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Purpose: The authors are developing a computer-aided detection system to assist radiologists in
analysis of coronary artery disease in coronary CT angiograms (cCTA). This study evaluated the
accuracy of the authors’ coronary artery segmentation and tracking method which are the essential
steps to define the search space for the detection of atherosclerotic plaques.
Methods: The heart region in cCTA is segmented and the vascular structures are enhanced using
the authors’ multiscale coronary artery response (MSCAR) method that performed 3D multiscale
filtering and analysis of the eigenvalues of Hessian matrices. Starting from seed points at the ori-
gins of the left and right coronary arteries, a 3D rolling balloon region growing (RBG) method that
adapts to the local vessel size segmented and tracked each of the coronary arteries and identifies
the branches along the tracked vessels. The branches are queued and subsequently tracked until the
queue is exhausted. With Institutional Review Board approval, 62 cCTA were collected retrospec-
tively from the authors’ patient files. Three experienced cardiothoracic radiologists manually tracked
and marked center points of the coronary arteries as reference standard following the 17-segment
model that includes clinically significant coronary arteries. Two radiologists visually examined the
computer-segmented vessels and marked the mistakenly tracked veins and noisy structures as false
positives (FPs). For the 62 cases, the radiologists marked a total of 10191 center points on 865 visible
coronary artery segments.
Results: The computer-segmented vessels overlapped with 83.6% (8520/10191) of the center points.
Relative to the 865 radiologist-marked segments, the sensitivity reached 91.9% (795/865) if a true
positive is defined as a computer-segmented vessel that overlapped with at least 10% of the reference
center points marked on the segment. When the overlap threshold is increased to 50% and 100%,
the sensitivities were 86.2% and 53.4%, respectively. For the 62 test cases, a total of 55 FPs were
identified by radiologist in 23 of the cases.
Conclusions: The authors’ MSCAR-RBG method achieved high sensitivity for coronary artery seg-
mentation and tracking. Studies are underway to further improve the accuracy for the arterial seg-
ments affected by motion artifacts, severe calcified and noncalcified soft plaques, and to reduce the
false tracking of the veins and other noisy structures. Methods are also being developed to detect coro-
nary artery disease along the tracked vessels. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4890294]
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1. INTRODUCTION

Coronary heart disease (CHD) is a disease in which calci-
fied or noncalcified plaques build up inside the coronary ar-
teries. When the coronary arteries are narrowed or blocked,
the reduction of oxygen-rich blood flow to the heart muscle
can cause angina or myocardial infarction (MI). Over 16 ×
106 Americans have CHD, and over 445000 die of CHD and
151000 die of MI each year.1 With the rapid advancement of
CT techniques, ECG-gated contrast-enhanced coronary com-
puted tomography angiography (cCTA) permits visualization
of the vessel lumen, atherosclerotic plaque, and stenoses with-
out the invasive catheterization procedure. cCTA is becoming
the most promising modality for assessing CHD and for quan-
tifying the plaques.2–5 The advent from the 16 row to the lat-
est 320 row multidetector CT not only increases the spatial

and the temporal resolution significantly, but also increases
the number of images to be interpreted by radiologists sub-
stantially. Radiologists have to visually examine each coro-
nary artery for suspicious stenosis using visualization tools
such as multiplanar reformation and curved planar reforma-
tion provided by the review workstation in clinical practice.
These visualization tools depend on the accurate extraction
of coronary arteries. Automatic extraction and analysis of the
coronary artery trees will reduce the time for interpretation of
cCTA.

Accurate identification of plaques is challenging, espe-
cially for the noncalcified plaques, due to many factors such
as the small size of coronary arteries, reconstruction arti-
facts caused by irregular heartbeats, beam hardening, and
partial volume averaging. Because the plaques only occur
in coronary arteries, the extraction of the coronary arteries
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constitutes the fundamental step in the detection of plaques.
Many of the published studies of vessel segmentation were
performed on 2D or 3D images for vascular structures in the
retina, liver, brain, and lung. Multiscale filtering has been used
for the segmentation of curvilinear or tubular structures in
3D medical images.6–13 The conventional multiscale filtering
method6, 11, 14 has been widely used to enhance vascular struc-
tures at variable sizes for vessel extraction. In this method,
the images are convolved with 3D Gaussian filters at multi-
ple scales and the eigenvalues of the Hessian matrix at each
voxel are analyzed in terms of a response function to extract
local structures in each scale of the filtered image. The de-
sign of the response function is a critical factor that deter-
mines the specific shape to be enhanced and therefore whether
the multiscale method is effective for a given application.
Other methods used in vessel segmentation included hystere-
sis thresholding,15 region growing,16, 17 statistical modeling,
and matching methods18, 19 using a priori knowledge pro-
vided by radiologists, direction field based segmentation and
detection,20 and deformable model approaches21, 22 in which
an initial surface estimate was deformed iteratively to op-
timize an energy criterion so that the model boundary was
extended to the vessel wall as a so-called minimal surface.
Few studies have been conducted for automated segmenta-
tion, tracking, and construction of the entire coronary artery
trees on cCTA images. In a recent study,23 a minimum cost
path approach was used to extract coronary artery centerline
connecting user-defined starting and ending points in cCTA
images. Two different cost functions, multiscale vesselness
cost function based on eigenvalues of Hessian matrix of im-
ages, and region statistics cost function were evaluated. The
results show that 88% and 47% of the vessel centerlines were
correctly extracted using the vesselness and region statistics
cost function, respectively.

We are developing a computer-aided detection (CADe)
system to assist radiologists in detecting noncalcified plaques
in cCTA scans and automatically identifying the vessels of
interest.24, 25 Although commercial visualization workstations
have coronary artery extraction software, the digital files of
the extracted vessels are not accessible to the users or the re-
searchers. The CADe system has to extract the coronary arte-
rial trees as the first step to define the search space for plaques.
In our previous studies,25, 26 we evaluated our prototype multi-
scale coronary artery response and dynamic balloon tracking
(MSCAR-DBT) method for segmentation and tracking of the
coronary arterial tree in a small data set and compared the
performance of our method with a clinically used commercial
workstation that segments and displays coronary arterial trees
for radiologist’s visualization. The coronary arterial trees in
the ECG-gated contrast-enhanced cCTA scans were extracted
by our method and the clinical workstation, two experienced
cardiothoracic radiologists visually examined the coronary ar-
teries on the original cCTA scan and the corresponding ren-
dered volume of segmented vessels to count the untracked
false-negative (FN) segments and false positives (FPs) for
both methods. The results indicated that the MSCAR-DBT
method was promising with few false negatives and false pos-
itives in the small data set. However, the estimated perfor-

mance might be biased optimistically because it was not eval-
uated on independent test cases. In this study, we adapted the
previously developed 3D MSCAR method for vascular struc-
ture enhancement in the heart region, and extensively modi-
fied our previous 3D DBT method for the segmentation and
tracking of the coronary arteries. The accuracy of our auto-
mated method for coronary artery segmentation and tracking
was evaluated with an independent test set and quantified by
comparison with the coronary arterial trees manually tracked
and labeled by experienced cardiothoracic radiologists. False
positives were visually judged and marked by the radiologists.

2. MATERIALS AND METHODS

2.A. Data sets

With approval of the Institutional Review Board (IRB),
25 and 62 ECG-gated contrast-enhanced coronary CTA scans
were retrospectively collected from patient files in the De-
partment of Radiology for training and independent testing,
respectively. All but one cCTA scans were acquired with
GE 64-slice (LightSpeed VCT) CT scanners. One test case
was acquired with a 16-slice (LightSpeed Pro 16) CT scan-
ner. The image acquisition techniques were 120–140 kVp,
300–600 mAs, and reconstructed at 0.625 mm slice interval.
A single reconstructed phase (70% or 75%) was selected for
each scan. For the training set of 25 cCTA cases, 21 cases
were diagnosed as containing stenosis during the patients’
clinical care and 119 plaques were marked by four expe-
rienced cardiothoracic radiologists on a computer graphical
user interface (GUI) developed in our laboratory. Of the 119
lesions, 12, 50, and 57 were identified as noncalcified soft
plaques (NCP), calcified plaques (CP), and mixed calcified
and noncalcified soft plaques (MP), respectively. Thirty-six
plaques were positive remodeling. Of the 62 cCTA cases in
the test set, 50 cases were clinically diagnosed as containing
stenosis and 239 plaques were marked by the radiologists, of
which 26, 115, and 97 were NCP, CP, and MP, respectively,
and 1 with stent installed. Positive remodeling was identified
in 87 of the 239 plaques.

For the 62 cCTA cases, three experienced cardiothoracic
radiologists provided reference standard for the coronary ar-
teries by manually tracking the arterial trees and marking the
center of the arteries using the GUI, as shown in Fig. 1. On
the GUI, the sagittal view, axial view, and coronal view of
the cCTA scans corresponding to the region where a vessel
is being tracked are displayed on the monitor. The GUI has
functions allowing the user to scroll through the CT slices,
follow the paths of individual vessels, adjust window setting,
and zoom to improve visualization. The user can manually
track the vessel trees by marking the vessel center points in
any one of the three views at each vessel branch and the center
point location will automatically propagate to all three views.
For each cCTA scan in the test set, 17 major coronary arte-
rial segments27 that are considered clinically significant can
be marked and labeled by name as reference standard for the
evaluation of our coronary artery extraction method. The 17
segments include (1) proximal right coronary artery (RCA),
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FIG. 1. A screen shot of our in-house developed graphic user interface for manually tracking and marking the center of coronary arteries.

(2) mid-RCA, (3) distal RCA, (4) right posterior descend-
ing (RPD) artery, (5) left main, (6) proximal left anterior de-
scending (LAD), (7) mid-LAD, (8) distal LAD, (9) first di-
agonal, (10) second diagonal, (11) proximal left circumflex
(LCX) artery, (12) first obtuse marginal (OM1), (13) distal
LCX, (14) second obtuse marginal (OM2), (15) posterior de-
scending (PD), (16) posterior lateral branch (PLB), and (17)
ramus intermedius segment, as shown in Fig. 2. For the 62
test cases, total of 10 191 coronary center points were marked
on 865 coronary arterial segments by the radiologists, with an

average of 13.98 ± 1.12 segments per cCTA scan and 11.8 ±
8.7 points per segment. Some segments could not be tracked
because of motion blur or poor contrast filling.

2.B. Methods

Figure 3 shows the schematic diagram of our coronary
artery extraction method. In this method, the heart region
in the cCTA volume is first extracted. The vascular struc-
tures within the heart region are then enhanced using 3D

FIG. 2. Seventeen major coronary arterial segments (Ref. 27) that are considered clinically significant. (1) Proximal RCA, (2) mid-RCA, (3) distal RCA, (4)
RPD artery, (5) left main, (6) proximal LAD, (7) mid-LAD, (8) distal LAD, (9) first diagonal, (10) second diagonal, (11) proximal LCX artery, (12) OM1, (13)
distal LCX, (14) OM2, (15) PD, (16) PLB, and (17) ramus intermedius segment.
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cCTA volume 

Heart region extraction

3D multiscale vascular structure 
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Origin of left or right 
coronary artery 

3D rolling balloon region growing (RBG) method for 
coronary artery tracking 

Tracked coronary arterial tree 

FIG. 3. Schematic diagram of our method for coronary arterial tree segmen-
tation and tracking. All processes are automated except for the initial identi-
fication of seed points at the origin of the left and right coronary arteries.

multiscale filtering and the analysis of vessel response
function.26 Starting from the seed points at the origins of the
left and right coronary arteries (LCA and RCA), the coro-
nary arteries are segmented and tracked using a 3D rolling
balloon region growing (RBG) method. In this study, the en-
tire process was automated after the seed points were manu-
ally placed. All methods and parameters were designed with
the 25 training cases.

2.B.1. 3D vascular structure enhancement using
multiscale coronary artery response method

The heart region is first extracted to reduce computation
time and avoid the tracking of the coronary arteries to the pul-
monary vessels in the lung region.26 Gray level thresholding
at a voxel value of −970 HU determined by the training set is
used to extract the human body from the surrounding air re-
gion in the cCTA scan. An adaptive expectation-maximization
(EM) segmentation method is then applied to the segmented
human body to extract nonair structures including the chest
wall, heart, and pulmonary vessels. The heart region is fi-
nally extracted by a morphological opening operation applied
to the nonair structures with a spherical structuring element.
Based on the thoracic anatomy and experimentation with the
training set, a 25-mm-diameter spherical structuring element
was found to be large enough to shrink the chest wall and
pulmonary vessels while preserving the heart in the thoracic
cavity because the heart is generally larger than the spherical
structuring element of this size.

We have previously developed an MSCAR method26 for
coronary artery enhancement based on the analysis of a vessel
enhancement response function specifically designed to ex-
tract information from the eigenvalues of Hessian matrices for
enhancing coronary vascular structures. In this study the pa-
rameters were retrained using 25 training cases. To adaptively
enhance the coronary arteries of variable sizes, the response
function in the heart region was calculated in K scales by first
convolving the heart region with the partial second derivatives
of 3D Gaussian functions with a range of variances σ 2

i (i = 1,
. . . ,K). To normalize the response function value so that the

FIG. 4. An example of a slice of cCTA volume with contrast-enhanced coro-
nary arteries (white arrows, left) and structures enhanced using the MSCAR
method (right).

responses were comparable for the different scales, the output
of the convolution with the second derivative of the Gaussian
filter at scale i was multiplied by a normalization factor equal
to the variance of the Gaussian filter, σ 2

i . The response value
at each voxel was determined by the maximum response value
over all scales:

Rr (x, y, z) = max{Ri(x, y, z), i = 1, ..., K}, (1)

where Ri(x, y, z) was the normalized response at scale i and
voxel location (x, y, z). In this study, four scales (K = 4) were
used to cover the coronary arteries over a range from 1.5 to 8
mm in diameter. Figure 4 shows an example of the enhanced
vascular structures in a slice of a cCTA volume.

2.B.2. 3D rolling balloon region growing method for
coronary artery segmentation and tracking

As shown in Fig. 4, the MSCAR method not only en-
hances the coronary arteries (white arrows) but also enhances
the coronary veins, the boundaries of other cardiac structures
such as aorta, ventricles, atriums and pulmonary vessels, and
other vessel-like noise structures in the heart region. To ex-
tract coronary arteries from the enhanced volume of vascu-
lar structures, we have developed a 3D RGB method to se-
lectively segment and track the coronary arteries. Given two
manually identified seed points located at the origins of the
LCA and RCA for each case, the RBG method first refines
the seed point location by replacing it with the voxel having
the maximum vessel response in a 7-mm-diameter spherical
region centered at the initial seed point, then starts tracking
the LCA tree or the RCA tree by placing a sphere centered at
the refined seed point. Based on the coronary artery anatomy
and the observation from our training cases that the sizes of
the coronary arteries of adults are smaller than 10 mm in
diameter, the diameter of the initial sphere is set to be 15
mm. An adaptive mean-value-based region growing (AMG)
method is designed to segment the vessels within the sphere.
In the initial sphere, the mean (MR) of the vascular response
value determined by Eq. (1) is calculated in a 5 × 5 × 5-voxel
cube centered at the seed point. The vessel inside the sphere is
then grown from the seed point based on 26-connectivity and
a neighboring voxel P with response value Rp is included in
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FIG. 5. Illustration of rolling RBG method.

the segmented vessel region if the following growing criterion
is satisfied:

Rp > (1 − t) MR, (2)

where t is a tolerance value, empirically chosen using the
training set to be 0.2. The mean value is updated as

Mv+1
R = (vMv

R + RP )/(v + 1), (3)

where v is the number of voxels in the vessel region before
the new voxel is added. Figure 5 illustrates our RBG method
for vessel growing and tracking. After the vessel region grown
in the sphere, the intersections of the sphere surface with the
grown vessel are used to determine the size and the location
of the next sphere. As shown in Fig. 5, the surface of the cur-
rent sphere (centered at Cn) rolling from the previous sphere
(centered at Cn−1) has three intersections with the vessel re-
gion grown by the AMG method. The two spheres centered at
C1

n+1 and C2
n+1 do not overlap with the already tracked vessel

(enclosed by sphere Cn−1) so that they are labeled as possible
vessels to be tracked next. The next tracking point is chosen
from the multiple intersections by finding the center point that
has the maximum rolling smoothness:

Ci∗
n+1 = arg

i

max(� i
n+1 ∗ Ai

n+1), (i = 1, ..., S), (4)

where S is the number of the intersections, � i
n+1 is the angle

between the vector
−−−−→
CnCn−1 and the next vector

−−−−→
CnC

i
n+1, and

Ai
n+1 is the area of the ith intersection. The intersection that

has the maximum rolling smoothness with larger angle (be-
tween 90◦ and 180◦) and larger intersection area will be cho-
sen as the next tracking point, and the other intersections with
the angle between 90◦ and 180◦ are labeled as new branches
and stored in a queue. The sphere will be rolled and centered
at this new tracking point and the diameter of the sphere is
adjusted to enclose the local vessel diameter as estimated by
the size of the chosen intersection area Ai

n+1. As the tracking
proceeds along the vessel, a similar vessel growing and search
process will be performed at each tracking point, in which the
rolling direction is determined by the smoothness of vessel
branching and the diameter of the sphere is varied adaptively
like a balloon according to the local vessel size. The tracking
of each branch continues until there is no intersection with
the sphere. The above procedure is then started from a new
branch in the queue until the queue is empty.

FIG. 6. An example of radiologist-marked center points superimposed on
the computer extracted vessels rendered in 3D volume. The center points are
enlarged for display purpose.

2.B.3. Comparison studies

Of the 62 test cases, 30 have been used for evaluation of
our previous 3D DBT method.25, 26 In this study, we compared
the performances between the DBT method and the current
3D RBG method using this subset of 30 cases. In addition, to
evaluate the impact of inter-radiologist variability on tracking
reference arteries for performance assessment, we performed
a comparison study using a subset of 8 cases randomly se-
lected from the 62 test cases. A second experienced cardio-
thoracic radiologist tracked the coronary arteries based on the
17-segment model independent of the first radiologist’s mark-
ings. The performances of the RBG method using the two
radiologists’ tracking separately as reference standards were
compared.

3. RESULTS

Figure 6 shows an example of radiologist-marked cen-
ter points following the 17-segment model that includes
clinically significant coronary arteries superimposed on the
computer-extracted vessels rendered in 3D volume. For the
visible coronary arteries in the 62 test cases, the radiolo-
gists marked 10191 center points on 865 coronary segments.
The results show that 83.6% (8520/10191) of the manu-
ally marked reference points in the coronary arteries over-
lapped with computer segmented vessels, of which 79.1%
(3037/3841) and 86.3% (5483/6350) belong to the RCA tree
and LCA tree, respectively. Figure 7 shows the distribution
of the reference center points in the 17-segment model and
the percentage of the reference center points that overlapped
with the computer-segmented vessels for each segment. It
can be seen that the major arterial segments including the
proximal and distal LAD, the proximal LCX, and the prox-
imal and mid-RCA, can be segmented with higher accuracy
(>90% overlap) compared with the segments distal to the
above major segments. Using two-tailed unpaired Wilcoxon
signed rank test, we found that the differences in the per-
centages of overlap points were significant (p < 0.05) be-
tween each of these major segments and the individual distal
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FIG. 7. Distribution of reference points on the 17-segment coronary arter-
ies and the percentages of the reference center points overlapping with the
computer-segmented vessels.

segments. The mid-LAD segment had an overlap of 88.2%.
As shown in the 17-segment model (Fig. 2), the mid-LAD and
distal LAD segments are one continuous branch. Since there
was no clear landmark for radiologists to separate the two seg-
ments when they manually marked the reference points, one
segment could be marked longer and another could be shorter,
and vice versa. If the mid-LAD and distal LAD were com-
bined into one segment, 91.7% of the reference points on the
combined segment could overlap with computer-segmented
vessels.

For each coronary segment, the percentage of the length of
the coronary artery segment tracked by the computer is ap-
proximated as the percent overlap points (POP), defined as
the number of reference center points overlapping with the
computer-tracked vessel relative to the total number of refer-
ence center points marked by radiologist along that segment,
defined as

POP= Number of reference points on computer − tracked segment

Total number of reference center points along the reference segment
.

As shown in the example of Fig. 6, the computer segmented
and tracked vessels could extend beyond the reference seg-
ments marked by radiologists. We set the maximum of POP
to be 1 such that POP = 1 indicates that the computer seg-
mented vessels are tracked equal to or beyond the reference
segment; otherwise, if POP < 1, the specific artery segments
are not fully tracked. We define a true positive (TP) segment
as a computer-tracked vessel that has a POP greater than a
chosen threshold. Of the 865 radiologist-marked segments,
91.9% (795/865) were counted as TPs when the POP thresh-
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FIG. 8. The fraction of the radiologist-marked coronary segments that were
considered to be tracked by the computer (TP) as the POP threshold varied.

old was set to be 10%. If the POP threshold was increased
to 50% and 100%, the sensitivities were 86.2% and 53.4%,
respectively. The 53.4% of TPs at 100% POP threshold in-
dicated that 53.4% (462/865) of computer segmented coro-
nary arteries were tracked equal to or beyond the reference
segments marked by radiologists. Figure 8 shows the percent-
age of the radiologist-marked coronary segments that were
counted as TPs when the POP threshold varied. Table I shows,
for each of the segments in the 17-segment model, the total
number of segments manually marked by radiologists in the
62 test scans, and the average and standard deviation of POP
tracked by the MSCAR-RBG method.

Because it is difficult to count false positives (FPs) au-
tomatically, for each case, the radiologist visually examined
the original cCTA scan and compared the volume rendered
computer-segmented coronary arteries to identify mistakenly
tracked structures. For the 62 test cases, a total of 55 FPs were
identified in 23 cases, including 32 FPs in veins, 10 in the
aorta, 2 and 4 in the left and right ventricle, respectively, and
5 and 2 in the left atrial cavity and appendage, respectively.
There was no FP identified in 39 test cases. Figure 9 shows
examples of different types of FPs from the vessel segmen-
tation and tracking. The segmented arteries that extended be-
yond the radiologist-marked center points, and the segmented
arteries that were not on the list of the 17-segment model but
were judged by the radiologists to be a part of the coronary
arterial tree were not counted as FP nor TP in this study.

TABLE I. The number of 17 segments manually marked in the 62 test scans by radiologists and the average (Avg) and standard deviation (Std) of POP for each
of the 17 segments.

RCA Prox RCA Mid-RCA Distal RCA RPD PLB

Number of reference 61 62 62 58 54
Avg. 0.940 0.946 0.826 0.649 0.749
Std. 0.103 0.199 0.286 0.345 0.363

LCA Left Main Prox LAD Mid-LAD Distal LAD 1st Diag 2nd Diag Prox LCX OM1 Distal LCX OM2 PD Ramus
Number of reference 58 61 62 60 58 40 59 60 53 30 3 24
Avg. 0.789 0.926 0.912 0.918 0.737 0.790 0.956 0.845 0.849 0.828 0.800 0.487
Std. 0.177 0.178 0.198 0.210 0.325 0.314 0.107 0.233 0.293 0.341 0.346 0.428
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FIG. 9. Examples of FPs extracted by our vessel segmentation and track-
ing method. The FP structures (white arrows) include vein (top-left), edge
of aorta (top-right), right ventricle (bottom-left), left atrial appendage (long
arrow, bottom-right), and left atrial cavity (short arrow, bottom-right).
The computer-segmented arteries (gray arrows) that extended beyond the
radiologist-marked center points or were not on the list of the 17-segment
model but were judged by radiologists to be a part of the coronary arterial
tree were not counted as FP nor TP.

Figure 10 shows examples of false negative (FN) coronary
arteries that were missed by the MSCAR-RBG method. One
major reason of FNs was motion blur artifacts. Even with

ECG-gating, the reconstructed cCTA images can be degraded
by motion blur due to irregular heartbeat of some patients.
Motion blur can cause a gap in the vessel being segmented
and tracked. If the gap is smaller than the radius of the rolling
balloon at that location, there is a chance that the RBG track-
ing will find the next center point. However, if the gap is long,
all segments distal to the blur may be lost, as shown in the
examples.

The performances of our previous 3D DBT method25, 26

and the current RBG method for the segmentation and track-
ing of the coronary arteries were compared using a sub-
set of 30 cases from the 62 test cases. A total of 3487
reference center points on 421 coronary artery segments
were marked by radiologists in the 30 cases. The result
showed that the DBT-tracked vessels overlapped with 85.6%
(2986/3487) of the reference center points. With the RBG
method, 89.0%(3104/3487) of the center points overlapped
with the tracked vessels. The difference in the number of over-
lapped reference points per artery segment between the two
methods was statistically significant (p < 0.001, Wilcoxon
signed-rank test). An experienced radiologist identified a total
of 28 and 14 FPs in the 30 cases for the previous and current
method, respectively. The comparison indicated that both the
sensitivity and specificity have been improved with the RBG
method.

The impact of inter-radiologist variability on tracking ref-
erence arteries for performance assessment was studied in a
subset of 8 cases from the 62 test cases. In total, the two ra-
diologists marked 111 segments, and their agreement reached
88.3% (98/111). The 13 segments that were marked by only
one of the radiologists were smaller distal arteries including
four of the second diagonal, two of the OM1, three of the

FIG. 10. Examples of failures in the tracking of the LCA and RCA due to motion blur artifacts. Top row: The LAD including proximal, mid, and distal LAD
(top left) was not tracked. The motion blur was between slice #56 and 57 (white arrows point to the missed vessel branch in the consecutive axis view). Bottom
row: The mid and distal RCA, RPD, PLB, and part of proximal segments were not tracked. The motion blur was in slice #42 and 43.
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FIG. 11. Comparison between the performance assessments in terms of the
POP for the computer-segmented coronary arteries in the 17-segment model
using two different experienced cardiothoracic radiologists’ (R1 and R2)
manually tracked points as reference standard.

OM2, and four of the distal LCX segments. Using the man-
ually marked center points by the two radiologists as refer-
ence standard separately, the percent overlap points for the
computer-segmented arteries in the 17 segment-model were
evaluated and compared, as shown in Fig. 11. The difference
of the two methods did not reach statistical significance (p
= 0.891, two-tailed paired t-test). These results demonstrated
that the interradiologist variability may not have a strong im-
pact on the performance assessment in this study, especially
for those major nondistal arteries.

4. DISCUSSION

Segmentation and tracking the coronary arteries is a fun-
damental step to automatically identify the vessels of interest
for the development of a computer-aided detection system to
assist radiologists in detecting noncalcified plaques in cCTA
scans. Many factors, such as vessel blurring caused by irregu-
lar heartbeats, narrowing and blockage caused by a significant
soft plaque with low-contrast CT value or a calcified plaque
with high CT value, incorrect contrast timing, and other noise
artifacts can cause the failure of automated vessel tracking.
Quantitative evaluation of vessel segmentation accuracy and
the completeness of vessel tree construction is challenging be-
cause there is no ground truth for the vessel tree in clinical
cases. The best alternative to the ground truth of the vessel
tree is manual tracing of the vessel center lines by experts. In
our previous study28 that evaluated a pulmonary vessel seg-
mentation method, two experienced thoracic radiologists pro-
vided reference standard for the pulmonary vessels including
arteries and veins by manually tracking the vessel tree and
marking the vessel centers on representative patient cases.
However, manual tracking and marking the center points of
the vessels are very time consuming. In a pilot study that we
compared the relative performance of our prototype system to
that of a clinically used commercial software26 for the seg-
mentation and tracking of coronary arterial trees, quantitative
analysis was not feasible because the digital files of the ex-
tracted vessel trees by the clinical software were not accessi-
ble to the user. As a result, visual assessment was performed

to count the untracked FN and mistakenly tracked FP seg-
ments for both methods by experienced cardiothoracic radiol-
ogists. In this study, we focused on the quantitative evaluation
of our current coronary segmentation and tracking method.
The reference standard of manually tracked center points of
coronary arteries provided by experienced cardiothoracic ra-
diologists allows us to count the TP and FN segments auto-
matically, except that the FPs still needed to be identified and
counted manually.

Plaques in an arterial segment will not be detected if the
segment is missed in the vessel extraction process. Therefore,
whether the coronary artery tree is correctly extracted plays
a crucial role in the performance of the CAD system. In our
study, the coronary arteries that were not one of the 17 refer-
ence segments were ignored and were not counted as FP or
FN, as shown in the examples in Fig. 9. For a reference artery
segment, the radiologist may not track it to the very distal
part beyond certain diameter that was considered clinically
insignificant. For the 17 reference segments, the POP mea-
sure shows that our method can segment and track the coro-
nary arteries as far as or beyond the reference standard in 462
segments (53.4% of total 865 manually marked segments).
Although the plaques not in the 17 segments are not consid-
ered clinically significant and may not need to be treated, the
detection of plaques in small distal arteries may still be useful
for patient management purposes. How far the coronary arter-
ies should be tracked and inspected for plaques would need to
be investigated in further studies.

In the framework of Rotterdam Coronary Artery algorithm
evaluation,29 a database of 32 cardiac CTA cases including
8 training and 24 test cases, with corresponding reference
standard, is used to evaluate and compare different coronary
artery segmentation and tracking methods. In this data set,
four major coronary arteries were selected by one observer
and manually traced by three trained observers, which are
the RCA, LAD, LCX, and a fourth vessel selected from the
large side-branches of the above three main arteries. The man-
ually tracked results were merged into reference standards
of the centerline and annotated radii along the centerline for
each vessel. Four points along the centerline of each selected
artery including the starting (S) and ending points (E), and
two points (A and B) between the starting and ending points,
were provided to the users to identify and guide the segmen-
tation and tracking of the selected arterial branches. With-
out using these points for the four individual arteries to be
tracked, we manually placed two seed points at the origins
of the LCA and RCA trees, as required by our algorithm, to
track the LCA and RCA trees for each case. The output of
our tracking was submitted for evaluation by the Rotterdam
framework. Table II shows the evaluation results in terms of
three overlap measures (OT, OV, OF) and a distance measure
(AI) of our MSCAR-RBG method for the 24 test cases. The
exact definitions of the four points and the evaluation mea-
sures can be found in the Rotterdam publication29 and their
website. Compared with the reference centerline considered
by the Rotterdam framework to be the clinically relevant part
of the vessel (the OT measure), our method achieved an av-
erage of 91.4% ± 9.0%, which is comparable to the overlap
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TABLE II. Summary of Rotterdam Coronary artery algorithm evaluation on
the test set for the MSCAR-RBG algorithm.a

Case OVb (%) OTc (%) OFd (%) AIe (mm)

8 86.5 89.3 67.2 0.48
9 94.1 95.2 87.7 0.36
10 82.2 83.5 55.1 0.47
11 76.2 76.3 28.7 0.57
12 85.6 89.4 25.2 0.41
13 95.2 96.3 90.9 0.39
14 99.0 99.0 62.0 0.42
15 97.1 98.4 77.1 0.43
16 91.8 96.8 58.2 0.44
17 83.9 85.7 41.7 0.48
18 92.3 93.5 73.9 0.45
19 91.0 95.8 72.6 0.47
20 95.9 96.5 47.2 0.55
21 93.5 97.3 87.9 0.38
22 98.9 99.3 95.5 0.44
23 98.1 98.4 97.2 0.42
24 90.6 93.0 48.2 0.32
25 94.8 96.3 42.3 0.43
26 68.0 69.4 34.5 0.60
27 64.0 64.9 33.1 0.56
28 94.8 96.0 90.1 0.36
29 90.5 93.9 14.7 0.45
30 90.2 93.0 74.2 0.41
31 90.2 95.5 92.5 0.34
Mean ± std dev 89.4% ± 8.9% 91.4% ± 9.0% 62.4% ± 24.6% 0.44 ± 0.07

aEvaluation measures defined by the Rotterdam framework.
bOV: overlap measure that represents the ability to track the section of the vessel
annotated by the human observers.

cOT: overlap with the clinically relevant part of the vessel that is defined as vessel
segments with a diameter of 1.5 mm or larger.

dOF: overlap until the first error that determines how much of a coronary artery has
been extracted before making an error. The first error is defined as the first false
negative point when traversing from the start of the reference standard to its end
while ignoring false negative points in the first 5 mm of the reference standard. A
false negative point occurs when a center point found by the algorithm is located
at a distance from the reference centerline greater than the annotated radius at
that location.

eAI: average inside is calculated as the average distance of all the connections be-
tween the reference standard and the automatic centerline given that the connec-
tions have a length smaller than the annotated radius at the connected reference
point.

measure (POP) on our data set for the major vessel segments,
i.e., 82.6%–94.0% and 91.8%–92.6%, from the distal to the
proximal RCA and LCA, respectively (Table I). For the OV
measure, in which the part of the centerline that is correctly
tracked by computer but extended beyond the reference end-
point of the manually tracked centerline is counted as FP, our
algorithm achieved 89.4% ± 8.9%, indicating that our algo-
rithm could track farther than their manual tracking on av-
erage. The OF measure, which determines how much of a
coronary artery has been extracted before the first error, is
intended to be used for image-guided intravascular interven-
tions and is therefore not relevant to most applications includ-
ing CAD. In the Rotterdam framework, false positive points
along the reference centerlines of these four vessels are scored
but other FPs such as the veins, other structures, and artifacts
caused by motion and noise elsewhere are not penalized, al-

lowing training to bias toward high sensitivity regardless of
specificity due to these FPs. In addition, the Rotterdam frame-
work only evaluates four major arteries, which was selected
by one reference observer in that laboratory. These are major
limitations of the Rotterdam framework as discussed in their
paper.29 These limitations make the evaluation unfair and im-
practical for many applications including CAD. Compared
with the Rotterdam framework that only evaluates a subset
of the major arteries, we evaluated all major coronary arter-
ies in the 17-segment model and FPs using a larger data set of
62 cCTA cases. Our segmentation program was trained taking
into consideration the trade-off between sensitivity and speci-
ficity as well as the need to extract the smaller, less obvious
arterial segments in the 17-segment model. Therefore, com-
parison of the performance of our method with those of other
methods in the Rotterdam framework would require attention
to these issues.

In this study, our RBG method used two starting points
manually identified at the origins of the left and right coronary
arteries as the seed points, respectively, to track the left and
right coronary arterial trees for each case. However, the per-
centage of reference points on the left main artery overlapping
with the computer-segmented vessel is smaller than its adja-
cent segment of proximal LAD (79.3% vs 91.0%), as shown
in Fig. 7. This is because, in some cases, the seed points of the
RCA were placed at a lower section of the left main and the
radiologist started marking the center points at the higher sec-
tion, as the examples shown in Figs. 6 and 9 (open arrows).
We are developing methods for automated detection of the
seed point locations at the origins of the LCA and RCA trees.
Automated methods for seed point detection may reduce the
variability of manually placed seed points.

There are several limitations in this study. First, because
the radiologists’ manually marked center points were used as
reference standard for evaluation of the completeness of the
vessel tree segmentation, it is difficult to determine whether
the segmented structures that did not overlap with the refer-
ence standard points were true coronary arteries, veins, other
structures, or simply noise. We therefore were not able to
evaluate the FP rate automatically. Each case had to be vi-
sually inspected by experienced radiologists to identify and
count the FPs, which is time consuming. Without FP assess-
ment, it can be a major bias for intercomparison of differ-
ent methods such as the Rotterdam framework because meth-
ods can usually be trained to achieve higher sensitivity if
specificity is not a concern. Further work is needed to de-
sign automated methods for characterization and reduction
of FPs. Second, manually tracking and marking the center
points by radiologists are very tedious and time consuming.
We were not able to have multiple radiologists mark each
case except for a small subset of eight cases to evaluate in-
terradiologist variations in coronary artery marking and the
impact on the performance evaluation of the computerized
segmentation and tracking method. However, since the radi-
ologists also visually inspected the tracked vessels to iden-
tify FPs, each case was actually read twice by the experi-
enced radiologists. If a major coronary artery segment was
missed during marking of the reference center points, the
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radiologist inspecting FPs would see the error and make cor-
rection. The major variations in the reference standard would
likely be how far different radiologists would track each seg-
ment, which may affect the POP measure to a certain extent.
Third, the seed points for the LCA and the RCA trees were
manually placed so that the extraction of the coronary arteries
was not fully automated. We have yet to develop an accurate
method to automatically identify the origin of the coronary
artery trees as seed points. Nevertheless, to our knowledge,
this study used one of the largest data sets with radiologists’
manually tracked coronary artery trees as reference standards
for validation of computerized segmentation and tracking in
cCTA.

5. CONCLUSION

Our study demonstrated that the MSCAR-RBG method
can accurately segment and track the coronary arteries. Au-
tomated and accurate extraction of the coronary arteries is an
important step for the development of a computer-aided sys-
tem for plaque detection and to provide radiologists an effi-
cient visualization tool for vessel analysis in clinical practice.
Further studies are underway to develop methods to improve
the segmentation and tracking accuracy for the arterial seg-
ments affected by motion artifacts, severe calcified and non-
calcified soft plaques, and to reduce the false tracking of the
veins and other noisy structures.

ACKNOWLEDGMENTS

This work is supported by USPHS Grant Nos. R01
HL106545 and R01 HL092044.

a)Author to whom correspondence should be addressed. Electronic mail:
chuan@umich.edu; Telephone: 734-647-8554; Fax: 734-615-5513.

1D. Lloyd-Jones et al., “Heart disease and stroke statistics—2009 up-
date: A report from the American Heart Association Statistics Com-
mittee and Stroke Statistics Subcommittee,” Circulation 119, e21–e181
(2009).

2J. J. Fine, C. B. Hopkins, N. Ruff, and F. C. Newton, “Comparison of ac-
curacy of 64-slice cardiovascular computed tomography with coronary an-
giography in patients with suspected coronary artery disease,” Am. J. Car-
diol. 97, 173–174 (2006).

3M. Budoff et al., “Diagnostic performance of 64-multidetector row coro-
nary computed tomographic angiography for evaluation of coronary artery
stenosis in individuals without known coronary artery disease: Results
from the prospective multicenter ACCURACY (Assessment by Coronary
Computed Tomographic Angiography of Individuals Undergoing Inva-
sive Coronary Angiography) trial,” J. Am. Coll. Cardiol. 52, 1724–1732
(2008).

4J. Min, L. Shaw, R. Devereux, P. Okin, J. Weinsaft, D. Russo, N. Lippolis,
D. Berman, and T. Callister, “Prognostic value of multidetector coronary
computed tomographic angiography for prediction of all-cause mortality,”
J. Am. Coll. Cardiol. 50, 1161–1170 (2007).

5M. Garcia, J. Lessick, M. Hoffmann, and C. S. Investigators, “Accuracy of
16-row multidetector computed tomography for the assessment of coronary
artery stenosis,” JAMA 296, 403–411 (2006).

6K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset,
“Model-based detection of tubular structures in 3D images.,” Comput. Vis.
Image Understand. 80, 130–171 (2000).

7K. Kanazawa, Y. Kawata, N. Niki, H. Satoh, H. Ohmatsu, R. Kakinuma,
M. Kaneko, N. Moriyama, and K. Eguchi, “Computer-aided diagnosis for

pulmonary nodules based on helical CT images,” Comput. Med. Imaging
Graph. 22, 157–167 (1998).

8A. F. Frangi, W. Neissen, K. Vincken, and M. Viergever, “Multiscale vessel
enhancement filtering,” Med. Image Comput. Comput. Assist. Intervent.
1496, 130–137 (1998).

9C. Lorenz, I. Carlsen, T. Buzug, C. Fassnacht, and J. Weese, “A multi-
scale line filter with automatic scale selection based on the Hessian matrix
for medical image segmentation,” in Proceedings of the First International
Conference on Scale-Space Theory in Computer Vision (Springer Berlin
Heidelberg, Utrecht, The Netherlands, 1997), pp. 152–163.

10S. Aylward and E. Bullitt, “Initialization, noise, singularities, and scale in
height ridge traversal for tubular object centerline extraction,” IEEE Trans.
Med. Imaging 21, 61–75 (2002).

11Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules,
vessels, and airway walls in two- and three-dimensional CT scans,” Med.
Phys. 30, 2040–2051 (2003).

12H. Shikata, E. A. Hoffman, and M. Sonka, “Automated segmentation of
pulmonary vascular tree from 3D CT images,” Proc. SPIE 5369, 107–116
(2004).

13T. Bülow, C. Lorenz, and S. Renisch, “A general framework for tree seg-
mentation and reconstruction from medical volume data,” Med. Image
Comput. Comput. Assist. Intervent. 3216, 533–540 (2004).

14Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller,
G. Gerig, and R. Kikinis, “Three-dimensional multi-scale line filter for seg-
mentation and visualization of curvilinear structures in medical images,”
Med. Image Anal. 2, 143–169 (1998).

15Y. Masutani, H. Macmahon, and K. Doi, “Automated segmentation and
visualization of the pulmonary vascular tree in spiral CT angiography: An
anatomy-oriented approach based on tree-dimensional image analysis,” J.
Comput. Assist. Tomogr. 25, 587–597 (2001).

16G. D. Rubin, D. S. Paik, P. C. Johnston, and S. Napel, “Measurements
of the aorta and its branches with helical CT,” Radiology 206, 823–829
(1998).

17W. E. Higgins, W. J. T. Spyra, R. A. Warwoski, and E. L. Ritman, “Sys-
tem for analyzing high-resolution three dimensional coronary angiograms,”
IEEE Trans. Med. Imaging 15, 377–385 (1996).

18R. G. Blanks, M. G. Wallis, and R. M. Given-Wilson, “Observer variability
in cancer detection during routine repeat (incident) mammographic screen-
ing in a study of two versus one view mammography,” J. Med. Screen. 6,
152–158 (1999).

19A. Chung and J. Noble, “Statistical 3D vessel segmentation using a Rician
distribution,” Int. Conf. Med. Image Comput. Comput. Assist. Intervent.
1679, 82–89 (1999).

20R. Kutka and S. Stier, “Extraction of line properties based on direction
fields,” IEEE Trans. Med. Imaging 15, 51–58 (1996).

21T. McInerney and D. Terzopoulos, “T-snake: Topology adaptive snakes,”
Med. Image Anal. 4, 73–91 (2000).

22L. M. Lorigo, O. D. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis,
A. Nabavi, and A.-F. Westin, “CURVES: Curve evolution for vessel seg-
mentation,” Med. Image Anal. 5, 195–206 (2001).

23C. T. Metz, M. Schaap, A. C. Weustink, N. R. Mollet, T. van Walsum,
and W. J. Niessen, “Coronary centerline extraction from CT coronary an-
giography images using a minimum cost path approach,” Med. Phys. 36,
5568–5579 (2009).

24C. Zhou, H.-P. Chan, A. Chughtai, S. Patel, L. M. Hadjiiski, B. Sahiner,
J. Wei, and E. A. Kazerooni, “Automated segmentation and tracking of
coronary arteries in cardiac CT scans: Comparison of performance with a
clinically used commercial software,” Proc. SPIE 7624, 76240O (2010).

25C. Zhou, H.-P. Chan, J. W. Kuriakose, A. Chughtai, S. Patel, P. Agarwal,
E. A. Kazerooni, L. M. Hadjiiski, and J. Wei, “Computerized analysis of
coronary artery disease: Performance evaluation of segmentation and track-
ing of coronary arteries in CT angiograms,” in Proceedings of the 97th Sci-
entific Assembly and Annual Meeting of the Radiological Society of North
America, Chicago, IL, November 27–December 2, 2011.

26C. Zhou, H.-P. Chan, A. Chughtai, S. Patel, L. M. Hadjiiski, J. Wei, and
E. A. Kazerooni, “Automated coronary artery tree extraction in coronary
CT angiography using a multiscale enhancement and dynamic balloon
tracking (MSCAR-DBT) method,” Comput. Med. Imaging Graph. 36, 1–
10 (2012).

27W. G. Austen, J. E. Edwards, R. L. Frye, G. G. Gensini, V. L. Gott,
L. S. Griffith, D. C. McGoon, M. L. Murphy, and B. B. Roe, “A report-
ing system on patients evaluated for coronary artery disease: Report of the
Ad Hoc Committee for Grading of Coronary Artery Disease, Council on

Medical Physics, Vol. 41, No. 8, August 2014

http://dx.doi.org/10.1161/CIRCULATIONAHA.108.191261
http://dx.doi.org/10.1016/j.amjcard.2005.08.021
http://dx.doi.org/10.1016/j.amjcard.2005.08.021
http://dx.doi.org/10.1016/j.jacc.2008.07.031
http://dx.doi.org/10.1016/j.jacc.2007.03.067
http://dx.doi.org/10.1001/jama.296.4.403
http://dx.doi.org/10.1006/cviu.2000.0866
http://dx.doi.org/10.1006/cviu.2000.0866
http://dx.doi.org/10.1016/S0895-6111(98)00017-2
http://dx.doi.org/10.1016/S0895-6111(98)00017-2
http://dx.doi.org/10.1007/BFb0056195
http://dx.doi.org/10.1109/42.993126
http://dx.doi.org/10.1109/42.993126
http://dx.doi.org/10.1118/1.1581411
http://dx.doi.org/10.1118/1.1581411
http://dx.doi.org/10.1117/12.537032
http://dx.doi.org/10.1007/978-3-540-30135-6_65
http://dx.doi.org/10.1007/978-3-540-30135-6_65
http://dx.doi.org/10.1016/S1361-8415(98)80009-1
http://dx.doi.org/10.1097/00004728-200107000-00014
http://dx.doi.org/10.1097/00004728-200107000-00014
http://dx.doi.org/10.1148/radiology.206.3.9494508
http://dx.doi.org/10.1109/42.500146
http://dx.doi.org/10.1136/jms.6.3.152
http://dx.doi.org/10.1007/10704282_9
http://dx.doi.org/10.1109/42.481440
http://dx.doi.org/10.1016/S1361-8415(00)00008-6
http://dx.doi.org/10.1016/S1361-8415(01)00040-8
http://dx.doi.org/10.1118/1.3254077
http://dx.doi.org/10.1117/12.844391
http://dx.doi.org/10.1016/j.compmedimag.2011.04.001


081912-11 Zhou et al.: Segmentation and tracking of coronary arteries in CTA 081912-11

Cardiovascular Surgery, American Heart Association,” Circulation 51, 5–
40 (1975).

28C. Zhou, H. P. Chan, B. Sahiner, L. M. Hadjiiski, A. Chughtai, S. Pa-
tel, J. Wei, J. Ge, P. N. Cascade, and E. A. Kazerooni, “Automatic multi-
scale enhancement and hierarchical segmentation of pulmonary vessels in

CT pulmonary angiography (CTPA) images for CAD applications,” Med.
Phys. 34, 4567–4577 (2007).

29M. Schaap et al., “Standardized evaluation methodology and reference
database for evaluating coronary artery centerline extraction algorithms,”
Med. Image Anal. 13, 701–714 (2009).

Medical Physics, Vol. 41, No. 8, August 2014

http://dx.doi.org/10.1161/01.CIR.51.4.5
http://dx.doi.org/10.1118/1.2804558
http://dx.doi.org/10.1118/1.2804558
http://dx.doi.org/10.1016/j.media.2009.06.003

