt−1 +αkWqt−1 + ζkAwardq + ρt + νiqtk,

where k= redesign, revision, or do-both

(2)

The estimated coefficients reported in Table 2 suggest that, after controlling for

(No.Creators)qt−1, (No. Submissions)qt−1, and the contest-level fixed effects, a larger number of

high ratings (5-star) disclosed in previous periods is associated with fewer entries, whereas a larger

number of low ratings (1-star and 2-star) is associated with more entries. In addition, the number

of existing participants is negatively correlated with the number of entries, which suggests that

when a contest is already “crowded”, potential entrants are discouraged from joining the contest.

The estimation results reported in Table 3 indicate that incumbents’ own best rating is posi-

tively correlated with the probabilities of them choosing the redesign, revise and do-both actions,

and this correlation is the highest with the revise action. Additionally, once we control for the

focal incumbent’s best rating, neither her average rating nor her second-best rating is significantly

associated with any of the action probabilities. Further, when there are fewer creators or fewer
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Table 2 Regression of the Number of Entries

Dependent Variable: ∆Creatorqt

(No. 1-Star)qt−1 0.026∗∗ (0.008)
(No. 2-Star)qt−1 0.022∗ (0.010)
(No. 3-Star)qt−1 0.000 (0.008)
(No. 4-Star)qt−1 −0.021 (0.012)
(No. 5-Star)qt−1 −0.149∗∗∗ (0.022)

Control Variables

(No. Submissions)qt−1 −0.004 (0.006)
(No.Creators)qt−1 −0.202∗∗∗ (0.015)
Individual-Level Fixed Effects Yes
Time Dummies Yes

Observations 5,607
R2 0.166
Adjusted R2 0.142
F Statistic 136.369∗∗∗ (df = 7)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; the numbers in parenthesis are standard errors

Table 3 Multinomial Logit Regression of the Incumbent Follow-up Action Choice

Depend Variable: Actioniqt
re-design revision do-both

Individual-Level Variables
(No. Submissions)iqt−1 0.011 (0.014) 0.080∗∗∗(0.006) 0.075∗∗∗(0.009)
AvgRatingiqt−1 0.099 (0.135) 0.101 (0.074) 0.139 (0.120)
BestRatingiqt−1 0.269∗∗∗(0.081) 0.352∗∗∗(0.048) 0.188∗ (0.076)
SecondBestRatingiqt−1 −0.095 (0.088) −0.033 (0.051) −0.076 (0.081)

Contest-Level Variables
Awardq($) 0.001 (0.000) 0.001∗∗∗(0.000) 0.001∗∗∗(0.000)
(No. 1-Star)qt−1 0.010∗∗∗(0.003) 0.010∗∗∗(0.002) 0.011∗∗∗(0.003)
(No. 2-Star)qt−1 0.009∗∗ (0.003) 0.008∗∗∗(0.002) 0.012∗∗∗(0.003)
(No. 3-Star)qt−1 0.005 (0.003) 0.008∗∗∗(0.002) 0.006∗ (0.003)
(No. 4-Star)qt−1 0.002 (0.004) 0.005∗ (0.003) 0.014∗∗∗(0.004)
(No. 5-Star)qt−1 −0.012 (0.009) −0.027∗∗∗(0.005) −0.030∗∗∗(0.008)
(No. Submissions)qt−1 −0.007∗ (0.003) −0.002 (0.002) −0.007∗ (0.003)
(No.Creators)qt−1 0.005 (0.006) −0.018∗∗∗(0.004) −0.009 (0.006)

Time Dummies Yes

Observations 24,085 Log Likelihood -14,783.050
R2 0.040 LR Test 1,247.014∗∗∗ (df = 54)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; the numbers in parenthesis are standard errors.

existing submissions in the contest, and when there are more low ratings and fewer high ratings

disclosed, the focal player is more likely to follow-up with a non-null action.

The reduced-form analysis discussed above provides evidence for the correlation between perfor-

mance feedback and the participation behavior of both potential entrants and existing participants.

However, these regression models have not fully captured the dynamic nature of the contest and the

interaction among creators. Here we have only detected the potential effect of performance feedback
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on the individual participation behavior of either a potential entrant or an incumbent, but have

not been able to test, or imply, the relationship between feedback and overall contest outcomes. For

example, the reduced-form results suggest that revealing high ratings can encourage the authors

of those highly-rated designs to improve upon their own submissions; but on the other hand, it

discourages other participants’ submission activities and entries. We cannot directly compare the

magnitudes in the regression coefficients to see which one dominates another. In addition, in the

data, seekers in most contests follow the platform’s suggestion and provide feedback throughout

the entire contest, and as a result, there is not enough variation in the feedback disclosure policy

that would allow us to directly compare the outcome of contests with different feedback disclosure

policies. Even if we had such variations in the data, policy inferences from the reduced-form results

could be misleading because any policy change that constitutes a major regime shift that alters the

key elements of the decision process (which is likely to be the case in our context, as changes in the

feedback disclosure policy will alter participants’ information and belief structure) can potentially

lead to unstable responses (Lucas 1976). By delving into the underlying decision-making mech-

anism and explicitly modeling the decision primitives, we will be able to more reliably evaluate

alternative feedback disclosure policies, and measure the effect of performance feedback on con-

test dynamics and outcomes. Therefore, we develop a structural model of creators’ participation

behavior, which is explained in detail in the next section.

4. The Structural Model

Based on the reduced-form evidence from Section 3, we build a finite-horizon dynamic game model

to capture creators’ behavioral dynamics in a crowdsourcing design contest. Time is divided into

periods and indexed by t. In period t, the set of potential entrants who may choose to join the

contest and the set of incumbent creators are denoted as Mt and Nt respectively.4 We index

potential entrants by j, and incumbent creators by i. We also attach superscript e to potential

entrants’ response functions to distinguish them from incumbents’ functions. In the main model,

the seeker commits to the full feedback policy (he will provide feedback throughout the contest),

as most seekers (>70%) provide full feedback in our sample. In our model, the seeker provides his

feedback at the end of each period; this reflects the reality that the seeker is not immediately able

to give feedback on a one-for-one basis as each individual submission rolls in. The timing of the

model is as follows:

1. The contest begins with the seeker posting a design request and announcing the award (R).

2. In the first period (t= 1), potential entrants (M1) arrive at the contest, and decide whether

to join the contest by submitting their first design(s). Potential entrants’ decision in each

4 We assume the pool of potential entrants is renewed every period.
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period (including the first period and periods 2, ..., T ) is a binary choice, denoted as dj,t ∈

{enter,not-enter} := D. The seeker evaluates the submitted designs, and at the end of the

period, discloses the ratings. The rating is on the scale of 1-5 stars; if a design is not rated,

we use “NA” to denote its rating.

3. At the beginning of each of the subsequent periods (t= 2, ..., T ), incumbents (Nt) and poten-

tial entrants (Mt) observe all existing ratings. Based on this information, they make the

following decisions simultaneously: potential entrants decide whether to join the contest (dj,t

defined above), and incumbents choose their follow-up action ai,t ∈ {do-nothing, redesign,

revise, do-both} :=A, where, ai,t = do-nothing, if incumbent i decides not to do anything in

period t; ai,t = redesign, if she creates one or more new designs that are significantly different

from any of her existing designs; ai,t = revise, if she revises one or more of her existing designs;

ai,t = do-both, if she both revises one or more of her own existing designs and submits one or

more brand new designs.

4. In period T + 1, the creator of the best quality design wins the contest and receives the prize

(R). In this terminal period, no entry is allowed, and incumbents do not have a chance to take

any action.5

Since the competition is quality-based and ratings reflect submissions’ quality, existing ratings

can be considered as state variables in our model, which not only capture the current status of the

contest, affect creators’ current and future utility, but also evolve as a function of creators’ actions

in each period. However, in reality, it is difficult for creators to track the ratings of each one of their

own submissions and their competitors’ submissions; as we can see from the reduced-form results,

BestRatingiqt−1 significantly affects creator i’s follow-up actions, while SecondBestRatingiqt−1

and AvgRatingiqt−1 do not (Table 3). Moreover, incorporating all submissions’ ratings and their

evolution will make the model unmanageable. Hence, we define the individual-level state variable

at time t (denoted as xi,t) as the highest rating received by an incumbent i up to the beginning of

period t.6 Correspondingly, we define the vector st = {st(x)}x∈{NA,1,2,3,4,5} as the contest-level state

variable, where st(x) is the number of incumbents whose individual state takes value x in period t.

The state variables xi,t and st evolve as follows. A contest starts with zero incumbents and a

contest state s1 = {0,0,0,0,0,0}. At the beginning of each period t where t∈ {1,2, ..., T}, potential

entrants arrive and make entry decisions. If a potential entrant j enters the contest in period t,

she will become an incumbent from t+ 1, and the best rating her submitted design(s) receives in

5 We add an arbitrary period T + 1 at the end of the model to represent the time when the winner is announced.

6 We use a creator’s best rating observed on a 5-star scale as her individual-level state variable for now. One potential
problem with this definition is that the ratings are truncated at 5. If a creator already has a 5-star design but revises
her design, her best rating cannot be improved any further. To deal with this problem, we slightly alter the definition
of the individual-level state variable, which will be explained later in this section.
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period t will become her individual state at the beginning of the next period (xj,t+1), which is a

random draw from the probability distribution pe(xj,t+1). For any incumbent i, her state variable

xi,t evolves as a function of her action ai,t. The action-specific transition probability of the state

variable for an incumbent creator is then p(xi,t+1|xi,t, ai,t). The contest-level state variable, st, will

evolve correspondingly, which can be expressed as p(st+1|st, at, dt), where at is the stack of all

incumbents’ actions in period t, and dt is the stack of all potential entrants’ entry decisions in

period t. Note that pe(·), pe(·|·), and st are common knowledge for all creators (Aguirregabiria and

Mira 2010).

4.1. Single Period Utility

As there are finitely many of periods in each contest, the per-period utility is t-dependent. We first

explain the per-period utility in the terminal period T + 1. In period T + 1, no creator action is

allowed; the creator with the best quality design is announced as the winner and receives award R;

everyone else receives nothing. Given creator i’s state xi,T+1 and the contest-level state sT+1 from

the seeker ratings, creator i’s expected per-period utility in period T + 1 can be expressed as

Ui,T+1(xi,T+1, sT+1) = αR ·Pr(i wins|xi,T+1, sT+1), (3)

where α is the marginal utility of money (or the number of utils a creator receives from getting an

additional dollar of award). We will explain how to calculate Pr(i wins|xi,T+1, sT+1), the probability

that creator i wins a contest, later in this section.

In periods t= 1, ..., T , incumbent i’s per-period utility can be expressed as

Ui,t(ai,t, εi,t) =−c(ai,t) + εi,t(ai,t), ai,t ∈A, (4)

where c(ai,t) represents the cost associated with action ai,t, and εi,t(ai,t) represents the individual-

level choice-specific random shock. Likewise, potential entrant j’s per-period utility can be

expressed as

U e
j,t(dj,t, εj,t) =−cet(dj,t) + εj,t(dj,t), dj,t ∈D, (5)

where the cet(dj,t) term represents the cost associated with action dj,t in period t. cet(dit = enter)

may include the costs of becoming aware of the contest, understanding the problem specifications,

and coming up with the first design(s), and thus can be different across periods.7 For normalization

purposes, c(ai,t = do-nothing) and cet(dj,t = not-enter) are assumed to be zero. The shocks εi,t(ai,t)

(εj,t(dj,t)) is private information observable to incumbent i (potential entrant j) in period t before

7 Notice that we assume the cost associated with incumbents’ actions (c(ai,t)) to be time invariant, but allow entry
cost (cet (dj,t)) to vary across periods, due to the fact that the crowdsourcing platform displays contests nearing their
end higher on the contest list webpage, and as a result the cost of discovering a contest may decrease over time.
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she chooses which action to take, but are unobservable to other creators and the researchers. In

addition, the shocks εi,t(ai,t) and εj,t(dj,t) are assumed to be zero-mean, and i.i.d. with respect

to individual, time and choice. εi,t = {εi,t(ai,t)|ai,t ∈A} follows a distribution whose probability

density function is pε, and Ei,t is the corresponding state space; εj,t = {εj,t(dj,t)|dj,t ∈D} follows a

distribution whose probability density function is pε, and Ej,t is the corresponding state space.

4.2. Creators’ Decisions

In every period t, incumbents decide on follow-up actions, and potential entrants make entry

decisions. Creators are forward-looking and take into account the implications of their decisions

on future utilities and on the expected future reaction of competitors. Specifically, creators make

these decisions to maximize expected discounted lifetime utility.

We assume creators play Markov strategies.8 Formally, a Markov strategy for incumbent creator

i in period t is a function ρi,t : Xi,t × St × Ei,t → A. Likewise, a Markov strategy for potential

entrant j in periods t is a function λj,t : St × Ej,t →D. Let σt = {ρt, λt} summarize all existing

incumbents’ and potential entrants’ strategies in period t, where ρt = {ρi,t}i∈Nt and λt = {λj,t}j∈Mt .

σ = {σt}t=1,...,T then summarizes all periods’ strategies. Note that the strategies are time-varying

because the contest has a finite horizon. Let V σ
i,t(xi,t, st, εi,t) represent the value function for an

incumbent i given that the other creators behave according to their respective strategies in σ, and

given that incumbent i uses her best response strategy. That is,

V σ
i,t(xi,t, st, εi,t) = max

ai,t
E

{[
T∑
τ=t

βτ−tUi,τ (ai,τ , εi,τ ) +βT+1−tUi,T+1(xi,T+1, sT+1)

] ∣∣∣∣xi,t, st, εi,t;σ
}
.

(6)

The expectation is taken over current-period private shocks of other contestants, as well as future

values of the state variables and private shocks. According to Bellman’s principle of optimality, we

can write V σ
i,t(xi,t, st, εi,t) recursively as:

V σ
i,t(xi,t, st, εi,t) =

{
maxai,t

{
Ui,t(ai,t, εi,t) +βE[V σ

i,t+1(xi,t+1, st+1, εi,t+1)|ai,t]
}

if t∈ 1,2, ..., T,

Ui,T+1(xi,T+1, sT+1) if t= T + 1;
(7)

and for potential entrants (in t= 1, ..., T ),

V e,σ
j,t (st, εj,t) = max

dj,t

{
U e
j,t(dj,t, εj,t) + I(dj,t =Enter) ·βEV σ

j,t+1(xj,t+1, st+1, εj,t+1)
}
. (8)

The expectations in Equations (7) and (8) are taken over other creators’ actions in current period,

values of the next period individual- and contest-state variables, as well as the next period private

shocks.

8 That is, potential entrant j’s decision depends only on the current contest-level state st and her current private
utility shock εj,t; incumbent i’s behavior depends only on the current contest-level state st, her current own state
xi,t and her current private utility shock εi,t.
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4.3. Equilibrium Concept

We solve this finite-horizon dynamic discrete game with private information for a Markov Perfect

Equilibrium (MPE) in type-symmetric pure strategies. For the proposed structural model, a strat-

egy σ∗ = {ρ∗, λ∗} represents a MPE if, at any t, given everyone else is playing σ∗, an incumbent’s

and a potential entrant’s best response are ρ∗ and λ∗, respectively.

Following Milgrom and Weber (1985), we represent a MPE in probability space. We denote the

conditional choice probability (CCP) corresponding to the MPE strategy σ∗ as P∗, in which the tth

element, P ∗t , characterizes creator strategies in the tth period. Equilibrium probabilities are a fixed

point P∗ = Γ(P∗), where the function Γ is the creators’ best response probability function. Assuming

both the incumbents’ private shock (εi,t) and potential entrants’ private shock (εj,t) follow the

Type I extreme value distribution (Rust 1987), we then get that in equilibrium incumbent i follows

P ∗i,t(ai,t|xi,t, st) = Γi,t(ai,t|xi,t, st;P∗−i) =
exp(vP

∗
i,t (xi,t, st, ai,t))∑

a′i,t
exp(vP

∗
i,t (xi,t, st, a′i,t))

, (9)

and potential entrant j follows

P ∗j,t(dj,t|st) = Γej,t(dj,t|st;P
∗
−j) =

exp(ve,P
∗

j,t (st, dj,t))∑
d′j,t

exp(ve,P
∗

j,t (st, d′j,t))
, (10)

where vP
∗

i,t and ve,P
∗

j,t are incumbent and potential entrants’ choice specific value functions:

vP
∗

i,t (xi,t, st, ai,t) = −c(ai,t) + βE[V σ∗
i,t+1(xi,t+1, st+1, εi,t+1)|ai,t]; ve,P

∗

j,t (st, dj,t) = −ce(dj,t) + I(dj,t =

Enter) ·βE[V σ∗
j,t+1(xj,t+1, st+1, εj,t+1)|dj,t].9

4.4. Winning Probability

The last element of our structural model to be explained is how creator i’s winning probability

(Pr(i wins|xi,T+1, sT+1)) in period T +1 is calculated. Generally speaking, the creator who submits

the highest quality design wins. So far, the quality of a design has been measured by its rating,

which is observed in our data. One potential problem with this measure is that the observed ratings

are truncated at 5-star – no matter how high a design’s “true” quality is, the seeker can at most rate

it as 5-star. If we neglect this problem, our model would fail to capture some important aspects of

creator behavior observed in the data. For example, the model would predict that a creator whose

current best rating is 5-star would have no incentive to make any additional submissions, as doing

so only incurs cost but provides no benefit. However, in the data, we observe many cases where

creators make additional submissions after receiving a 5-star rating; moreover, among creators who

have received a 5-star rating, those who remain active in revising their design(s) or submitting new

design(s) have a higher probability of winning the contest than those who become inactive.

9 The derivation details are provided in Appendix B.
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To resolve this problem and recover the underlying “true” quality (which we denote as xtruei,t )

of a creator’s best design, we redefine the individual-level state as x̃i,t = (xi,t,$i,t), with xi,t still

denoting the best rating that creator i has received, and an additional variable $i,t recording the

actions creator i has taken up to period t after receiving her first 5-star rating, if she has ever

received any 5-star rating. $i,t is a vector of three elements, respectively representing the number

of times that the “redesign”, “revise” or “do-both” action has been taken by creator i since she

received her first 5-star rating (excluding the action that results in the first 5-star rating). There

are then two scenarios:

1. When xi,t ∈ {NA,1,2,3,4}, i.e., creator i’s current best score has not reached 5-star:

x̃i,t = (xi,t,$i,t), where $i,t = (0,0,0);

2. When xi,τ+1 = ... = xi,t = 5, xi,τ < 5, i.e., creator i receives the first 5-star in period τ + 1:

x̃i,t = (5,$i,t), where $i,t = ($i,t,redesign,$i,t,revise,$i,t,do-both), with $i,t,a =
∑t

l=τ+1 I(ai,l = a).

The contest-level state is then redefined as s̃t, which summarizes the number of creators whose

individual-level state is x̃i,t for all possible values of x̃i,t. x̃i,t transitions in the following way: xi,t still

transitions in the same way as discussed in the previous subsection;$it transitions deterministically

as a function of the action creator i takes in period t:

$i,t+1,a =$i,t,a + I(ai,t = a), where a∈ {redesign, revise, do-both}. (11)

With this newly-constructed state variable x̃i,t, we can recover the true quality of a creator’s best

design (xtruei,t ). We assume that the first time creator i receives a 5-star rating, the true quality of

that 5-star design is 5 + max(0, ξ0), where max(0, ξ0) is the part of quality that gets truncated by

the integer rating of 5. After receiving a 5-star rating, every time a creator takes a non-null action

ai,t ∈ {redesign, revise, do-both}, there will be a corresponding continuous stochastic improvement

(max(0, ξai,t)). Hence, the mapping between a creator’s state variable (x̃i,t = (xi,t,$i,t)) and the

quality of her best design (xtruei,t ) is as follows:

xtruei,t =

{
xi,t if xi,t < 5

5 + max(0, ξ0) +
∑

a∈{redesign,revise,do-both}
∑$i,t,a

n=1 max(0, ξ(n)
a ) if xi,t = 5,

(12)

where max(0, ξ(n)
a ) is the nth realization of the stochastic improvement ξa.

We can now compute the probability of winning using the “true” quality in the terminal period

T + 1. Let x̄trueT+1 = maxi∈NT+1
(xtruei,T+1) denote the maximum quality achieved by all creators in the

game in period T + 1, then creator i’s winning probability can be expressed as:

Pr(i wins|{xtruek,T+1}∀k∈NT+1
) = I(xtruei,T+1 = x̄trueT+1)

1∑
k∈NT+1

I(xtruek,T+1 = x̄trueT+1)
. (13)

Notice that Equation (13) implies two cases. (i) When x̄trueT+1 > 5, x̄trueT+1 is a continuous variable. In

this case, a tie is impossible – the designer of the highest-quality design wins the contest; (ii) when
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x̄trueT+1 ≤ 5, ties are possible. In case of ties, each creator whose best rating is x̄trueT+1 wins the contest

with an equal chance.10 In the data, the majority of the contests fall into the case (i).

5. Estimation and Results

5.1. Estimation Strategy

Our approach to estimate the structural model proceeds in two steps. First, we estimate the param-

eters governing the state transition process, including the quality distribution of new entrants’

submissions pe(xj,t+1), incumbents’ quality transition probabilities p(xi,t+1|xi,t, ai,t), ∀ai,t ∈A, and

the distributions that characterize improvements beyond 5-star, i.e., ξ0, ξredesign, ξrevise, and ξdo-both.

In the second step, we embed the estimated state transition probabilities into the dynamic discrete

game of creators’ entry and follow-up actions, and estimate the parameters in creators’ utility func-

tion. These two sets of parameters can be estimated separately under the conditional independence

assumption.11 Accordingly, the set of parameters in the structural model (θ) can be classified into

two subsets: (1) parameters in creators’ utility function (θ1), and (2) parameters that govern the

state transition process (θ2).12

5.1.1. Estimating the State Transition Process We first estimate pe(xj,t+1) and

p(xi,t+1|xi,t, ai,t) using the frequency estimator, and use θ21 to denote the parameters governing

these transition probabilities.

Estimating the parameters governing the unobserved quality transition beyond 5-star is more

challenging. The quality improvement beyond 5-star cannot be directly observed in the data;

instead, it can only be inferred from the probability of winning. As discussed in the Model section,

we introduce a series of random variables, ξ = {ξ0, ξredesign, ξrevise, ξdo-both}, such that 5+max(ξ0,0)

represents the “true” quality of a creator’s first 5-star submission, and max(ξa,0) represents the

10 Here we assume in cases of ties, each creator has an equal chance, rather than each submission has an equal chance,
to win the contest. The reason is that, when a creator decides to revise her existing submission(s), she typically picks
her best performing style to revise; when a creator decides to redesign, she typically creates a new design style and
abandons old design styles if this new design style is rated higher. Therefore, in period T + 1, we effectively assume
that each creator has one design, i.e., the best among her submissions, in the seeker’s consideration set.

11 Under the conditional independence assumption (i.e., p(xi,t+1|xi,t, ai,t) and ξs are independent of pε(εi,t), and
pe(xj,t+1) is independent of pε(εi,t)), the transition probability functions p(xi,t+1|xi,t, ai,t) and pe(xj,t+1) can be
estimated from the transition data using a standard maximum likelihood method without solving the model.

12 In the main estimation, we set β = 0.9, the number of potential entrants |Mt|= 300,∀t to get results in Table 6.
β’s identification is known to be impractical (Rust 1987), so we do not intend to estimate the discount factor. For the
number of potential entrants, it cannot be identified together with entry costs. Therefore, we fix it to be the number
of total active creators on the platform at any given time – the average is around 300. Subsequently, we conduct
sensitivity analysis on both β and |Mt|, and show that the nature of our estimation results do not change.
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quality improvement beyond 5-star resulting from action a ∈ {redesign, revise, do-both} (Equa-

tion (12)). We further assume that ξ. follows a normal distribution, ξ.∼N(µ.,σ.2). The parame-

ter vector {µ0, σ
2
0, µredesign, σ

2
redesign, µrevise, σ

2
revise, µdo-both, σ

2
do-both} := θ22 can then be estimated by

maximizing the following likelihood:

L2(θ22) =

Q∏
q=1

||Nq,T+1||∏
i=1

{
Pr(i wins|{x̃k,T+1}k∈Nq,T+1

;θ22)I(i wins)

[1−Pr(i wins|{x̃k,T+1}k∈Nq,T+1
;θ22)][1−I(i wins)]

}
, (14)

where Q represents the number of contests in our estimation sample, and ||Nq,T+1|| is the total

number of creators that submitted designs to contest q.

5.1.2. Estimating the Costs and Other Parameters in Creators’ Utility Function

Once we obtain the consistent estimate of θ2 = {θ21, θ22}, denoted as θ̂2, we can plug these estimated

state transition probabilities into the dynamic discrete game model and solve the game for a MPE

using backward induction. We use the Maximum Simulated Likelihood (MSL) method to estimate

the parameters in creators’ utility function (θ1). Given a vector of candidate parameter values

θ1, we numerically solve the dynamic game for the equilibrium strategy profile σ∗(θ1, θ̂2) using a

nested fixed-point approach. The MSL estimate θ̂1 is the vector that maximizes the likelihood of

observing the actual choices in the data.

Finding the MPE for a contest with a large number of players involves solving a nested backward

induction in an extremely large state space, which grows exponentially with the number of periods.

To simplify the estimation and ensure the computational tractability of the policy simulations we

divide each 7-day contest into three periods – Period 1 (Days 1-2), Period 2 (Days 3-5), and Period

3 (Days 6-7).13 In a so-defined three-period contest, the seeker can give feedback at the end of the

first and the second periods (the feedback after the last period will not be able to affect creator

behaviors). Dividing contests into three periods significantly reduces the computational burden,

but still allows us to capture not only the full feedback and the no feedback scenarios, but also the

early feedback and the late feedback scenarios. However, the dimensionality of the joint distribution

of (xi,t, st) is still extremely large in a three-period contest.14 To further reduce the computational

burden, we adopt Keane and Wolpin’s simulation and interpolation method (Keane and Wolpin

13 We also try two alternative ways of dividing a contest into three periods: (i) Period 1 = Days 1-3, Period 2 = Days
4-5, and Period 3 = Days 6-7; (ii) Period 1 = Days 1-2, Period 2 = Days 3-4, and Period 3 = Days 5-7. The observed
conditional choice probabilities and choice-specific state transition probabilities exhibit little sensitivity to how we
define the periods. Details are available upon request.

14 For example, the number of possible combinations of st=3 for a three-period contest with 30 participants is 1.15×
1011, the different combinations of dividing 30 creators into 15 types

(
30+15−1

15−1

)
!.
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1994, see Appendix D for details). The implied optimal choice probabilities from the nested fixed-

point algorithm are Pr(djt|st;θ1, θ̂2) (djt ∈D) for new entrant j and Pr(ait|xit, st;θ1, θ̂2) (ait ∈A)

for incumbent creator i. The likelihood of observing mqt out of ||Mqt|| potential entrants joining

the contest q in period t is:15

f e(mqt|sqt;θ1, θ̂2) =

(
||Mqt||
mqt

)
Pr(dqt = enter|sqt;θ1, θ̂2)mqt(1−Pr(dqt = enter|sqt;θ1, θ̂2))||Mqt||−mqt ,

(15)

and the likelihood of an incumbent i choosing follow-up action aqit ∈A in period t of contest q is:

f(aqit|xqit, sqt;θ1, θ̂2) =
∏
a∈A

Pr(aqit = a|xqit, sqt;θ1, θ̂2)I(aqit=a). (16)

The joint likelihood to be maximized is then:

L1(θ1, θ̂2) =

Q∏
q=1

T∏
t=1

[
f e(mqt|sqt;θ1, θ̂2) ·

||Nqt||∏
i=1

f(aqit|xqit, sqt;θ1, θ̂2)

]
, (17)

where ||Nqt|| is the number of incumbents in contest q up to period t. The maximum simulated

likelihood estimator of θ1 is

θ̂1 = arg max
θ1

logL1(θ1, θ̂2). (18)

In terms of the sources of identification, the state transition probabilities for ratings below 5-

star and the distribution of new entrants’ ratings (θ21) are identified directly from the frequencies

observed in the data. θ22 is identified from the variation in the winning probability resulting from

different combinations of follow-up actions taken by creators after receiving their first 5-star rating.

These state transition processes, together with the observed entry and follow-up action choices in

the panel data of creator activities, constitute the inputs for identifying the utility parameters.

For any given contest-state, the observed fractions of incumbents taking different follow-up actions

and the observed entry numbers will pin down the MSL estimators for all parameters in creators’

utility functions (θ1). For example, given the state transition probabilities, a large revision cost

will reduce the predicted number of incumbents taking the revision action. If in the data, a small

fraction of incumbents choose the revision action, then the estimated cost of the revision will be

relatively large.

15 We cannot observe each potential new entrant j’s decision; rather, we can only observe the number of total joining
creators.
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5.2. Results

5.2.1. Estimates of State Transition Probabilities. As discussed in Section 5.1, we use

the frequency estimator to estimate the quality distribution of new entrants’ first submission(s)

and the action-specific state transition probabilities among the observed states, that is, along the

5-star rating scale. The estimation results for pe(xj,t+1) and p(xi,t+1|xi,t, ai,t) are presented in detail

in Appendix D to save space in the body. Here, we highlight a few interesting findings: do-both

is the most effective in improving individuals’ highest design rating, leading to on average larger

improvements than redesign and revision do; however, the variation of those improvements is also

high. For creators with low ratings (below or equal to 3-Star), redesign results in on average bigger,

but more variable improvements than revision. For creators who have already received relatively

high ratings (4-Star and 5-Star), revision leads to on average slightly larger improvements than

redesign (Table 4).

Table 4 Mean and Standard Deviation of Observed Rating Improvements, i.e., NA, 1- to 5-Star

Redesign Revision Do-both

Mean S.t.d Mean S.t.d Mean S.t.d
Low Base Rating (NA, 1- to 3-Star) 2.16 3.28 1.70 2.62 3.08 4.39
High Base Rating (4- and 5-Star) 0.13 2.00 0.14 1.58 0.22 2.72

The estimation results for θ22, the set of parameters governing the distribution of the unob-

served quality improvements beyond 5-star, are displayed in Table 5. Notice that we fix ξ0 to

follow the standard normal distribution to achieve identification for other elements of θ22.16 The

estimation results suggest that after creators receive at least one 5-star rating, exploratory actions

(redesign) are less likely to bring positive quality improvements, but the variance of these quality

improvements is larger; by contrast, exploitative actions (revise) are more likely to bring positive

quality improvements, but the variance in these quality improvements is smaller. Combining both

exploratory and exploitative actions, do-both leads to a medium-level chance of positive quality

improvements, but the variance of these quality improvements is very large.

5.2.2. Estimation Results for Parameters in Creators’ Utility Function Table 6

reports the estimation results for the parameters in creator’s utility function. The estimates are

generally consistent with our intuition and statistically significant. Among incumbents’ follow-up

actions, the estimated cost associated with the redesign action is higher than the estimated cost

associated with the revise action. Also, the cost of the do-both action is higher than the cost of

16 We are not able to simultaneously identify the distributions for ξ0, ξredesign, ξrevise, ξdo-both, since shifting all ξa
distributions horizontally or making them flatter/thinner simultaneously will not affect how we rationalize the winning
realizations observed in the data.
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Table 5 Estimates for θ22, Parameters Governing Quality Improvements beyond 5-Star

Mean of ξa Estimate S.t.d of ξa Estimate

µ(ξ0) Fixed to 0 σ(ξ0) Fixed to 1
µ(ξredesign) −0.052 (0.008) σ(ξredesign) 1.351 (0.003)
µ(ξrevise) 0.230 (0.006) σ(ξrevise) 0.517 (0.008)
µ(ξdo-both) 0.022 (0.005) σ(ξdo-both) 1.426 (0.010)

Note: The numbers in parenthesis are standard errors. Recall in Equation (12),
max(ξa,0) represents the quality improvement beyond 5-star resulting from action a.

redesign only or revise only, but lower than the sum of doing both separately.17 An interesting

aspect of these estimation results is that they are inferred based on observed actions. Therefore,

one may wonder if more direct measures would also lead to qualitatively similar findings. Of course,

we cannot directly observe effort, but one proxy we can observe is the amount of time that elapses

between two consecutive submissions. We find that the time for a redesign submission (11.35 hours)

is longer than the time for a revision submission (9.22 hours), supporting our inferred estimation

result that redesigns are more costly than revisions.

In terms of the estimates for the period-specific entry costs, we have two observations. First, the

estimated entry costs are always higher than costs associated with incumbents’ follow-up actions.

This is expected, because in addition to the effort required to submit a design, the entrant also

spends effort discovering the contest, understanding the problem specification, etc. Second, the

entry cost is decreasing over time. One plausible explanation is that, by default, contests that are

closing soon rank higher on the site’s contest list. A higher position makes it easier for creators to

discover the contest, which reduces one component of the entry cost discussed above.

The marginal utility of money (α), or the number of utils a creator receives from getting an

additional dollar of award, is estimated to be 0.034. This implies that a $200 award corresponds to

around 6.8 utils, which is about 2.4 times the cost of redesign, 3.1 times the cost of revision, and 2.0

times the cost of doing-both. Comparing with the utility from rewards, the estimated costs might

appear relatively high at first glance, but this is consistent with the rather small number of entries

(the average number of participants is 29 for $200 contests) and infrequent follow-up submissions

(one creator only submits on average 0.957 revision submissions and 0.594 redesign submissions in

a contest). We can also convert the costs measured in utils to the corresponding dollar amounts.

For example, the monetary cost of submitting one or more new designs is 2.790/0.034 = $83, the

cost of making revision(s) is $65; the cost of doing both is $98; and the period 1-3 entry costs

are $147, $128, and $107 respectively. The estimated structural model also predicts that creators

who have received high ratings (4-star and 5-star) are almost twice as likely to make follow-up

17 Notice that these cost numbers are not “per-submission costs”; rather, the costs should be interpreted as the cost
of employing only the exploration strategy, only the exploitation strategy, and both strategies in one period. Each
strategy can possibly involve multiple submissions.
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submissions, compared to those whose best rating is 3-star or lower (38% versus 21%). If creators

indeed take follow-up actions, those who have received low ratings (3-star or lower) are about fifty

percent more likely to choose redesign, compared to those whose best rating is 4- or 5-star (30%

versus 20%). These results indicate that high performers prefer the exploitative strategy to the

exploratory strategy; low performers tend to make fewer follow-up submissions, and are more likely

to choose the exploratory strategy when doing so.

Table 6 Estimates for θ1, Parameters in Creators’ Utility Function

Parameter Description Estimate Standard Error

α Marginal Utility of Money 0.034 (0.002)
c(ai,t = redesign) Cost of Redesign 2.790 (0.010)
c(ai,t = revise) Cost of Revision 2.205 (0.021)
c(ai,t = do-both) Cost of Doing Both 3.319 (0.031)
ce1(di,t = enter) Period 1 Entry Cost 4.958 (0.028)
ce2(di,t = enter) Period 2 Entry Cost 4.326 (0.043)
ce3(di,t = enter) Period 3 Entry Cost 3.599 (0.014)

Note: The numbers in parenthesis are standard errors, calculated with bootstrapping.

5.3. Model Performance

To test the performance of our structural model in predicting contest outcomes, we consider a

hold-out sample of 418 contests and 11,578 contest-creator combinations. The contests in the hold-

out sample are similar to those in the sample used for the estimation in terms of award level, and

are all buyer-assured, single-winner, public and 7 days long. Additionally, the seeker in all the 418

contests provided feedback throughout the contest horizon.

We simulate the competition dynamics for the 418 contests using the estimated structural model.

For each contest, we draw 50,000 sample paths, and calculate the average numbers of creators

whose highest rating at the end of the contest is NA, 1-star,..., and 5-star, respectively, across

the 50,000 simulations, as the “simulated” numbers of NA, 1-star,..., and 5-star creators for that

contest. In Figure 2, black columns represent the average simulated number of creators whose best

rating is NA, 1-star,..., or 5-star across the 418 contests. The grey columns represent the actual

average numbers of creators whose best rating is NA, 1-star,..., and 5-star across the 418 contests

observed in the data. Figure 2 shows that the actual numbers observed in the data closely match

the simulated numbers. Therefore, we conclude that our model performs well in predicting contest

outcomes in the holdout sample.

5.4. Robustness Checks

We designed our main model to be parsimonious but effective. To ensure that our empirical results

are robust to our modeling choices and assumptions, we conduct a series of robustness checks.
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Figure 2 Model Performance

5.4.1. Heterogeneity In the main model, we assume creators are ex-ante homogeneous; that

is, the heterogeneity among creators is captured by their realized ratings; before the ratings of their

submissions are disclosed, they are homogeneous. We believe that this is a reasonable assumption in

our setting for two reasons. First, the logo design contest is likely to be a so-called “ideation project”

(Terwiesch and Xu 2008), where the impact of participants’ endowed expertise is attenuated by

the fact that the notion of quality is highly subjective – it is based on seekers’ private tastes rather

than objective quality measures, as quoted from a popular platform: “These ratings are subjective.

A star rating doesn’t reflect your design skill – it indicates the personal preferences of the contest

holder.” Hence, a creator who performs well in other design contests, or has participated in a

large number of contests does not necessarily have an advantage in a new contest she chooses to

participate in. Second, even though the creator population on the platform is highly diverse in their

experience level and background, those who frequently participate in contests and thus contribute

more to the model estimation are relatively homogeneous.

To ensure that our results are not sensitive to the homogeneity assumption, we perform the

following robustness check, which accounts for the possibility of creator ability/experience hetero-

geneity. We use the Reputation Score (on the scale of 0− 100) the platform assigns to creators

to measure their ability/experience level. This Reputation Score is computed by the platform and

is displayed on every creator’s profile page, and it summarizes the ratings of the creator’s past

submissions, her level of participation, her history on the platform, and her community behavior

(e.g., frequencies of visiting the site, reporting problems, and participating in the forums). If a

creator’s Reputation Score is above or equal to 70, she is classified into the high type (H); other-

wise, she is classified into the low type (L).18 Based on this classification, we (1) conduct regression

18 We use 70 as the cutoff score, because 70 is the starting-point score assigned to a new creator who just joined the
platform, from where the system adjusts the creator’s score upwards or downwards according to her performance and
activity level.
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analyses to test whether there is strong evidence for heterogeneous behavior between the high- and

low-types of creators; and (2) re-estimate our structural model using stratified samples and show

the robustness of the estimation results.

Regression Analysis We first regress the percentage of the high-type creators among all creators

joining contests on day t (%∆Hqt =
∆(No.High TypeCreators)qt+1

∆(No.Creators)qt+1
19) on Wqt and Yqt, to test whether

the high-type creators are more/less likely to join contests that are more/less competitive. The

estimation results of this regression suggest that neither the number of existing submissions with

high ratings, nor the number of existing submissions with low ratings has a significant effect on

%∆Hqt, and that the model is not significant with F -Stats= 1.244 (df = 7;n= 4793).20 In other

words, there are not disproportionately high- or low-type creators joining a contest when more

high or low ratings are disclosed. Therefore, there is little evidence for any heterogeneous entry

behavior between the high-type and the low-type creators.

Next, we test whether the high-type and low-type creators differ in their decisions on follow-up

actions by estimating a variation of Equation (2), in which two additional independent variables

– the focal creator’s type dummy (I(H)i)
21 and the percentage of high-type creators among all

existing creators in contest q on day t− 1 (Hqt−1 =
(No.High TypeCreators)qt+1

(No.Creators)qt+1
). The results of this

multinomial regression suggest that I(H)i is not significantly correlated with the probabilities of

revision and do-both, and is only marginally significantly correlated with redesign; %Hqt−1 is not

significantly correlated with any of the follow-up actions. This indicates that neither the focal

incumbent creator i’s type nor the percentage of high-type creators in the contest significantly

affects creator i’s choice of follow-up actions, after controlling for the individual-level and contest-

level state variables. This finding, along with the results for the previous regression, supports our

argument that creators’ participation behavior is not significantly affected by either their own

ability/experience, or that of their rivals. The complete regression results can be found in Appendix

E.

Stratified Analysis To further demonstrate that our estimation results are robust to the inclu-

sion/exclusion of creator ex-ante heterogeneity in their ability/experience, and that not incor-

porating creator ex-ante heterogeneity does not affect the nature of our estimation results, we

re-estimate the main model using stratified sub-samples. Operationally, we stratify contests in the

complete sample into High-Type Concentrated Contests, Low-Type Concentrated Contests, and Bal-

anced Contests, based on the percentage of high-type creators in the contest,22 and we estimate our

19 We added 1 to both the numerator and the denominator to avoid un-defined numbers.

20 Among all independent variables, the only significant one is (No.Submissions)qt−1: it is only marginally significant
(p-value= 0.028) with a small magnitude (0.001).

21 I(H)i = 1, if ReputationScorei ≥ 70; otherwise I(H)i = 0.

22 High-Type Concentrated Contests: contests with a high proportion (≥ upper quartile of the proportion observed in
all contests in the data) of high ability creators; Low-Type Concentrated Contests: contests with a low proportion (≤
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structural model using High-Type Concentrated and Low-Type Concentrated Contests separately,

and compare the estimation results based on the two sub-samples with the full-sample results.

Table 7 Results for Stratifies Analysis and the Model with Non-Monetary Incentives

Parameter Main Model High-Type Low-Type With Non-Monetary
Concentrated Concentrated Incentive

α 0.034 (0.002) 0.034 (0.001) 0.033 (0.001) 0.028 (0.001)
c(redesign) 2.790 (0.010) 2.790 (0.044) 2.790 (0.011) 2.784 (0.008)
c(revise) 2.205 (0.021) 2.157 (0.027) 2.254 (0.035) 2.204 (0.006)
c(do-both) 3.319 (0.031) 3.313 (0.023) 3.324 (0.023) 3.293 (0.010)
ce1(enter) 4.958 (0.028) 4.919 (0.030) 5.016 (0.053) 5.032 (0.097)
ce2(enter) 4.326 (0.043) 4.388 (0.016) 4.411 (0.014) 4.466 (0.025)
ce3(enter) 3.599 (0.014) 3.814 (0.032) 3.490 (0.020) 3.814 (0.020)
Rnm – – – 0.233 (0.007)

Note: The numbers in parenthesis are standard errors.

As we can see in Table 7, the High-Type Concentrated Contests and Low-Type Concentrated sub-

samples yield similar structural estimates, and both sets of estimates are very similar to our main

estimation results. We conclude that creator ability/experience heterogeneity does not meaningfully

affect our estimation results.

5.4.2. Including Non-Monetary Incentives Another assumption we make in our main

model is that the positive utility a creator receives in the terminal period only comes from the

financial reward given by the seeker (see Equation 3). One might argue that creators can get non-

monetary rewards (e.g., learning by participating, pure joy of designing, and building up design

portfolios) from participating in these design contests as well. To see whether our main estimation

results are robust to the inclusion of non-monetary incentives, we revise the utility function for the

rewarding period (T + 1) as follows.

Ui,T+1(xi,T+1, sT+1) = αR ·Pr(i wins|xi,T+1, sT+1) +Rnm, (19)

where Rnm is the additional non-monetary reward creator i receives in the terminal period. Note

that the financial reward R is only received when a creator wins the contest, while any creator

receives the non-monetary reward Rnm as long as she participates. The estimation results of the

revised model are reported in the last column of Table 7. As we can see, the inclusion of the

non-monetary incentives has little effect on the estimates of the utility parameters.

lower quartile of the proportion observed in all contests in the data) of high ability creators; and Balanced Contests:
the remaining contests.

27



5.4.3. Other Robustness Checks We further test the sensitivity of the estimation results

with respect to the discount factor β, the number of potential entrants ||Mt||, and the SIFT cutoff,

and summarize the results in Table 8. Not surprisingly, most of the cost estimates increase with

β, because a higher β increases the expected utility from future periods, and hence the model

needs larger cost estimates to rationalize the observed patterns of entry, redesign, revision, and

do-both. Additionally, entry costs for all periods increase with the assumed number of potential

entrants, as models that assume more potential entrants need higher entry costs to rationalize

the number of entrants observed in the data. Lastly, the cost of revision increases and the cost

of redesign decreases as we tune up the SIFT cutoff; since higher SIFT cutoff categorizes more

actions into redesign, the model needs a lower redesign cost estimate and a larger revision cost

estimate to rationalize the observed patterns in creators’ follow-up actions. Overall, the qualitative

nature of the results are the same under different assumptions for the discount factor, the number

of potential entrants, and the SIFT cutoff.

Table 8 Sensitivity Analysis with respect to β, ||Mt||, and SIFT cutoff

Main β =0.95 β =0.85 ||Mt||=350 ||Mt||=250 SIFT 0.35 SIFT 0.45

||Mt|| 300 300 300 350 250 300 300
β 0.9 0.95 0.85 0.9 0.9 0.9 0.9
SIFT cutoff 0.4 0.4 0.4 0.4 0.4 0.35 0.45

α 0.034 0.030 0.034 0.033 0.030 0.031 0.029
(0.002) (0.001) (0.002) (0.003) (0.001) (0.002) (0.001)

c(redesign) 2.790 2.792 2.790 2.788 2.789 2.997 2.590
(0.010) (0.009) (0.008) (0.006) (0.008) (0.012) (0.009)

c(revise) 2.205 2.205 2.204 2.205 2.212 2.047 2.217
(0.021) (0.011) (0.006) (0.011) (0.015) (0.031) (0.052)

c(do-both) 3.319 3.298 3.296 3.297 3.294 3.476 3.267
(0.031) (0.025) (0.013) (0.015) (0.027) (0.183) (0.059)

ce1(enter) 4.958 5.070 4.811 5.100 4.736 4.932 4.933
(0.028) (0.023) (0.018) (0.029) (0.017) (0.015) (0.022)

ce2(enter) 4.326 4.292 4.270 4.483 4.148 4.291 4.245
(0.043) (0.023) (0.025) (0.010) (0.019) (0.025) (0.026)

ce3(enter) 3.599 3.578 3.593 3.722 3.407 3.571 3.555
(0.014) (0.027) (0.019) (0.013) (0.020) (0.022) (0.033)

Note: The numbers in parenthesis are standard errors.

6. Counterfactual Simulations

Most crowdsourcing platforms suggest that seekers provide feedback throughout the contest hori-

zon. One of these platforms even has the mantra that “give feedback early - give feedback often”.

Following the platform’s suggestion, more than 70% of contest seekers provide feedback throughout

the contest horizon in our data.

To assess this common practice and quantify the impact of feedback on the contest outcome,

in this section, we use the estimation results of the structural model in Section 5.2 to conduct
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policy simulations. Specifically, we experiment with four alternative feedback disclosure policies:

(1) the seeker provides feedback throughout the contest (full feedback), (2) the seeker does not

provide feedback at all (no feedback), (3) the seeker provides feedback only in the first half of the

contest (early feedback), and (4) the seeker provides feedback only in the second half of the contest

(late feedback). We compare the policy performance using the following three main metrics: (1)

the quality of the best design, (2) the number of top performers (creators with at least one 5-star

design), and (3) the total number of creators participating in the contest. To capture the possibility

that the relative performance of the four alternative policies may vary across different award levels,

we conduct the simulation at a series of award levels ranging from $200 to $400, with steps of $50.

The award levels of most contests on the platform fall in this range.

We now detail the four models, one for each of the policies (full feedback, no feedback, early

feedback, and late feedback). The models differ in the feedback scheme the seeker commits to and

follows. As a result, the creators’ information set is different under different policies.23 We assume

that creators know which feedback policy is currently used and are forward-looking when making

their decisions. Below is a summary of creators’ information structure under the four feedback

policies:

1. Full feedback: Existing creators and potential entrants observe the revealed ratings, and

thus base the calculation of their chance of winning the contest on the revealed ratings.

2. No feedback: Existing creators and potential entrants only get to see prior actions taken by

existing creators, but not the realized ratings. However, they can infer their winning chance

from the observed actions, as the actions taken by creators will affect the distribution of

the best quality of their submissions, which in turn affects creators’ winning probabilities.

Therefore, creators will base their decisions on the available action information, including their

own actions and other contest participants’ actions.

3. Early feedback: The competition structure under the early feedback policy is the same as

that under the full feedback policy until the feedback is turned off in the second period. When

making decisions in the third period, creators can only observe ratings disclosed at the end of

the first period and participants’ actions in the second period. Hence, they have to infer the

quality of their own and opponents’ submissions from the first-period realized ratings and the

second-period actions.

4. Late feedback: Before the feedback disclosure is turned on, creators only observe their own

and other contest participants’ actions, but not the realized ratings; hence in this period of

time, their decisions are based on their own and other contest participants’ prior actions,

23 Correspondingly, the way we define state variables and state transitions differs with different feedback policies.
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similar to the no feedback case. Once the seeker discloses the performance feedback at the end

of the second period, the information structure of the competition onward becomes the same

as that in the full feedback case.

In essence, the four feedback disclosure policies correspond to four types of dynamic games, each

of which has its unique information structure. Therefore, our counterfactual experiments involve

solving four different types of dynamic games. At each reward level, we use numerical methods to

solve for the equilibrium for each of these games, because none of them has a closed-form solution.

Given an award level and a feedback policy, we simulate 50,000 independent contest outcomes, and

report the average value of the performance metrics across the 50,000 simulation paths.

(a) Maximum Quality

(b) The Number of Top Performers (c) The Number of Participants

Figure 3 Contest Outcome Metrics under the Alternative Feedback Policies
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6.1. Performance Metric I – The Maximum Quality

We first consider the best quality achieved by all contest participants. As discussed earlier, in

contests with a single winner, the seeker is likely to care most about the quality of the best design

(the extreme value). In Figure 3a, we can see that the no feedback policy is dominated by all the

other three policies, confirming that giving feedback generally improves the contest outcome in

terms of the maximum quality.

To further visualize the value of providing feedback, we can set a target best quality, and compare

how much monetary incentive (award) the seeker should provide to achieve the pre-specified target.

For example, if a seeker wants to achieve a maximum quality of 5.6 (the horizontal line in Figure

3a), he can either (1) set the award at approximately $360 and provide no feedback, or (2) set the

award at around $230 and provide feedback throughout the contest, or only in the second half of

the contest. In this example, giving feedback throughout or only in the second half of the contest

can save the seeker $130, which is roughly one third of the award that the seeker has to pay if he

decides not to provide performance feedback at all.

However, should performance feedback be disclosed “as early as possible and as frequently as

possible” as suggested by crowdsourcing platforms? Not necessarily. Although the full feedback

policy performs best most of the time, our simulation results also show that the late feedback

policy performs as well as the full feedback policy at nearly all award levels experimented with,

and its performance even exceeds the full feedback policy when the award is around $200 or $300.

6.2. Performance Metric II – The Number of Top Performers

In many cases, innovation seekers would also like to have a large number of top creators, because

more top performers can provide a richer set of high-quality submissions. Therefore, we consider

the number of top creators, i.e., the number of creators who achieve high ratings (5-star), as

the second performance metric. The performance of the four feedback policies in this metric is

summarized in Figure 3b. It turns out that the late feedback policy performs best at all award

levels experimented with. This may sound counter-intuitive at first, but when we look closer at the

mechanism through which feedback affects creators’ activities, the result makes sense. Under the full

feedback policy, feedback is provided from early on when there are only a handful of participants.

Most incumbents (except the very few in the lead) are discouraged from taking follow-up actions,

and potential entrants are also discouraged from entering the contest. In contrast, under the late

feedback policy, the feedback is muted at the early stage of the contest – no creator is revealed

to be in an advantageous position. More existing participants will remain active in making new

submissions, and more potential entrants will be willing to join the contest. By the time when the

performance feedback is disclosed, there will be more creators having good-quality submissions,
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and they will continue making submissions in the last period. Hence, under the late feedback policy,

there will be more top performers at the end of the contest.

As we did for the first performance metric, we can visualize the value of providing feedback on

the second performance metric (the number of top performers). For example, if a seeker wants to

obtain an average of two top creators, he has four options: (1) awarding around $265 and providing

late feedback, (2) awarding around $273 and providing early feedback, (3) awarding around $305

and providing full feedback, or (4) awarding around $345 and providing no feedback. In this case,

by giving feedback in the second half of the contest, the seeker saves almost a quarter of the award,

compared to not providing feedback at all.

6.3. Performance Metric III – The Number of Participants

The results of our counterfactual simulations also suggest that the late feedback policy outperforms

the other three policies in attracting creators to the contest at all award levels experimented with

(Figure 3c). The reason for this is similar to the reason we provided in the previous subsection

regarding the number of top performers – the disclosure of high ratings can discourage entry.

However, one may ask, if the disclosure of the performance feedback always discourages the majority

of the contest participants, why don’t we always mute the performance feedback (choose the no

feedback policy)? The issue with the no feedback policy is that, without the ability to distinguish

between high-performers and low-performers, the expected probability for each person to win the

contest decreases with the number of participants. Consequently, as the contest becomes more and

more crowded, potential entrants are less willing to join the contest, and existing participants are

less willing to take costly follow-up actions as well.

As the analysis for the previous two performance metrics, we can also quantify the value of

releasing feedback with the objective of attracting more participants, e.g., see the horizontal line

drawn halfway up the graph in Figure 3c.

6.4. Additional Findings

In addition to our main results, our policy simulations also help us explore possible reasons why

most platforms encourage seekers to give feedback throughout the contest period, which corre-

sponds to the full feedback policy in our model. At the first sight, the platform suggestion con-

tradicts with our finding that the late feedback policy performs well in all three matrices. Yet our

metrics focused on the seeker’s objectives, which may be somewhat different from the platform’s

objectives. Intuitively, the platform would like to run sustainably by wisely allocating creator

efforts. Indeed, the following quotes admonish creators to conserve their effects: “if you find yourself

frustrated by a project – withdraw and move on”; “focus your attention and efforts on the projects

that you can get something out of”. In other words, it is preferable to the platform if a good contest
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performance can be achieved with creators spending less effort in total. By analyzing the policy

simulation results, we can show that full feedback performs better in saving more creator efforts

than the late feedback policy. Under the full feedback policy, the seeker strongly encourages top

performers by disclosing their good performance, which, at the same time, saves lower-performers

from wasting their efforts. In contrast, under the late feedback policy, the seeker remains silent

about creator performance until the last stage, keeping incumbents generally active, and potential

entrants more willing to join. Hence, total efforts from all participants are larger under the late

feedback policy.

Figure 4 The Sum of Creator Efforts in Each Contest (in $)

7. Discussion and Conclusion

Facilitated by technology, crowdsourcing contests are becoming an increasingly popular mechanism

to source innovation from large-scale online markets. As the quality and quantity of innovations

sourced through crowdsourcing contests highly depend on the design of such contests, one of the

most crucial questions facing real-world innovation seekers is how to design effective contests to

achieve better outcomes. In this paper, we empirically examine the important, albeit somewhat

understudied element of crowdsourcing contest design: the role of performance feedback on the

outcome of crowdsourcing contests. We develop a dynamic structural model to capture the eco-

nomic processes that drive creators’ participation behavior, which highlights how existing contest

participants and potential new entrants react to the disclosed performance feedback. The struc-

tural model explicitly considers potential entrants’ endogenous entry processes, and distinguishes

between incumbent creators’ exploratory and exploitative follow-up actions. We recover the param-

eters in the structural model using a rich real-word data set on custom logo design contests collected

from a major crowdsourcing platform. Our structural analysis yields insights into the mechanics
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that drive creators’ behavior under different feedback policies, as summarized on pages 3-4 of the

Introduction.

Our policy simulations provide important insights into the role of feedback disclosure policy

in crowdsourcing contests – they not only compare contest outcomes under alternative feedback

disclosure policies, but also quantify the value of providing performance feedback on different

performance metrics. In particular, we show that if all that the seeker cares about is the maximum

quality achieved, both the full feedback policy and the late feedback policy perform quite well. If the

seeker’s objective is to maximize the number of high performers, or the total number of participants

in the contest, the late feedback policy is the best option. Feedback helps guide creators’ exploration

and exploitation decisions, but can have a discouraging effect on entries and incumbents’ follow-up

actions. The late feedback policy attains the former benefit while mitigating the latter problem,

by only giving feedback after many creators have had a chance to enter. If we further take into

consideration the cost associated with monitoring submissions and providing performance feedback

in real time, the late feedback policy becomes even more attractive. Given the above, our study

may help seekers make better decisions about feedback policies in practice, by highlighting the

merits of the late feedback policy.

As one of the first empirical studies of large-scale crowdsourcing contests, our paper makes a

number of important contributions but also has limitations. First, in our current analysis, we

assume the contests are independent of each other, and have not considered the creators’ choices

among concurrent on-going contests. A systematic analysis of what factors affect creators’ choices

of which contest to join could be a productive direction of future research. Second, we focus on

the role of quantitative performance feedback (i.e., ratings), and have not considered qualitative

feedback, given through private messages, for two reasons: (1) qualitative feedback in the form of

private messages is inaccessible to us; and (2) based on an interview with a marketing manager

of a major online crowdsourcing platform, qualitative feedback occurs much less frequently than

quantitative performance feedback. However, in other settings where the qualitative feedback is

more prevalent and available to researchers, the effects of qualitative feedback could be a fertile

direction for future research.

Despite these limitations, our paper is the first to provide a comprehensive dynamic structural

framework to analyze creators’ behavior in crowdsourcing contests. With the use of the structural

model, we are able to disentangle intertwining effects of feedback on the outcome of crowdsourcing

contests, helping both practitioners and researchers obtain a more comprehensive understanding of

this increasingly popular new approach for sourcing innovation. Our policy simulation results shed

light on how to choose the optimal feedback disclosure policy, based on the objective the innovation

seeker wants to achieve. In addition to advancing the managerial understanding of this important
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issue, our work is also one of the first examples of using a structural modeling approach to study

the design of crowdsourcing contests. Although the focus of our paper is the role of feedback,

the structural framework we propose can be used to analyze other design issues in crowdsourcing

contests. We hope that our work can pave the way for future research in this area.
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Ales L, Cho SH, Körpeoğlu E (2016b) Optimal award scheme in innovation tournaments. Working Paper.
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Appendices

A. Image Comparison Algorithm – SIFT

SIFT is an algorithm used to detect and describe local features in images proposed by Lowe (1999).

Broadly speaking, the algorithm consists of four steps:

1. Extracting SIFT Feature Vectors: From a pair of design images (A and B), we extract

descriptors of the key points by identifying SIFT feature vectors in scale space, which robustly

capture the structural properties of the images24.

2. Matching SIFT Feature Vectors: For each feature vector DA
i in image A, we calculate

its shortest Euclidean distance (d(DA
i ,D

B
j )) to each of the SIFT feature vector in image B

(DB
j ). Features DA

i and DB
k are defined as a matched pair if and only if the ratio

d(DAi ,D
B
k )

d(DAi ,D
B
j ;∀j)

is always less than 2/325.

3. Computing the Similarity Ratio: After obtaining the number of matched feature-vector

pairs, we can calculate the percentage of matched SIFT features relative to the total number of

SIFT features in images A and B as γA,B =
NmA,B

min{NA,NB}
, where Nm

A,B is the number of matched

pairs between image A and image B, and NA (NB) is the total number of feature vectors

extracted from image A (B).

4. Classifying the Image Pair as Similar or Different: Finally, we classify the image pair

(image A and image B) as either similar or different based on the Similarity Ratio, γA,B. The

higher the ratio is, the more similar the two images are. If the ratio is 1, the two images

are exactly the same. In our empirical analysis, we classify a pair of submissions as similar if

γA,B ≥ 0.4.

Figure A.1 provides an example of the computed Similarity Ratios among six designs. As we

can see, the last three designs are relatively similar to each other, and they have higher pairwise

similarity ratios (0.473, 0.522, 0.789 respectively).

24 The scale-invariant features are efficiently identified by a staged filtering approach. In the first stage, the algorithm
identifies key locations in scale space by looking for locations that are maxima or minima of a difference-of-Gaussian
function. Then, each point is used to generate a feature vector that describes the local image region sampled relative
to its scale-space coordinate frame.

25 This is the default threshold in Lowe’s paper (1999). The approach described here is essentially the nearest-neighbor
approach.
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Figure A.1 Similarity Ratio Matrix for Six Designs

B. Derivation of the MPE for the Structural Model (Equation 9 and 10)

In the proposed structural model, a strategy σ∗ = {ρ∗, λ∗} representing a MPE equilibrium is

characterized by, at any t, for any incumbent i:

ρ∗i,t = argmax
ai,t

{
Ui,t(ai,t, εi,t)

+β
∑

xi,t+1,st+1

[∫
V σ∗
i,t+1(xi,t+1, st+1, εi,t+1)pεd(εi,t+1)

]
pσ
∗
(xi,t+1, st+1|xi,t, st, ai,t)

}
,

and for any potential entrant j:

λ∗j,t = argmax
dj,t

{
U e
j,t(dj,t, εj,t) + I(dj,t = 1)·

β
∑

xj,t+1,st+1

[∫
V σ∗

j,t+1(xj,t+1, st+1, εj,t+1)pεd(εj,t+1)

]
pe,σ

∗
(xj,t+1, st+1|st)

}
.

where pσ(xi,t+1, st+1|xi,t, st, ai,t) = p(xi,t+1|xi,t, ai,t) · pσ(st+1|st, xi,t, ai,t) and pe,σ(xj,t+1, st+1|st) =

pe(xj,t+1) ∗ pσ(st+1|st), in which pσ(st+1|st, xi,t, ai,t) =
∑

at,dt
p(st+1|st, at, dt) ·Pr(at, dt|st, σt).
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Representing MPE in probability space26 (Milgrom and Weber 1985), we get equilibrium CCP

P∗ as a a fixed point P∗ = Γ(P∗), where the function Γ is the creators’ best response probability

function, with the tth element being Γt(P) = {Γt(P),Γet(P)} (with and without superscripts “e”

denoting potential entrants’ entry choices and incumbents’ follow-up choices respectively). For

incumbents, Γt = {Γi,t(P)}i∈Nt , where Γi,t(P) = {Γi,t(ai,t|xi,t, st;P−i)|ai,t ∈A}, in which,

Γi,t(ai,t|xi,t, st;P−i) =

∫
I(ai,t = argmax

ai,t
{vPi,t(xi,t, st, ai,t) + εi,t(ai,t)})pε(εi,t)dεi,t. (20)

In the equation above, vPi,t(xi,t, st, ai,t) =−c(ai,t)+β
∑

xi,t+1,st+1

[∫
V P
i,t+1(xi,t+1, st+1, εi,t+1)pεd(εi,t+1)

]
·

pσ(xi,t+1, st+1|xi,t, st, ai,t) is incumbents’ choice specific value function. Similarly, for potential

entrants, Γet = {Γej,t(P)}j∈Mt , where Γej,t(P) = {Γej,t(dj,t|st;P−j)|dj,t ∈D}, in which,

Γei,t(di,t|st;P−i) =

∫
I(di,t = argmax

di,t
{ve,Pi,t (st, di,t) + εit(di,t)})pε(εi,t)dεi,t, (21)

where ve,Pj,t (st, dj,t) is the potential entrants’ choice specific value function.

Assuming both the incumbents’ private shock (εi,t) and potential entrants’ private shock (εj,t)

follow the Type I extreme value distribution (Rust 1987), we can get a closed-form solution for

the equilibrium CCP (P∗), i.e., incumbent i follows Equation 9, and potential entrant j follows

Equation 10.

C. Keane and Wolpin’s Simulation and Interpolation Method

To deal with the “curse of dimensionality”, we adopt Keane and Wolpin’s simulation and interpo-

lation method to reduce the computational burden (Keane and Wolpin 1994). For each period t

starting from the last decision period T , we first sample a subset of frequently visited state points

(xi,t, st). For each of these sampled state points, we solve the MPE backwards and calculate the

value function exactly, given the next period’s value functions. That is, we calculate the third-

period exact value functions “exactly” from creator state-specific utility in the terminal period

and the state transition probabilities; the second-period exact value functions are then calculated

“conditionally exactly” from both the “exact” and interpolated third-period value functions and

26 Associated with σt we can define a set of CCP for incumbents and potential entrants in period t, Pσt =
{{Pσi,t(ai,t|xi,t, st)},{Pσj,t(dj,t|st)}|i∈Nt, j ∈Mt} such that,

Pσi,t(ai,t|xi,t, st) =

∫
I{ρi,t(xi,t, st, εi,t) = ait}pε(εit)dεit, and

Pσj,t(dj,t|st) =

∫
I{λj,t(st, εj,t) = dj,t}pε(εj,t)dεj,t.

Note that the probabilities Pσi,t(ai,t|xi,t, st) and Pσj,t(dj,t|st) represent the expected behavior of a creator from the
point of view of the rest of the creators when this creator follows strategy σt.
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the state transition probabilities. Using these “exact value functions”, we interpolate the value

functions at other state points. The so computed value functions in the current period t are then

used in the calculation of the exact value functions in period t− 1, and so on and so forth. This

interpolation step provides a good approximation for the value functions: As we can see from

Figure C.1, the out-sample R-squares can be as high as 95% (92%) for second (third) period’s

value functions when the number of sampled exact points is sufficiently large. Note that we get

a higher out-sample R-square in the second-period interpolation. This is because the number of

second period state combinations is much smaller than that of the third period. That is, with the

same number of sampled exact points, we are computing proportionally more exact points for the

second period. Here, we sample 600 exact points for the interpolation.

(a) t=2 (b) t=3
Figure C.1 Out-sample R-square for Value Function Interpolation
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D. Frequency Estimates for Action-Specific Transitions

Frequency estimates for the rating distribution of new entrants’ first submission(s) and the action-

specific state transition probabilities among states up to 5-star are reported below.

Table D.2 New Entrants Rating Distribution

NA 1-Star 2-Star 3-Star 4-Star 5-Star

0.23 0.109 0.172 0.265 0.172 0.052

Table D.3 Rating Improvement Resulting from “Revise” Action

Post Rating

NA 1-Star 2-Star 3-Star 4-Star 5-Star

B
as

e
R

at
in

g NA 0.869 0.035 0.026 0.044 0.026 0
1-Star 0 0.615 0.187 0.121 0.066 0.011
2-Star 0 0 0.659 0.239 0.09 0.012
3-Star 0 0 0 0.785 0.177 0.038
4-Star 0 0 0 0 0.861 0.139
5-Star 0 0 0 0 0 1

Table D.4 Rating Improvement Resulting from “Redesign” Action

Post Rating

NA 1-Star 2-Star 3-Star 4-Star 5-Star

B
as

e
R

at
in

g NA 0.771 0.032 0.039 0.087 0.055 0.016
1-Star 0 0.639 0.132 0.118 0.083 0.028
2-Star 0 0 0.649 0.235 0.095 0.021
3-Star 0 0 0 0.783 0.158 0.059
4-Star 0 0 0 0 0.869 0.131
5-Star 0 0 0 0 0 1

Table D.5 Rating Improvement Resulting from “Do-both” Action

Post Rating

NA 1-Star 2-Star 3-Star 4-Star 5-Star

B
as

e
R

a
ti

n
g NA 0.679 0.038 0.094 0.094 0.038 0.057

1-Star 0 0.551 0.192 0.167 0.077 0.013
2-Star 0 0 0.523 0.189 0.212 0.076
3-Star 0 0 0 0.607 0.301 0.092
4-Star 0 0 0 0 0.783 0.217
5-Star 0 0 0 0 0 1
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E. Regression Results for Robustness Checks

Table E.6 The Percentage of High Type Among New Entrants With Previous Feedback

Dependent variable: %∆Hqt

(No. 1-Star)qt−1 −0.001 (0.001)
(No. 2-Star)qt−1 −0.0003 (0.001)
(No. 3-Star)qt−1 0.0002 (0.001)
(No. 4-Star)qt−1 −0.001 (0.001)
(No. 5-Star)qt−1 0.001 (0.002)
(No. Submissions)qt−1 0.001∗ (0.0005)
(No.Creators)qt−1 −0.002 (0.001)

Time Dummies Yes
Contest-level Fixed Effect Yes

Observations 5,607 R2 0.002
Adjusted R2 0.002 F Statistic 1.244 (df = 7; 4793)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; the numbers in parenthesis are standard errors.

Table E.7 Incumbent Follow-up Actions Multinomial Logit Model and Heterogeneity Evidence

Depend Variable: Actioniqt
Re-design revision do-both

Heterogeneity Variables
I(H)i −0.162∗ (0.076) −0.043 (0.048) −0.008 (0.075)
%Hqt−1 0.322 (0.307) 0.045 (0.188) −0.092 (0.291)

Individual-Level Variables
(No. Submissions)iqt−1 0.011 (0.014) 0.080∗∗∗ (0.006) 0.075∗∗∗ (0.009)
AvgRatingiqt−1 0.121 (0.135) 0.108 (0.075) 0.140 (0.120)
BestRatingiqt−1 0.271∗∗∗ (0.080) 0.352∗∗∗ (0.048) 0.189∗ (0.076)
SecondBestRatingiqt−1 −0.101 (0.088) −0.034 (0.051) −0.077 (0.081)

Contest-Level Variables
Awardq($) 0.001 (0.0004) 0.001∗∗∗ (0.0002) 0.001∗∗∗ (0.0003)
(No. 1-Star)qt−1 0.010∗∗∗ (0.003) 0.010∗∗∗ (0.002) 0.011∗∗∗ (0.003)
(No. 2-Star)qt−1 0.009∗∗ (0.003) 0.008∗∗∗ (0.002) 0.011∗∗∗ (0.003)
(No. 3-Star)qt−1 0.005 (0.003) 0.008∗∗∗ (0.002) 0.006∗ (0.003)
(No. 4-Star)qt−1 0.002 (0.004) 0.005∗ (0.003) 0.014∗∗∗ (0.004)
(No. 5-Star)qt−1 −0.012 (0.009) −0.027∗∗∗ (0.005) −0.030∗∗∗ (0.008)
(No. Submissions)qt−1 −0.007∗ (0.003) −0.002 (0.002) −0.007∗ (0.003)
(No.Creators)qt−1 0.005 (0.006) −0.018∗∗∗ (0.004) −0.010 (0.006)

Time Dummies Yes

Observations 24,085 R2 0.041
Log Likelihood -14,771.670 LR Test 1,250.716∗∗∗ (df = 60)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; the numbers in parenthesis are standard errors.
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