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We are developing a computer-aided detection �CAD� system for breast masses on full field digital
mammographic �FFDM� images. To develop a CAD system that is independent of the FFDM
manufacturer’s proprietary preprocessing methods, we used the raw FFDM image as input and
developed a multiresolution preprocessing scheme for image enhancement. A two-stage prescreen-
ing method that combines gradient field analysis with gray level information was developed to
identify mass candidates on the processed images. The suspicious structure in each identified region
was extracted by clustering-based region growing. Morphological and spatial gray-level depen-
dence texture features were extracted for each suspicious object. Stepwise linear discriminant
analysis �LDA� with simplex optimization was used to select the most useful features. Finally,
rule-based and LDA classifiers were designed to differentiate masses from normal tissues. Two data
sets were collected: a mass data set containing 110 cases of two-view mammograms with a total of
220 images, and a no-mass data set containing 90 cases of two-view mammograms with a total of
180 images. All cases were acquired with a GE Senographe 2000D FFDM system. The true
locations of the masses were identified by an experienced radiologist. Free-response receiver oper-
ating characteristic analysis was used to evaluate the performance of the CAD system. It was found
that our CAD system achieved a case-based sensitivity of 70%, 80%, and 90% at 0.72, 1.08, and
1.82 false positive �FP� marks/image on the mass data set. The FP rates on the no-mass data set
were 0.85, 1.31, and 2.14 FP marks/image, respectively, at the corresponding sensitivities. This
study demonstrated the usefulness of our CAD techniques for automated detection of masses on
FFDM images. © 2005 American Association of Physicists in Medicine.
�DOI: 10.1118/1.1997327�
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I. INTRODUCTION

Breast cancer is one of the leading causes of death among
American women between 40 and 55 years of age.1 It has
been reported that early diagnosis and treatment can signifi-
cantly improve the chance of survival for patients with breast
cancer.2–4 Although mammography is the best available
screening tool for detection of breast cancers, studies indi-
cate that a substantial fraction of breast cancers that are vis-
ible upon retrospective analyses of the images are not de-
tected initially.5–8 Computer-aided diagnosis �CAD� is
considered to be one of the promising approaches that may
improve the sensitivity of mammography.9,10 Computer-
aided lesion detection can be used during screening to reduce
oversight of suspicious lesions that warrant further work-up.
Computer-aided lesion characterization can assist in the esti-
mation of the likelihood of malignancy of lesions by using
image and/or other information during the diagnostic stage.
The majority of studies to date show that CAD can improve
radiologists’ lesion detection sensitivity,11–16 although Gur et
al.17 found that CAD had no significant effect on the radi-
ologists in their academic setting when they averaged the
results from both low-volume and high-volume radiologists.

18
Further analysis of Gur’s data by Feig et al. indicated that
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the 17 low-volume radiologists in Gur’s study achieved simi-
lar increase in sensitivity as reported in other studies. The
outcome of CAD studies therefore depends on the study de-
sign and data analysis.

A number of investigators have reported CAD algorithms
for detection of masses on mammograms. Their approaches
to prescreening of mass candidates were based primarily on
mass characteristics including: �1� asymmetric density be-
tween left and right mammograms,19–22 �2� texture,23,24 �3�
spiculation,25,26 �4� gray level contrast,27–31 and �5�
gradient.32 Some of these approaches were refined with a
combination of the mass characteristics. Feature classifiers
were then used to further differentiate masses from normal
breast tissues.

Most mammographic CAD algorithms developed so far
are based on digitized screen-film mammograms �SFMs�. In
the last few years, full field digital mammographic �FFDM�
technology has advanced rapidly because of the potential of
digital imaging to improve breast cancer detection. Several
manufacturers have obtained clearance from the FDA for
clinical use. It is expected that FFDM detectors will provide
higher signal-to-noise ratio �SNR� and detective quantum ef-

ficiency, wider dynamic range, and higher contrast sensitivity

2827„9…/2827/12/$22.50 © 2005 Am. Assoc. Phys. Med.



2828 Wei et al.: Computer-aided detection of masses on digital mammograms 2828
than digitized mammograms. The spatial resolution of digital
detectors may also be different from that of digitized SFMs
even when their pixel pitches are equal. Li et al. investigated
the performance of their CAD system on mass detection that
was developed for SFMs and modified for FFDMs.33 Their
preliminary results on a small data set showed that it
achieved 60% sensitivity at 2.47 false positives �FPs�/image.
It is expected that proper adaptation based on the imaging
characteristics of FFDMs and re-training of the CAD system
with FFDMs would improve the performance. Because of
the higher SNR and linear response of digital detectors, there
is also a strong potential that more effective feature extrac-
tion techniques can be designed to optimally extract signals
from the image and improve the accuracy of CAD. Several
commercial CAD systems already obtained FDA approval
for use with FFDMs. The commercial CAD systems gener-
ally reported similar performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed jour-
nals so that the data set and algorithm are unknown. Re-
cently, an assessment study34 to compare the performance of
two commercial and one research CAD system for SFMs
showed that their mass detection sensitivities ranged from
67% to 72% and the FP rates ranged from 1.08 to 1.68 per
four-view examinations. The differences in sensitivities were
not significant whereas the differences in the FP rates were
significant, depending on the examinations and CAD sys-
tems used.34

We have developed a CAD system for the detection of
masses on SFMs in our previous studies.30,35,36 We are de-
veloping a mass detection system for mammograms acquired
directly by a FFDM system. In this study, we adapted our
mass detection system developed for SFMs to FFDMs by
optimizing each stage and retraining. In an effort to develop
a CAD system that is less dependent on the FFDM manufac-
turer’s proprietary preprocessing methods, we used the raw
FFDM as input and developed a multiresolution preprocess-
ing scheme for image enhancement. A new technique was
also designed for prescreening of mass candidates on the
preprocessed images.

II. MATERIALS AND METHOD

A. Data sets

The mammograms were collected from patient files at the
Department of Radiology with Institutional Review Board
approval. Digital mammograms at the University of Michi-
gan are acquired with a GE Senographe 2000D FFDM sys-
tem. The GE system has a CsI phosphor/a :Si active matrix
flat panel digital detector with a pixel size of 100 �m
�100 �m and 14 bits per pixel. In this study, we used two
data sets: a mass set containing FFDMs with malignant or
benign masses and a no-mass set containing FFDMs without
masses. The no-mass set was obtained from microcalcifica-
tion cases collected for the development of our microcalcifi-
cation CAD systems. The cases were included as normal,
with respect to masses, only if they were verified to be free
of masses by an experienced Mammography Quality Stan-

dards Act �MQSA� radiologist. Our mass detection system
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aims at application to screening mammography so that the
mass cases, regardless of malignant or benign, are considered
positive. All cases had two mammographic views, the cran-
iocaudal view and the mediolateral oblique view or the lat-
eral �LM or ML� view. The mass set contained 110 cases
with a total of 220 images. The no-mass set contained 90
cases with a total of 180 images. The mass data set was used
to estimate the detection sensitivity and the no-mass data set
was used for estimating the FP rate. There were a total of 110
biopsy-proven masses in the mass data set. Eighty-seven of
the masses were benign and 23 of the masses were malig-
nant. A MQSA radiologist identified the locations of the
masses, measured the mass sizes as the longest dimension
seen on the two-view mammograms, provided descriptors of
the mass shapes and mass margins, and also provided an
estimate of the breast density in terms of BI-RADS category.
Figure 1 shows the information of our data set which in-
cludes the distributions of mass sizes, mass shapes, mass
margins, and breast density.

B. Methods

Our CAD system consists of five processing steps: �1�
preprocessing by using multiscale enhancement, �2� pre-
screening of mass candidates, �3� identification of suspicious
objects, �4� feature extraction and analysis, and �5� FP reduc-
tion by classification of normal tissue structures and masses.
The block diagram for the detection scheme is shown in Fig.
2. These steps are described in more detail in the following.

We randomly separated the mass data set into two inde-
pendent, equal sized subsets. Each subset contained 55 cases
with 110 images. Cross validation was used for training and
testing the algorithms. The training included selecting the
preprocessing Laplacian pyramid reconstruction weights, ad-
justing the filter weights for prescreening and clustering, de-
termining thresholds for rule-based classification, and select-
ing morphological and texture features and classifier
weights. Once the training with one subset was completed,
the parameters and all thresholds were fixed for testing with
the other subset. The training and test subsets were switched
and the training process was repeated. The overall detection
performance was evaluated by combining the performances
for the two test subsets. The trained algorithms with the fixed
parameters were also applied to the no-mass mammograms
to estimate the FP rate in screening mammograms.

1. Preprocessing

FFDMs are generally preprocessed with proprietary meth-
ods by the manufacturer of the FFDM system before being
displayed to readers. The image preprocessing method used
depends on the manufacturer of the FFDM system. To de-
velop a CAD system that is less dependent on the FFDM
manufacturer�s proprietary preprocessing methods, we use
the raw FFDM as input to our CAD system. We developed a
multiscale preprocessing scheme for image enhancement.

Multiscale methods have been used for contrast enhance-
ment of medical images. Since a multiscale method uses the

information from a large number of frequency channels ex-
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tracted from the image adaptively, it is more flexible and
versatile than the commonly used enhancement methods,
such as unsharp masking, which uses a small number of
frequency channels. Two types of multiscale methods have
been used as the preprocessing methods for the contrast en-
hancement of mammograms: the wavelet method and the
Laplacian pyramid method.37 A previous study has shown
that, for the purpose of image enhancement, using a Laplac-

FIG. 2. Schematic diagram of our CAD system for mass detection on
FFDM. The system is developed for screening mammography so that all
masses, regardless of malignant or benign, are considered positive. The FP
classification stage includes rule-based classification, a morphological LDA
classifier, and a texture feature LDA classifier for differentiating masses

from normal breast tissues.
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ian pyramid method is advantageous compared to using the
fast wavelet transformation which introduces visible
artifacts.38 In this project, therefore, we chose the Laplacian
pyramid method as our preprocessing method.

A flowchart of our preprocessing method is shown in Fig.
3. In brief, the mammogram is first segmented automatically
into the background and the breast region. Second, a loga-
rithmic transform is applied to the breast image. The Laplac-
ian pyramid method is used to decompose the breast image

FIG. 1. The information of our mass
data set: �a� distribution of mass sizes,
�b� distribution of mass shapes, �c�
distribution of mass margins, C: cir-
cumscribed, Ind: indistinct, M: mi-
crolobulated, Ob: obscured, Sp: spiqu-
lated, �d� distribution of the breast
density in terms of BI-RADS category
estimated by a MQSA radiologist.

FIG. 3. Schematic diagram for the image preprocessing stage of our mass
detection system, which includes breast boundary segmentation, logarithmic

image transformation, and Laplacian pyramid multiscale enhancement.
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into multiscales. A nonlinear weight function based on the
pixel gray level from each of the low-pass components is
designed to enhance the high-pass components.

Since the contrast between the breast and the background
in a raw FFDM is high, a two-step algorithm was developed
for the segmentation of breast region. First, Otsu’s method39

is used to calculate a threshold and binarize the original im-
age. Second, an eight-connectivity labeling method is used to
identify the connected regions below the threshold on the
binary image. The region with the largest area will be con-
sidered to be the breast region.

Clinical mammograms are usually viewed in a negative
mode of the raw images. In order to process an image with
the same format as the clinical mammograms, we first use an
inverted logarithmic function40 to transform the raw data. A
multiresolution method is then used to enhance the log-
transformed image. The inverted logarithmic function for
signal transfer can be expressed as

Sx = ln�Xmax

X
� �1�

where X is the gray level of the raw data, Xmax is the maxi-
mum of the 14 bit digital gray scale number �i.e., 16 383�.
The transformed image is then linearly scaled to 12 bit pixel
values.

The Laplacian pyramid decomposition is a multiscale
method that was first introduced as an image compression
technique.37 We previously evaluated the effect of Laplacian
pyramid data compression on the detection of microcalcifi-
cations on digitized mammograms.41 An illustration of a La-
placian decomposition tree is shown on the left-hand side of
Fig. 4. The Laplacian pyramid is a sequence of error images
L0 ,L1 , . . . ,Ln. Each is the difference between two consecu-
tive levels of the Gaussian pyramid G0 ,G1 , . . . ,Gn, where G0

is the original image. Each subsequent level of the Gaussian
pyramid in the decomposition tree is generated by convolu-
tion of the image at the previous level with a 5�5 kernel,
w�m ,n�, that has weights of 0.4 at the center, 0.25 at the
eight nearest neighbors of the center, and 0.05 at the 16
peripheral pixels, and then downsampled by a factor of 2, as
described in Eq. �4�. The decomposition of the image from
level k to level k+1 can be expressed mathematically by

Lk = Gk − Expand�Gk+1� , �2�

where

Expand�Gk+1� = 4 �
m=−2

2

�
n=−2

2

w�m,n� · Gk+1� i − m

2
,
j − n

2
� ,

�3�

Gk�i, j� = �
m=−2

2

�
n=−2

2

w�m,n�Gk−1�2i + m,2j + n� . �4�

The original image can be recovered by following the Gauss-
ian reconstruction tree shown on the right-hand side of Fig. 4
if no enhancement is applied to the Laplacian pyramid. At a

given level of the Gaussian reconstruction tree, the image is
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expanded �convolved and upsampled�, as shown in Eq. �3�,
and then added to the Laplacian error image of the corre-
sponding level. Details of the decomposition and reconstruc-
tion processes can be found in the literature.37

We enhance the reconstructed image to facilitate mass
detection. The image at each level of the Laplacian pyramid
that corresponds to a bandpass image is mapped by a non-
linear function. In this study, we use a nonlinear function that
incorporates the information from each bandpass image. A
Gaussian pyramid expansion is then used to reconstruct the
image from the low pass components and the enhanced
bandpass components, as shown in Fig. 4. The reconstruction
scheme is defined by

r�k� = � · Expand�Gk+1� + � · �Expand�Gk+1��p · Lk, �5�

where �, �, and p are constant values in the range of 0.2–2.0
experimentally chosen for each frequency level.

Figures 5�a� and 5�b� show an example of a GE raw im-
age and its processed image provided by the GE FFDM sys-
tem. The histograms of the raw image and the processed
image are shown next to the corresponding images. An ex-
ample of the processed image using our multiresolution en-
hancement method and the corresponding histogram are
shown in Fig. 5�c�.

2. Prescreening and segmentation
of suspicious objects

In our previous CAD system developed for digitized
SFMs, an adaptive density-weighted contrast enhancement

35

FIG. 4. Multiscale enhancement using the Laplacian pyramid decomposition
method: Laplacian decomposition tree on the left-hand side and the Gauss-
ian reconstruction tree on the right-hand side. The different levels of the
Gaussian pyramid images are denoted by Gi, �i=0, . . . ,n�. The error images
at different levels of the Laplacian pyramid are denoted by Li, �i
=0, . . . ,n�. The primed quantities Gi� and Li� denoted the images at different
levels after enhancement. ∑ denotes the summation operation. The image is
downsampled by a factor of 2 when it goes down every level of the decom-
position tree, and upsampled by a factor 2 when it moves up every level of
the reconstruction tree.
�DWCE� filter was developed for prescreening. Although
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the DWCE filter using the gray level information can iden-
tify the suspicious locations of masses on mammograms with
high sensitivity, the prescreening objects often include a
large number of enhanced normal breast structures.

In this study, we investigated the use of a new method that
combines gradient field information and gray level informa-
tion to detect mass candidates on FFDMs. Gradient field in-
formation is commonly used in computer vision or other
fields to extract objects or intensity field distributions. Ko-
batake et al.42 designed a filter, referred to as an iris filter, to
calculate the convergence of gradient index around each
pixel on SFMs which provided shape information for detec-
tion of masses. An extension of the iris filter, referred to as
an adaptive ring filter, was developed by Wei et al.43 for
detection of lung nodules on chest x-ray images. In this
study, we have developed a two-stage gradient field analysis
method which uses not only the shape information of masses
on mammograms but also incorporates the gray level infor-
mation of the local object segmented by a region growing
technique in the second stage to refine the gradient field
analysis.

To reduce noise in the gradient calculation, the image is
smoothed with a 4�4 box filter and subsampled to

FIG. 5. An example of �a� GE raw image, �b� GE processed image, and �c�
our processed image by using the Laplacian pyramid multiscale method.
The gray level histogram of each image is also shown. The GE raw image
has 14 bit gray levels but the histogram only plotted the lower 12 bits be-
cause very few pixels had gray levels higher than 4095.
400 �m�400 �m. The gradient field analysis is applied to
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the smoothed image. At each pixel c�i� within the breast,
concentric annular regions centered at c�i� with an average
radius, R�k�, of k pixels from c�i� and a radial width of
4 pixels are defined within a circular region of about 12 mm
in radius. The gradient vector at each pixel p�j� within an
annular region is computed and the gradient direction is ob-
tained by projecting the gradient vector to the radial direction
vector from c�i� to p�j�. The average gradient direction over
an annular region at the average radius R�k� is calculated as
the mean of the gradient directions over pixels on three ad-
jacent annular regions R�k−1�, R�k�, and R�k+1�. Finally,
the gradient field convergence at c�i� was determined as the
maximum of the average gradient directions among all an-
nular regions. A region of interest �ROI� of 256
�256 pixels in the 100 �m�100 �m images is identified
with its center placed at each location of high gradient con-
vergence. The object in each ROI is segmented by a region
growing method44 in which the location of high gradient
convergence is used as the starting point. After region grow-
ing, all connected pixels constituting the object are labeled.
Finally, the gradient convergence at the center location of the
ROI is recalculated within the segmented object. Objects
whose new gradient convergence is lower than 80% of the
original value are rejected.

After prescreening, the suspicious objects are identified
by using a two-stage segmentation method. First, the
background-corrected ROI was weighted by a Gaussian
function with �=256 pixels. Then, a k-means clustering us-
ing the pixel values in a background-corrected image and a
Sobel filtered image as features is used to find the object.
Figures 6�a� and 6�b� show the initial detection locations and
the grown objects, respectively, obtained by prescreening the
mammogram shown in Fig. 5�c�.

3. Feature extraction and FP reduction

FP classification in our mass detection system is accom-
plished by a three-stage classification scheme.36,44 For each
suspicious object, eleven morphological features are ex-
tracted. Rule-based classification and a linear discriminant
analysis �LDA� classifier using all 11 morphological features
as input predictor variables are trained to remove the de-
tected structures that are substantially different from breast
masses. The training data set alone was used for training the
classification rules and the weights of the LDA classifier.
After morphological classification, global and local multi-
resolution texture analyses45 are performed in each remain-
ing ROI by using the spatial gray level dependence �SGLD�
matrix. Briefly, the wavelet transform is employed to decom-
pose an ROI into three levels for global texture analysis.
Thirteen types of texture features44,46 are extracted from each
ROI. Each feature is calculated at 14 pixel distances and 2
angular directions. A total of 364 features �13 texture
measures�14 distances�2 directions� is extracted from
global texture analysis. Local texture features are extracted
from the local region containing the detected object �object
region� and the peripheral regions within each ROI. A total

of 208 features �104 features from the object region and 104
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features from the peripheral regions� are extracted. The third-
stage FP reduction using the texture features is described
next.

4. Texture classification of masses
and normal tissue

In order to obtain the best texture feature subset and re-
duce the dimensionality of the feature space to design an
effective classifier, feature selection with stepwise LDA was
applied. At each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. The optimization procedure used a threshold Fin for
feature entry, a threshold Fout for feature removal, and a tol-
erance threshold T for excluding features that had high cor-
relation with the features already in the selected pool. Since
the appropriate values of Fin, Fout, and T were unknown, we
examined a range of Fin, Fout, and T values using an auto-
mated simplex optimization method. For a given combina-
tion of Fin, Fout, and T values, the algorithm used a leave-
one-case-out resampling method within the training subset to
select features and estimate the weights for the LDA classi-
fier. To evaluate the classifier performance, the test discrimi-

FIG. 6. An example demonstrating the processing steps with our CAD sys-
tem: �a� object locations identified in prescreening, �b� identified suspicious
objects, �c� detected objects after FP reduction, and �d� image superimposed
with ROIs identifying the detected objects. The true mass is indicated by an
arrow.
nant scores from the left-out cases were analyzed using re-
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ceiver operating characteristic �ROC� methodology.47 The
discriminant scores of the mass and normal tissue were used
as the decision variable in the LABROC program, which fits a
binormal ROC curve based on maximum likelihood estima-
tion. The accuracy for classification of mass and normal tis-
sue was evaluated as the area under the ROC curve, Az. The
test Az for the left-out cases in the leave-one-out resampling
within the training subset was used as a figure of merit to
guide the simplex algorithm to search for the best set of Fin,
Fout, and T values within the parameter space. In this ap-
proach, feature selection was performed without the left-out
case so that the test performance would be less optimistically
biased.48 However, the selected feature set in each leave-one-
case-out cycle could be slightly different because every cycle
had one training case different from the other cycles. In order
to obtain a single trained classifier to apply to the test subset,
a final stepwise feature selection was performed with the
entire training subset and a set of Fin, Fout, and T thresholds
chosen from the output of simplex training process. This set
of Fin, Fout, and T thresholds was chosen based not only on
the test Az values, which were generated when the simplex
procedure was searching through the parameter space, but
also on the average number of features selected. The appro-
priate thresholds were chosen as a balance between keeping
the number of selected features small and a relatively high
classification accuracy by LDA. The chosen thresholds were
then applied to the entire training subset to obtain the final
set of features using stepwise feature selection and estimate
the weights of the LDA. The LDA classifier with the selected
feature set was then fixed and applied to the test subset. The
test subset was independent of the training subset as de-
scribed in Sec. II B 2 and was not used in the above-
described leave-one-case-out classifier training process.

5. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by an experienced radiologist. A de-
tected object was scored as true positive �TP� if the overlap
between the bounding box of the detected object and the
truth ROI was over 25%. Otherwise, it would be scored as
FP. The 25% threshold was selected as described in our pre-
vious study.36 The detection performance of the CAD system
was assessed by free response ROC �FROC� analysis. FROC
curves were presented on a per-mammogram and a per-case
basis. For mammogram-based FROC analysis, the mass on
each mammogram was considered an independent true ob-
ject; the sensitivity was thus calculated relative to 220
masses. For case-based FROC analysis, the same mass im-
aged on the two-view mammograms was considered to be
one true object and detection of either or both masses on the
two views was considered to be a TP detection; the sensitiv-
ity was thus calculated relative to 110 masses. Figure 6�c�
shows an example of the final detected objects and Fig. 6�d�
shows the locations of these objects superimposed on the
mammogram.

To evaluate the effect of the preprocessing methods on

mass detection, we also trained a CAD system using the GE
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processed image as input. This CAD system used the same
methods as those described earlier for the raw images except
that the Laplacian pyramid preprocessing step was not ap-
plied to the GE processed image, and that the prescreening
and feature classifiers were retrained specifically for the GE
processed images to obtain the best performance. The train-
ing and test subsets contained the same corresponding cases
as for the raw image subsets. The training and testing were
performed using the above-described cross validation
method. The performance of the CAD system using the GE
processed images was quantified by the average test FROC
curve and compared with that using the raw images.

III. RESULTS

With raw images as input and Laplacian pyramid en-
hancement, our CAD system using the two-stage gradient
field analysis detected 92.7% �204/220� of the masses with
an average of 18.9 �4152/220� objects/image at the pre-
screening stage, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone. After FP reduction using the rule-based and
linear classifier based on morphological features, there were
a total of 3412 mass candidates �15.5 objects/image� at a
sensitivity of 90.5% �199/220�.

The texture-based LDA classifier for FP reduction was
designed with stepwise feature selection and simplex optimi-
zation. The most effective subset of features from the avail-
able feature pool was selected for each of the training subsets
during the training procedure. Twenty �11 global and 9 local�
and 19 �12 global and 7 local� texture features were selected
from the two independent training subsets, respectively. The
test ROC curves are shown in Fig. 7. The training Az values
of the LDA classifier on the two training subsets were
0.87±0.02 and 0.88±0.01, respectively. The classifiers
achieved Az values of 0.89±0.02 and 0.85±0.02 on the in-
dependent test subsets, respectively. Figure 8 shows the
FROC curves for the two test subsets after FP reduction with
the corresponding trained LDA classifiers. An average FROC

FIG. 7. The test ROC curves from the two independent mass subsets. The
LDA classifiers using text features achieved an Az value of 0.89±0.02 for
test subset 1 and 0.85±0.02 for test subset 2 in the classification of mass and
normal breast tissues.
curve was derived from these two FROC curves by averag-

Medical Physics, Vol. 32, No. 9, September 2005
ing the FP/images at the corresponding sensitivities. This
average test FROC curve is plotted in Fig. 9 for comparison
with the other FROC curves, described next.

In addition to using the mass data set containing 110 cases
for the cross validation training and testing, we used a no-
mass data set containing 90 cases with 180 images to evalu-
ate the FP detection rate in normal cases. Since two sets of
trained parameters were acquired as a result of the cross
validation training, we applied the two trained CAD systems
separately to the no-mass data set for FP detection. The num-
ber of FP marks produced by the algorithm was determined
by counting the detected objects on these normal cases only.
The mass detection sensitivity was determined by counting
only the abnormal objects on each of the test mass subsets.
The combination of the sensitivity from each of the test mass
subsets and the FP rate from the normal data set at the cor-
responding detection thresholds resulted in a test FROC
curve. The two test FROC curves were then averaged, as
described earlier, to obtain an overall FROC curve quantify-
ing the test performance of the CAD system. Figures 9�a�
and 9�b� show the comparison of the average FROC curves
with the FP rates estimated from the two data sets. The test
FROC curve with the FP rate estimated from the no-mass

FIG. 8. The test FROC curves from the two independent mass subsets for
the CAD system using the raw images as input and processed with the
Laplacian pyramid method. The FP rate was estimated from the mammo-
grams with masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
data set showed a case-based detection sensitivity of 70%,
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80%, and 90% at 0.85, 1.31, and 2.14 FP marks/image,
which are slightly higher than the FP rates of 0.7, 1.1, and
1.8 marks/image, respectively, estimated from the mass data
set. Since our mass detection algorithm limits the maximum
number of output marks to be 3 at the final stage, the FP
marker rates will be slightly higher if the detection is per-
formed in no-mass images. However, many images do not
reach the maximum of 3 marks so that the difference in the
FP marker rate between the mass and no-mass set is less than
one. We also analyzed the detection accuracy of the system
for malignant and benign masses separately. Figures 10�a�
and 10�b� show the average FROC curves for detection of
malignant and benign masses.

The average test FROC curves of the CAD system using
the GE processed images as input were compared to those of
the CAD system using raw images as input and Laplacian
pyramid multiscale preprocessing as shown in Fig. 9. The
FROC curves were plotted as the detection sensitivity as a
function of the number of FP marks per image on the mass
data set. The CAD system using the GE processed images as

FIG. 9. Comparison of the average test FROC curves obtained from: �1� the
CAD system using raw images as input, with the FP rate estimated from the
mammograms with masses, �2� the CAD system using raw images as input,
with the FP rate estimated from the normal mammograms without masses,
and �3� the CAD system using GE processed images as input, with the FP
rate estimated from the GE processed mammograms with masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
input achieved a case-based sensitivity of 70%, 80%, and
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90% at 0.9, 1.6, and 3.1 FP marks/image, respectively, com-
pared with 0.7, 1.1, and 1.8 FP marks/image on the CAD
system using raw images as input.

IV. DISCUSSION

Several FFDM systems have been approved for clinical
applications. It is important to develop a CAD system that
can easily be adapted to images acquired by FFDM systems
from different manufacturers. In this study, we are develop-
ing a CAD system that uses the raw FFDMs as the input.
Since digital detectors generally have a linear response to
x-ray exposure, the raw pixel values are a linear function of
the absorbed x-ray energy in the detector. The signal range
between different digital detectors can therefore be normal-
ized linearly with respect to each other. Although the spatial
resolution and noise properties of the images from different
detectors are still different, the use of raw images already
reduces one of the major differences between mammograms
from different FFDM systems. For preprocessing of the raw
images, we developed a multiresolution enhancement
method. An example of a typical mammogram processed by
the GE method and our method is compared in Fig. 5. As
seen from this example, the enhancement of mammographic

FIG. 10. Comparison of the average test FROC curves for the malignant and
benign mass sets. The CAD system using raw images as input was used and
the FP rate was estimated from the mammograms without masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
structures was stronger for our processed image than for the
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GE processed image. From a comparison of their histograms,
it was found that the two histograms are very similar except
for the average gray level.

For the evaluation of the effect of the preprocessing meth-
ods on computerized mass detection, we observed that our
Laplacian pyramid preprocessing method provided higher
detection accuracy than the GE processing method. As
shown in Fig. 5, the Laplacian pyramid preprocessing
method applies a stronger edge enhancement to the image
than the GE method. Our preprocessing method aims at en-
hancing the image structures for computer vision whereas
the GE processing method was designed to enhance the im-
age for human visual interpretation. The stronger enhance-
ment used for preprocessing the raw images appeared to im-
prove the accuracy of the computer in detecting the masses.

Currently, there is no established statistical analysis
method for testing the significance of the difference between
two FROC curves generated by a CAD system. Chakraborty
et al. proposed using an alternative free-response ROC
�AFROC� method49 to transform the FROC data to AFROC
data, to which the curve fitting software and statistical sig-
nificance tests for ROC analysis can then be applied and
demonstrated its application to human observer performance
rating data. In the AFROC method, false-positive images
�FPIs� instead of FPs per image are counted. The confidence
rating of a FPI is determined by the highest confidence FP
decision on the image regardless of how many lower confi-
dence FP decisions are made on the same image. We applied
the AFROC method to evaluate the differences in pairs of
our FROC curves that used the no-mass set for estimation of
the FP rates. The ROCKIT software developed by Metz et al.47

was used to analyze the AFROC data. The comparison of A1

and p values is summarized in Table I. The area under the
fitted AFROC curve �A1� was 0.44 and 0.39, respectively, on
mass test subsets 1 and 2 for the CAD system using raw
images as input and processed with our Laplacian pyramid
method, and 0.37 and 0.31, respectively, on the same subsets
for the CAD system using GE processed images as input.
The difference between the fitted AFROC curve for our pro-
cessed images and that for the GE processed images was
statistically significant �p�0.05� for both test subsets. How-
ever, all four fitted AFROC curves deviated systematically
from the AFROC data �see two examples plotted in Fig. 11

TABLE I. Estimation of the statistical significance in th
system using the FFDM raw images as input and pro
CAD system using GE processed images as input.
no-mass data set �Fig. 9� were compared.

A1 �AFROC

Test
subset 1

Test
subset 2

Raw+LP processed 0.44 0.39
GE processed 0.37 0.31
for the test subset 1�. It is uncertain whether the AFROC
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method is applicable to our FROC data and thus whether the
statistical significance testing is valid.

More recently, Chakraborty et al.50 proposed a JAFROC
method and provided software to estimate the statistical sig-
nificance of the difference between two FROC curves. We
also applied the JAFROC analysis to the two pairs of FROC
curves. The figure-of-merit �FOM� from the output of the
JAFROC software was 0.46 and 0.41, respectively, on mass
test subsets 1 and 2 for the CAD system using raw images as
input and processed with our Laplacian pyramid method, and
0.39 and 0.34, respectively, on the same subsets for the CAD
system using GE processed images as input. The difference
between the FOM for our processed images and that for the
GE processed images was again statistically significant �p
�0.05�. The FOM values were about 0.02 higher than the
corresponding A1 values. The JAFROC software did not pro-
vide a fitted curve or a goodness-of-fit indicator in the output
so that it is not known whether this model fits our FROC
data better than the AFRPC method. Although both methods
indicate that the improvement in the FROC performance us-
ing our Laplacian pyramid processed images is statistically

ference between the FROC performance of the CAD
with our Laplacian pyramid method and that of the

FROC curves with the FP rates obtained from the

FOM �JAFROC�

p
values

Test
subset 1

Test
subset 2

p
values

0.012 0.46 0.41 0.006
0.0009 0.39 0.34 0.012

FIG. 11. Comparison of alternative free-response receiver operating charac-
teristic �AFROC� curves. The raw curves were transformed from the FROC
curves of mass detection on test subset 1 using either the raw images as
input and processed with the Laplacian pyramid method �LP� or the GE
processed images as input. The FP rate was estimated from the mammo-
grams without masses. The fitted AFROC curves were obtained by applying
e dif
cessed
The

�

the ROCKIT program to the transformed AFROC data.
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significant, further investigations are needed to study
whether these models are valid for analyzing the FROC per-
formance of CAD systems.

The prescreening technique is an important task in a CAD
system. A number of researchers have developed methods for
detection of suspicious masses on SFMs and CRs. The pre-
vious methods produced between 10 to 30 FPs/image for a
mass detection sensitivity of approximately 90%. However,
it is difficult to compare the effectiveness of the different
methods because of the differences in the image recording
systems and in the data sets. In this study, we developed a
new method that combines gradient field information, which
was originally developed for the detection of lung nodules on
chest x-ray images,43 and gray level information44 for pre-
screening mass candidates on the FFDMs. The new method
produced 18.9 objects/image at 93% sensitivity in the pre-
screening step, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone.

The texture features in this study were extracted by using
the SGLD matrix. A total of 572 features were included in
our initial feature pool. These features were also used by our
CAD system previously developed for SFMs. An average
number of 19.5 features were selected by using a stepwise
feature selection method. The Az values for the LDA classi-
fiers were 0.87±0.02 and 0.88±0.01 on the two training sub-
sets, and 0.89±0.02 and 0.85±0.02 on the test subsets, re-
spectively. The slightly higher test Az from the first test
subset than the Az from its training subset may indicate that
some relatively easy cases were assigned, by chance, to that
test set during random partitioning. We also investigated if
other features could improve the performance of our CAD
system. The different feature spaces that we examined in-
cluded features extracted from principal component analysis
applied to the ROI image, run length statistics texture fea-
tures extracted from the ROI images, and combination of one
or both of these feature spaces with the SGLD feature space.
However, the test results showed that a LDA classifier de-
signed in the SGLD feature space alone provided the best
performance. Although this was found to be true for both our
CAD mass detection system for SFMs developed previously
and the current system for FFDMs, it is still difficult to con-
clude that the SGLD features are the best feature set for
classification between breast masses and normal tissues. One
major concern of the SGLD feature space is that the depen-
dence of the feature values on the pixel pair distance and
angular direction leads to a feature pool with a large number
of features. Some features in such a large feature space may
provide good performance in classification of masses and
normal structures by chance. We attempted to alleviate this
problem by using an independent test set to evaluate the
classifier performance. However, since we chose the overall
system parameters with the knowledge of the performance
for the test sets, the evaluation would still amount to valida-
tion rather than true testing. We have verified that our CAD
system for SFMs can achieve reasonable performance in a

36
true independent data set and a prospective pilot clinical

Medical Physics, Vol. 32, No. 9, September 2005
trial.16 The performance of the current CAD system for
FFDMs will have to be evaluated similarly when indepen-
dent data sets become available.

The detection performance of a CAD system for malig-
nant masses is more important than its performance for all
masses. Figures 10�a� and 10�b� indicate that the sensitivity
of the system is higher for malignant masses than for benign
masses. This is consistent with our observation in previous
studies of our CAD system for digitized SFMs.36 However,
since our current data set contained only 23 malignant cases,
there will be large statistical uncertainty in the evaluation of
sensitivity in this subset. A larger data set is being collected
for comparing the detection performances of the CAD sys-
tem between malignant and benign masses and also for the
purpose of classifying malignant and benign masses. Further-
more, CAD algorithms developed for SFMs have been
proven to be useful as a second opinion to assist radiologists
in mammographic interpretation. Because of the higher SNR
and linear response of digital detectors, there is also a poten-
tial that FFDMs can improve the sensitivity of breast cancer
detection, especially in dense breasts. Several studies have
been or are being conducted to compare FFDM with SFM in
screening cohorts. It is also important to compare the perfor-
mance of CAD systems between FFDMs and SFMs. A study
is under way to compare the performance of the two systems
on pairs of FFDM and SFM obtained from the same
patients.51

V. CONCLUSION

Several FFDM systems have been approved for clinical
applications. It is important to develop CAD systems for
breast cancer detection in FFDM. In this work, we developed
a CAD system that uses the raw FFDMs as the input. A
multiresolution Laplacian pyramid enhancement method was
devised to preprocess the raw FFDMs. A new prescreening
method that combined gradient field analysis with gray level
information was developed to identify mass candidates.
Rule-based and LDA classifiers in a feature space which con-
sisted of morphological features and SGLD texture features
were designed to differentiate masses from normal tissues. It
was found that our CAD system achieved a case-based sen-
sitivity of 70%, 80%, and 90% with an estimate of 0.85,
1.31, and 2.14 FP marks/image, respectively, on normal
cases. The results indicate that our mass detection CAD
scheme can be useful for detecting masses on FFDMs. Stud-
ies are under way to further optimize the processing param-
eters, the feature extraction, and the classifiers for FP reduc-
tion. Comparison of mass detection performance of our CAD
system for FFDMs and that for SFMs is also in progress.
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