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Abstract

Touch dynamics (or touch based authentication) refers to a behavioral biometric for touch-
screen devices wherein a user is authenticated based on his/her executed touch gestures. This
work addresses two research topics. We first present a series of empirical techniques to detect
habituation in the user’s touch profile, its detrimental effect on authentication accuracy and
strategies to overcome these effects. Habituation here refers to changes in the user’s profile
and/or noise within it due to the user’s familiarization with the device and software applica-
tion. With respect to habituation, we show that habituation causes the user’s touch profile
to evolve significantly and irrevocably over time even after the user is familiar with the device
and software application. This phenomenon considerably degrades classifier accuracy. We
demonstrate techniques that lower the error rate to 3.68% and sets the benchmark in this
field for a realistic test setup. Finally, we quantify the benefits of vote-based reclassification
of predicted class labels and show that this technique is vital for achieving high accuracy in
realistic touch-based authentication systems.

In the second half, we implement the first ever non-supervised classification algorithm in
touch based continual authentication. This scheme incorporates clustering into the traditional
supervised algorithm. We reduce the mis-classification rate by fusing supervised random
forest algorithm and non-supervised clustering (either Bayesian learning or simple rule of
combinations). Fusing with Bayesian clustering reduced the mis-classification rate by 50%
while fusing with simple rule of combination reduced the mis-classification rate by as much
as 59.5% averaged over all the users.
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1 Introduction & Motivation
Portable touchscreen devices are now ubiquitous: 64% of the U.S. population owns a smartphone
and more people rely on smartphones for online access than on desktop computers [1]. By the
year 2018, it is projected that more than 50% of users will use smartphones for primary online
activity [2]. However, with the growth in portable device usage, there has been a parallel rise
in crimes related to cell phones [3]. This growth in usage and popularity attracted many cyber
attackers to steal important data via authentication misuse. Smartphone robberies were up 23%
in San Fransisco in 2013, and 18% in New York City [4]. Surprisingly, the most common software
mechanism for protecting data on such portable devices is a fairly rudimentary PIN based static
authentication system. While easy to deploy, it is a one-time authentication system that leave the
device vulnerable once the initial phone is unlocked. It has been shown that the phone lock screen
on both Android and iOS operating systems are vulnerable to software flaws [5, 6].

One avenue that has shown potential to overcome such limitations is a touch-based continual
authentication system. Since the touchscreen is the primary mode of input for interaction with the
device, an authentication system that uses these inputs to continually validate the user’s identity
provides an elegant solution for managing device security.

To develop a continual touch-based authentication system, the genuine user initially uses the
touchscreen device for a specified period of time. This interaction is via touch strokes executed on
the device’s screen. At the atomic level, the device senses these strokes as a series of points. Each
point provides data such as its location on the screen, pressure exerted, timestamp, etc. Using
data from all points within a stroke, a set of statistics called features is generated for that stroke.
The ordered tuple of these features is called a feature vector. Every feature vector characterizes
that particular stroke. As the genuine user uses the device, the group of feature vectors generated
for that user constitutes that user’s genuine data and serves as his/her touch profile.

Similarly, feature vectors from a number of other users are collected to form the impostor data.
Both the genuine and impostor data are used to train a classifier and generate a user model. The
classifier is a machine learning algorithm. In this work, we use various 2-class based algorithms
that require genuine and impostor data to generate a user model.

2 Contributions

2.1 Effects of Habituation
Since touch-based continual authentication is a behavioral biometric, it is more susceptible to noise
due to environmental and behavioral factors such as device configuration, user gait, movement and
posture [7]. A part of this paper addresses one such factor, i.e. habituation. By this term, we refer
to the familiarization process a user undergoes as they become accustomed to the device and the
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software application. Habituation can manifest itself as two effects:

1. The erraticness in the user’s touch-based behavior may decrease over time leading to less
‘noise’ in the user’s touch profile.

2. The user’s behavior and style of interaction with the device and app may change over time,
i.e. the user’s touch profile itself may transform over time.

It should be noted that both effects are independent of each other, i.e. one effect may be observed
while the other is not. It is possible that such a phenomenon will significantly degrade classifier
accuracy. In this case, the user model update strategy must be developed based on the severity
of changes effected by habituation. Teasing apart the effects of habituation and developing an
optimal technique to update the user model forms a key part of this work. In summary, this work
addresses the following Research Questions (RQ) in Part I:

• RQ1: Do users’ touch-based profiles exhibit either of the two effects of habituation? If so,
do they impact the performance of a touch-based authentication system?

• RQ2: Based on the above analysis, what is the most effective strategy for updating the user
model?

• RQ3: Which classifier algorithm is the most accurate and consistent after taking effects of
habituation into account?

• RQ4: A quantitative comparison of the benefits of using a vote-based reclassification scheme
to post-process classifier class predictions.

• RQ5: What is the benchmark performance when using a realistic train-test setup and a
vote-based reclassification scheme?

2.2 Effects of different classifiers Fusion mechanism
In Section 2.1 we study and implement different classifier algorithms and provide the detailed
benchmark performance when using a realistic train-test setup. Note that these classifier algo-
rithms are all supervised classifier models. Supervised classification is the machine learning task
of inferring the class of unlabeled test data based on a trained labeled dataset which consist of
genuine as well as impostor data. However, one of the prime issue in continual authentication
that haven’t yet fully address is the need of an impostor data to train the classifier along with
the genuine data to build the user model. This is to make sure that our user model or classifier
know the properties or behavior of genuine data as well as impostor data and it can correctly
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classify between them. The amount of genuine and impostor data to use varies depending on the
developers perspective and a type of application his targeting.

Therefore in this paper we also try to introduce the First Ever unsupervised classifier algo-
rithm to be implemented in continual authentication. We have fused the results of non-supervised
and supervised classifier algorithms to check if it has any improvement in predicting the correct
class of an unknown test data sample. Two fusion mechanisms has been studied and implemented
in this paper viz. Bayesian fusion and simple fusion. Teasing apart the effects of fusion mechanisms
and developing an optimal techniques to reduce the mis-classification rate forms a second key part
of this paper. In summary, this work addresses the following research questions in Part II of this
paper:

1. RQ1: Which non-supervised clustering algorithms is the most accurate and consistent on
separating the genuine and impostor dataset?

2. RQ2: Does fusion of non-supervised and supervised classification helps in improving the
continual authentication accuracy?

3. RQ3: Can we Minimize the use of impostor dataset used for training the classifier?

3 Thesis Organization
The remainder of this paper is organized as follows:

Section 4 discusses the related literature in this touch-based authentication. Section 5 describes
the dataset’s characteristics and pre-processing steps undertaken. Part I and Part II address the
questions of habituation and fusion mechanisms in continual authentication respectively.

4 Related Work
A number of researchers have referenced the effects of habituation in their work. Among them,
Frank et al. [8] and De Luca et al. [9] have reported that their model’s accuracy dropped over time
and felt the need to update their user model. Habituation seems to be a consistent trend in other
works that affects performance and deserves further scrutiny. Frank et al. [8] authenticated users
by analyzing their regular device use patterns over time, through 34 different features extracted
from touch strokes. This study achieved an equal error rate between 0%-4%. The authors also
tested for inter-session authentication that showed that touch-based authentication can be used
for long term authentication.

Li et al. [10] evaluated the performance of a live implementation of a smart phone-based touch
authentication system. The touch data was collected in the background from 75 users who were
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asked to freely use the devices for a number of days. The collected data was used to create a
SVM-based classifier that exhibited an equal error rate of 3%.

Feng et al. [11] used 53 touch and gesture features for classification. Additionally, they created
a special digital sensor glove to achieve highly accurate continuous identification. The hand glove
was used to capture 36 features when users performed touch activity. The glove data was collected
for 11 subjects and the classifier trained using Random Forest, J48, and Bayes network algorithms.
The authors achieved an accuracy of 2.15% FAR and 1.63% FRR when the digital glove was used.
Without the glove, they reported an accuracy of 11.96% FAR and 8.53% FRR.

The closest study to ours that studied habituation empirically is by Xu et. al. [12]. The authors
analyzed habituation using data from 3 genuine users collected over a period of 30 days. This
dataset contained 1200 strokes per genuine user. Their analysis indicated that the performance
of the classifier does not stay constant but rather fluctuates when trained on the 1st day and
evaluated on the next few days. Due to the small number of genuine users, the results claimed in
this work do not achieve statistical significance and likely not represent general characteristics of
their dataset.

In contrast to this, our work uses a dataset that controlled the device size and user posture.
The empirical techniques we propose are novel to this field and more rigorous. The data was
collected for a larger sample size of 31 users over a longer period of 42 days and generated ~900
strokes per user. The conclusions of Xu et al. will be further contrasted against ours in Section
10.1.

With reference to reporting benchmark accuracy in touch-based authentication, researchers
have used diverse experimental setups that vary significantly with respect to number of users,
samples per user, device(s) used, etc. The range of controlled and confounding factors hampers
empirical comparisons. Frank et al. achieved an EER of 2-3% immediately after the experimental
session which dropped to 4% after a week. Serwadda et al. [13] provided a benchmark analysis for
touch based user authentication and showed that a Logistic Regression based classifier offers the
best results (10.5-17.8% EER depending on device position and user stroke direction). Syed et al.
investigated the effect of device size and user posture and concluded that both significantly affect
the classifier performance [7]. They reported mean EERs of 3.8%-8.81% depending on the scenario
under consideration. Shen et. al [14] achieved False Acceptance Rate (FAR) and False Reject Rate
(FRR) of 7.52% and 5.47%, respectively, when the user performed unconstrained tasks, while in
application specific tasks the FAR and FRR reduced to 4.68% and 1.17%. They also determined
that user’s touch behavior exhibits less variability in application specific tasks as compared to
unconstrained tasks.

As can be seen from the related work, the research in touch based continual authentication is
in its infancy. The number of features varied from 10 to 53 across the different studies. One study
does not disclose the types of features used [11]. Some studies leverage feature selection [10] [8]
and others do not[11]. Similarly, feature normalization is performed only by one study [8]. Some
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studies use EER for benchmark comparison [10] [8] [13] while others only report error rates[11].

5 Dataset used and preprocessing
In this work, we used a part of the dataset collected by Syed et al. [7]. While the original dataset
contains data on 3 devices and 3 postures (9 scenarios), we present the result of our approach on
only one scenario.

The data was collected from 31 users using a custom app on Samsung Tab 10” device (Android
4.1 OS) held in portrait orientation. The data was collected from each user over a period of 4
weeks. The custom app was a photo matching game where the objective was to search through a
list of images to find a randomly selected image that the app displayed as an inset. This activity
required the user to scroll vertically and swipe horizontally through the image list to find the
desired image. As the user interacted with the app, the data from the strokes executed by the
users was collected in the background.

Syed et al. [7] state that no additional software was installed on the devices except for the
data collection app. All selected devices were based on the Android operating system. Android
was chosen for multiple reasons: According to a developer survey conducted in April-May 2013,
Android is used by 71% of mobile-software developers [15]. Furthermore, Android has close to 80%
market share in global smartphone shipments in 2013 [16]. Thus, any results we obtain on these
devices would be applicable to the larger segment of the mobile device population. Furthermore,
Google, Android’s developer, provides a customized Eclipse IDE for Android app development.
This allows for rapid development, prototyping and testing of apps [17]. The motivation behind a
custom app was to create a means to capture the natural horizontal and vertical strokes from the
user. The app consisted of a photo matching game where the objective was to find a randomly
displayed image from a list of images. Further details are explained by Syed et al. [7].

The structure of the dataset used in this work is shown in Fig. 1. The data for any user i consist
of ni strokes. Each stroke represents a feature vector containing 17 features. These features are
explained in Table 1. Note that the dataset used in this work consists solely of horizontal strokes
executed by the users. The results for vertical strokes are omitted due to space considerations.

5.1 Data Pruning
During the data collection period, each user was allowed to use the experiment’s app freely to
attain a certain objective. Therefore the number of touch strokes entered by each user is different.
Before proceeding, we pruned the dataset as shown in Fig. 5.1. If user i submitted the least
number of strokes ni, all other users’ data was reduced to this number by discarding the later
strokes. This was performed to attain a uniform length dataset for all users. After pruning, the
dataset contains l = 912 strokes per user.
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Figure 5.1: The dataset structure and the pruning method used. Since user i has the least number
of strokes ni, all the user data is pruned to this size by discarding all the later strokes.

5.2 Feature Normalization
As mentioned earlier, each stroke corresponds to a feature vector containing 17 features. Let l be
the number of strokes per user in the dataset. Let fji represent the ith feature in jth feature vector.
Each feature fji is normalized using a Standard Scaler algorithm. The normalized feature gji is
calculated as:

gji = (f ji − µj)
σfj

, 1 ≤ i ≤ l, 1 ≤ j ≤ 17

where µj = (
∑L

i=1 f
j
i

l
); σfj =

[∑l

l=1(fj−µj)
]2

l

This causes the distribution of every feature in the entire dataset to have zero mean and unit
variance. This is required to obtain valid results from certain machine learning algorithms such
as Support Vector Machines, Linear Perceptron that are used in this work. However, please note
that feature normalization using Standard Scaler algorithm was not applied during the experiment
in Section 7. This is because the similarity measure used in this experiment is a distance based
model which along with Standard Scaler algorithm is prone to outliers.
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Table 1: List of Features and their description

Features Description
StartX, StartY,
StartPressure,
StopX, StopY,
StopPressure

Abscissa, ordinate and
pressure at the location

where the gesture
began/ended

StrokeDuration Duration of stroke (in μs)
Length_EE,
Angle_EE

Distance and angle between
beginning and end point (in

pixels)
Length_Trj Length of gesture’s trajectory

Ratio_Trj2EE This ratio between
Length_EE and Length_Trj.

This is a measure of
deviation of the gesture from

a straight line.
AverageVelocity The average velocity of the

gesture
InterStrokeTime Delay between successive

strokes
MidPress Val Pressure at the midpoint

of the gesture
Vel20, Vel50,

Vel80
Average velocity after

20/50/80% of the stroke has
been executed

Direction Primary direction of the
stroke (Horizontal/Vertical)
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Part I

User Habituation in Continual
Authentication
6 Section Organization
This part of work is organized as follows:

Sections 8 and 9 detail empirical techniques to detect habituation and quantify its effect on
classifier performance. Based on these conclusions, we determine the most accurate user model
updating strategy in Section 10. In Section 11 we quantify the benefits of a vote based classification
approach to significantly enhance the accuracy of the user model. Section 12 concludes the paper
with a summary and avenues for future work.

7 Measuring habituation via similarity measures
As mentioned before, we hypothesize that habituation affects the user’s touch profile. In this
experiment we use similarity measures to test our hypothesis that habituation manifests in two
ways:

1. The intra-user stroke variance is greater in the early stages than at the end when the user
becomes more familiar with the device and app.

2. The user profile itself changes over time.

Note that these two effects are independent of each other, i.e. one effect may be exhibited while
the other is not. We used similarity measures as the first step since we detected habituation using
similar measures in a previous work on keystroke dynamics [18]. Furthermore, this technique is
fairly common in biometric systems [19, 20].

7.1 Experimental Setup
We quantified the first and second effect using similarity measures S1 and S2 respectively. Both are
ordered tuples and use Mahalanobis distance to measure similarity and are calculated as illustrated
in Fig. 7.2 and explained below:

1. Group 5 consecutive strokes beginning with the first stroke into blocks. Let these blocks be
B1, . . . , Bj, . . . , Bl/5
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Figure 7.1: Visualizing Mahalanobis distance

2. Each stroke in the dataset is a p dimensional vector. For every Block Bj:

(a) Calculate vector mean Mj and variance Vj.
(b) Calculate the jth element of the S1 tuple: S1

j= dm(Vj,O) where O represent a Origin.
(c) Calculate the jth element of the S2 tuple: S2

j = dm(Mj,Mj+1).

When calculating similarity measure S1, the origin represents zero variance. Therefore, the distance
of variance Vi from origin O indicates the amount of variance in block Bj. Plotting this value for
all groups depicts the intra-user stroke variation over time.

The similarity measure S2 indicate the similarity between 2 consecutive blocks Bj and Bj+1.
Plotting this value for all blocks depicts the change in user profile over time. If either of the two
effects of habituation are present we expect the corresponding similarity measure to decrease.

The Mahalanobis distance dm between two vectors X and Y is defined as:

dm(X,Y) =
√

(X−Y)tS−1(X−Y)

where S is the covariance matrix.

Fig. 7.1 illustrates the concept of Mahalanobis distance. While point P1 appears to be closer
to the origin O than P2 (based on Euclidean distance), the variance of the distribution is smaller
on the Y-axis as compared to the X-axis. Due to this, the Mahalanobis distance dm(P1,O)
may be equal or greater than dm(P2,O). Euclidean distance assumes that all components of the
vector contribute equally towards the distance. In contrast the non-unitary covariance matrix S in
Mahalanobis distance neutralizes the effect of differences in range and variance amongst features
by compensating features with low variability and range.
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Figure 7.2: Calculating the similarity measures S1 and S2 for any user i. Each measure is an
ordered tuple, S1 of size l/5 and S2 of size l/5-1.

(a) S1 - Intra-user change in variance over
time

(b) S2- Intra-user change in user profile over
time

Figure 7.3: Variation in similarity measures S1 and S2 over time for 3 representative users.
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7.2 Results and Conclusions
Fig. 7.3 shows the variation of S1 and S2 across the entire dataset for 3 representative users. The
results indicate that:

• A sustained decrease in intra-user stroke variation is faintly present for some users, but other
users exhibit no clear pattern. Out of 31 users, S1 weakly decreased for 10 users with time.
Thus, regardless of how habituated the user is, the intra-user variance remains constant over
time.

• Similary, no significant pattern was discernible for changes in user profile. S2 weakly de-
creased for 16 users.

• For the remainder users, no clear trend exists for both S1 and S2.

We concluded that, when using simple distance measures, a group of users do not collectively show
change in either intra-user stroke variance or in user profile over time.

8 Effect of intra-user variance on classifier performance
As mentioned before, we hypothesize that habituation manifests in two ways:

1. The intra-user stroke variance is greater in the early stages than at the end when the user
becomes more familiar with the device and app.

2. The user profile itself changes over time.

Note that these two effects are independent of each other, i.e. one effect may be exhibited while
the other is not.

The experiments in this section (Section 8) quantify the effects of the first manifestation of
habituation: decrease in intra-user variance in the user’s touch profile over time. In Section 9, we
quantify the effects of the second manifestation of habituation: change in user profile over time.
Both sections use classifier performance as a metric for measuring these effects.
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Figure 8.1: Experimental setup for evaluating user model performance in Section 8.1. For simplicity, we show
the process specifically when User 1, Block 1 is used to sample the genuine train and test sets.
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8.1 Experimental Setup
To detect the effects of intra-user variance on classifier performance, we resorted to developing a
number of machine learning-based user models using data from distinct parts of the dataset. If
intra-user variance is greater in the earlier part of the dataset, the user model trained and tested
using later data will be more accurate than the one trained and tested with earlier data. The
experimental procedure is illustrated in Fig. 8.1.

1. Divide the dataset in 3 equal blocks (Step 1 in Fig. 8.1). Each block is representative of the
user’s profile at a specific point in time. The objective of this experiment is to compare the
performance of user models developed on each of the three blocks. Note that a user model
is trained and tested on data from the same block.

2. For each block Bij, 1 ≤ i ≤ 31 and 1 ≤ j ≤ 3 where i is the user and j is the block number:

(a) Sample genuine data - Sample alternate strokes to create genuine train set Gi
trainj and

test set Gi
testj (Step 2a in Fig. 8.1). Sampling alternate strokes evenly samples the

entire block.
(b) Sample impostor data - We sampled equal number of genuine and impostor data for

both train and test sets. To sample n impostor strokes randomly sample n/30 strokes
from each impostor user to create impostor train set Iktrain and test set Iktest. Random
sampling of impostor data generates the broadest range of impostor profiles.

(c) Append Gi
trainj and Gi

testj with Iktrain, and Iktest respectively to create the complete
train and test sets.

(d) As this is a supervised learning process, the complete train set is used to train the
classifier and generate the user model which is then evaluated on the corresponding test
set. Calculate the Equal Error Rate of the evaluated test set.

(e) Cross-validate the results by repeating Steps 2b-2d 10 times. This generates 10 different
impostor train and test sets (Iktrain, Iktest) 1 ≤ k ≤ 10. To determine the performance
of a user model built using Block Bij, the mean performance of the user model on these
10 test sets is calculated.

(f) Steps 2d and 2e are repeated using the following classification algorithms: Random For-
est, Classification and Regression Tree (CART), Naive Bayes, Support Vector Machine
(linear kernel), k-Nearest Neighbor (k=10 ) and Linear Perceptron. These have been
used previously in other benchmark studies [13, 21].

All pre-processing and classification algorithms were implemented using Python’s scikit-learn li-
brary [22]. We used Equal Error Rate (EER) from the Receiver Operating Characteristics (ROC)
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graph as our performance metric. The ROC is created by plotting True Positive Rate (TPR)
against False Positive Rate (FPR) at different threshold points as shown in Fig. 8.1. True Positive
Rate is the proportion of genuine samples classified correctly and False Positive Rate is the ratio
of impostor samples being classified incorrectly.

The Equal Error Rate is the point on the curve where sum of TPR and FPR is 1. The lower
the EER, the better the classifier. Ideally, EER equals 0 indicating perfect classification.

Results and Conclusions:
Table 2 shows the results of this experiment. We reiterate that in this experiment the genuine
train data and genuine test data were both sampled from the same block, i.e. the same point in
time.

• Note that Random Forest consistently provides the best results across the dataset.

• The three linear classifiers (Linear kernel SVM, Naive Bayes and Linear Perceptron) per-
formed the worst.

• The results indicate that the classifier accuracy remains constant when user models are
trained and tested using genuine data from any one block.

• We thus infer that the intra-user variance in touch profile has no perceivable effect on classifier
performance.

Based on the lack of change in classifier performance over time (when genuine train and test
data are sampled from the same block), we conclude that the user profile exhibits either of two
characteristics:

1. It remains unchanged over time OR

2. It does change but the classifier is robust enough to handle the changes and maintain per-
formance.

We show that inference 2 is correct in Section 9.

8.2 Addressing potential confounding factors
It could be claimed that the experimental setup in the above experiment does not provide strong
evidence for user habituation because of two confounding factors:

1. Insufficient training data samples available to the classifier which may hamper user model
development.
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Table 2: A benchmark comparison of user models using various classification algorithms on different
parts of the dataset.

Classifier Mean EER% (Std Dev)
B1 B2 B3

Random Forest 10.4 (3.9) 10.5 (4.2) 10.4 (3.1)
CART 15.5 (5.1) 16.5 (5.9) 15.9 (5.0)

k-NN (k=10) 16.3 (5.4) 16.0 (5.5) 15.7 (5.0)
SVM (linear) 18.0 (8.4) 18.3 (7.6) 17.2(6.4)
Naïve Bayes 20.3 (7.1) 21.7 (7.9) 19.9 (7.2)

Linear Perceptron 34.5 (10.3) 34.2 (10.6) 33.9 (9.4)

2. The dataset was not divided into sufficiently small blocks to detect the habituation trend.

To address the first concern we repeated the experiment by dividing the dataset into two equal
blocks as opposed to three blocks previously. This ensures that each block will have more samples.

To address the second concern we again repeated the experiment by dividing the dataset into
six equal blocks. This ensures that each block will contain the data from a shorter temporal range
compared to the original experiment.

This answers our Research Question RQ3 listed in Section 2: Since Random Forest algorithm
had the highest accuracy over our entire dataset, the results of the experiment are shown only for
this classification algorithm.

Results and Conclusions:
Tables 3a and 3b show the classifier performance when the data is split into two and six blocks
respectively.

Neither experiment resulted in a user model with appreciable performance difference compared
to the original experiment. This indicates that:

• We used a sufficient sample size for train and test sets to arrive at our conclusions.

• Using fewer samples to generate a user model does not help in detecting changes in intra-user
variance.

9 Effect of change in user profile on classifier performance
We now determine which of the two inferences in Section 8.1 caused the classifier performance to
remain unchanged over time:
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Table 3: Classifier performance using Random Forest algorithm when genuine data is divided in
(a) 2 blocks and (b) 6 blocks

(a) 2 blocks split

Block # Mean (StdDev)

1 11.5 (3.8)

2 11.5 (3.6)

(b) 6 blocks split

Block # Mean (StdDev)

1 10.0 (5.2)

2 11.7 (4.8)

3 10.0 (4.7)

4 11.1 (4.9)

5 9.0 (3.8)

6 10.3 (3.9)

1. Lack of change in the user profile.

2. Classifier robustness to changes in the user profile.

To do so we used the same experimental setup as Section 8.1 except that the genuine train and
test sampling scheme (Step 2a) was changed:

This modified scheme is illustrated in Fig. 9.1. Unlike Section 8.1 where genuine train and test
sets were created from the same block, this experiment uses a complete Block i as the genuine
train set. It is then tested separately on each of the later blocks (Block i+1, ..., 6 ). We did not
test the user model on any block prior to Block i because it is not relevant to the experiment’s
objective. The genuine set is divided into six equal blocks to keep the train/test set size the same
as previous experiments. The impostor data is sampled as in the prior experiments.

As shown in Fig. 9.1, in iteration 1 a user model using Block 1 as train set is generated. It is
then tested on Blocks 2-6 as 5 separate test sets. In iteration 2, Block 2 functions as the train set
and Block 3-6 as the test sets and so on.The EER is calculated for each test set.

Results and Conclusions
Table 4 reports the mean EER values for each iteration of this experiment. The results show
that:

1. In every iteration the user model trained on Block i offers the best performance on Block
i+1. This indicates that, any block is most similar to the block immediately after it and the
similarity decrease as the distance between them increases.
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Figure 9.1: Experimental setup for Section 9 to determine the degradation in performance of a
user model over time. White blocks correspond to unused data in every iteration.

Table 4: Degradation in performance as the user model becomes older. The user model is tested
only on blocks later than the train block.

Mean EER(%)

Test on Block: Train on Block:

1 2 3 4 5

2 16.35 - - - -

3 22.57 16.22 - - -

4 28.95 20.50 18.77 - -

5 27.66 22.46 21.27 15.48 -

6 31.60 26.32 22.34 23.19 17.20
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2. The performance degradation over time is significant. The EER increases from ~16% to
~32% when the distance between the train and test sets is 600 strokes (Each block contains
~150 strokes).

3. This clearly shows that habituation causes the user profile to change significantly over time,
i.e. the second inference is the correct one.

4. The user model performance always changes irrevocably. We infer this from the fact that
the classifier performance always decreases over time and then never increases later on.

Based on the above conclusions, we now answer Research Question RQ1 listed in Section 2: it
is clear that regularly retraining the classifier using the latest data is vital to maintaining the
accuracy of the touch-based authentication system. Since the user profile changes irrevocably,
only the latest data must be used for updating the user model.

10 What train set size works best?
Section 9 clearly shows that the user profile becomes outdated over time and degrades the classifier
performance. Thus it is imperative to periodically update the user model with the latest genuine
user data. In this section we determine the optimal amount of prior data that must be used to
update the user model.

To do so we used the same experimental setup as Section 8.1. However, the genuine train and
test set sampling strategy was modified as shown in Fig. 10.1:

1. The genuine data was divided into 12 equal blocks of size l/12. This provides the flexibility
to increase the train set in relatively smaller steps.

2. For a given Block i as the test set, in iteration j where 6 ≤ i ≤ 12, 1 ≤ j ≤ 5:

(a) Generate a user model using Blocks i-1 to i-j together as a train set as shown in Fig.
10.1.

(b) Calculate EER for this user model.

Thus in each iteration the genuine train set size is enlarged by a block while the genuine test set
remains the same. Step 2 is performed using Blocks 6-12 as test sets separately. It should be noted
that the classifier train and test set always contained equal number of genuine and impostor strokes.
The impostor data samples are sampled using the same sampling scheme as before (described in
Section 8.1).
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Figure 10.1: Experimental setup to determine the optimum train set size. The dataset is divided
into 12 blocks. Initially, Block 6 is solely used as the test set followed by Blocks 7-12, each used
separately as a test set. For a given test set, depending on the iteration number x, the previous x
blocks are used to train and generate the user model.
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Figure 10.2: Median EER variation as r is increased. The solid lines indicate the results of Section
10 (x=1) while dashed (x=5) and dotted lines indicate the results of Section 11.

Say r denotes the train:test set size ratio such that r = N implies a train:test size ratio of N:1.
The optimum train set size can be determined by comparing the performance of the user models
as r is increased. The upper limit of r is set to 5. This is because the dataset is divided in 12
equal blocks. A larger value of r would have meant that less than half of the dataset is available
for testing purposes.

10.1 Results and Conclusions
The solid lines in Fig. 10.2 show the results for this experiment. Each solid line depicts the
variation in Equal Error Rate as r increases.

Note that r = 4 gives best performance. Thus for this dataset, the best strategy is to use
~300 prior strokes for generating the user model when the test set contains ~75 strokes (each block
contain l/12 strokes where l = 912). Using any further prior data has a detrimental effect on
classifier accuracy.

These conclusions contradict those of Xu et. al. [12] who determined that using all prior data
provides the best performance. However, we believe our results are empirically stronger and more
correct due to the following reasons:

1. Xu et al. performed their analysis on data from only 3 genuine users. Our study uses 31
genuine users. This provides conclusions that can be more strongly extrapolated to the
general population.

2. The impostor data in their study was collected by having 29 others users submit data in a
single session. This yielded 200 strokes per impostor. In contrast, our dataset contains equal
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r Group size

x=1 x=5 x=9

1 16.81 (15.24) 9.1 9.27 (7.84) 8.1 4.67 (3.27) 7.23

2 15.68 (14.1) 8.4 7.60 (6.39) 7.23 3.85 (1.84) 5.15

3 14.77 (13.05) 7.9 7.23 (6.41) 6.39 3.98 (1.51) 5.71

4 11.48 (11.48) 9.0 6.83 (5.10) 7.19 3.68 (1.47) 5.61

5 12.15 (12.15) 8.2 8.91 (7.79) 6.9 4.12 (1.28) 6.42

Table 5: Classifier performance as r is increased when using non vote-based (x=1) and vote-based
(x=5, 9) stroke reclassification. The results are reported as: “Mean (Median) Std deviation”

data (912 strokes each) from genuine and impostor users, both submitting data over 30 days.

3. While their dataset contains 30% more strokes, we argue that it is better to have more
genuine users and a larger, more diverse impostor pool to obtain valid conclusions about
habituation.

Based on the above conclusions, we now answer Research Question RQ2 listed in Section 2. Note
that the optimal value of r may change if the test set size is varied. Furthermore, these conclu-
sions are valid for the device and application used in this dataset (described in Section 5). As
mentioned before, we used a 10” tablet running a custom image matching app. The conclusions
from our described empirical techniques may be different for a different combination of software
and hardware.

11 Quantifying the benefits of vote based reclassification
and a benchmark reporting framework

11.1 Experimental Setup
In the previous experiments, the class predictions for every stroke generated by the classifier was
used as-is to generate the EER. However, it is common practice in literature to take a majority
vote on a group of strokes to determine their class [8, 13]. This is because a group of strokes is
more reflective of the user’s profile than the constituent strokes in isolation. Thus, in vote based
reclassification, each stroke is reclassified by taking the predicted class of neighboring strokes into
consideration. The benefits of this practice have not been quantified before and are presented in
this section.

The experimental setup is identical to Section 10 except that stroke reclassification was in-
troduced. This method is described below and illustrated in Fig. 11.1. Note that the stroke

30



Figure 11.1: Evaluating the user model using traditional and proposed method where threshold t
is set to 0.5.

reclassification is performed in Step 3b:

• Step 1: Each stroke in the test set is supplied to the classifier/user model.

• Step 2: The genuine class probability p of each stroke is determined.

• Step 3: The threshold t is varied in the range [0,1] in steps of 0.01

– a. If probability p > t, the stroke is labeled as genuine, else as an impostor.
– b. Group x consecutive strokes together. If p > t for the majority of the strokes in

a group, transform the predicted class of all strokes in that group to genuine, else to
impostor.

– c. Calculate FPR and TPR metrics.

• Step 4: Calculate EER

11.2 Results and Conclusions
Table 5 report the mean, median and standard deviation of performance for x = 1, 5, 9 as r is
varied. x = 1 corresponds to when the reclassification is not performed. Each mean and median
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value in the table is based on the performance on the six test blocks. The individual performance
of every test block is detailed in Fig. 10.2. The solid, dashed and dotted lines indicate where
group size x is 1, 5 and 9 respectively. Each line depicts the variation in Equal Error Rate as r
increases. The results shows that:

• Using a group of strokes and our optimum value of r = 4, we achieve a mean and median EER
of 3.68% and 1.47%. This performance meets or exceeds that reported in related literature
[13, 7]. Moreover, we report this benchmark using training and testing data that is from
separate points in time. This is uncommon in related literature.

• We reiterate that these results have been attained using only the horizontal strokes from the
dataset. We are optimistic that fusing the results with a vertical stroke-based classifier will
further increase performance.

• Using a voting scheme with a group of 5 strokes enhances the median performance by 36-
47%.

• Using a group of 10 strokes further increases the median performance by 78-86%.

• The voting scheme also reduces the standard deviation in EER. When taking with the fact
that the median EER is always lower than the mean EER, it is clear that this strategy works
well for the majority of users and a few users may be outliers who are difficult to classify.

• The accuracy of x = 5, 9 based method is more consistent over different values of r as
compared to when x = 1 while showing a steady increase in performance up to r = 4.

The above results provide the answer to Research Question RQ4. We conclude that predicting
the user’s identity using individual stokes is an inefficient and inaccurate strategy. However, it
should be noted that, increasing the number of strokes in a group will increase the time required
to authenticate. Finally, in reference to Research Question RQ5, we attained a benchmark equal
error rate of 3.68% on our dataset using a realistic train-test setup and vote-based reclassification.

12 Summary and Future work
In this part, we explored the presence of habituation in a touch based authentication dataset and its
effects on the classifier performance. Through a series of empirical experiments, we concluded that
the change in intra-user stroke variance over time has no perceivable effect on classifier accuracy.
However, the user profile does change and, furthermore, changes irrevocably over time. This
significantly degrades classifier accuracy and shows that the user model must be regularly updated
using only the latest data to maintain classifier performance. We proceeded to evaluate the amount
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of data that leads to the best classifier performance. Our results indicate that, on our dataset, 300
strokes is the optimum number of strokes needed to develop the most accurate user model. Such a
model suffers negligible performance degradation when used to test up to 75 strokes that temporally
follow the training data. We then quantified the benefits of vote-based stroke reclassification. We
show that this post-processing boosts the classifier performance by as much as 86% in comparison
to non vote based classification. It also leads to more consistent classifier accuracy across all the
users. We demonstrated an Equal Error Rate of 3.68% on our dataset using these techniques.

In the future, we plan to extend the study of habituation to other devices types and user
postures. We will analyze the relationship between the classifier performance, group size and time
to authenticate.
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Part II

A cluster analysis based fusion
algorithm to improve classification
performance in touch based continual
authentication system
13 Overview of Proposed System
This part broadly consist of the following major parts in chronological order which are explained
in greater details in later sections.

• Part 1: Extract train and test datasets - The mechanism to sample train and test datasets
is explained in step 1-3 of Fig. 16.1 and in Section 8.1. Train and test dataset are used for
developing a user models and evaluate its performances respectively.

• Part 2: Determine the best similarity measure for clustering algorithm - The similarity
measure between any data samples forms the core idea of any clustering algorithm. Better
the similarity measure, better the performance of clustering algorithm. Different similarity
measures are explained in Section 14 and Section 15.

• Part 3: Evaluate individual performances of supervised and non-supervised algorithms -
Implement traditional supervised Random Forest classification algorithm and unsupervised
clustering algorithms individually on train set to obtain their respective predictions on the
test dataset. This is explained in step 5 of Fig. 16.1 and in Section 8.1. This is the first ever
implementation of non-supervised clustering algorithm in continual authentication.

• Part 4: Fusion of predictions from different sources - The novelty of this paper lies within
fusion of probabilistic predictions of traditional supervised random forest algorithm and
clustering algorithm to improve the performance. This is explained in detail in step 6 of Fig
16.1 and in Section 17.

14 Clustering Theory
Clustering is an important data mining technique, that is used to divide data samples into different
groups or classes, by minimizing intra-group similarity and maximizing inter-group similarity.
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Cluster analysis is based on the principle that objects of the same class have greater similarity to
each other and less similarity to objects of different class. One of the contribution in this section is
the implementation of first ever non-supervised clustering algorithm in continual authentication on
mobile devices. Under the condition of no apriori knowledge of the system, clustering methods are
supposed to classify the data according to the type or class associations of that dataset. Formally,
the clustering structure is represented as a set of subsets C = C1, . . . , Ck of S, such that: S =
Uk
i=1 = Ci and Ci

⋂
Cj= ∅ for i != j. Consequently, any instance in S belongs to exactly one and

only one subset.
Thus clustering isn’t a special algorithm by itself but a general task to group the data samples.

There are broadly two ways to find the cohesion similarity between the data samples within the
clusters and between the clusters:

• Distance Measure

• Similarity Measure

15 Cohesion similarity measures.

15.1 Distance Measure
Many clustering methods use distance measures to determine the similarity or dissimilarity between
any pair of objects. It is useful to denote the distance between two instances Xi and Xj as:
d(Xi, Xj). A valid distance measure should be symmetric and obtains its minimum value (usually
zero) in case of identical vectors. For our dataset we have used Mahalanobis distance measurement
to find the similarity between two objects/samples[23]. We have explained Mahalanobis distance
in detail in Section 7. However, we briefly discuss it here again. The Mahalanobis distance dm
between two vectors X and Y is defined as:

dm(X,Y) =
√

(X−Y)tS−1(X−Y)

where S is the covariance matrix.

The non unitary covariance matrix S in Mahalanobis distance neutralizes the effect of differences
in range and variance amongst features by compensating features with low variability and range.
Euclidean distance assumes that all components of the vector contribute equally towards the
distance. In contrast the non-unitary covariance matrix S in Mahalanobis distance neutralizes the
effect of differences in range and variance amongst features by compensating features with low
variability and range as shown in Fig. 7.1.
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15.2 Similarity Measure
An alternative approach to distance similarity is to find the similarity function S(Xi, Xj) that
compares the two vectors Xi and Xj, provided the similarity function is symmetric i.e. S(Xi, Xj)
= S(Xj, Xi). The higher the similarity, the more chances of belonging to the same cluster. The
two most commonly used similarity functions are:

1. Cosine Similarity: The cosine similarity between vector Xi and Xj is formulated as follows
[24]:

S(Xi,Xj) = XT
i ∗Xj

‖ Xi ‖‖ Xj ‖
where XT is the transpose of vector X and ‖ X ‖is the magnitude of vector X .
In cosine similarity the angle between the two vectors are used as a similarity function.
The value of a cosine similarity ranges from -1 to 1 inclusive i.e. [-1, 1] where -1 indicate
exactly opposite vectors or most dissimilar vectors and 1 indicate the exactly same or exactly
similar vectors. The values between -1 and 1 indicate the extent of similarity or dissimilarity
between the two objects with 0 indicating orthogonal vectors.

2. Extended Jaccard Measure: The extended jaccard similarity between vector Xi and Xj is
formulated as follows [25]:

S(Xi,Xj) = XT
i ∗Xj

‖ Xi ‖2 + ‖ Xj ‖2 −XT
i ∗Xj

where XT is the transpose of vector X and ‖ X ‖is the magnitude of vector X .
The extended jaccard measure is very similar to the principal of jaccard coefficient. It
measures the similarity of two sets by comparing the size of the overlap against the size of
the two sets. If the two sets have only binary attributes then it reduces to the Jaccard Coeffi-
cient. For example the jaccard coefficient between two vectors Xi(0, 1, 1, 0) and Xj(1, 0, 1, 1)
is 1/4. This is because the intersection cardinality between the two vectors is 1 and union
cardinality is 4. However, in our dataset we have 17 continuous attributes which we have
described in Section 5. Therefore we use the extended jaccard coefficient.

16 Procedure to generate the optimal set of clusters for
touch based continual authentication system

We used a hierarchical clustering mechanism to build the clusters using our dataset. This is a
iterative process carried out as follows:
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1. Assign each items to its own cluster. In our case each item is a separate data stroke. Given
N data strokes each stroke is considered its own cluster initially.

2. Use one of the similarity measures described in Section 14, find the similarity between each
pair of clusters. This results in NC2computations.

3. Find the most closest pair of clusters in the above computations and merge them into single
cluster by computing their mean.

4. Recompute similarities between the new cluster and remaining old clusters.

5. Repeat step 2 to step 4 until we get desired number of clusters.

It should be noted that clustering is very sensitive to to the dimensionality of the dataset. In
our dataset each stroke is a 17 feature vector. Therefore we reduced the dimensionality using
Principal Component Analysis (PCA). It has been used widely for dimensionality reduction of large
multidimensional datasets using eigenvalues and eigenvectors. The use of PCA allows the number
of variables in a multivariate data set to be reduced, while retaining the present variation as much as
possible in the data set [26]. It transforms the original set of observation into a new set of variables
called principal components. Note that we do not need to keep all the principal components. We
can reduce the dimensionality by only keeping top n number of principal components. This is
done by following simple transformation function

Tn = XWn

where Tn is the new set of variables having n principal component, X is the original set of
observations having N features and Wn is the N ∗ n matrix whose columns are the eigenvectors of
XTX.

To build the most accurate cluster space representation we varied two parameters:

1. Number of clusters c.

2. A boolean parameter denoted by w, indicating whether the data is whiten or not. A whitening
transformation is a linear transformation that transforms the vectors of known co-variance
matrix into a new set of vectors that has unit variance and identity co-variance matrix.

The criteria used to achieve the best combination of parameters is the averaged SSE.The averaged
sum of squared error is an internal quality check for clusters and it does not use any other infor-
mation besides data. It usually measures the intra-cluster homogeneity and the the inter-cluster
separability. Averaged SSE can be formulated as follows:
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Avg − SSE = 1
N

k∑
k=1

∑
Xi∈Ck

‖ Xi − Uk ‖

where N is the total number of instances in a dataset, k is the total number of clusters, Ck is
the set of instances in cluster k and Uk is the mean vector of cluster k which can be calculated as

Uk = 1
Nk

∑
Xi∈Ck

Xi

The SSE should be minimized between the clusters to determine the optimal combination of
PCA components, number of clusters and if data should be whitened. For any similarity measure
we used we find the combination of the 3 parameters that give the least SSE averaged over all the
user. Thereafter the best parameter combinations and similarity measure is used for all the users.

16.1 Experimental Setup to determine the best similarity measure &
parameter combination
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Figure 16.1: Experimental setup for evaluating different clustering similarity measure as well as different
fusion mechanism. For simplicity, we show the process specifically for User 1 with Block 1 as genuine train
dataset and Block 2 as genuine test dataset.
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Steps 1-4 here are used to determine the best possible clustering parameters and steps 5-6 are
used to test performances.

we resorted to developing a number of similarity measure-based user models using data from
distinct parts of the dataset. The Experimental procedure is illustrated in Fig. 16.1 on Block 1
and Block 2.

1. Step 1: We divide the dataset of size l into k equal blocks. Each block is a representative of
the user’s profile at a specific point in time (Step 1 of Fig 16.1). For each block Bi

j, 1 ≤ i ≤ 31
and 1 ≤ j ≤ k where i is the user and j is the block number: We split our dataset in 6 equal
blocks. This is because:

(a) The dataset used for evaluation is same as the dataset presented by Palaskar et. al.
[27] and it is empirically confirmed that splitting the dataset in 6 blocks does not decay
the performance.

(b) This provides the flexibility to form more number of consecutive pairs of blocks for the
evaluation and thus strengthening the results.

2. Step 2: Sample impostor data - We sampled equal number of genuine and impostor data for
both train and test sets. To sample n impostor strokes, randomly sample n/30 strokes from
each impostor user. In our experiment each genuine block is of size l/6 and we have used 2
genuine blocks each for train and test purposes. Therefore we sampled a total 2l/6 impostor
data strokes from all other users (Step 2 of Fig 16.1). Random sampling of impostor data
generates the broadest range of impostor profiles.

3. Step 3: Append B1
1 and B1

2 with I1 and I2 respectively to create the complete train and
test sets (Step 3 in Fig. 16.1). Fig. 16.1 explains the procedure for Block 1 and Block 2.
However, note that the same procedure repeats for every consecutive pair of blocks.

4. Step 4: We build the clusters on train dataset individually for each user using three different
similarity measures as described in Section 14. Our initial hypothesis for building the clusters
is to separate genuine and impostor data strokes without any prior knowledge of their classes.
Ideally we should get genuine strokes in one cluster and all impostor strokes in another cluster.
To get the maximum accuracy clusters we vary parameters c and w for each clustering
similarity explained in Section 6. Note that these set of combinations and similarity measure
can be different for each user.

5. Step 5: Obtain the class prediction probability of each stroke in test dataset using Supervised
(Random Forest algorithm) and Unsupervised (Clustering algorithm) individually as shown
in step 5 of Fig16.1. The complete train set is used to train the classifier and generate the
user model which is then evaluated on the corresponding test set.
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Table 6: Comparison of similarity measures used to find clusters while keeping PCA = 6. Note
thst only the result of 6 representative users are shown here.

User # Distance Measure Cosine Similarity Extended Jaccard Measure
Best Combination Avg SSE Best Combination Avg SSE Best Combination Avg SSE

1 c = 3, w= True 9.18 c = 2, w = True 2.68 c = 2, w = True 5.67
2 c = 2 w = True 11.43 c = 3, w = True 3.45 c = 3, w = False 6.82
3 c = 2, w = True 8.91 c = 2, w = False 2.15 c = 2, w = False 5.35
4 c = 3, w = True 10.78 c = 3, w = True 2.31 c = 3, w = True 6.37
5 c = 3, w = True 9.72 c = 3, w = True 2.91 c = 3, w = False 5.82
6 c = 2, w =True 10.15 c = 2, w = False 3.17 c = 2, w = True 6.57

6. Step 6: Fusion of two results - Each set of predicted class probabilities from supervised and
non supervised algorithms is then fed to two fusion mechanisms.

(a) Fusion using Bayesian Learning, in which the two set of probabilities are fused using
Bayes decision rule to form a new class prediction probabilities.

(b) Fusion using simple rule of combination, in which at any moment of decision we use
either of the prediction scheduler (random forest or clustering) depending on the con-
straints.

We explain the fusion mechanism in greater details in Section 17.

16.2 Results and Discussion
The results indicate the PCA with 6 principal components gives the optimum results on our
dataset. Therefore we used 6 PCA transformed features to build the clusters. We compare the three
similarity measures described in Section 14 using averaged SSE. However, note that the comparison
of distance measure against the similarity measure is meaningless because of the differences in their
nature. Therefore we must have to first revert the similarity measure statistics into a distance
measure statistics using trigonometric cosine theorem properties, which can be stated as:

distances =
√

2(1− similarity)

We find the corresponding distance measure for a given similarity measure and calculate aver-
aged SSE for each clustering mechanism. Note that we calculate the averaged SSE for each genuine
block as shown in Step 1 of Fig 16.1. However, for simplicity we have presented the average of
averaged SSE over each block under different clustering mechanisms in Table 6.
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Table 6 Shows the best parameter combinations for each clustering similarity and their averaged
SSE on 6 strongly representative users from our 31 user dataset.

• Note that Cosine similarity measure gives us the optimum results with lowest average SSE.

• Each user has its own unique set of combination of parameters. This implies that clustering
parameters of user x may not work for user y and vice versa.

• From our results we claim that the best clustering mechanism to use is cosine similarity.
We have thus answered our Research Question 1 mentioned in Section 2.2, i.e which non-
supervised clustering algorithm is most accurate and consistent over all the users in our
dataset.

17 Fusing non-supervised and supervised algorithm

17.1 Fusion using Bayesian Learning
Bayesian learning is strongly based on the Bayes decision theory. Bayesian decision theory is a
fundamental statistical approach to the problem of pattern classification. It is considered the ideal
case in which the probability structure underlying the categories is known perfectly. Let us re-
consider our problem of classifying two types data strokes: Genuine and Impostor. Suppose that
our system finds it hard to predict what type of stroke will emerge next and that the sequence of
categories of strokes appears to be random. In decision-theoretic terminology we would say that
as each data stroke emerges is in one or the other of the two possible states: Either the stroke is
a genuine or the stroke is impostor. Let p denote the state of nature, with p = p1 for genuine and
p = p2 for impostor. Because the state of nature is so unpredictable, we consider p to be a variable
that must be described probabilistically.

In the simplest condition we would say that next stroke is equally likely to be either genuine
or impostor. More generally, we assume that there is some prior probability P (p1) that the next
stroke is genuine, and some prior probability P (p2) if it is impostor. We know that in our condition
there is no other category possible thereforeP (p1) + P (p2) = 1. These prior probabilities reflect
our prior knowledge of how likely we are to get a genuine or an impostor before the stroke actually
appears.

In most circumstances, we are not asked to make decisions with so little information. In our
condition for instance we use 17 different features to build the classifier and describe the properties
of strokes. Different data strokes yields different feature readings. We consider this feature vector
x to be a continuous set of random variable whose distribution depends on the state of nature
and is expressed as P (x|p). This is the class-conditional probability density function, which can
also be reiterated as the probability density function for x given that the state of nature is p. The
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Figure 17.1: Bayesian Fusion mechanism of random forest and clustering algorithms

difference between P (x|p1) and P (x|p2) describes whether stroke belongs to genuine or impostor
class.

When we have a knowledge about prior as well as class-conditional probabilities of a particular
stroke, we can combine them using Bayes theorem for the decision making. The Bayes theorem
can be formulated as follows:

P (pi|x) = P (x|pi) ∗ P (pi)
P (x)

where P (pi|x) is the joint probability function or the probability of category p given the feature
vector x and P (x) is the probability of a feature vector x to appear which is constant irrespective
of its state of nature p.

Therefore in the Bayes theorem the decision rule becomes:

• If P (p1|x) > P (p2|x) we chose p1over p2thus labeling the stroke as genuine and vice versa.

17.2 Experimental Setup:
The experimental setup for the fusion of Random Forest supervised classification and clustering
based non-supervised classification is shown in Fig. 17.1. This is an explanation of Bayesian
learning fusion block in step 6 of Fig 16.1.

• We pass the training dataset to the clustering algorithm and get the desired number of
clusters shown by Ci in Fig 17.1. Each cluster has certain number of genuine and impostor
strokes and therefore each cluster has a genuine probability density and impostor probability
density.
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Test Posture# f=50% f=60% f=70% f=80% f=90% f=100%

Trained on Posture # 1
P # 1 42 23 31 40 42 47
P # 2 76 51 57 58 74 81
P # 3 82 57 62 66 84 93

Trained on Posture # 2
P # 1 80 55 61 64 75 84
P # 2 39 20 28 41 43 47
P # 3 71 48 54 60 72 74

Trained on Posture # 3
P # 1 87 61 65 77 87 91
P # 2 73 51 57 60 75 79
P # 3 33 18 23 34 38 42

Table 7: Improvement using Bayesian Fusion: Mis-predictions per 350 strokes represented in
Median statistics

• Every stroke from test dataset is compared against the centroid of each cluster using the
cosine similarity measure shown by Si in Fig 17.1. The cluster that is closest to the test
stroke Ti according to similarity measure is considered parent cluster of stroke Ti. since
each cluster has a genuine and impostor probability density, therefore for any test stroke Ti
depending on its parent cluster we determine the prior probabilities of each class. P (p1) =
genuine probability density and P (p2) = impostor probability density.

• The class conditional probabilities P (x|pi) are calculated using traditional supervised random
forest classifier user model. Finally we fuse them together using Bayes decision theory to
produce the posterior probability which in turn will decide the final class of the test stroke
Ti.

17.3 Results and Conclusion
Table 7 shows the fusion performance over traditional random forest classification. We used prior
probabilities using clustering as our initial guess of what the type of stroke could be to strengthen
our predictions. However, random forest is still our higher weighing evidence for prediction. There-
fore we used Bayes decision theory if and only if the random forest confidence or class conditional
probability is below certain degree. As shown in Table 7 parameter f represent range of confidence
of random forest from 50% to certain f% e.g. if f is 70% then the class conditional probability
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Test Posture# f=50% f=60% f=70% f=80% f=90% f=100%

Trained on Posture # 1
P # 1 42 17 22 38 51 88
P # 2 76 47 56 61 79 103
P # 3 82 42 49 58 78 97

Trained on Posture # 2
P # 1 80 50 58 61 77 95
P # 2 39 15 22 34 47 79
P # 3 71 44 52 58 81 93

Trained on Posture # 3
P # 1 87 56 61 73 81 102
P # 2 73 48 52 65 84 98
P # 3 33 12 19 29 45 62

Table 8: Improvement using simple fusion: Mis-predictions per 350 strokes represented in Median
statistics

lies between 50% to 70%. If f =X% it means we apply Bayes decision rule on Ti if and only if
random forest class conditional probability is less than X% otherwise we use random forest pre-
diction as our final prediction. When f =50%, it means we only use random forest as our final
evidence without using prior probability knowledge whereas when f =100% we always use fusion
irrespective of random forest class conditional probability.

• We now address our 3rd research question 2 mentioned in Section2.2 i.e does fusion helps
improving classification accuracy. Our results indicate that fusion mechanism improves the
results by lowering the mis-prediction by as much as 50%.

• Note that in Bayesian fusion algorithm f =60% enhances the performance by as much as
50% over traditional random forest classification algorithm. This indicates that we should
use fusion mechanism only when random forest confidence is between 50% to 60% otherwise
use random forest as a final predictor.

• However, when we always use Bayesian fusion irrespective of random forest class conditional
probability (f =100%) there is notable decline in the performance.

• Also note that when training and testing is done on the same posture orientation, the mis-
prediction rate is far lower than any other combination This phenomenon is well explained
by Syed et. al. [28].
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Figure 17.2: Simple fusion mechanism of random forest and clustering probabilistic predictions

17.4 Fusion using simple rule of combination
Section 17.1 implements Bayesian fusion, however it is just one of many methods of combina-
tions. In this section we implement a simple fusion mechanism to combine two independent sets of
probability mass assignments coming from random forest and clustering algorithms under specific
situations. These two independent sources express their beliefs over the class predictions (gen-
uine/impostor) such as giving hints or expressing preferences individually. In Section 17.1 we used
the probabilistic predictions from clustering as our prior probability for Bayesian Learning. How-
ever, in this section we will treat probabilistic predictions from clustering as just another source of
prediction besides random forest. Random forest and clustering algorithm have the same weigh-
tage in deciding the final predictions. This simple experimental setup is shown in Fig. 17.2 and
implemented using following steps:

1. We implement step 1-5 shown in Fig. 16.1 to get the individual probabilistic class predictions
from random forest and clustering algorithms.

2. It is then provided to the simple fusion mechanism which acts as switch as shown in Fig.
17.2. The switch mechanism chooses either random forest or clustering class prediction and
label it as final class prediction for any specific stroke Ti. The switching between random
forest and clustering predictions in simple fusion mechanism is based on random forest class
prediction probability. If the random forest probability for a stroke Ti is less than f% then we
only consider clustering prediction for stroke Ti over random forest in making final decision
and vice versa.

17.5 Results and Conclusion
Table 8 compares the simple fusion algorithm performance with traditional random forest classifi-
cation by number of mis-predictions for every 350 strokes. As mentioned earlier we used random
forest and clustering as two independent sources of evidence.
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As shown in Table 8 parameter f represent range of confidence of random forest from 50%
to certain P% e.g. if f is 70% then the random forest class prediction probability lies between
50% to 70%. If f=P% it means we use clustering prediction as our final prediction for test
stroke Ti if and only if random forest probability is less than P% otherwise we use random forest
prediction as our final prediction. This is the only difference between Bayesian fusion and simple
fusion mechanism. When f =50%, it means we only use random forest as our final evidence
without acknowledging clustering algorithm prediction whereas when f =100% we always use
clustering algorithm predictions irrespective of random forest classification results. Table 8 shows
the performance of simple fusion algorithm when user model trained on posture x and tested on
posture y.

• In simple fusion algorithm S = 60% gives us the optimum results with 59.5% improvement
over traditional random forest algorithms. This indicates that we should use clustering
predictions only when random forest class prediction probability is between 50% to 60%.

• From Table 8 it is clear that using only clustering algorithm for prediction decreases the clas-
sifier performance by a significant amount. Therefore it is imperative not to use predictions
based on clustering solely.

• Note that simple fusion algorithm is more efficient way of fusing two sources of evidence
compared to Bayesian fusion algorithm. Furthermore, these conclusions are valid for the
device and application used in this dataset.

• Therefore we address our research question 3 mentioned in Section 2.2 and claim that simple
fusion works better than Bayesian fusion for our dataset. However, these results may vary
based on different combination of device and applications.

18 Summary and Future Work
In this part, we explored the presence of fusion mechanism in a touch based authentication dataset
and its effects on reducing the classifier mis-predictions. Through a series of empirical experiments,
we concluded that the hierarchical clustering with Cosine similarity measure is the best strategy
to build the unsupervised clusters as it has lowest average SSE. However, note that we have also
mentioned that number of clusters may vary based on individual touch profile. Furthermore, we
have seen that using only clustering algorithm for future prediction actually degrades the classifier
performance. Therefore we implemented different fusion mechanism viz. Bayesian fusion and
simple fusion to fuse traditional supervised classifier algorithm in our case we used random forest
with unsupervised clustering algorithm. We show that Bayesian fusion implementation when
random forest classifier confidence is less than 60%, decreases the mis-classification rate by as
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much as 50%. We also show that for our dataset over 30 users averagely simple fusion mechanism
works better than Bayesian fusion. Simple fusion mechanism enhances the overall prediction while
reducing mis-classification rate by as low as ~60% where fusion occurs when random forest classifier
confidence is less than 60%.

In the future, we plan to extend the study of different fusion mechanism to other devices
types and user postures. Furthermore, as mentioned in Section 12 we are creating a belief based
authentication system that modifies the classification threshold based on the time and decision of
past strokes.
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A Appendix

A.1 Benchmark analysis of classification algorithms
In Section 8, in order to determine the best performing classifier for our touchbased authentica-
tion system, we performed a benchmark analysis using our dataset. We tested six classification
algorithms: CART, SVM, Random Forest, Naive Bayes, K-NN (k=10) and Multi-layer Linear
Perceptron. This section of the appendix lists the EERs calculated at Step 6 of Fig. 8.1 for 30
users on all the blocks for each classification algorithm.
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.07 0.11 0.14 0.16 0.16 0.2 0.25 0.2 0.13 0.17 0.25 0.17 0.15 0.19 0.13

2 0.1 0.07 0.11 0.2 0.17 0.17 0.18 0.23 0.19 0.15 0.19 0.21 0.17 0.18 0.2

3 0.04 0.07 0.11 0.22 0.16 0.22 0.25 0.18 0.18 0.14 0.19 0.14 0.19 0.19 0.17

4 0.05 0.11 0.12 0.21 0.13 0.2 0.23 0.23 0.18 0.15 0.22 0.17 0.17 0.16 0.15

5 0.07 0.05 0.11 0.19 0.14 0.22 0.25 0.24 0.21 0.14 0.21 0.15 0.2 0.23 0.18

6 0.06 0.09 0.11 0.15 0.13 0.18 0.2 0.18 0.15 0.15 0.21 0.14 0.2 0.19 0.16

7 0.05 0.07 0.12 0.16 0.13 0.19 0.22 0.27 0.21 0.13 0.22 0.18 0.12 0.2 0.17

8 0.09 0.1 0.15 0.21 0.19 0.25 0.26 0.26 0.18 0.12 0.23 0.18 0.16 0.18 0.21

9 0.08 0.09 0.13 0.19 0.14 0.24 0.24 0.19 0.16 0.16 0.25 0.18 0.14 0.17 0.13

10 0.07 0.1 0.12 0.2 0.15 0.21 0.18 0.2 0.17 0.2 0.21 0.17 0.13 0.21 0.19

Table 9: EER for Decision Tree - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.16 0.15 0.11 0.07 0.09 0.08 0.02 0.04 0.01 0.15 0.1 0.18 0.17 0.2 0.15

2 0.17 0.14 0.13 0.05 0.1 0.11 0.03 0.02 0.02 0.09 0.09 0.2 0.19 0.13 0.13

3 0.15 0.12 0.11 0.05 0.07 0.13 0.02 0.03 0.02 0.09 0.09 0.14 0.19 0.19 0.15

4 0.12 0.07 0.14 0.05 0.1 0.09 0.02 0.03 0.02 0.14 0.09 0.15 0.16 0.18 0.14

5 0.17 0.14 0.11 0.05 0.07 0.11 0.02 0.03 0.05 0.09 0.09 0.24 0.19 0.14 0.12

6 0.13 0.13 0.09 0.05 0.09 0.12 0.06 0.05 0.02 0.08 0.1 0.15 0.21 0.15 0.16

7 0.18 0.11 0.15 0.04 0.07 0.14 0.04 0.04 0.03 0.11 0.09 0.2 0.17 0.13 0.17

8 0.17 0.12 0.13 0.07 0.09 0.16 0.03 0.03 0.03 0.09 0.07 0.14 0.17 0.19 0.2

9 0.16 0.17 0.1 0.05 0.07 0.09 0.04 0.05 0.05 0.09 0.07 0.18 0.16 0.19 0.18

10 0.15 0.09 0.15 0.07 0.11 0.13 0.02 0.02 0.03 0.1 0.09 0.17 0.13 0.15 0.14

Table 10: EER for Decision Tree - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.21 0.24 0.27 0.12 0.07 0.07 0.15 0.14 0.15 0.22 0.29 0.23 0.04 0.04 0.03

2 0.18 0.3 0.29 0.09 0.11 0.05 0.16 0.16 0.15 0.2 0.22 0.19 0.04 0.05 0.07

3 0.18 0.21 0.18 0.14 0.13 0.05 0.16 0.17 0.14 0.22 0.28 0.2 0.05 0.05 0.03

4 0.21 0.19 0.18 0.12 0.15 0.05 0.15 0.09 0.15 0.21 0.31 0.24 0.07 0.04 0.04

5 0.14 0.23 0.19 0.11 0.11 0.06 0.22 0.17 0.13 0.2 0.25 0.18 0.03 0.03 0.01

6 0.16 0.25 0.23 0.11 0.13 0.08 0.14 0.19 0.17 0.16 0.33 0.16 0.04 0.04 0.05

7 0.17 0.24 0.26 0.15 0.12 0.07 0.18 0.15 0.15 0.21 0.31 0.2 0.04 0.04 0.03

8 0.18 0.31 0.21 0.17 0.12 0.08 0.2 0.15 0.15 0.23 0.23 0.16 0.03 0.05 0.01

9 0.2 0.21 0.22 0.1 0.14 0.05 0.16 0.14 0.15 0.22 0.29 0.19 0.06 0.06 0.03

10 0.16 0.25 0.21 0.1 0.1 0.08 0.16 0.12 0.18 0.23 0.27 0.17 0.03 0.03 0.03

Table 11: EER for Decision Tree - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.25 0.19 0.17 0.14 0.11 0.16 0.14 0.14 0.14 0.11 0.17 0.29 0.18 0.15 0.15

2 0.26 0.18 0.1 0.17 0.12 0.11 0.15 0.18 0.2 0.15 0.15 0.23 0.19 0.22 0.16

3 0.29 0.11 0.13 0.14 0.11 0.14 0.11 0.13 0.13 0.07 0.14 0.2 0.18 0.19 0.19

4 0.22 0.14 0.13 0.18 0.19 0.18 0.17 0.18 0.15 0.12 0.2 0.2 0.16 0.19 0.13

5 0.26 0.2 0.16 0.18 0.13 0.17 0.12 0.12 0.16 0.12 0.13 0.2 0.13 0.21 0.17

6 0.24 0.2 0.13 0.14 0.12 0.13 0.14 0.17 0.14 0.13 0.22 0.24 0.21 0.2 0.16

7 0.25 0.16 0.14 0.12 0.17 0.12 0.14 0.15 0.16 0.14 0.16 0.24 0.21 0.2 0.13

8 0.22 0.17 0.11 0.16 0.12 0.14 0.12 0.18 0.22 0.13 0.15 0.23 0.2 0.22 0.15

9 0.2 0.14 0.15 0.13 0.15 0.18 0.15 0.15 0.15 0.14 0.17 0.21 0.13 0.22 0.17

10 0.25 0.14 0.15 0.17 0.12 0.17 0.11 0.15 0.16 0.18 0.16 0.22 0.22 0.22 0.15

Table 12: EER for Decision Tree - User 16-20
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Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.18 0.2 0.22 0.18 0.13 0.16 0.16 0.14 0.17 0.18 0.16 0.11 0.15 0.15 0.19

2 0.17 0.16 0.17 0.22 0.16 0.18 0.19 0.17 0.21 0.14 0.16 0.13 0.19 0.16 0.25

3 0.2 0.18 0.24 0.2 0.14 0.14 0.15 0.14 0.13 0.16 0.15 0.11 0.16 0.15 0.17

4 0.2 0.16 0.22 0.19 0.16 0.14 0.11 0.18 0.14 0.14 0.16 0.1 0.17 0.14 0.2

5 0.18 0.22 0.21 0.18 0.15 0.14 0.15 0.12 0.18 0.14 0.15 0.1 0.13 0.17 0.14

6 0.19 0.16 0.21 0.16 0.13 0.15 0.16 0.15 0.18 0.15 0.16 0.12 0.13 0.17 0.19

7 0.18 0.17 0.2 0.16 0.13 0.21 0.14 0.1 0.13 0.17 0.15 0.14 0.13 0.18 0.2

8 0.2 0.18 0.18 0.14 0.16 0.12 0.13 0.16 0.14 0.17 0.13 0.11 0.18 0.19 0.2

9 0.19 0.19 0.18 0.19 0.14 0.18 0.14 0.14 0.2 0.21 0.19 0.13 0.15 0.12 0.22

10 0.15 0.17 0.19 0.22 0.17 0.14 0.16 0.14 0.16 0.19 0.16 0.11 0.11 0.2 0.2

Table 13: EER for Decision Tree - User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.23 0.26 0.18 0.17 0.2 0.19 0.21 0.3 0.24 0.15 0.2 0.18 0.17 0.23 0.19

2 0.16 0.23 0.2 0.18 0.15 0.18 0.2 0.22 0.22 0.17 0.22 0.17 0.21 0.24 0.22

3 0.2 0.22 0.27 0.17 0.18 0.22 0.23 0.24 0.2 0.19 0.23 0.18 0.2 0.21 0.19

4 0.26 0.2 0.21 0.16 0.19 0.19 0.18 0.25 0.25 0.19 0.15 0.18 0.2 0.28 0.25

5 0.25 0.2 0.2 0.13 0.19 0.17 0.19 0.23 0.25 0.17 0.18 0.17 0.22 0.24 0.19

6 0.2 0.24 0.21 0.12 0.21 0.17 0.2 0.24 0.19 0.17 0.16 0.17 0.22 0.29 0.23

7 0.18 0.26 0.22 0.15 0.2 0.21 0.21 0.22 0.16 0.17 0.21 0.19 0.17 0.24 0.19

8 0.22 0.22 0.21 0.18 0.14 0.19 0.24 0.3 0.22 0.22 0.21 0.18 0.23 0.24 0.24

9 0.23 0.28 0.19 0.15 0.19 0.23 0.17 0.23 0.24 0.15 0.22 0.16 0.22 0.23 0.22

10 0.19 0.23 0.27 0.23 0.21 0.22 0.2 0.25 0.22 0.15 0.21 0.15 0.23 0.29 0.2

Table 14: EER for Decision Tree - User 26-30
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.10 0.08 0.10 0.12 0.17 0.15 0.16 0.16 0.08 0.09 0.13 0.11 0.16 0.10 0.16

2 0.10 0.07 0.07 0.18 0.17 0.19 0.14 0.19 0.09 0.12 0.13 0.12 0.17 0.12 0.13

3 0.08 0.08 0.09 0.16 0.16 0.15 0.17 0.19 0.13 0.11 0.15 0.12 0.13 0.12 0.17

4 0.08 0.05 0.08 0.15 0.14 0.18 0.15 0.17 0.11 0.11 0.11 0.12 0.13 0.11 0.13

5 0.07 0.05 0.05 0.16 0.16 0.17 0.17 0.15 0.10 0.10 0.14 0.11 0.16 0.12 0.14

6 0.08 0.07 0.05 0.16 0.17 0.19 0.18 0.22 0.11 0.11 0.15 0.13 0.11 0.13 0.14

7 0.06 0.08 0.08 0.15 0.17 0.19 0.15 0.15 0.10 0.10 0.10 0.09 0.09 0.07 0.13

8 0.09 0.05 0.10 0.18 0.18 0.17 0.18 0.21 0.13 0.13 0.15 0.12 0.15 0.14 0.17

9 0.11 0.06 0.08 0.15 0.18 0.17 0.15 0.16 0.14 0.12 0.16 0.11 0.13 0.13 0.12

10 0.09 0.05 0.09 0.14 0.17 0.16 0.18 0.19 0.10 0.11 0.15 0.11 0.15 0.11 0.14

Table 15: EER for K- Nearest Neighbor (K=10) - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.13 0.12 0.11 0.08 0.08 0.08 0.03 0.04 0.02 0.12 0.11 0.18 0.15 0.16 0.16

2 0.16 0.12 0.11 0.09 0.11 0.10 0.03 0.03 0.03 0.09 0.07 0.15 0.08 0.10 0.12

3 0.14 0.11 0.11 0.07 0.07 0.08 0.04 0.04 0.04 0.12 0.08 0.22 0.13 0.16 0.14

4 0.13 0.08 0.10 0.07 0.08 0.09 0.02 0.03 0.03 0.09 0.12 0.19 0.13 0.15 0.14

5 0.12 0.08 0.11 0.08 0.06 0.08 0.03 0.04 0.03 0.07 0.11 0.19 0.15 0.17 0.15

6 0.12 0.07 0.10 0.08 0.08 0.09 0.03 0.04 0.03 0.09 0.11 0.19 0.13 0.17 0.15

7 0.11 0.09 0.10 0.08 0.07 0.09 0.03 0.03 0.04 0.10 0.09 0.15 0.12 0.17 0.17

8 0.17 0.10 0.10 0.09 0.10 0.10 0.03 0.04 0.03 0.10 0.10 0.14 0.16 0.17 0.13

9 0.19 0.11 0.12 0.12 0.11 0.10 0.04 0.03 0.04 0.12 0.09 0.18 0.15 0.15 0.14

10 0.13 0.08 0.10 0.07 0.08 0.09 0.04 0.03 0.04 0.08 0.11 0.18 0.15 0.16 0.14

Table 16: EER for K- Nearest Neighbor (K=10) - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.20 0.24 0.27 0.10 0.10 0.06 0.18 0.13 0.14 0.21 0.26 0.15 0.07 0.07 0.09

2 0.21 0.26 0.26 0.10 0.08 0.08 0.17 0.08 0.12 0.21 0.20 0.17 0.09 0.08 0.09

3 0.18 0.21 0.23 0.11 0.11 0.10 0.22 0.10 0.14 0.17 0.23 0.16 0.07 0.07 0.08

4 0.21 0.24 0.27 0.14 0.12 0.07 0.17 0.07 0.10 0.20 0.28 0.21 0.05 0.06 0.07

5 0.19 0.24 0.21 0.12 0.10 0.07 0.21 0.15 0.15 0.22 0.25 0.18 0.07 0.07 0.07

6 0.19 0.23 0.24 0.10 0.11 0.10 0.21 0.10 0.15 0.16 0.22 0.15 0.07 0.08 0.08

7 0.18 0.23 0.23 0.13 0.11 0.07 0.19 0.13 0.13 0.19 0.24 0.18 0.07 0.07 0.08

8 0.20 0.24 0.25 0.13 0.11 0.09 0.20 0.12 0.15 0.18 0.23 0.16 0.07 0.07 0.08

9 0.22 0.25 0.23 0.13 0.14 0.10 0.18 0.10 0.13 0.23 0.24 0.17 0.04 0.06 0.06

10 0.19 0.20 0.23 0.11 0.12 0.05 0.19 0.09 0.16 0.19 0.23 0.17 0.07 0.06 0.08

Table 17: EER for K Nearest Neighbor (K=10) - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.30 0.19 0.19 0.16 0.18 0.18 0.17 0.18 0.17 0.16 0.18 0.21 0.20 0.21 0.16

2 0.30 0.21 0.18 0.19 0.20 0.19 0.20 0.19 0.18 0.19 0.18 0.17 0.18 0.20 0.14

3 0.27 0.14 0.16 0.18 0.14 0.14 0.18 0.20 0.17 0.21 0.13 0.18 0.21 0.20 0.16

4 0.34 0.21 0.22 0.21 0.17 0.19 0.22 0.19 0.20 0.21 0.17 0.19 0.21 0.19 0.14

5 0.25 0.19 0.20 0.20 0.19 0.17 0.20 0.17 0.20 0.23 0.19 0.18 0.16 0.17 0.14

6 0.26 0.19 0.17 0.18 0.19 0.18 0.17 0.15 0.17 0.21 0.17 0.16 0.17 0.16 0.12

7 0.26 0.19 0.16 0.16 0.20 0.18 0.18 0.18 0.16 0.18 0.16 0.17 0.16 0.16 0.13

8 0.27 0.17 0.15 0.18 0.17 0.17 0.15 0.17 0.20 0.18 0.20 0.21 0.22 0.21 0.18

9 0.34 0.21 0.20 0.19 0.19 0.21 0.18 0.18 0.20 0.19 0.16 0.19 0.23 0.19 0.14

10 0.27 0.19 0.17 0.21 0.17 0.16 0.19 0.18 0.19 0.19 0.13 0.16 0.23 0.22 0.17

Table 18: EER for K Nearest Neighbor (K=10) - User 16-20

54



Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.21 0.18 0.21 0.21 0.20 0.19 0.23 0.19 0.23 0.20 0.19 0.17 0.16 0.21 0.23

2 0.19 0.14 0.15 0.20 0.20 0.16 0.18 0.16 0.18 0.20 0.16 0.17 0.17 0.20 0.23

3 0.19 0.18 0.20 0.23 0.20 0.22 0.19 0.17 0.17 0.20 0.19 0.16 0.18 0.16 0.20

4 0.19 0.17 0.16 0.27 0.20 0.17 0.21 0.17 0.19 0.21 0.19 0.17 0.18 0.16 0.21

5 0.19 0.19 0.20 0.19 0.19 0.18 0.19 0.16 0.20 0.22 0.20 0.17 0.16 0.20 0.23

6 0.20 0.11 0.13 0.18 0.19 0.14 0.19 0.17 0.19 0.22 0.19 0.17 0.13 0.21 0.20

7 0.18 0.13 0.18 0.18 0.19 0.17 0.20 0.18 0.19 0.22 0.20 0.20 0.14 0.21 0.17

8 0.20 0.15 0.18 0.24 0.21 0.19 0.16 0.15 0.17 0.19 0.16 0.17 0.16 0.19 0.19

9 0.21 0.14 0.17 0.22 0.19 0.19 0.21 0.17 0.22 0.22 0.20 0.17 0.14 0.19 0.17

10 0.18 0.16 0.18 0.23 0.20 0.20 0.20 0.17 0.21 0.22 0.18 0.15 0.18 0.21 0.23

Table 19: EER for K Nearest Neighbor (K=10) - User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.23 0.22 0.17 0.19 0.17 0.15 0.17 0.20 0.24 0.13 0.18 0.18 0.15 0.25 0.19

2 0.21 0.21 0.15 0.17 0.16 0.18 0.16 0.23 0.24 0.12 0.11 0.16 0.15 0.27 0.21

3 0.23 0.22 0.20 0.17 0.19 0.17 0.15 0.23 0.24 0.13 0.17 0.18 0.22 0.24 0.19

4 0.23 0.24 0.20 0.17 0.21 0.16 0.18 0.23 0.27 0.13 0.15 0.16 0.18 0.25 0.20

5 0.22 0.22 0.23 0.16 0.15 0.16 0.17 0.22 0.22 0.14 0.16 0.17 0.16 0.29 0.21

6 0.22 0.20 0.21 0.19 0.20 0.16 0.16 0.21 0.24 0.13 0.15 0.18 0.16 0.26 0.18

7 0.22 0.22 0.20 0.19 0.19 0.16 0.17 0.22 0.22 0.16 0.18 0.18 0.17 0.26 0.15

8 0.24 0.19 0.22 0.19 0.18 0.16 0.19 0.25 0.28 0.15 0.16 0.21 0.22 0.24 0.20

9 0.26 0.23 0.20 0.19 0.23 0.21 0.18 0.23 0.25 0.15 0.16 0.16 0.20 0.24 0.21

10 0.24 0.21 0.19 0.15 0.19 0.16 0.17 0.24 0.21 0.14 0.13 0.17 0.18 0.23 0.21

Table 20: EER for K Nearest Neighbor (K=10) - User 26-30
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.22 0.13 0.21 0.17 0.46 0.32 0.25 0.40 0.42 0.28 0.28 0.26 0.57 0.55 0.35

2 0.25 0.09 0.22 0.38 0.46 0.53 0.25 0.40 0.32 0.34 0.37 0.30 0.57 0.55 0.35

3 0.16 0.24 0.21 0.38 0.46 0.53 0.25 0.40 0.29 0.17 0.37 0.28 0.57 0.55 0.36

4 0.19 0.19 0.16 0.38 0.46 0.53 0.25 0.50 0.43 0.29 0.32 0.28 0.57 0.33 0.36

5 0.19 0.10 0.21 0.67 0.36 0.50 0.30 0.50 0.30 0.29 0.38 0.32 0.57 0.33 0.36

6 0.25 0.05 0.19 0.67 0.41 0.50 0.55 0.38 0.30 0.26 0.30 0.32 0.40 0.30 0.48

7 0.19 0.11 0.19 0.36 0.55 0.50 0.55 0.44 0.24 0.26 0.23 0.32 0.40 0.30 0.48

8 0.33 0.07 0.21 0.27 0.55 0.50 0.53 0.39 0.24 0.26 0.23 0.31 0.42 0.30 0.48

9 0.18 0.11 0.18 0.27 0.32 0.50 0.35 0.38 0.32 0.28 0.33 0.27 0.42 0.35 0.48

10 0.12 0.11 0.17 0.38 0.32 0.50 0.40 0.42 0.39 0.28 0.37 0.38 0.42 0.35 0.48

Table 21: EER for Linear Perceptron - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.21 0.17 0.20 0.21 0.34 0.36 0.05 0.01 0.05 0.17 0.09 0.17 0.43 0.33 0.36

2 0.21 0.29 0.22 0.21 0.27 0.26 0.03 0.03 0.06 0.25 0.17 0.11 0.42 0.67 0.25

3 0.30 0.17 0.21 0.22 0.27 0.26 0.04 0.05 0.03 0.29 0.16 0.11 0.40 0.67 0.25

4 0.20 0.30 0.24 0.22 0.37 0.41 0.05 0.10 0.26 0.36 0.09 0.50 0.36 0.67 0.39

5 0.20 0.26 0.30 0.22 0.29 0.37 0.08 0.03 0.24 0.40 0.24 0.11 0.36 0.36 0.39

6 0.20 0.31 0.26 0.30 0.23 0.33 0.08 0.09 0.20 0.38 0.08 0.42 0.23 0.36 0.23

7 0.20 0.21 0.28 0.30 0.23 0.40 0.06 0.03 0.04 0.38 0.27 0.42 0.23 0.36 0.23

8 0.33 0.20 0.22 0.30 0.23 0.36 0.04 0.04 0.08 0.25 0.10 0.42 0.41 0.36 0.42

9 0.35 0.20 0.21 0.30 0.36 0.23 0.05 0.11 0.21 0.18 0.10 0.21 0.32 0.36 0.42

10 0.28 0.18 0.21 0.32 0.28 0.23 0.04 0.05 0.17 0.24 0.25 0.44 0.33 0.36 0.25

Table 22: EER for Linear Perceptron - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.24 0.23 0.36 0.29 0.18 0.14 0.40 0.37 0.26 0.38 0.36 0.35 0.15 0.31 0.17

2 0.24 0.26 0.36 0.29 0.36 0.11 0.38 0.21 0.28 0.38 0.42 0.35 0.15 0.26 0.18

3 0.24 0.41 0.36 0.22 0.27 0.10 0.39 0.24 0.28 0.39 0.42 0.34 0.19 0.26 0.30

4 0.24 0.58 0.36 0.22 0.27 0.25 0.41 0.26 0.35 0.33 0.56 0.25 0.17 0.24 0.23

5 0.24 0.35 0.36 0.29 0.27 0.17 0.41 0.28 0.31 0.40 0.56 0.33 0.17 0.28 0.23

6 0.24 0.36 0.53 0.20 0.29 0.13 0.33 0.24 0.26 0.39 0.56 0.33 0.15 0.27 0.14

7 0.25 0.36 0.40 0.31 0.32 0.22 0.33 0.30 0.26 0.32 0.56 0.31 0.24 0.25 0.26

8 0.25 0.36 0.40 0.44 0.32 0.19 0.41 0.36 0.32 0.32 0.36 0.36 0.19 0.25 0.08

9 0.26 0.36 0.40 0.18 0.22 0.15 0.39 0.27 0.32 0.36 0.35 0.33 0.23 0.36 0.17

10 0.23 0.36 0.40 0.18 0.33 0.12 0.39 0.23 0.28 0.36 0.35 0.33 0.12 0.27 0.13

Table 23: EER for Linear Perceptron - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.13 0.30 0.21 0.29 0.25 0.29 0.26 0.41 0.28 0.60 0.43 0.36 0.53 0.44 0.54

2 0.29 0.22 0.35 0.31 0.29 0.29 0.26 0.33 0.28 0.60 0.35 0.38 0.31 0.44 0.29

3 0.37 0.25 0.26 0.31 0.50 0.29 0.26 0.24 0.56 0.60 0.46 0.36 0.31 0.50 0.23

4 0.37 0.25 0.26 0.32 0.50 0.29 0.26 0.50 0.67 0.60 0.31 0.34 0.31 0.43 0.23

5 0.46 0.23 0.33 0.32 0.40 0.33 0.26 0.33 0.67 0.60 0.31 0.34 0.31 0.43 0.27

6 0.41 0.22 0.33 0.32 0.40 0.33 0.26 0.33 0.65 0.47 0.32 0.34 0.31 0.50 0.25

7 0.38 0.22 0.22 0.32 0.40 0.33 0.26 0.50 0.50 0.44 0.60 0.33 0.37 0.50 0.26

8 0.40 0.29 0.22 0.32 0.28 0.50 0.26 0.60 0.35 0.44 0.36 0.41 0.42 0.50 0.27

9 0.30 0.29 0.22 0.32 0.28 0.31 0.67 0.28 0.35 0.44 0.36 0.34 0.42 0.54 0.27

10 0.30 0.20 0.35 0.27 0.29 0.36 0.67 0.28 0.60 0.43 0.36 0.34 0.34 0.54 0.27

Table 24: EER for Linear Perceptron - User 16-20
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Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.27 0.50 0.35 0.31 0.42 0.33 0.38 0.29 0.44 0.35 0.44 0.30 0.42 0.44 0.44

2 0.36 0.30 0.33 0.38 0.42 0.41 0.38 0.37 0.44 0.35 0.40 0.43 0.42 0.44 0.44

3 0.31 0.24 0.40 0.29 0.45 0.41 0.67 0.31 0.44 0.33 0.41 0.35 0.36 0.40 0.44

4 0.43 0.24 0.36 0.50 0.43 0.41 0.40 0.31 0.44 0.33 0.41 0.35 0.32 0.40 0.44

5 0.44 0.23 0.36 0.31 0.33 0.28 0.47 0.32 0.33 0.50 0.41 0.35 0.34 0.40 0.44

6 0.44 0.35 0.31 0.50 0.40 0.28 0.41 0.32 0.38 0.50 0.41 0.35 0.35 0.40 0.48

7 0.37 0.23 0.45 0.50 0.43 0.38 0.45 0.24 0.28 0.42 0.47 0.50 0.39 0.40 0.56

8 0.43 0.30 0.45 0.37 0.40 0.38 0.45 0.24 0.28 0.48 0.41 0.54 0.39 0.28 0.50

9 0.50 0.23 0.33 0.37 0.40 0.38 0.45 0.24 0.67 0.48 0.41 0.38 0.33 0.54 0.50

10 0.50 0.23 0.31 0.45 0.40 0.38 0.45 0.36 0.67 0.42 0.52 0.42 0.44 0.54 0.50

Table 25: EER for Linear Perceptron - User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.50 0.56 0.47 0.28 0.26 0.24 0.38 0.25 0.20 0.50 0.32 0.35 0.40 0.67 0.38

2 0.60 0.56 0.47 0.32 0.42 0.24 0.38 0.23 0.20 0.50 0.32 0.35 0.40 0.32 0.38

3 0.60 0.53 0.39 0.33 0.42 0.24 0.28 0.29 0.37 0.50 0.32 0.35 0.50 0.32 0.33

4 0.60 0.50 0.39 0.33 0.42 0.24 0.28 0.29 0.37 0.50 0.32 0.45 0.50 0.54 0.29

5 0.60 0.50 0.39 0.33 0.42 0.36 0.33 0.34 0.37 0.50 0.32 0.45 0.33 0.54 0.29

6 0.57 0.50 0.60 0.40 0.42 0.35 0.25 0.34 0.37 0.32 0.32 0.45 0.33 0.47 0.29

7 0.47 0.47 0.43 0.32 0.33 0.35 0.37 0.37 0.33 0.32 0.28 0.45 0.33 0.36 0.33

8 0.47 0.47 0.43 0.25 0.38 0.35 0.33 0.37 0.33 0.32 0.33 0.45 0.33 0.36 0.33

9 0.56 0.47 0.43 0.25 0.38 0.35 0.38 0.37 0.50 0.32 0.33 0.67 0.33 0.36 0.33

10 0.56 0.47 0.43 0.26 0.38 0.38 0.25 0.50 0.50 0.32 0.21 0.37 0.35 0.38 0.33

Table 26: EER for Linear Perceptron - User 26-30
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.12 0.20 0.16 0.22 0.16 0.24 0.28 0.28 0.30 0.22 0.24 0.23 0.40 0.46 0.21

2 0.10 0.12 0.16 0.18 0.28 0.21 0.31 0.28 0.22 0.16 0.22 0.27 0.33 0.45 0.19

3 0.09 0.12 0.12 0.18 0.28 0.19 0.33 0.25 0.17 0.13 0.25 0.27 0.35 0.45 0.21

4 0.10 0.13 0.15 0.19 0.24 0.19 0.29 0.26 0.18 0.15 0.21 0.25 0.26 0.45 0.19

5 0.14 0.25 0.21 0.26 0.19 0.27 0.28 0.29 0.26 0.14 0.24 0.26 0.20 0.25 0.23

6 0.07 0.10 0.10 0.20 0.32 0.20 0.34 0.22 0.19 0.11 0.25 0.25 0.38 0.45 0.20

7 0.15 0.22 0.18 0.25 0.13 0.26 0.31 0.28 0.21 0.23 0.19 0.20 0.16 0.26 0.20

8 0.11 0.13 0.16 0.17 0.31 0.16 0.33 0.26 0.22 0.14 0.29 0.28 0.37 0.26 0.24

9 0.09 0.11 0.13 0.19 0.28 0.19 0.29 0.25 0.20 0.14 0.27 0.24 0.37 0.42 0.24

10 0.09 0.13 0.14 0.24 0.21 0.27 0.28 0.30 0.24 0.15 0.18 0.27 0.22 0.48 0.17

Table 27: EER for Naive Bayes Classfier - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.30 0.12 0.23 0.14 0.11 0.15 0.03 0.03 0.03 0.10 0.08 0.18 0.20 0.21 0.21

2 0.30 0.20 0.20 0.11 0.11 0.12 0.03 0.07 0.02 0.10 0.06 0.17 0.31 0.21 0.15

3 0.27 0.23 0.15 0.08 0.10 0.12 0.03 0.07 0.03 0.08 0.09 0.14 0.37 0.21 0.18

4 0.26 0.18 0.14 0.08 0.10 0.11 0.03 0.06 0.01 0.09 0.07 0.14 0.30 0.21 0.19

5 0.26 0.16 0.22 0.14 0.13 0.14 0.03 0.03 0.04 0.12 0.05 0.24 0.16 0.27 0.25

6 0.20 0.27 0.13 0.07 0.06 0.10 0.02 0.10 0.03 0.11 0.10 0.21 0.38 0.25 0.17

7 0.20 0.15 0.21 0.14 0.13 0.15 0.03 0.02 0.02 0.10 0.06 0.18 0.17 0.23 0.21

8 0.27 0.25 0.16 0.11 0.11 0.13 0.04 0.08 0.05 0.08 0.08 0.10 0.37 0.25 0.17

9 0.27 0.20 0.16 0.08 0.09 0.10 0.04 0.11 0.03 0.09 0.10 0.17 0.34 0.22 0.16

10 0.25 0.14 0.18 0.11 0.13 0.13 0.03 0.04 0.03 0.10 0.07 0.16 0.25 0.21 0.19

Table 28: EER for Naive Bayes Classifier - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.26 0.33 0.33 0.13 0.13 0.08 0.13 0.11 0.10 0.22 0.39 0.19 0.04 0.07 0.04

2 0.24 0.35 0.34 0.13 0.12 0.06 0.16 0.14 0.14 0.24 0.35 0.29 0.06 0.13 0.06

3 0.18 0.33 0.32 0.11 0.08 0.05 0.18 0.18 0.15 0.25 0.31 0.29 0.05 0.15 0.06

4 0.23 0.37 0.32 0.12 0.11 0.06 0.16 0.16 0.13 0.22 0.35 0.26 0.05 0.13 0.05

5 0.26 0.37 0.34 0.21 0.20 0.09 0.21 0.11 0.17 0.24 0.40 0.23 0.05 0.05 0.06

6 0.19 0.35 0.30 0.10 0.09 0.08 0.23 0.18 0.18 0.27 0.31 0.23 0.05 0.17 0.06

7 0.23 0.35 0.29 0.19 0.17 0.11 0.19 0.19 0.17 0.22 0.38 0.20 0.07 0.05 0.05

8 0.20 0.33 0.33 0.13 0.11 0.09 0.20 0.16 0.16 0.29 0.31 0.52 0.05 0.17 0.06

9 0.23 0.35 0.31 0.10 0.09 0.07 0.21 0.17 0.14 0.27 0.32 0.52 0.04 0.14 0.05

10 0.22 0.30 0.34 0.16 0.15 0.06 0.15 0.10 0.12 0.20 0.38 0.19 0.05 0.13 0.05

Table 29: EER for Naive Bayes Classifier - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.37 0.34 0.19 0.26 0.23 0.22 0.19 0.20 0.16 0.23 0.27 0.27 0.25 0.23 0.20

2 0.35 0.27 0.18 0.24 0.22 0.22 0.20 0.18 0.18 0.22 0.23 0.22 0.18 0.21 0.16

3 0.34 0.25 0.14 0.20 0.18 0.19 0.17 0.10 0.09 0.18 0.17 0.24 0.19 0.18 0.17

4 0.34 0.29 0.18 0.23 0.21 0.21 0.23 0.17 0.17 0.17 0.23 0.22 0.18 0.19 0.14

5 0.34 0.32 0.20 0.25 0.24 0.23 0.20 0.18 0.18 0.24 0.31 0.33 0.26 0.26 0.20

6 0.27 0.21 0.15 0.21 0.18 0.19 0.16 0.12 0.11 0.19 0.18 0.24 0.20 0.18 0.13

7 0.34 0.32 0.19 0.24 0.21 0.22 0.19 0.15 0.16 0.21 0.24 0.26 0.20 0.22 0.17

8 0.28 0.19 0.14 0.20 0.18 0.19 0.17 0.13 0.11 0.18 0.20 0.22 0.17 0.19 0.16

9 0.31 0.22 0.17 0.21 0.17 0.20 0.18 0.13 0.13 0.16 0.18 0.23 0.18 0.17 0.13

10 0.35 0.22 0.15 0.22 0.19 0.21 0.18 0.14 0.14 0.22 0.24 0.25 0.19 0.24 0.21

Table 30: EER for Naive Bayes Classifier - User 16-20
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Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.29 0.33 0.26 0.26 0.22 0.20 0.25 0.23 0.28 0.23 0.25 0.17 0.26 0.27 0.20

2 0.26 0.33 0.29 0.26 0.20 0.32 0.21 0.18 0.23 0.22 0.22 0.13 0.21 0.19 0.20

3 0.22 0.39 0.30 0.20 0.17 0.33 0.16 0.12 0.22 0.18 0.19 0.13 0.17 0.21 0.20

4 0.22 0.37 0.29 0.24 0.19 0.27 0.20 0.22 0.23 0.19 0.21 0.11 0.23 0.20 0.28

5 0.29 0.18 0.25 0.27 0.21 0.12 0.24 0.21 0.28 0.23 0.24 0.17 0.28 0.27 0.23

6 0.23 0.39 0.25 0.19 0.13 0.12 0.18 0.15 0.22 0.18 0.20 0.14 0.13 0.20 0.41

7 0.26 0.23 0.21 0.20 0.18 0.15 0.20 0.19 0.23 0.25 0.26 0.18 0.24 0.21 0.22

8 0.22 0.23 0.29 0.19 0.17 0.15 0.17 0.17 0.21 0.17 0.21 0.13 0.19 0.20 0.22

9 0.20 0.23 0.29 0.22 0.18 0.36 0.20 0.17 0.22 0.18 0.22 0.12 0.14 0.20 0.36

10 0.26 0.30 0.30 0.23 0.18 0.26 0.22 0.18 0.26 0.20 0.21 0.12 0.24 0.24 0.25

Table 31: EER for Naive Bayes Classifier- User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.24 0.28 0.26 0.22 0.27 0.19 0.16 0.36 0.36 0.19 0.19 0.22 0.24 0.37 0.35

2 0.24 0.23 0.16 0.21 0.22 0.19 0.26 0.31 0.30 0.16 0.17 0.16 0.22 0.34 0.34

3 0.32 0.22 0.23 0.20 0.20 0.20 0.25 0.25 0.28 0.14 0.19 0.18 0.25 0.32 0.30

4 0.25 0.25 0.22 0.19 0.22 0.18 0.23 0.27 0.31 0.14 0.16 0.17 0.20 0.32 0.33

5 0.30 0.29 0.30 0.24 0.24 0.20 0.20 0.37 0.34 0.23 0.28 0.25 0.31 0.32 0.35

6 0.35 0.19 0.21 0.20 0.21 0.24 0.29 0.25 0.28 0.15 0.21 0.17 0.17 0.30 0.29

7 0.24 0.19 0.30 0.25 0.27 0.19 0.23 0.37 0.29 0.22 0.25 0.20 0.31 0.40 0.35

8 0.35 0.24 0.22 0.21 0.22 0.23 0.28 0.25 0.29 0.16 0.20 0.19 0.22 0.33 0.29

9 0.34 0.23 0.22 0.20 0.21 0.21 0.25 0.25 0.32 0.14 0.19 0.17 0.20 0.32 0.32

10 0.28 0.28 0.24 0.20 0.23 0.17 0.18 0.34 0.32 0.19 0.19 0.18 0.26 0.35 0.31

Table 32: EER for Naive Bayes Classifier - User 26-30
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.06 0.05 0.07 0.11 0.09 0.15 0.17 0.17 0.09 0.09 0.11 0.11 0.08 0.14 0.12

2 0.02 0.03 0.06 0.13 0.11 0.11 0.19 0.18 0.10 0.09 0.12 0.10 0.09 0.10 0.10

3 0.04 0.04 0.07 0.12 0.11 0.14 0.15 0.16 0.11 0.09 0.13 0.09 0.08 0.09 0.09

4 0.04 0.05 0.09 0.13 0.09 0.13 0.15 0.16 0.10 0.06 0.11 0.08 0.09 0.10 0.10

5 0.03 0.03 0.05 0.15 0.12 0.12 0.16 0.16 0.11 0.08 0.11 0.12 0.11 0.13 0.11

6 0.04 0.03 0.07 0.11 0.12 0.12 0.15 0.16 0.12 0.12 0.13 0.13 0.08 0.12 0.10

7 0.04 0.03 0.05 0.12 0.10 0.13 0.17 0.15 0.12 0.10 0.12 0.11 0.11 0.11 0.11

8 0.07 0.04 0.07 0.15 0.11 0.15 0.15 0.18 0.09 0.09 0.14 0.11 0.12 0.13 0.12

9 0.07 0.03 0.06 0.13 0.13 0.14 0.15 0.13 0.12 0.11 0.15 0.13 0.08 0.11 0.12

10 0.07 0.04 0.07 0.10 0.10 0.12 0.15 0.16 0.07 0.08 0.12 0.11 0.08 0.13 0.11

Table 33: EER for Random Forest Classfier - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.11 0.09 0.09 0.04 0.04 0.07 0.01 0.01 0.01 0.05 0.05 0.09 0.10 0.09 0.13

2 0.08 0.06 0.06 0.03 0.03 0.03 0.01 0.02 0.02 0.06 0.03 0.10 0.06 0.06 0.10

3 0.11 0.06 0.07 0.06 0.05 0.07 0.03 0.03 0.03 0.06 0.03 0.10 0.08 0.11 0.13

4 0.09 0.07 0.08 0.05 0.03 0.06 0.01 0.01 0.01 0.06 0.04 0.09 0.12 0.09 0.09

5 0.10 0.05 0.08 0.03 0.03 0.04 0.02 0.02 0.02 0.03 0.05 0.06 0.10 0.09 0.10

6 0.09 0.03 0.03 0.02 0.03 0.04 0.01 0.02 0.02 0.05 0.04 0.11 0.09 0.08 0.13

7 0.09 0.06 0.07 0.04 0.03 0.05 0.03 0.03 0.03 0.06 0.06 0.09 0.06 0.08 0.13

8 0.10 0.09 0.10 0.06 0.05 0.07 0.03 0.03 0.03 0.05 0.04 0.10 0.09 0.10 0.11

9 0.13 0.07 0.09 0.05 0.04 0.08 0.03 0.03 0.03 0.03 0.03 0.07 0.09 0.08 0.09

10 0.10 0.05 0.06 0.04 0.07 0.06 0.02 0.03 0.03 0.05 0.05 0.11 0.09 0.10 0.11

Table 34: EER for Random Forest Classifier - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.13 0.15 0.15 0.07 0.07 0.03 0.10 0.09 0.08 0.17 0.20 0.10 0.03 0.03 0.04

2 0.13 0.18 0.18 0.05 0.05 0.04 0.13 0.06 0.09 0.18 0.16 0.10 0.05 0.06 0.07

3 0.11 0.12 0.12 0.08 0.06 0.05 0.11 0.08 0.12 0.13 0.16 0.14 0.04 0.05 0.05

4 0.15 0.16 0.14 0.09 0.06 0.04 0.09 0.08 0.11 0.15 0.16 0.16 0.04 0.04 0.04

5 0.13 0.15 0.12 0.07 0.06 0.03 0.13 0.09 0.10 0.15 0.15 0.13 0.02 0.02 0.02

6 0.11 0.12 0.11 0.07 0.06 0.07 0.10 0.08 0.10 0.12 0.14 0.07 0.03 0.04 0.04

7 0.12 0.17 0.17 0.09 0.09 0.06 0.08 0.10 0.09 0.15 0.21 0.07 0.04 0.05 0.04

8 0.12 0.16 0.15 0.08 0.06 0.06 0.10 0.09 0.12 0.12 0.14 0.08 0.03 0.03 0.03

9 0.10 0.14 0.13 0.10 0.08 0.04 0.11 0.07 0.07 0.13 0.18 0.11 0.03 0.03 0.01

10 0.13 0.16 0.13 0.07 0.05 0.05 0.09 0.06 0.09 0.15 0.13 0.09 0.03 0.04 0.04

Table 35: EER for Naive Bayes Classifier - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.17 0.16 0.12 0.08 0.08 0.11 0.08 0.05 0.08 0.09 0.09 0.19 0.10 0.13 0.15

2 0.20 0.14 0.11 0.10 0.11 0.13 0.13 0.10 0.15 0.08 0.11 0.12 0.14 0.15 0.12

3 0.16 0.09 0.09 0.08 0.06 0.08 0.08 0.05 0.06 0.10 0.11 0.13 0.13 0.15 0.13

4 0.19 0.14 0.10 0.14 0.14 0.17 0.13 0.09 0.12 0.10 0.10 0.15 0.10 0.13 0.12

5 0.15 0.11 0.07 0.10 0.10 0.13 0.08 0.08 0.10 0.08 0.09 0.16 0.07 0.14 0.13

6 0.15 0.13 0.06 0.10 0.11 0.10 0.07 0.08 0.07 0.09 0.08 0.16 0.15 0.13 0.09

7 0.22 0.15 0.12 0.08 0.09 0.11 0.08 0.09 0.09 0.07 0.10 0.16 0.11 0.12 0.10

8 0.19 0.10 0.09 0.07 0.10 0.09 0.08 0.09 0.07 0.06 0.09 0.17 0.15 0.13 0.12

9 0.16 0.14 0.10 0.11 0.09 0.13 0.09 0.11 0.08 0.06 0.07 0.15 0.14 0.14 0.13

10 0.17 0.13 0.09 0.12 0.11 0.12 0.06 0.07 0.09 0.11 0.10 0.14 0.12 0.17 0.12

Table 36: EER for Random Forest Classifier - User 16-20
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Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.17 0.12 0.16 0.10 0.09 0.09 0.11 0.12 0.15 0.16 0.14 0.13 0.08 0.10 0.14

2 0.13 0.09 0.10 0.11 0.13 0.13 0.11 0.12 0.12 0.16 0.09 0.10 0.08 0.11 0.13

3 0.11 0.15 0.17 0.14 0.15 0.12 0.08 0.06 0.10 0.14 0.10 0.09 0.09 0.08 0.12

4 0.14 0.10 0.13 0.14 0.12 0.10 0.12 0.11 0.12 0.13 0.11 0.07 0.09 0.07 0.13

5 0.13 0.11 0.14 0.08 0.12 0.14 0.10 0.10 0.08 0.13 0.10 0.09 0.10 0.10 0.14

6 0.15 0.10 0.12 0.09 0.05 0.09 0.10 0.12 0.13 0.13 0.11 0.11 0.05 0.10 0.12

7 0.14 0.09 0.12 0.07 0.13 0.13 0.10 0.10 0.11 0.16 0.12 0.12 0.09 0.09 0.10

8 0.15 0.10 0.10 0.14 0.15 0.13 0.10 0.11 0.10 0.12 0.10 0.09 0.05 0.10 0.13

9 0.14 0.11 0.13 0.13 0.13 0.14 0.10 0.12 0.13 0.13 0.11 0.08 0.08 0.08 0.11

10 0.13 0.10 0.12 0.12 0.10 0.09 0.12 0.11 0.10 0.13 0.09 0.09 0.11 0.08 0.14

Table 37: EER for Random Forest Classifier- User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.18 0.16 0.13 0.12 0.13 0.12 0.10 0.17 0.15 0.09 0.12 0.14 0.11 0.16 0.10

2 0.19 0.14 0.12 0.10 0.12 0.10 0.14 0.17 0.15 0.10 0.11 0.13 0.14 0.20 0.13

3 0.14 0.16 0.15 0.11 0.14 0.12 0.12 0.17 0.13 0.11 0.13 0.12 0.16 0.16 0.18

4 0.19 0.15 0.12 0.10 0.12 0.08 0.13 0.18 0.15 0.11 0.13 0.12 0.15 0.18 0.15

5 0.19 0.16 0.14 0.10 0.09 0.11 0.11 0.15 0.14 0.11 0.13 0.13 0.12 0.19 0.13

6 0.17 0.16 0.15 0.11 0.11 0.07 0.14 0.17 0.11 0.11 0.12 0.10 0.15 0.19 0.13

7 0.16 0.17 0.14 0.09 0.11 0.09 0.12 0.16 0.16 0.16 0.15 0.14 0.14 0.14 0.09

8 0.19 0.16 0.13 0.13 0.09 0.09 0.16 0.20 0.17 0.13 0.14 0.16 0.16 0.17 0.12

9 0.17 0.17 0.14 0.12 0.14 0.15 0.10 0.16 0.12 0.13 0.12 0.12 0.17 0.17 0.14

10 0.19 0.17 0.13 0.12 0.13 0.14 0.11 0.19 0.15 0.14 0.15 0.11 0.16 0.17 0.13

Table 38: EER for Random Forest Classifier - User 26-30
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Users

1 2 3 4 5

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.07 0.10 0.12 0.20 0.21 0.23 0.27 0.19 0.16 0.12 0.18 0.14 0.19 0.14 0.15

2 0.08 0.06 0.08 0.19 0.20 0.21 0.28 0.22 0.17 0.14 0.18 0.15 0.17 0.17 0.20

3 0.06 0.07 0.09 0.19 0.19 0.21 0.28 0.22 0.13 0.13 0.18 0.13 0.16 0.18 0.14

4 0.06 0.07 0.07 0.16 0.16 0.17 0.22 0.19 0.16 0.13 0.14 0.13 0.18 0.17 0.16

5 0.04 0.07 0.09 0.18 0.20 0.19 0.28 0.19 0.15 0.14 0.18 0.14 0.15 0.17 0.14

6 0.05 0.07 0.08 0.17 0.20 0.19 0.26 0.21 0.20 0.16 0.18 0.16 0.14 0.17 0.13

7 0.07 0.09 0.10 0.19 0.22 0.22 0.28 0.22 0.17 0.12 0.17 0.13 0.11 0.17 0.16

8 0.08 0.10 0.11 0.23 0.20 0.25 0.26 0.22 0.17 0.12 0.20 0.15 0.19 0.18 0.20

9 0.10 0.09 0.12 0.20 0.21 0.22 0.21 0.22 0.15 0.15 0.18 0.15 0.16 0.14 0.17

10 0.06 0.08 0.11 0.19 0.21 0.20 0.25 0.22 0.17 0.15 0.15 0.16 0.18 0.19 0.15

Table 39: EER for SVM Classfier - User 1-5

Users

6 7 8 9 10

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.19 0.07 0.11 0.07 0.07 0.08 0.01 0.01 0.01 0.14 0.16 0.17 0.19 0.22 0.17

2 0.17 0.10 0.13 0.07 0.06 0.07 0.01 0.03 0.01 0.13 0.12 0.20 0.20 0.19 0.13

3 0.17 0.08 0.08 0.07 0.06 0.07 0.02 0.04 0.03 0.12 0.12 0.14 0.19 0.19 0.13

4 0.18 0.10 0.11 0.06 0.06 0.06 0.01 0.02 0.01 0.11 0.11 0.16 0.18 0.19 0.14

5 0.17 0.08 0.08 0.04 0.04 0.05 0.02 0.03 0.03 0.08 0.13 0.15 0.19 0.18 0.13

6 0.14 0.07 0.06 0.03 0.04 0.04 0.01 0.02 0.03 0.13 0.11 0.20 0.20 0.19 0.13

7 0.14 0.11 0.12 0.07 0.05 0.08 0.03 0.03 0.03 0.12 0.13 0.20 0.24 0.23 0.18

8 0.17 0.12 0.16 0.10 0.08 0.11 0.03 0.02 0.03 0.13 0.14 0.19 0.20 0.25 0.16

9 0.16 0.12 0.13 0.07 0.09 0.09 0.03 0.03 0.03 0.12 0.11 0.19 0.18 0.21 0.16

10 0.15 0.08 0.08 0.08 0.06 0.09 0.04 0.04 0.03 0.12 0.11 0.15 0.20 0.22 0.16

Table 40: EER for SVM Classifier - User 6-10
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Users

11 12 13 14 15

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.18 0.28 0.24 0.09 0.07 0.05 0.18 0.12 0.14 0.20 0.32 0.21 0.03 0.06 0.06

2 0.24 0.28 0.27 0.12 0.08 0.06 0.25 0.13 0.15 0.20 0.23 0.19 0.06 0.07 0.06

3 0.19 0.28 0.25 0.12 0.12 0.07 0.23 0.09 0.17 0.21 0.25 0.20 0.04 0.07 0.06

4 0.21 0.34 0.28 0.11 0.12 0.04 0.22 0.09 0.11 0.22 0.27 0.20 0.06 0.06 0.07

5 0.20 0.31 0.25 0.08 0.09 0.05 0.22 0.13 0.15 0.19 0.27 0.20 0.04 0.04 0.05

6 0.15 0.28 0.22 0.09 0.08 0.06 0.24 0.13 0.15 0.19 0.25 0.19 0.07 0.07 0.07

7 0.22 0.28 0.26 0.13 0.13 0.09 0.26 0.14 0.16 0.21 0.33 0.22 0.04 0.06 0.08

8 0.21 0.28 0.23 0.11 0.13 0.07 0.25 0.11 0.13 0.21 0.25 0.15 0.03 0.04 0.06

9 0.21 0.27 0.25 0.10 0.08 0.09 0.23 0.12 0.13 0.21 0.24 0.18 0.03 0.03 0.04

10 0.18 0.28 0.23 0.10 0.09 0.06 0.20 0.12 0.14 0.18 0.26 0.18 0.04 0.04 0.06

Table 41: EER for SVM Classifier - User 11-15

Users

16 17 18 19 20

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.25 0.18 0.14 0.16 0.13 0.15 0.12 0.20 0.20 0.17 0.17 0.20 0.21 0.23 0.16

2 0.28 0.12 0.11 0.17 0.17 0.17 0.18 0.24 0.24 0.18 0.23 0.24 0.21 0.23 0.18

3 0.27 0.16 0.12 0.16 0.13 0.13 0.16 0.17 0.16 0.21 0.16 0.25 0.23 0.23 0.19

4 0.27 0.19 0.15 0.20 0.21 0.18 0.22 0.22 0.18 0.22 0.21 0.25 0.21 0.25 0.19

5 0.27 0.15 0.09 0.18 0.16 0.17 0.16 0.19 0.19 0.19 0.17 0.24 0.20 0.23 0.17

6 0.24 0.13 0.09 0.15 0.14 0.11 0.12 0.16 0.15 0.19 0.17 0.23 0.20 0.23 0.18

7 0.25 0.18 0.12 0.16 0.15 0.12 0.13 0.21 0.18 0.20 0.18 0.25 0.18 0.21 0.18

8 0.24 0.13 0.09 0.13 0.12 0.13 0.13 0.19 0.18 0.20 0.18 0.24 0.21 0.22 0.16

9 0.23 0.15 0.11 0.15 0.16 0.16 0.17 0.21 0.18 0.18 0.19 0.21 0.22 0.22 0.16

10 0.25 0.16 0.11 0.15 0.14 0.15 0.16 0.19 0.19 0.20 0.16 0.21 0.21 0.23 0.19

Table 42: EER for SVM Classifier - User 16-20
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Users

21 22 23 24 25

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.24 0.22 0.20 0.17 0.16 0.15 0.18 0.14 0.22 0.26 0.23 0.22 0.12 0.24 0.29

2 0.21 0.20 0.19 0.23 0.22 0.19 0.19 0.13 0.20 0.26 0.25 0.18 0.13 0.24 0.28

3 0.23 0.20 0.21 0.22 0.22 0.19 0.15 0.13 0.24 0.21 0.23 0.18 0.15 0.24 0.27

4 0.21 0.21 0.18 0.22 0.23 0.20 0.20 0.16 0.19 0.24 0.21 0.15 0.14 0.24 0.24

5 0.23 0.18 0.18 0.18 0.20 0.17 0.19 0.17 0.20 0.23 0.18 0.19 0.12 0.23 0.27

6 0.22 0.18 0.20 0.19 0.18 0.17 0.16 0.13 0.20 0.25 0.22 0.18 0.11 0.24 0.26

7 0.22 0.21 0.22 0.20 0.22 0.21 0.16 0.15 0.23 0.27 0.26 0.19 0.14 0.23 0.23

8 0.21 0.16 0.17 0.20 0.20 0.19 0.20 0.15 0.18 0.24 0.23 0.19 0.10 0.25 0.25

9 0.21 0.17 0.19 0.22 0.19 0.18 0.16 0.16 0.21 0.24 0.20 0.16 0.15 0.21 0.23

10 0.21 0.17 0.15 0.19 0.17 0.17 0.17 0.13 0.22 0.22 0.19 0.18 0.14 0.22 0.25

Table 43: EER for SVM Classifier- User 21-25

Users

26 27 28 29 30

Block # Block # Block # Block # Block #

Cross Validation # 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.51 0.34 0.27 0.19 0.26 0.29 0.12 0.23 0.24 0.14 0.18 0.23 0.22 0.29 0.24

2 0.47 0.33 0.24 0.19 0.25 0.26 0.21 0.25 0.27 0.16 0.19 0.19 0.25 0.30 0.29

3 0.51 0.33 0.26 0.19 0.23 0.24 0.18 0.26 0.24 0.14 0.19 0.21 0.27 0.34 0.30

4 0.48 0.29 0.23 0.19 0.24 0.19 0.17 0.25 0.24 0.14 0.17 0.18 0.25 0.32 0.29

5 0.48 0.36 0.27 0.18 0.18 0.19 0.17 0.23 0.21 0.12 0.15 0.21 0.22 0.32 0.29

6 0.48 0.32 0.26 0.16 0.22 0.23 0.16 0.22 0.21 0.16 0.21 0.20 0.23 0.36 0.28

7 0.52 0.36 0.32 0.22 0.26 0.26 0.21 0.31 0.27 0.18 0.19 0.24 0.23 0.35 0.27

8 0.52 0.33 0.24 0.22 0.26 0.26 0.16 0.29 0.30 0.16 0.22 0.22 0.30 0.34 0.27

9 0.51 0.33 0.24 0.21 0.24 0.25 0.15 0.22 0.25 0.16 0.19 0.20 0.29 0.33 0.32

10 0.47 0.33 0.25 0.21 0.26 0.27 0.14 0.26 0.20 0.16 0.18 0.17 0.23 0.30 0.25

Table 44: EER for SVM Classifier - User 26-30
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A.2 Determine the Best Train:Test size ratio
It is imperative to periodically update the user model with the latest genuine user data. In section
10 we determine the optimal amount of prior data that must be used to update the user model.

We used the same experimental setup as Section 8.1. However, the genuine train and test set
sampling strategy was modified as shown in Fig. 10.1:

1. The genuine data was divided into 12 equal blocks of size l/12. This provides the flexibility
to increase the train set in relatively smaller steps.

2. For a given Block i as the test set, in iteration j where 6 ≤ i ≤ 12, 1 ≤ j ≤ 5:

(a) Generate a user model using Blocks i-1 to i-j together as a train set as shown in Fig.
10.1.

(b) Calculate EER for this user model.

Test Block # Train Block #

1 2 3 4 5 6 7 8 9 10 11

1 - - - - - - - - - - -

2 9.09 - - - - - - - - - -

3 12.21 8.18 - - - - - - - - -

4 15.77 15.68 12.08 - - - - - - - -

5 14.24 10.59 11.16 9.75 - - - - - - -

6 16.95 11.49 12.50 8.01 5.52 - - - - - -

7 16.53 13.28 15.02 13.98 12.74 7.72 - - - - -

8 14.86 18.15 16.44 17.32 11.86 11.10 7.47 - - - -

9 13.52 23.87 17.70 16.49 17.60 17.67 19.30 9.43 - - -

10 14.18 14.54 17.43 20.94 16.56 15.69 13.33 14.54 6.47 - -

11 17.57 21.85 17.55 13.81 16.74 15.07 17.63 10.30 15.70 11.33 -

12 22.98 17.00 16.89 15.92 17.06 14.89 14.10 11.91 12.68 12.72 10.3

Table 45: EER performance when blocks are divided in 12 equal blocks and Train : Test dataset
ratio =1 : 1
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Test Block # Train Block #

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

1 - - - - - - - - - -

2 - - - - - - - - - -

3 8.66 - - - - - - - - -

4 12.86 6.33 - - - - - - - -

5 12.13 7.75 9.41 - - - - - - -

6 15.70 8.23 7.21 3.84 - - - - - -

7 15.77 12.47 12.51 8.30 6.09 - - - - -

8 11.58 12.26 11.46 8.87 10.62 6.04 - - - -

9 16.23 18.12 14.52 10.04 14.94 12.43 7.35 - - -

10 8.98 10.37 10.73 14.79 17.53 13.57 9.24 6.16 - -

11 18.28 13.91 13.03 15.92 12.96 12.60 12.74 7.34 8.49 -

12 20.83 13.46 14.24 13.48 16.77 10.38 11.48 8.31 9.77 12.72

Table 46: EER performance when blocks are divided in 12 equal blocks and Train : Test dataset
ratio =2 : 1

Test Block # Train Block #

1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 9-11

1 - - - - - - - - -

2 - - - - - - - - -

3 - - - - - - - - -

4 7.50 - - - - - - - -

5 7.42 6.92 - - - - - - -

6 6.90 7.83 5.11 - - - - - -

7 12.67 7.82 8.29 6.37 - - - - -

8 9.87 8.09 7.01 6.99 7.01 - - - -

9 16.34 12.55 9.84 12.89 12.83 8.12 - - -

10 8.98 9.05 11.13 11.96 10.61 8.51 6.37 - -

11 16.52 12.60 11.51 11.67 16.10 9.05 8.18 7.62 -

12 14.11 12.69 13.47 14.08 12.09 10.07 8.62 8.21 7.36

Table 47: EER performance when blocks are divided in 12 equal blocks and Train : Test dataset
ratio =3 : 1
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Test Block # Train Block #

1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11

1 - - - - - - - -

2 - - - - - - - -

3 - - - - - - - -

4 - - - - - - - -

5 5.92 - - - - - - -

6 4.61 6.12 - - - - - -

7 10.71 5.79 5.23 - - - - -

8 7.41 6.58 6.68 4.06 - - - -

9 13.21 11.74 10.48 11.38 7.53 - - -

10 6.41 8.55 11.31 7.89 8.35 3.57 - -

11 12.31 11.19 12.65 11.90 9.78 7.02 6.83 -

12 11.71 10.87 11.58 12.31 10.27 5.87 7.88 7.66

Table 48: EER performance when blocks are divided in 12 equal blocks and Train : Test dataset
ratio =4 : 1

Test Block # Train Block #

1-5 2-6 3-7 4-8 5-9 6-10 7-11

1 - - - - - - -

2 - - - - - - -

3 - - - - - - -

4 - - - - - - -

5 - - - - - - -

6 6.71 - - - - - -

7 11.74 7.84 - - - - -

8 9.37 8.52 6.81 - - - -

9 14.14 11.35 8.48 11.29 - - -

10 7.81 8.42 9.81 13.16 9.49 - -

11 15.23 10.26 10.42 12.23 14.17 8.35 -

12 13.10 11.62 11.36 13.21 12.81 9.27 8.13

Table 49: EER performance when blocks are divided in 12 equal blocks and Train : Test dataset
ratio =3 : 1
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A.3 Publications
A.3.1 Conference Publication

1. Palaskar, N.; Syed, Z.; Banerjee, S.; Tang, C., "Empirical Techniques to Detect and Mitigate
the Effects of Irrevocably Evolving User Profiles in Touch-based Authentication Systems,",
IEEE Int’l Symposium on High Assurance Systems Engineering (HASE), 2016.

A.3.2 Under Preparation

1. Journal Article: Empirical Techniques to Detect and Mitigate the Effects of Irrevocably
Evolving User Profiles in Touch-based Authentication Systems.

2. Conference Paper: A Unique Naive Bayes and/or simple fusion of Random Forest and
Clustering to improve Mis-Classification rates in Touch Based Authentication Systems.

A.3.3 Project Code Repository

All the codes are written in Python scripts and its is hosted at https://github.com/npalaska

71

https://github.com/npalaska 


References
[1] P. R. Center, “Cell phone and smartphone ownership demographics,” 2014.

[2] Gartner, “Market share analysis: Mobile phones, worldwide, q2 2013,” 2013.

[3] F. C. Commission, “Announcement of new initiatives to combat smartphone and data theft,”
2012.

[4] “Business insider.”

[5] iJailbreak, “ios 5 iphone lockscreen glitch allows you to bypass password protection and explore
the phone.app!,” 2012.

[6] J. A., “How to bypass android pattern lock screen,” 2012.

[7] Z. Syed, J. Helmick, S. Banerjee, and B. Cukic, “Effect of user posture and device size on the
performance of touch-based authentication systems,” in High Assurance Systems Engineering
(HASE), 2015 IEEE 16th International Symposium on, pp. 10–17, Jan 2015.

[8] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics: On the applicability
of touchscreen input as a behavioral biometric for continuous authentication,” Information
Forensics and Security, IEEE Transactions on, vol. 8, pp. 136–148, Jan 2013.

[9] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch me once and i
know it’s you!: Implicit authentication based on touch screen patterns,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, (New York, NY,
USA), pp. 987–996, ACM, 2012.

[10] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smartphones.,” in NDSS,
2013.

[11] T. Feng, Z. Liu, K. A. Kwon, W. Shi, B. Carbunar, Y. Jiang, and N. Nguyen, “Continuous
mobile authentication using touchscreen gestures,” in Homeland Security (HST), 2012 IEEE
Conference on Technologies for, pp. 451–456, Nov 2012.

[12] H. Xu, Y. Zhou, and M. R. Lyu, “Towards continuous and passive authentication via touch
biometrics: An experimental study on smartphones,” in Symposium On Usable Privacy and
Security, SOUPS, vol. 14, pp. 187–198, 2014.

[13] A. Serwadda, V. Phoha, and Z. Wang, “Which verifiers work?: A benchmark evaluation of
touch-based authentication algorithms,” in Biometrics: Theory, Applications and Systems
(BTAS), 2013 IEEE Sixth International Conference on, pp. 1–8, Sept 2013.

72



[14] C. Shen, Y. Zhang, Z. Cai, T. Yu, and X. Guan, “Touch-interaction behavior for continuous
user authentication on smartphones,” in Biometrics (ICB), 2015 International Conference
on, pp. 157–162, May 2015.

[15] “Vision mobile. developer economics q3 2013 state of the developer nation,” 2013.

[16] “Gartner. market share analysis: Mobile phones, worldwide, q2 2013, 2013,” 2013.

[17] “Android sdk. get the android sdk,” 2013.

[18] Z. Syed, S. Banerjee, Q. Cheng, and B. Cukic, “Effects of user habituation in keystroke
dynamics on password security policy,” in High-Assurance Systems Engineering (HASE), 2011
IEEE 13th International Symposium on, pp. 352–359, Nov 2011.

[19] T. Boult, “Robust distance measures for face-recognition supporting revocable biometric to-
kens,” in Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Con-
ference on, pp. 560–566, April 2006.

[20] V. Perlibakas, “Distance measures for pca-based face recognition,” Pattern Recognition Let-
ters, vol. 25, no. 6, pp. 711 – 724, 2004.

[21] Z. Syed, S. Banerjee, Q. Cheng, and B. Cukic, “Effects of user habituation in keystroke
dynamics on password security policy,” in High-Assurance Systems Engineering (HASE), 2011
IEEE 13th International Symposium on, pp. 352–359, Nov 2011.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] N. Kato, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto, “A handwritten character recogni-
tion system using directional element feature and asymmetric mahalanobis distance,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 258–262, Mar 1999.

[24] L. P. Dinu and R. T. Ionescu, “A rank-based approach of cosine similarity with applications
in automatic classification,” in Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2012 14th International Symposium on, pp. 260–264, Sept 2012.

[25] A. Strehl, J. Ghosh, and R. Mooney, “Impact of similarity measures on web-page clustering,”
in Workshop on Artificial Intelligence for Web Search (AAAI 2000), pp. 58–64, 2000.

73



[26] B. Nie, J. Du, H. Liu, G. Xu, Z. Wang, Y. He, and B. Li, “Crowds’ classification using hier-
archical cluster, rough sets, principal component analysis and its combination,” in Computer
Science-Technology and Applications, 2009. IFCSTA ’09. International Forum on, vol. 1,
pp. 287–290, Dec 2009.

[27] N. Palaskar, Z. Syed, S. Banerjee, and C. Tang, “Empirical techniques to detect and mitigate
the effects of irrevocably evolving user profiles in touch-based authentication systems,” in
2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE),
pp. 9–16, Jan 2016.

[28] Z. Syed, J. Helmick, S. Banerjee, and B. Cukic, “Effect of user posture and device size on the
performance of touch-based authentication systems,” in High Assurance Systems Engineering
(HASE), 2015 IEEE 16th International Symposium on, pp. 10–17, Jan 2015.

74


	Palaskar2016_Signed
	Palaskar2016
	Introduction & Motivation
	Contributions
	Effects of Habituation
	Effects of different classifiers Fusion mechanism 

	Thesis Organization
	Related Work
	Dataset used and preprocessing
	Data Pruning
	Feature Normalization

	I User Habituation in Continual Authentication 
	Section Organization
	Measuring habituation via similarity measures
	Experimental Setup
	Results and Conclusions

	Effect of intra-user variance on classifier performance
	Experimental Setup
	Addressing potential confounding factors

	Effect of change in user profile on classifier performance
	What train set size works best?
	Results and Conclusions

	Quantifying the benefits of vote based reclassification and a benchmark reporting framework
	Experimental Setup
	Results and Conclusions

	Summary and Future work

	II A cluster analysis based fusion algorithm to improve classification performance in touch based continual authentication system
	Overview of Proposed System
	Clustering Theory
	Cohesion similarity measures.
	Distance Measure
	Similarity Measure

	Procedure to generate the optimal set of clusters for touch based continual authentication system
	Experimental Setup to determine the best similarity measure & parameter combination
	Results and Discussion

	Fusing non-supervised and supervised algorithm
	Fusion using Bayesian Learning
	Experimental Setup:
	Results and Conclusion
	Fusion using simple rule of combination
	Results and Conclusion

	Summary and Future Work
	Appendix
	Benchmark analysis of classification algorithms
	Determine the Best Train:Test size ratio
	Publications
	Conference Publication
	Under Preparation 
	Project Code Repository 


	References





