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We are developing computer vision techniques for the characterization of breast masses as malig-
nant or benign on radiologic examinations. In this study, we investigated the computerized charac-
terization of breast masses on three-dimensional~3-D! ultrasound~US! volumetric images. We
developed 2-D and 3-D active contour models for automated segmentation of the mass volumes.
The effect of the initialization method of the active contour on the robustness of the iterative
segmentation method was studied by varying the contour used for its initialization. For a given
segmentation, texture and morphological features were automatically extracted from the segmented
masses and their margins. Stepwise discriminant analysis with the leave-one-out method was used
to select effective features for the classification task and to combine these features into a malig-
nancy score. The classification accuracy was evaluated using the areaAz under the receiver oper-
ating characteristic~ROC!curve, as well as the partial area indexAz

(0.9) , defined as the relative area
under the ROC curve above a sensitivity threshold of 0.9. For the purpose of comparison with the
computer classifier, four experienced breast radiologists provided malignancy ratings for the 3-D
US masses. Our dataset consisted of 3-D US volumes of 102 biopsied masses~46 benign, 56
malignant!. The classifiers based on 2-D and 3-D segmentation methods achieved testAz values of
0.8760.03 and 0.9260.03, respectively. The difference in theAz values of the two computer
classifiers did not achieve statistical significance. TheAz values of the four radiologists ranged
between 0.84 and 0.92. The difference between the computer’sAz value and that of any of the four
radiologists did not achieve statistical significance either. However, the computer’sAz

(0.9) value was
significantly higher than that of three of the four radiologists. Our results indicate that an automated
and effective computer classifier can be designed for differentiating malignant and benign breast
masses on 3-D US volumes. The accuracy of the classifier designed in this study was similar to that
of experienced breast radiologists. ©2004 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1649531#
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I. INTRODUCTION

The importance of early breast cancer detection require
vigorous approach to the characterization of breast lesi
At present, the positive biopsy rate for nonpalpable bre
lesions as well as for nonpalpable breast masses is betw
15%–30%.1–4 This means that 70%–85% of breast biops
are performed for benign lesions. In order to reduce pat
anxiety and morbidity, as well as to decrease health c
costs, it is desirable to reduce the number of benign biop
without missing malignancies. Computer-aided diagno
~CAD! can provide a consistent and reproducible sec
opinion to the radiologists, and has a potential to assist th
in reducing benign biopsies. Recent studies on the com
erized classification of breast masses based on mam
graphic image features suggest that the radiologists’ per
mance may be significantly improved if they are aided b
well-trained CAD system.5–7 Breast ultrasound~US! is an
important imaging modality for the characterization of bre
masses as malignant and benign. An objective and repro
744 Med. Phys. 31 „4…, April 2004 0094-2405Õ2004Õ31„4
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ible second opinion from a computer classifier for the cl
sification of breast masses based on US image features
be an important addition to CAD tools being developed
mammographic image analysis.

Breast US is widely accepted as a highly accurate mo
ity for the differentiation of cystic and noncystic masses.
a result of technological improvements and more sophi
cated utilization by radiologists, US has been gaining po
larity for the characterization of noncystic, or solid, brea
masses. By combining several ultrasonic characteris
Stavroset al.8 achieved a specificity of 98.4% and a sen
tivity of 68.7% on a dataset of 750 solid breast masses.
ing strict criteria for a benign diagnosis, Skaaneet al.9

achieved a positive predictive value of 66% and a nega
predictive value of 98% for the differentiation of fibroad
enoma and invasive ductal carcinoma on sonograms.
cently, Tayloret al. investigated whether the complementa
use of US imaging could decrease the biopsy of benign, n
cystic masses. On a dataset of 761 biopsied masses,
744…Õ744Õ11Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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745 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 745
found that the addition of US evaluation to mammograp
alone could increase the specificity from 51.4% to 63.
while slightly increasing the sensitivity from 97.1% t
97.9%.10 In our study we aim at developing techniques f
the computerized characterization of solid breast mas
which may eventually improve the radiologists’ accuracy
this difficult and important task.

A number of researchers have recently investigated
application of CAD to breast US images.11–14 Chenet al.12

extracted autocorrelation features from rectangular region
interest~ROIs! containing solid breast masses. Using a n
ral network classifier, they obtained an areaAz under the
receiver operating characteristic~ROC! curve of 0.956 for
classification of a dataset of 140 biopsy-proven masse
malignant or benign. Horschet al.13 developed an automate
segmentation method for delineating the mass bounda
and compared its characterization accuracy on different s
sets with that obtained from manual segmentation. Us
manual and automated segmentation methods, they obta
Az values of 0.91 and 0.87, respectively, in the task of d
ferentiating all malignant and benign lesions in their data
and 0.88 and 0.82, respectively, in the task of differentiat
the subset of malignant and benign solid lesions. C
et al.14 used morphological features extracted from manua
segmented mass boundaries for classification. Using a ne
network classifier, they obtained anAz of 0.959 for classifi-
cation of a dataset of 271 biopsy-proven masses as malig
or benign.

A 3-D US is rapidly gaining popularity as it moves out
the research environment and into the clinical setting.15 A
computerized analysis of 3-D US images may be useful
two reasons. First, 3-D or volumetric US data may be m
time consuming for a radiologist to interpret, thus maki
CAD more desirable. Second, 3-D or volumetric US p
vides more data and better statistics, which should impr
statistical image analysis.

In clinical practice, breast US may be performed in d
ferent ways. In many breast imaging clinics, the US exa
nation is performed by a US technologist. Once the techn
gist locates the mass, and determines the appropriate se
for optimal image quality, representative static US images
the mass are printed on hardcopy film. The radiologist o
reads the images chosen by the technologist. A second
sibility is that the US scan is videotaped by the technolog
and the radiologist reads the examination on a video disp
In a third method, a radiologist will perform the US exam
nation interactively and optimize the image quality
changing the probe angle, direction, and US machine
tings. Since the US image quality is operator dependent,
way in which the examination is performed may have
impact on the diagnostic accuracy. At our institution, t
third method is employed. As described in Sec. II, the d
acquisition system in this study did not permit interacti
modification during 3-D image acquisition. As a result, t
data that was used by the computer and the radiologists
mass characterization in this study may not be as informa
as the data that the radiologists could have obtained by
amining the patient interactively. However, since the mas
Medical Physics, Vol. 31, No. 4, April 2004
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entirely imaged in the 3-D dataset, our data should be at l
comparable to that obtained by using the first method
scribed above.

In this study, we investigated the computerized charac
ization of noncystic breast masses as malignant and be
in 3-D US images. We developed a 3-D segmentat
method to delineate the masses. Morphological and tex
features were extracted from the mass and its margins
classification. A linear classifier was used to merge the f
tures into a malignancy score. The classification accur
was evaluated by ROC methodology. The ROC curves of
computer and four experienced breast radiologists were c
pared. To our knowledge, this is the first study on 3-D U
images that investigates a computer segmentation me
followed by a computer classifier for breast cancer char
terization.

II. METHODS

A. Dataset

Institutional review board approval was obtained prior
the commencement of this investigation. The images use
this study were acquired between 1998 and 2002. Our st
group was 102 women~average age: 51 years!who had a
solid mass deemed suspicious or highly suggestive of ma
nancy. All patients underwent biopsy or fine needle asp
tion. Fifty-six masses were malignant and 46 were beni
Forty-three of the malignancies were invasive ductal ca
noma, five were invasive lobular carcinoma, one was m
ullary carcinoma, three were ductal carcinomain-situ, and
four were other invasive carcinoma. Of the benign mass
the majority were fibroadenoma (N518) and fibrocystic dis-
ease (N511). The mean equivalent lesion diameter was 1
cm ~standard deviation50.78 cm!.

The 3-D US data were acquired using an experimen
system that was previously developed and tested at
institution.16,17 The 3-D system consisted of a commercia
available US scanner~GE Logiq 700 with an M12 linear
array transducer!, a mechanical transducer guiding sys
and a computer workstation. The linear array transducer
operated at 11 MHz. The technologist was free to set
focal distance and the overall gain adjustment to obtain
best possible image. Before 3-D image acquisition, the te
nologist used clinical US and mammogram images to id
tify the suspicious mass. During 3-D image acquisition,
technologist manually translated the transducer linearly
the cross-plane, or thez direction, while the image acquisi
tion system recorded 2-D B-mode images in the image s
plane (x-y plane!. The 2-D images were obtained at appro
mately 0.5 mm incremental translations, which were m
sured and recorded using a translation sensor. The numb
2-D slices was typically around 90, and varied depending
the lesion size. The maximum distance between two 2
slices was 0.5 mm, and some of the distances were slig
less than 0.5 mm. The scanned breast region measured
cally 4.5 cm long by 4.0 cm wide by 4.0 cm deep. T
typical pixel size in a slice was approximately 0.11 mm.
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746 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 746
The B-mode images were recorded into a buffer in the
scanner. After data acquisition, the images and the pos
data were transferred digitally to a workstation, where in
vidual planes were cropped and stacked to form a 3-D v
ume. The biopsied mass in each volume was identified b
MQSA ~Mammography Quality Standards Act! qualified ra-
diologist ~RAD1! using clinical US and mammographic im
ages to confirm that the 3-D images contained the suspic
mass. The likelihood of malignancy for each mass, based
the 3-D US image alone, was rated by the same radiolo
on a scale of 1 to 100, where a higher number correspon
to a higher likelihood of malignancy. The distribution of th
ratings for the malignant and benign masses is shown in
1. The radiologist was also asked to fit a 3-D ellipsoid to
mass. The 3-D ellipsoid was used to initialize the compu
ized mass segmentation described in the next section.
best fit was obtained by scaling, rotating, and translating
ellipsoid superimposed on the 3-D dataset using a dyna
object manipulation tool developed for this purpose.

B. Mass segmentation

We investigated the use of 2-D and 3-D active conto
models for the segmentation of mass boundaries.18 An active
contour model is a high-level segmentation method that u
energy terms derived from the image gray-level informat
as well as thea-priori knowledge about the object to b
segmented for accurate segmentation. The segment
problem is defined as an energy minimization problem.
order for the model to lock onto the contours in the ima
the image-based energy terms, also referred to as the ext
energy terms, are usually defined in terms of the image g
levels and the image gradient magnitude. Thea-priori
knowledge of the object shape is used to define internal
ergy terms related to features such as the continuity and
smoothness of the contour to constrain the segmenta
problem. These terms can compensate for noise or appa
gaps in the image gradients, which often mislead segme
tion methods that do not usea-priori information.

FIG. 1. The distribution of the malignancy rating of the masses in our dat
based on the appearance on US images, by an experienced radiolog
Very likely benign; 100: very likely malignant.
Medical Physics, Vol. 31, No. 4, April 2004
S
n

-
l-
a

us
n

ist
ed

g.
e
r-
he
n
ic

r

es
n

ion
n
,
nal
y

n-
he
on
ent
ta-

In a 2-D segmentation problem, the contour of the obj
can be represented byV vertices, (i n , j n), n51,...,V, wherei
and j represent the two dimensions of the image. In the d
crete formulation of the active contour model, the total e
ergy to be minimized is defined as

E5 (
n51

V

E~n!, ~1!

whereE(n) is the energy at vertex (i n , j n). E(n) is defined
as the sum of the internal and external energy terms,

E~n!5 (
m51

M

wmEm~n!, ~2!

whereEm(n) is themth energy term at vertexn, andwm is
the weight of themth energy term. In our 2-D active contou
model, we used four internal and external energy termsM
54). The energy termsE1 , E2 , E3 , and E4 were deter-
mined by the gradient magnitude of the image and the c
tinuity, smoothness, and balloon energy of the contour,
spectively.

To obtain the image gradient magnitude, the imageA( i , j )
was first filtered using a Gaussian smoothing filter,

H~ i , j !5e2~ i 21 j 2!/2s2
, ~3!

wheres256. The resulting filtered imageB( i , j ) was further
processed using Sobel filtersSx( i , j ) andSy( i , j ), defined as

Sx5F 21 0 1

22 0 2

21 0 1
G and Sy5F 21 22 21

0 0 0

1 2 1
G , ~4!

which calculated thex- and y-direction gradients,Gx( i , j )
andGy( i , j ), respectively. The image gradient magnitude
vertexn5( i n , j n) was computed as

E1~n!5AGx~ i n , j n!1Gy~ i n , j n!. ~5!

The weight of the gradient energy was defined to be
negative number; thus, minimizingw1E1 attracted the con-
tour to image edges.

To find the continuity energy term, we first computed t
average line segment lengthd̄ as

d̄5
(n51

V d~n!

V
, ~6!

where

d~n!5HA~ i n2 i n11!21~ j n2 j n11!2, n51,2,...,V21,

A~ i n2 i 0!21~ j n2 j 0!2, n5V.
~7!

The continuity energy term was defined as

E2~n!5ud~n!2d̄u. ~8!

Minimizing the continuity energy helped the vertices ma
tain regular spacing along the contour.

et
. 1:
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747 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 747
The curvature term,E3(n), was approximated by the sec
ond derivative of the contour,

E3~n!5A~ i n2122i n1 i n11!21~ j n2122 j n1 j n11!2. ~9!

When the vertices were spaced regularly along the c
tour, this term would be large when the angle at vertexn was
small.19 By discouraging small angles at vertices, this te
attempted to smooth the contour.

The balloon energyE4(n) pushed the contour outward o
pulled it inward, depending on whetherw4 was positive or
negative, respectively, along a path normal to the cont
This energy term helped the active contour traverse spuri
isolated, or weak image edges, and countered its tenden
shrink. The resulting model was reported to be more rob
to the initial position and image noise.20

To solve the energy minimization problem, we have ch
sen the iterative method proposed by Williams and Sha19

The contour is first initialized by definingV vertices (i n , j n),
n51,...,V. At a given iteration, the method visits each vert
( i n , j n). Let D~n! represent the set of pixels (i 8, j 8) in a
(2M11)x(2M11) neighborhood centered around (i n , j n).
For each pixel inD~n!, the sum(mwmEm is computed, and
the vertex (i n , j n) is moved to the (i 8* , j 8* ) location that
minimizes this sum. The definitions of the energy termsE1 ,
E2 , and E3 are given above. The balloon energyE4 was
defined asE45cosu, whereu represents the angle betwee
the normal vector to the curve at vertexn and the vector
( i 82 i n , j 82 j n). After the minimization is performed locally
at vertex (i n , j n), the algorithm moves to the verte
( i n11 , j n11). The method converges when no vertex chan
location at a given iteration. In practical implementation,
erations may be stopped when a large, predetermined
centage of vertices stop moving. The cross section of
radiologist-defined ellipsoid with each image slice was u
for initializing the contour.

When the 2-D active contour model described above
applied to a 3-D dataset, segmentation is performed inde
dently on each slice of the 3-D volume. However, this ki
of segmentation ignores the continuity of the object acr
slices. When the slice spacing is small compared to the
of change of the object shape, it is expected that the shap
the object is unlikely to change drastically from one slice
the next. Our 3-D active contour model is aimed at using
shape information across the 3-D slices to improve upon
2-D active contour model. Our 3-D active contour mod
was defined by including in the curvature energy term,
additional component related to the smoothness of the m
in the z direction. Let (i n,k , j n,k) denote thenth vertex in
image slicek. The curvature energy in our 3-D active conto
model was defined as

E3~n!

5A~ i n21,k22i n,k1 i n11,k!
21~ j n21,k22 j n,k1 j n11,k!

2

1aA~ i n,k2122i n,k1 i n,k11!21~ j n,k2122 j n,k1 j n,k11!2,

~10!
Medical Physics, Vol. 31, No. 4, April 2004
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wherea was the weight of the out-of-plane component of t
curvature relative to the in-plane component. The out-
plane component forced the contour to be smooth in thz
direction. Our implementation of the 3-D active conto
model started by optimizing the contour in the first slice
the 3-D dataset (k51). Since slicek50 did not exist, we
assumed that (i n , j n,0)5( i n , j n,1) for all n. The contour op-
timization in slicek51 followed the steps described abov
for 2-D active contours, except that the curvature energy w
replaced by Eq.~10!. After the contour was optimized fo
slice k51, the optimization was performed for slicek52,
and so on, until the contours were optimized for all slic
This constituted one 3-D iteration. The 3-D model repea
the 3-D iterations until there was no movement of the ve
ces for the 3-D contour, or when a predetermined percen
of vertices stopped moving. Similar to our 2-D active co
tour, the 3-D active contour was initialized using th
radiologist-defined ellipsoid.

We did not employ an optimization method for determi
ing the active contour weights because automatic optim
tion required the comparison of the automated contour wit
gold standard such as the radiologist’s manual segmenta
for training. The ‘‘true’’ borders of many masses on US im
ages were not well defined, even to experienced radiolog
Furthermore, the features that we designed did not requi
border that followed the detailed boundary of an ill-defin
or a spiculated mass. We therefore used more subjec
judgment on the ‘‘goodness of segmentation’’ for the ma
boundary based on our experience with the need of the
tures. To determine the weights for the 2-D model, we star
with weights we had previously used for the segmentation
masses on mammograms.21 We experimentally modified the
weights and observed the effect on the segmentation qu
for the first 15 volumes in our dataset. We found that t
combinationw1521.5, w251, w352.6, andw450.2 pro-
vided a good balance between the smoothness of the con
and its the attraction to the mass borders. These weights w
then used for the 2-D segmentation of the entire dataset.
the 3-D active contour model, we maintained the weights
the values that we determined for the 2-D active cont
model, and selecteda50.5. The choice ofa was again based
on a qualitative assessment of segmentation on the firs
cases.

C. Feature extraction

We have evaluated a number of morphological and t
ture features for characterization of the masses as malig
or benign. Each of the features described below was
tracted from every slice where the mass was segmented
ing either the 2-D or the 3-D automated segmentation al
rithm. The features extracted from different slices of t
same mass were then combined to define the feature m
sures~such as mean or maximum!for that mass.

1. Extraction of morphological features

The taller-than-wide shape of a sonographic mass i
good indication of malignancy.8 This characteristic was de
fined by the ratio of the widest cross section~W! of the
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748 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 748
automatically segmented lesion shape to the tallest cross
tion ~T! in a slice ~Fig. 2!. Another feature that has bee
reported to be useful for differentiation of malignant a
benign masses is posterior shadowing. In order to defin
posterior shadowing feature~PSF!, we first calculated th
mean pixel valueR( i ) in overlapping vertical stripsR( i ), i
51,...,nposterior to the mass, as shown in Fig. 2. The wid
WR of a strip was equal to one-fourth of the width of th
mass (W/4), and the height of the strip was equal to t
height of the mass~T!. The left and right edges of stripsR( i )
andR( i 11) differed by one pixel. In other words, the str
R( i 11) was obtained by moving the stripR( i ) to the right
by one pixel, while, of course, the strip remained posterio
the mass and its height remained asT. In order to exclude the
bilateral posterior shadowing artifacts that are sometimes
sociated with fibroadenomas, the strips were defined o
posterior to the central 3W/4 portion of the mass~Fig. 2!.
The minimum value of these averages, min$R(i),i51,...,n%,
was the darkest posterior strip. The PSF was defined as
normalized average gray-level difference between the i
rior of the segmented mass and the darkest posterior str

PSF5
M̄2min$R~ i !,i 51,...,n%

M̄
, ~11!

whereM̄ denotes the mean gray level value inside the s
mented mass.

2. Extraction of texture features

The features used in this study were extracted from spa
gray-level dependence~SGLD! matrices, or co-occurrenc
matrices, derived from 2-D slices of the 3-D dataset. T
( i , j )th element of the co-occurrence matrix is the relat
frequency with which two pixels: one with gray leveli and
the other with gray levelj, separated by a pixel pair distanc
d in a directionu occur in the image. Features extracted fro

FIG. 2. The definition of the width-to-height and PSF features. The wid
to-height feature was defined as the ratio of the widest cross section o
segmented mass shape in the image plane to the tallest cross sectio
PSF feature was defined by first finding the average gray value in the
terior stripsR( i ), i 51,...,n, then finding the minimum ofR( i ) among then
strips, and finally by normalizing this value by the average gray value wi
the segmented mass.
Medical Physics, Vol. 31, No. 4, April 2004
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SGLD matrices of US images have been shown to be us
in the classification of malignant and benign breast mas
on mammograms in previous studies.22 In this study, six tex-
ture feature measures that are invariant under linear, inv
ible gray scale transformations were extracted. These
tures were information measures of correlations 1 and
~IMC1 and IMC2!, difference entropy~DFE!, entropy
~ENT!, energy~ENE!, and sum entropy~SME!. The math-
ematical definitions of these features can be found in
literature.23 Although many gray scale transformations m
not be invertible due to pixel saturation or roundoff, the
features are largely independent of the gray-level gain adj
ments.

It is known that the margin characteristics of a mass
very important for its characterization, and previous stud
have indicated that texture features extracted from the m
margins are effective for classification.24 For this reason, the
texture features in this study were extracted from two di
shaped regions containing the boundary of each mass
well as presumably mass and normal tissue adjacent to
boundary of the mass. These regions followed the cont
determined by the active contour model, as shown in Fig
The areas for the upper and lower disk-shaped regions w
chosen to be equal, and their sum was equal to the area o
segmented mass. The pixel pair distances used for SG
matrix computation were chosen to bed52, 4, and 6. Two
pixel pair angles,u50° andu590°, were evaluated for eac
d in both regions. The number of SGLD matrices compu
for a disk-shaped region was therefore 6, and the numbe
features extracted from an image containing the segme
mass was 72~6 features, extracted from 6 SGLD matrices
the upper disk-shaped region and the lower disk-shaped
gion!.

D. Classification

The features extracted from different slices of the sa
mass were combined to define the feature measures for
mass. For the width-to-height feature and the PSF, we c
puted the mean, variance, minimum, and maximum of
extracted value from each slice containing the mass. Th
fore eight morphological feature measures were defined
each mass. For texture features, we only computed the m
hence 72 texture feature measures were defined for e
mass.

Fisher’s linear discriminant analysis~LDA!25 was used
for combining the features into a discriminant score. Sin
the number of available features in the feature space
relatively high compared with the number of available cas
stepwise feature selection26 was used in order to reduce th
number of the features and to obtain the best feature su
to design an effective classifier. For partitioning the data
into trainers and testers, we used the leave-one-case-ou
sampling method. Feature selection is performed as par
the classifier design such that both the feature selection
the classifier coefficient estimation procedures were repe
102 times, as each case was left out once as the test sa
The test discriminant scores were analyzed using R

-
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The
s-
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FIG. 3. Left column: The segmented object for a mali
nant mass~upper row!and a benign mass~lower row!.
Middle and right columns: The lower and upper dis
shaped regions from which texture features were e
tracted.
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methodology.27 The classification accuracy was evaluated
ing the area under the ROC curve,Az , as well as the partia
area index,Az

(0.9) . Az
(0.9) is defined as the area under the RO

curve above a sensitivity threshold of 0.9 (TPF050.9) nor-
malized to the total area above TPF0, which is equal to (1
2TPF0).28

E. Malignancy ranking by radiologists

Although all the cases in our dataset were suspici
enough to warrant biopsy or fine needle aspiration, the
gree of difficulty of our cases can best be measured by
vestigating the accuracy of the radiologists in classifying
cases in our dataset as malignant or benign. As describe
Medical Physics, Vol. 31, No. 4, April 2004
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Sec. II B, one radiologist~RAD1! who was familiar with the
clinically obtained images had initially provided a malig
nancy rating. To compare with the computer’s accuracy,
are interested in measuring the accuracy of other radi
gists, who would not be biased by memory or familiari
with the cases. For this purpose, we have developed an
teractive graphical user interface with which the radiologi
could navigate through 3-D volumes, adjust the window a
level of the displayed images, and enter a malignancy ra
between 1 and 100~a higher rating indicating a higher like
lihood of malignancy!when they finish examining a case
Three additional radiologists~RAD2–RAD4! participated in
the malignancy rating study. The radiologists RAD1–RAD
al
-

-
;

e
d
6.
r-

r

FIG. 4. Row 1: Five original slices of a
breast mass that was visible on a tot
of ten US slices; row 2: The cross sec
tion of the initial 3-D ellipsoid at each
slice; row 3: The result of the 2-D ac
tive contour segmentation method
row 4: The result of the 3-D active
contour segmentation method. Not
that the 2-D segmentation metho
missed part of the mass on slice 4
The 3-D segmentation method, appa
ently using the information from slices
45 and 47, was able to provide bette
segmentation on slice 46.
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750 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 750
were either fellowship trained in breast imaging or had o
25 years of experience in breast imaging. All four radio
gists were MQSA qualified and their experience in mamm
graphic and US interpretation ranged from 2 to 25 ye
~mean, 11.3 years!. The location of the mass center, as d
mined by RAD1, was displayed on each slice, so that all
radiologists would rank the same mass if more than one m
existed in the volume. There was no time limitation for t
radiologists to read a case. The case reading order was
domized for each radiologist. The malignancy rating was
tered by means of a slide bar. Before participating in
study, the radiologists were trained on five cases that w
not part of the test dataset described in Sec. II A. The ma
nancy rating study was intended to measure the difficulty
the dataset, and was not intended to measure how the
ologists’ interpretation would be affected by CAD. Ther
fore, the computer classification results were not displaye
the radiologists in this study.

III. RESULTS

We evaluated the accuracy of characterization based
both 2-D and 3-D active contour segmentation metho
Rows 1 to 4 of Fig. 4 show the original images, radiologi
defined ellipsoid, 2-D active contour results, and 3-D act
contour results for five consecutive slices of a mass that
visible on a total of 10 slices. Figure 5 shows a 3-D rend
ing of the segmented object using the 2-D and 3-D ac
contour models. It is seen from Fig. 5 that the shape of
object segmented by the 3-D active contour model
smoother in thez direction.

Table I shows the range~minimum and maximum!of the

FIG. 5. 3-D rendering of the segmented object for the mass shown in Fi
~a! 2-D active contour segmentation;~b! 3-D active contour segmentation

TABLE II. The range ofAz values for the width-to-height feature and post
rior shadowing feature~PSF!extracted using the 3-D and 2-D segmentati
methods. The range indicates the minimum–maximumAz values among the
mean, variance, minimum, and maximum of each feature extracted
each slice containing the segmented mass.

Morphological
feature 3-D segmentation 2-D segmentation

Width-to-height 0.58–0.73 0.54–0.69
PSF 0.53–0.66 0.53–0.59
Medical Physics, Vol. 31, No. 4, April 2004
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Az values provided by each texture feature alone, extrac
from the upper and lower disk-shaped regions determined
the 2-D and 3-D active contour models. The ranges in t
table are for different pixel pair distances and directions u
in extracting the same feature~e.g., IMC1!. Table II shows
the range ofAz values provided by each morphological fe
ture alone, using the 2-D and 3-D active contour models. T
ranges in Table II are for different methods of combining t
features extracted from individual slices, i.e., mean, varian
minimum, and maximum. The most discriminatory feature
this study was the IMC1 feature (d56, u50°, extracted from
the upper disk-shaped region segmented by the 3-D met!
with an Az value of 0.76.

When stepwise LDA was used to combine the featu
into a discriminant score in the 102 leave-one-case-out tr
ing subsets, an average of 6.09 and 7.98 features were
lected with the 2-D and 3-D segmentation methods, resp
tively. For the 2-D segmentation method, the most frequen
selected features were two IMC1 features, two IMC2 fe
tures, one DFE feature, and one width-to-height feature.
the 3-D segmentation method, the most frequently selec
features were two IMC1 features, two IMC2 features, o
DFE feature, one ENT feature, one PSF feature, and

4.

FIG. 6. The test ROC curves obtained by the classifiers that were base
features extracted from the 2-D (Az50.87) and 3-D (Az50.92) active con-
tour models. The difference between the twoAz values did not achieve
statistical significance (p50.07).

TABLE I. The range ofAz values for different texture features extracted fro
the lower and upper disk-shaped regions using the 3-D and 2-D segm
tion methods. For each particular texture feature~e.g., IMC1 feature at
pixel-pair distanced52, and directionu50°!, the feature values from all the
slices containing the segmented mass were averaged before computin
Az value. The range indicates the minimum–maximumAz values for a par-
ticular feature among the parametersd52, 4, 6 andu50°, 90°.

Texture feature

3-D segmentation 2-D segmentation

Upper Lower Upper Lower

IMC1 0.66–0.76 0.58–0.67 0.65–0.72 0.59–0.6
IMC2 0.65–0.75 0.58–0.65 0.65–0.73 0.61–0.6
DFE 0.58–0.68 0.61–0.67 0.56–0.68 0.62–0.7
ENT 0.59–0.64 0.55–0.60 0.62–0.69 0.58–0.6
ENE 0.57–0.63 0.53–0.60 0.53–0.60 0.50–0.5
SME 0.52–0.58 0.51–0.56 0.57–0.64 0.52–0.5

m
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TABLE III. The dependence of the computer classification accuracy on the variation of the initial contou
effects of three transformation parameters, namely, scaling, translation, and rotation of the initial ellipsoi
investigated by moving the initial ellipsoid using one of these three parameters at a time. A translation b610
pixels in the image plane corresponded to approximately61 mm.

Scale Rotation~degrees! x-translation~pixels! y-translation~pixels! Az

1 0 0 0 0.9260.03
1.3 0 0 0 0.8960.03
0.8 0 0 0 0.8960.03
1 0 10 10 0.9060.03
1 0 10 210 0.8760.04
1 0 210 10 0.8760.04
1 0 210 210 0.8860.03
1 15 0 0 0.9360.02
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width-to-height feature. Figure 6 shows the test ROC cur
obtained by the LDA using leave-one-case-out resamp
for the 2-D and 3-D segmentation methods. The testAz val-
ues for the 2-D and 3-D methods were 0.8760.03 and 0.92
60.03, respectively, and theAz

(0.9) values were 0.5160.08
and 0.6760.08, respectively. The difference between the
test Az values did not achieve statistical significancep
50.07). Figure 7 shows the distribution of the discrimina
scores obtained from the 3-D method for the malignant
benign cases.

In order to investigate the dependence of the classifica
accuracy on the initialization of the 3-D active conto
model, we scaled, rotated, and translated the initial 3-D
lipsoid and repeated the steps of active contour segme
tion, feature extraction, and classification for these modifi
initial ellipsoids. The classification accuracies for these
periments are presented in Table III. None of the differen
between theAz values on Table III achieved statistical si
nificance.

The ROC curves for the radiologists’ malignancy ratin
are shown in Fig. 8. The computer and radiologistAz values
and Az

(0.9) values are compared in Table IV. The areaAz

under the ROC curve for radiologists RAD1–RAD4 vari
between 0.8460.04 and 0.9260.03, which are lower than
equal to that of the 3-D computer classifier. The averageAz

value, obtained by averaging the slope and intercept par
eters ~a and b in a ROC analysis!of the individual ROC
curves was 0.87. The difference between theAz values of the
individual radiologists and the computer classifiers~2-D and

TABLE IV. The area under the ROC curve (Az), and the area under the RO
curve above a sensitivity threshold of 0.9 (Az

(0.9)) for the computer classifier
using the 2-D and 3-D active contour segmentation results, and the
radiologists. The radiologists’ results that are significantly (p,0.05) differ-
ent from the 3-D computer results are noted with an asterisk.

Az Az
(0.9)

Computer classifier, 2-D segmentation 0.8760.03 0.5160.09
Computer classifier, 3-D segmentation 0.9260.03 0.6760.08
RAD1 0.8560.04 0.4760.10*
RAD2 0.8760.03 0.3860.11*
RAD3 0.9260.03 0.4560.15
RAD4 0.8460.04 0.2860.11*
l. 31, No. 4, April 2004
s
g

o

t
d

n

l-
ta-
d
-
s

or

m-

3-D methods! did not reach statistical significance (p
.0.05). TheAz

(0.9) values of the computer classifiers bas
on 2-D and 3-D segmentation were consistently higher t
those of all four radiologists. The difference between t
Az

(0.9) values of only one of the radiologists~RAD4! and the
classifier based on 2-D segmentation achieved statistical
nificance (p50.05). The differences between theAz

(0.9) val-
ues of three of the four radiologists and that of the classi
based on 3-D segmentation were statistically significantp
50.03, 0.02, and 0.001 for RAD1, RAD2, and RAD4, r
spectively!.

IV. DISCUSSION

The computer classifier designed in this study to char
terize breast masses on US volumes was able to discrimi
between malignant and benign masses that were suspic
enough to warrant a biopsy. From Fig. 7, it is observed tha
an appropriate decision threshold was chosen for the
criminant scores of the classifier based on 3-D segmenta
more than 43%~20/46!of biopsied benign masses could b
correctly identified while no malignant masses were miscl
sified ~at 100% sensitivity!. Based on 2-D segmentation,
corresponding percentage of correctly identified ben
masses was 35%~16/46!.

FIG. 7. The distribution of the test discriminant scores for the classifier t
was based on 3-D active contour segmentation. By choosing an approp
decision threshold on these scores~e.g., decision threshold50.3! more than
43% ~20/46!of biopsied benign masses could be correctly identified wh
no malignant masses would be misclassified.

ur



ze
c

pi
t

on
in
u

a

to
tio
er
ab

t
tio
te
n
io
th
so
tiv
de
ut
e
a
s
tir
in
n
on
im
ra
he

v

om

the
ped
rom

om
ina-
sk-

n

ult
ing.
on
and
s in
of
ses.
the
x-

seg-
ions
cts
om

ve a
ise
rom

ere
102
t of
ure
C1

st
and
se-

2,
ep-

to
he
xi-
vol-

ur.
ted
roxi-

ho
ee
ot
n

752 Sahiner et al. : Characterization of breast masses on 3-D ultrasound 752
Lesion segmentation is an important task in computeri
lesion characterization. The segmentation of US images
be challenging because boundaries are not always cons
ous, due to the noise and contrast characteristics, and
speckled nature of US images. For breast US, an additi
source of difficulty is the presence of posterior shadow
artifacts, a major source of which is the US attenuation d
to the fibrous stroma caused by the tumor.29 Previous re-
search on the segmentation of breast masses on US im
includes work by Horschet al.,30 Xiao et al.,31 and Madab-
hushi et al.32 Their segmentation methods were applied
2-D US images. In our study, we compared the classifica
accuracy when 2-D and 3-D active contour models w
used for segmentation. The 2-D model provided reason
segmentation results for many of the masses. However,
2-D model does not take advantage of the image informa
in adjacent slices when a particular slice is being segmen
If the 2-D active contour is misled on one slice, there is
interaction from adjacent slices to improve the segmentat
This is illustrated in Fig. 4, row 3. It can be observed that
2-D segmentation results on slices #45 and #47 are rea
able; however, part of the lesion is missed by the 2-D ac
contour model on slice #46. Our 3-D active contour mo
uses the smoothness of the segmented shape in the o
plane direction as an interaction term between adjac
slices. The 3-D segmentation results, shown in row 4,
more consistent across slices. Figure 5 compares the
mented object using the 2-D and 3-D methods for the en
lesion, which was visible on a total of ten slices. It is aga
observed that the lesion shape in the out-of-plane directio
smoother for the 3-D method. Although our classificati
accuracy using the 3-D method was satisfactory, further
provement may be required for applications such as accu
lesion volume measurement. More sophisticated and in
ently 3-D methods, such as deformable surfaces33 and level
set methods, may be good candidates for further impro
ment.

The texture features in this study were extracted fr

FIG. 8. ROC curves for the computer and for the four radiologists w
participated in the malignancy rating experiment. The difference betw
the computer’sAz value and that of any of the four radiologists did n
achieve statistical significance. However, the computer classifier had sig
cantly higher (p,0.05) partial area index,Az

(0.9) , than three of the four
radiologists at high sensitivity~TPF.0.9!.
Medical Physics, Vol. 31, No. 4, April 2004
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disk-shaped regions at the upper and lower margins of
mass on each slice. The total area of the two disk-sha
regions was equal to the area of the segmented mass. F
Table I, it is observed that a texture feature extracted fr
the upper disk-shaped region tended to be more discrim
tory than the same feature extracted from the lower di
shaped region. The maximum of the range ofAz values~the
second number in each cell!was larger for the upper regio
in 11 of the 12 comparisons that can be made~6 texture
features and 2 segmentation methods!. The lower boundaries
of many masses were difficult to perceive and hence diffic
to automatically segment because of posterior shadow
This may have contributed to the difference of discriminati
ability between the features extracted from the upper
lower regions. Another possible factor may be the change
the spatial and gray level resolutions in different regions
the US image as the distance from the US probe increa
Further work is underway to investigate the reasons for
apparent lower discrimination ability of the features e
tracted from the lower disk-shaped regions.

Although the disk-shaped region depends on mass
mentation, there can be a large overlap between the reg
from the 2-D and 3-D segmentation results if the obje
segmented by the two methods are not very different. Fr
Table I, it can be observed that the ranges ofAz values for
2-D and 3-D segmentation for each texture measure ha
large overlap. As mentioned in Sec. III, when the stepw
feature selection method was used for classifier design f
2-D segmentation results, an average of 6.09 features w
selected, where the average was computed over the
cycles of the leave-one-out partitioning of the dataset. Ou
the six most frequently selected features, five were text
features and one was a morphological feature. The IM
feature was selected twice~at d52, u50° andd56, u590°!,
the IMC2 feature was selected twice~at d52, u50° andd
56, u50°!, and the DFE feature was selected once~at d
56, u50°!. For 3-D segmentation, out of the eight mo
frequently selected features, six were texture features,
two were morphological features. The IMC1 feature was
lected twice~at d52, u590° andd54, u50°!, the IMC2
feature was selected twice~at d52, u50° andd56, u50°!,
and the DFE feature was selected once~at d56, u50°!.
Thus, out of 11 most frequently selected texture features~5
for 2-D and 6 for 3-D segmentation!, 10 were IMC1, IMC
or DFE features. The classification accuracy with the st
wise LDA for the 3-D segmentation (Az50.92) was better
than that for 2-D segmentation (Az50.87). However, the
difference did not achieve statistical significance~a two-
tailed p value50.07!.

The active contour method requires an initial boundary
start iterating toward the optimal contour. In this study, t
initial boundary was defined by a 3-D ellipsoid that appro
mated the mass shape. The ellipsoid was placed in the
ume by one of the radiologists~RAD1! using an interactive
graphical user interface~GUI!. The radiologist thus had to
shift and scale a single object to define the initial conto
Although the error between the true and approxima
shapes can be large when a single object is used for app

n
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mating the mass, this method was faster than other pos
methods that would require initialization on each slice se
rately, and was therefore preferred. The robustness of the
segmentation method to active contour initialization w
studied by translating, rotating, and scaling the 3-D ellipso
There are many possibilities as to how these three opera
~moving, rotating, and scaling! can be combined to modify
the initial ellipsoid. In Table III, the classification results a
presented when these three operations are performed on
time. Row 1 shows theAz value when the original ellipsoid
is used. The ellipsoid was scaled in rows 2–3, translate
rows 4–6, and rotated in row 7. For the magnitudes of s
ing, translation, and rotation studied in Table III, the var
tion of the Az value was within two standard deviations
the Az value provided by theLABROC program.27 In a step
toward automating the initialization of the contour, we a
currently investigating methods for automatically determ
ing an initial contour from a rectangular box containing t
mass.

The comparison of the ROC curves by the radiologi
and the computer indicated that the computer can be as
fective as the radiologists in differentiating malignant a
benign breast masses in this dataset. In fact, the accura
the computer classifier using 3-D segmentation was gre
than three and equal to one of the radiologists, although
difference between the computer and the individual radio
gists in terms ofAz did not achieve statistical significanc
Furthermore, from Fig. 8, it is observed that the compu
has a tendency to be better at high sensitivity. This was
confirmed by the statistically significant difference betwe
the computer classifier~3-D segmentation method! and three
out of the four radiologists when the comparison was ba
on theAz

(0.9) values. It should be noted that the purpose
our study was not to evaluate our US mass characteriza
method in a clinical setting. As noted in Secs. I and II, t
semiautomated 3-D data acquisition system used in
study is still under investigation and is different from that
current clinical practice. The first difference is that, in o
department, radiologists interactively perform handheld
examination themselves, which may yield better image qu
ity and may result in higher characterization accuracy. T
second difference is that our study concentrated only
mass characterization of lesions already detected, whe
the actual detection of suspicious masses by US is a
important step in a clinical examination. These other asp
of comparing 3-D US images to US images acquired w
current clinical methods are subjects of future investigatio

In this study, the features were extracted from individu
US slices and then combined into object-based features
explained in Sec. II D. Although this method is found
provide effective features in this study, it may not have fu
utilized the information available in the 3-D dataset. T
potential improvement in classification accuracy by us
truly 3-D features, for example, texture features extrac
from 3-D SGLD matrices, needs to be investigated. Furth
more, in clinical practice, the decision about whether
mass is malignant or benign is made using both mam
graphic and US image information, as well as other pertin
Medical Physics, Vol. 31, No. 4, April 2004
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patient information. A study is currently underway in o
laboratory to design a classifier that combines compu
extracted features or scores from these two imaging mod
ties.

V. CONCLUSION

A computer segmentation and classification method
been developed for the task of the characterization of br
masses on 3-D US images. On a dataset of 102 biop
proven masses the classifier achieved anAz value of 0.92.
The averageAz value of four experienced radiologists on th
same data set was 0.87. The computer classifier was m
accurate than three and equal to one of the four radiolog
participated in the study. However, the difference betwe
theAz values of the computer and the individual radiologis
did not achieve statistical significance for this dataset.
high sensitivity, the computer classifier was consisten
more accurate than all four radiologists and achieved sta
tical significance (p,0.05) for the difference inAz

(0.9) from
three of the four radiologists. The robustness of the itera
segmentation algorithm in terms of the initial contour pr
vided to the algorithm was studied. The classification ac
racy was found to depend on the initialization; however,
Az value did not significantly deteriorate when the initi
contour was scaled, rotated, or translated by a mode
amount. Future work includes verifying the results of th
study by applying it to a larger and independent data
expanding the feature space by designing truly 3-D featu
and combining the developed US characterization met
with mammographic characterization methods. The obse
performance study will also be performed to evaluate
effects of CAD on the characterization of breast masses
radiologists.
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