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Many computer-aided diagnosis~CAD! systems use neural networks~NNs! for either detection or
classification of abnormalities. Currently, most NNs are ‘‘optimized’’ by manual search in a very
limited parameter space. In this work, we evaluated the use of automated optimization methods for
selecting an optimal convolution neural network~CNN! architecture. Three automated methods, the
steepest descent~SD!, the simulated annealing~SA!, and the genetic algorithm~GA!, were com-
pared. We used as an example the CNN that classifies true and false microcalcifications detected on
digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were
considered for optimization, the numbers of node groups and the filter kernel sizes in the first and
second hidden layers, resulting in a search space of 432 possible architectures. The areaAz under
the receiver operating characteristic~ROC! curve was used to design a cost function. The SA
experiments were conducted with four different annealing schedules. Three different parent selec-
tion methods were compared for the GA experiments. An available data set was split into two
groups with approximately equal number of samples. By using the two groups alternately for
training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD
method was trapped in a local minimum 91%~392/432!of the time. The SA using the Boltzman
schedule selected the best architecture after evaluating, on average, 167 architectures. The GA
achieved its best performance with linearly scaled roulette-wheel parent selection; however, it
evaluated 391 different architectures, on average, to find the best one. The second cost surface
contained no local minimum. For this surface, a simple SD algorithm could quickly find the global
minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same
SA scheme, however, was trapped in a local minimum on the first cost surface. Our CNN study
demonstrated that, if optimization is to be performed on a cost surface whose characteristics are not
known a priori, it is advisable that a moderately fast algorithm such as a SA using a Boltzman
cooling schedule be used to conduct an efficient and thorough search, which may offer a better
chance of reaching the global minimum. ©2001 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1395036#
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I. INTRODUCTION

Many computer-aided diagnosis~CAD! systems use neura
networks~NNs! for either detection or classification of ab
normalities on medical images.1–3 Different CAD systems
have different NN implementations with different archite
tures. An NN architecture is basically determined by t
number of input and output nodes, the number of hidd
layers, and the number of nodes in the hidden layers. Th
are no well-established rules to determine the best arch
ture. Therefore, selecting a network architecture to achi
the best detection or classification results is an open prob
A commonly used approach is to try different combinatio
of parameters in anad hocmanner and empirically select th
‘‘best’’ architecture based on the test results. However,
manual ‘‘optimization’’ process usually only searches ve
limited regions of the large-dimensional parameter space
1937 Med. Phys. 28 „9…, September 2001 0094-2405 Õ2001Õ2
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In order to overcome the difficulties associated w
manual optimization, automated methods have been de
oped. In thestep-by-stepevolution method, there are tw
major approaches to the automatic selection of N
architectures.4 One approach,constructive, starts with a
minimal architecture and keeps on enlarging it until no s
nificant improvement can be observed in the performance
the NN.5 The other approach,destructive, starts with a larg
initial architecture and prunes it until there is no significa
change in the performance.6 Both of these approaches re
quire the decision of how small~or how large!the initial
architecture must be, and how much change in the per
mance should be considered as the stopping criteria. A
tionally, the solution offered by either approach could be
local optimum of the overall cost function, a problem th
also manifests itself in the manual search method.
19378„9…Õ1937Õ12Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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Moody et al. proposed the use of a three-stage heuri
method for architecture selection in a two-layer bac
propagation NN.7,8 The first stage,sequential network con
struction ~SNC!, determines the number of hidden lay
nodes. While the number of nodes is increased from a m
mum number to a maximum number, the NN weights o
tained at each increase are utilized in further steps in a ne
manner. As this is a constructive process, the sequential
cess is terminated when there is no significant performa
change. Next,sensitivity-based pruning~SBP! reduces the
number of input nodes. To measure the sensitivity of the
to an input node, the NN is fed with the sample average
that input node over time and the effect of this replacem
on the training error is measured. Inputs with minimal infl
ence on the error are pruned. In the final step,optimal brain
damage~OBD!, the connections of the NN are pruned if th
influence of their weights on the NN training error is n
large. In our problem, we keep the number of nodes fix
and assume a fully connected network structure. Theref
the second and the third stages of this heuristic method
not applicable to our problem. The SNC differs from t
manual search method in the respect that NN weights
calculated in a nested manner, i.e., NN weights calculate
one iteration are utilized in other iterations. However, it
basically a constructive method and is still prone to be
trapped in a local optimum while increasing the number
nodes of the architecture in the process of optimization.

Another approach to automated architecture selection
lizes genetic evolution and evolutionary algorithm
Maniezzo considered the selection of the architecture and
weightsby genetic evolution.9 In genetic evolution, genetic
algorithms determine both the architecture and the we
distribution of NNs. Angelineet al. proposed the use ofevo-
lutionary programmingfor the same problem.10 Evolutionary
programming is similar in principle to the genetic algorith
but mainly uses mutation schemes~see Sec. II F!. In this
approach, anetwork temperatureis defined in terms of the
ratio of individual fitness values to the maximum fitne
value in the population. This temperature determines the
and the severity of the mutation applied to a generation
our problem, the number of the NN connection weights
large due to the process of convolution. Therefore,
mainly considered the optimization of the architecture a
left the task of optimization of the weights to the NN trainin
by error back-propagation.3

In this article, we considered the optimization of a fee
forward convolution neural network~CNN! architecture.
Four parameters of the NN architecture were considered
optimization: the number of nodes in the first and seco
hidden layers, and the kernel sizes of the filters in th
hidden layers. These parameters were limited to a finite
of values. In this application, the CNN performed the clas
fication of true-positive~TP! and false-positive~FP! micro-
calcifications detected on digitized mammograms. We co
pared three automated methods: steepest descent~SD!,
simulated annealing~SA!, and a genetic algorithm~GA! for
selecting an optimal CNN architecture.

The goal of our study is to investigate the use of au
Medical Physics, Vol. 28, No. 9, September 2001
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mated algorithms for optimization of a neural network arc
tecture. We used the problem of optimizing a CNN for cla
sification of true and false microcalcifications as an exam
to compare the different automated methods. Although
best automated algorithm may depend on the optimiza
problem, our study demonstrated the feasibility of this a
proach and the variations of the different techniques. T
approach may be adapted to other optimization problem
CAD.

II. MATERIALS AND METHODS

A. Data set

Our data set consisted of region-of-interest~ROI! images
extracted from 108 mammograms, which were randomly
lected from the files of patients who had undergone biops
at the University of Michigan. The images included micr
calcifications of visibility ranging from subtle to obvious th
are typically encountered in mammography practice. T
mammograms were digitized with a LUMISCAN 85 scann
at a pixel resolution of 0.0530.05 mm2 with 4096 gray lev-
els and then converted to 0.130.1 mm2 resolution by aver-
aging adjacent 232 pixels and subsampling. The optical d
sity ~OD! range of this digitizer was 0 to 4.0. The digitize
was calibrated so that the gray values were linearly and
versely proportional to the OD with a slope of20.001 OD/
pixel value.

The locations of individual microcalcifications in thes
images were manually identified and saved in a truth fi
After the prescreening stage of the microcalcification det
tion program,1 the detected signals were labeled as TP or
automatically by comparing with the truth file. A 16316
pixel ROI was then extracted for each of the detected sign
and these ROI images were used for training and testing
CNN. Either a true or a false microcalcification was locat
at the center of the ROI. The microcalcification detecti
program detected more FP ROIs than TP ROI images at
prescreening stage. In order to have approximately eq
numbers of TP and FP ROIs, only a randomly selected su
of FP ROI images was used.

The selected ROIs were divided into two separate grou
For the first part of the experiments, the first group, G1, w
used for training the CNN and the second group, G2, w
used for testing the trained CNN. For the second part of
experiment, the roles of G1 and G2 were switched. The fi
group, G1, consisted of 533 TP and 553 FP ROIs. Of the
TP ROIs, 293 were extracted from benign clusters and
from malignant clusters. Mirror images of the maligna
ROIs were also included so that the CNN would be le
dependent on the potential biases on the directions of
microcalcification or the tissue texture in the training RO
Furthermore, this would make the numbers of malignant a
benign ROIs almost balanced. The second group G2 had
microcalcification ROIs, 295 of which were benign. The r
maining ROIs consisted of 126 malignant microcalcificatio
and their mirror images. There were 570 FP ROIs in G
Therefore, G1 contained a total of 1086 ROIs and G2 c
tained 1117 ROIs.
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B. Convolution neural network

The CNN, which is based on the neocognitron structure
Fukushima,11 was previously used for the detection of lun
nodules on chest radiographs, detection of microcalcifi
tions on mammograms, and classification of mass and
mal breast tissue on mammograms.1–3 The CNN structure,
shown diagrammatically in Fig. 1, is explained in detail
the literature.1 The task of the CNN was to classify the inp
ROI as containing a TP or a FP. During training, the desi
output of the CNN was set to 1 for microcalcification RO
and to 0 for FP ROIs. In this work, the CNN structure h
one input image, one output node, and two hidden layers.
node groups in the two hidden layers were fully connect
The node values in one layer were convolved with
weights in the filter kernels to obtain the node values in
next layer. A sigmoidal activation function was used. T
initial weights of the CNN were chosen to be uniformly di
tributed random numbers between20.5 and 0.5. The CNN
was trained using the error back-propagation rule.3

For a given CNN architecture, after completion of ea
training epoch, the classification performance was evalua
on the test set. For evaluation purposes, receiver opera
characteristic~ROC! methodology12,13 was applied to the
output values of the CNN. A ROC curve is the relationsh
between the true-positive fraction~TPF! and the false-
positive fraction~FPF! as the decision threshold varies.
commonly used figure of merit for classification performan
is the area,Az , under the ROC curve. TheAz value for
classifying the test samples was calculated using the
BROC1 program.14 At an epoch, whenever the currentAz

value became higher than all the previousAz values, the
corresponding kernel weights were recorded to be used in
selection of the best architecture, as described later in
work. The CNN training was terminated when the to
squared error value per training sample fell below a pre

FIG. 1. Convolution neural network architecture. The node values in
layer are convolved with the weights in the ‘‘filter’’ kernels to obtain th
node values in the next layer. Input node is an image and only one ou
node is used.
Medical Physics, Vol. 28, No. 9, September 2001
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threshold value~0.03! or the number of epochs exceede
1000.

C. Optimization procedure

Because of the computational requirements, we limi
ourselves to the optimal selection of four parameters of
CNN architecture in this optimization study: the numbers
node groups in the first and second hidden layers, and
kernel sizes of the filters in these hidden layers. Howev
these are not all the parameters that can be included in
optimization process. Other possibilities may include t
numbers of hidden layers and output nodes, or the form
parameters of the activation functions. These latter par
eters were fixed in the current study.

Each optimization parameter can theoretically have
large number of different values. However, it would not
practical, again in terms of computational requirements,
search the entire parameter space for an optimal solut
Therefore, we limited our parameter choices to finite sets
values. The ranges of these parameters were chosen bas
our previous experience with the CNN. Table I shows the
parameters and their range of values. The complete se
parameters that define a NN architecture is called astate.
Therefore, there were 432~58363333! possible states in
our experiments and four parameters defined in each sta

At each iteration, the state of the network changed if
least one of the parameters~e.g., the number of node group
in the first layer!changed. Two states are calledneighbor
statesif the parameters of the states differ only by conse
tive numbers~e.g., 6 and 8 for the first parameter!. For in-
stance, 2-4-5-7 and 2-6-5-5 are neighbor states. There ca
more than one neighboring state. Note that a change from
minimum value of a parameter to the maximum~and vice
versa!is not considered a consecutive change~e.g., 1 and 14
for the first parameter or 10 and 1 for the second parame!
and the resultant states with such changes are not consid
as neighbor states. A change in the state means a changeat
least oneof the parameters in an architecture.

Definition of a cost function plays an important role in th
selection of the architectures. A good cost function sho
reflect the overall performance of the selected architect
One such choice is suggested by the ROC methodology.14 In
our experiments, the cost functionf (A) for an architecture,
A, is defined as 12Az . An alternative for the cost function
could be designed by replacingAz with the partialAz above
TPF50.9 for the ROC curve.

e

ut

TABLE I. Search space for the current optimization problem. Each C
architecture was a combination of four parameters. The other CNN pa
eters were fixed.

Optimization parameter Search space

Node groups in hidden layer 1 1, 2, 4, 6, 8, 10, 12, 14
Node groups in hidden layer 2 1, 2, 4, 6, 8, 10
Kernel size in hidden layer 1 5, 7, 9
Kernel size in hidden layer 2 3, 5, 7
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To facilitate the comparison of the performance of t
automated methods, we first trained and obtained the tesAz

values of all 432 possible architectures in the search sp
The ranking of each solution architecture was determi
from the testAz values. The testAz values were stored in a
look-up table. During the optimization process using any
gorithm, the performance of any CNN in the search sp
could be obtained from the look-up table. Since no CN
training was actually performed, we could evaluate differ
algorithms and initialization conditions very efficiently.

While evaluating automated optimization methods, t
figures of merit were considered: the number of differe
architectures that were evaluated in the selection proc
and the ranking of the selected architecture. Evaluation
each architecture requires the training and testing of the
and this process is orders of magnitude slower than all
other computational requirements. Therefore, the first fig
of merit is related to thecomputational costof the architec-
ture selection procedure. The second figure of merit indica
its ability to select a successful architecture for the class
cation problem among all possible architectures.

D. Steepest descent method

The SD is one of the most commonly used forms of ite
tive optimization. In our SD implementation, the search
the optimal architecture starts with a randomly selected
chitecture. At each iteration, the cost values of the neigh
states are calculated. The neighbor state with the highesAz

value ~therefore the lowest cost value! becomes the curren
state and the next iteration of SD starts from that state.
iterations continue until no neighbor state with a lower c
value can be found.

The SD method may suffer from a number of drawbac
depending on the shape of the cost function.15 The usual one
is the local minima problem. If the cost of one of the arc
tectures is lower than the costs of all its neighbors but s
higher than that of a global minimum, then this architectu
represents a local minimum on the cost surface. Once
method selects this architecture, it will be trapped in t
local minimum.

In order to overcome the inherent problems of the
method, some stochastic optimization methods have been
veloped. The SA algorithm and the GA are two common
used methods. We compared the performances of these m
ods along with the SD method for the automated NN arc
tecture selection problem, as described later.

E. Simulated annealing algorithm

The SA algorithm emulates the process of determining
lowest energy ground state of a physical system with m
interacting atoms.16 An efficient path of searching for a glo
bal minimum is guided by a scalar cost function. The anne
ing process brings in iterative improvement. Occasiona
solutions with higher cost values are accepted. This redu
the chances that the optimization will be trapped in a lo
minimum. For this reason, the SA algorithm is used in ma
applications for optimization of multi-parameter problems17
Medical Physics, Vol. 28, No. 9, September 2001
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The SA algorithm is summarized in Fig. 2. The solutio
A, is initially set to a random architecture and the algorith
starts at an initial temperature,T0 , which is updated at each
iteration according to an update rule. The cost,f (A), for
each architecture,A, is defined in the same way as in the S
method. At each iteration, one of the neighbor states is r
domly chosen as a candidate for the next solution accord
to the transition diagram shown in Fig. 3. For a particu
parameter other than the first and the final parameter val
the transition to a larger, a smaller, or staying in the sa
value is random with equal probabilities~1

3!. For the first and
the final parameter values, the probabilities of transition
the neighboring value or staying in the same value are b
equal to1

2.
After each transition, the difference,D, between the cos

of the neighbor state and that of the current state is calcul
~Fig. 2!. If the difference is negative, the neighbor state
always accepted as the current state and the iterations
ceed from this state. If the difference is zero or positive,
neighbor state is accepted with a probability of acceptan
k, defined ask5exp(2D/T), whereT is the current tempera
ture. A uniformly distributed random number,r, between 0
and 1, is drawn. Ifr is less thank, then the neighbor state
becomes the current state. Otherwise, the original stat
used to start the next iteration. IfD is very small, solutions
that increase the cost will be accepted with relatively h
probability until the system reaches a very low~cool! tem-
perature. IfD is large, the probability of accepting the ne
solution decreases rapidly with decreasing temperature.

FIG. 2. Flow diagram of the SA.r is a uniformly distributed random numbe
between 0 and 1. The algorithm terminates when the temperature reac
predetermined final temperature value.

FIG. 3. Transition diagram used with the simulated annealing program. E
parameter value is one of the possible values for a given parameter.
arrows indicate the transition probabilities, which are equal to

1
3 except for

the first (S1) and the last (Sn) values. The transition probabilities for the firs
and the last values are equal to

1
2.
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The SA algorithm requires setting an initial temperatu
T0 , a termination condition, and a method of updating
temperature. These parameters and conditions are know
the annealing schedule. The success and efficiency of
simulated annealing algorithm depend on the annea
schedule. Theoretically, it has been shown that the SA a
rithm converges to the global minimum with probability 1
an appropriate annealing schedule is used.17 However, the
annealing schedule depends on the underlying distributio
the data samples, making it difficult to identifya priori.

Proper selection of the initial temperature in the SA alg
rithm influences the quality of solution. There are seve
approaches in the literature. In a method proposed by K
patrick et al., a very high initial temperature value,T0 , is
chosen at the beginning.16 The SA is then iterated severa
times. After each iteration, the acceptance ratio,x, is calcu-
lated as the ratio of number of accepted solutions to all
lutions up to that point. Ifx is less than a predetermine
acceptance ratio,x0 , then the initial temperature is double
otherwise it is halved.

In our experiments we used a method developed by L
hoven et al., which is a refined version of Kirkpatrick’
method.18 A preliminary SA is run to estimate an appropria
initial temperature. In the preliminary run, the SA iteratio
starts with a very high initial temperature. This guarante
that all the initial moves are accepted regardless of their
values. Each time an architecture with a cost value hig
than the current cost value is selected, it will be record
Finally, afterN iterations, the initial temperature is calculate
as

T05
DC1

ln@N1 /~x0N12~12x0!N2!#
, ~1!

whereN1 is the number of times a solution with a high
cost value is accepted,DC1 is the average of all the cos
value increases,N25N2N1 is the number of times a solu
tion with a lower cost value is accepted, andx0 is the initial
acceptance ratio. The calculated initial temperature is t
used in the further iterations of the SA method.

The initial temperature is updated according to acooling
schedule. This step also plays an important role in the s
cess of the SA. Many methods have been suggested in
literature.16,19,20In this study, we investigated the use of fo
of these methods, namely, the Kirkpatrick, Boltzman anne
ing, fast annealing, and very fast reannealing. In the coo
schedule of Kirkpatricket al.,16 the temperature is reduced
a certain percentage of its current value at each iteration

Tn5Tn213a, ~2!

whereTn is the temperature value at thenth iteration anda is
a constant between 0 and 1. This temperature update is
equivalent to

Tn5T03an, ~3!

whereT0 is the initial temperature.
Medical Physics, Vol. 28, No. 9, September 2001
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Another annealing schedule is known asBoltzman
annealing.19 In this schedule, the temperature is updated
cording to the following relation:

Tn5
T0

ln~n11!
, ~4!

whereT0 is again the initial temperature andn is the number
of iterations.

The annealing schedule known as thefast annealinghas
the following relationship:20

Tn5
T0

n1/k , ~5!

where k51,2,3,... determines the speed of cooling. As t
value ofk increases, the cooling becomes slower.

The final cooling schedule we evaluated wasvery fast
reannealing.21 In this cooling schedule the temperature
updated according to the relationship

Tn5T0 exp~2cn1/k!, ~6!

wherec determines the speed of convergence. The valuec
is calculated using the relationship

c5Nmax
21/k ln

T0

Tf
, ~7!

where Tf is the final temperature,Nmax is the number of
iterations allowed to go from the initial temperature to t
final temperature, andk51,2,3,... is the speed factor.

F. Genetic algorithm optimization

The GA optimization is inspired by the concepts
evolution.22,23 The optimization parameters are coded as
chromosomes of the individuals of a population. Each po
lation generates a new population through evolutionary c
cepts suchas parent selection, cross over, and mutation. It is
assumed that each generation will produce some better
spring and that the strength of these offspring will be tra
ferred to new generations through evolutionary mechanis

Figure 4 summarizes the steps in the GA. Solutions in
GA terminology are calledchromosomesand they are ex-
pressed as binary strings. The first step in the GA proces
encoding of solutions as strings. For instance, in our sea
space, the first and the second parameters, i.e., the numb
node groups in the first and second hidden layers, can
expressed by 3 bits whereas only 2 bits are enough to en
the third and the fourth parameters. Hence, the chromos
length is 10. Each architecture in our search space is
pressed as a 10 bit binary chromosome. For example,
architecture 12-8-5-5 is expressed as 1101000001. Note
this encoding is applied to the array indices for 12, 8, 5
which are the seventh~110!, fifth ~100!, first~00!, and second
~01! values, respectively, for the four parameters in the
rameter space.

In the GA terminology, each chromosome has a fitn
value and the GA method tries to maximize the fitness val
in each generation. In the SA method, the optimization t
gets to minimize the cost value, which was chosen as
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1942 Gurcan et al. : Comparison of automated optimization techniques 1942
2Az). Accordingly, we chose the fitness value of an archit
ture as its testAz value. The fitness values of architectur
that are not among the search space of 432 architecture
still generated during the GA process~due to 10 bit repre-
sentation!are assigned to be zero.

The search for an optimal architecture usually starts w
a randomly created population of architectures. The cho
of the population size is a critical factor for the quality of th
solution. The larger the population, the higher the chance
achieving the optimal solution. On the other hand, a la
population increases the computational cost of the GA.

The reproduction process starts after an initial populat
has been chosen. Reproduction directs the search to are
the search space with high fitness values. The first ste
reproduction isparent selection. In this step, chromosom
in the current population are chosen and matched to prod
the next generation. There are several heuristic method
the literature for parent selection.22 In this work, we experi-
mented with three different variations: roulette-wheel sel
tion, roulette-wheel selection with linear scaling, and the s
chastic remainder method.

In theroulette-wheel parent selectionmethod, the chance
of reproducing from a chromosome is directly proportion
to its fitness value. First, a running total fitness value
chromosomei, F( i ), is calculated:

F~ i !5 (
k51

i

f ~k!, ~8!

where f (k) are individual fitness values,k51,...,N, for a
population of sizeN. Then, a random number,g, is generated
between 0 andF(N). The roulette-wheel selection strateg
selects theith chromosome for reproduction if

F~ i 21!,g,F~ i !. ~9!

In the linearly scaled version of the roulette-wheelselec-
tion, the minimum fitness value,f min , and the maximum fit-
ness value,f max, are determined in the population ofN chro-

FIG. 4. Flow diagram of the GA. The algorithm terminates when the ma
mum number of generations is reached or a stable solution is obtained
Medical Physics, Vol. 28, No. 9, September 2001
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mosomes. The fitness value of each chromosome,f (k), is
normalized as f 8(k)5( f (k)2 f min)/(fmax2fmin) for k
51,...,N. The random selection procedure previously d
scribed is then applied to these normalized fitness value

In the stochastic remainderparent selection method, th
average fitness value,f avg, is first calculated.24 Then, each
fitness value within the population is divided by this avera
value. The integer parts of this division for each chromoso
determine how many copies of the chromosome will be u
in the reproduction process. The remaining candidates
reproduction are determined by a roulette-wheel selection
the fractional parts of the division.

After parent selection, the chromosomes evolve using
basic genetic operationscross-overand mutation. In the
cross-over process, chromosome information from the
lected parents is exchanged. The cross-over probability
termines the chance that genetic materials from two par
will be mixed to produce offspring. A random number
~0,1# is generated and it is compared to the preselected cr
over probability. If the generated random number is sma
than the cross-over probability, a cross-over occurs. The
ent chromosomes are cut at a random location into left
right parts. Then, the left part of the first parent is combin
with the right part of the second parent, and vice versa. T
mutation process creates new offspring by randomly cha
ing some bits in the chromosome according to a mutat
probability. Mutation brings diversity to the population. Th
mutation probability determines the chance that a muta
will occur. A random number in~0,1# is generated for each
bit in the chromosome. If the generated random numbe
smaller than the preselected mutation probability, then t
bit is replaced with its binary complement value.

III. RESULTS

We performed two sets of experiments by using the t
ROI groups alternately as training and test sets. These
combinations of training and test sets resulted in two diff
ent cost surfaces; one surface had several local minima
the other surface did not contain local minimum. The testAz

values for the evaluated architectures of the first cost sur
~train G1–test G2!varied between 0.793 for the architectu
2-1-9-7 and 0.913 for the architecture 14-4-5-5, which w
the optimal architecture on this cost surface. For the sec
cost surface~train G2–test G1!these values varied betwee
0.787 for the architecture 4-1-5-3 and 0.930 for the archit
ture 14-10-5-7, which was the optimal architecture on t
cost surface. Note that if the data set is infinitely large,
cost surface of the two combinations should be essenti
identical, other than small statistical fluctuations. Howev
the small sample size available for this study caused the la
differences in the two cost surfaces. For the purpose of
study, this offered us the opportunity to demonstrate the
pendence of the performance of the optimization algorith
on the characteristics of cost surfaces. In the following t
sections, the results of optimization for these two types
surfaces will be discussed.
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A. Results of optimization—Training with G1 and
testing with G2

In our experiments with the SD method, we experienc
the local minimum problem for this cost surface. We initiat
the SD optimization starting at each of the possible archi
tures, resulting in 432 different experiments. On the avera
the SD method evaluated 108 architectures before reach
solution and the average ranking of the solution architectu
was 2.0. The architecture of the first rank was selected as
solution architecture in only 9%~40/432!of the experiments.
The other 91% of the solutions were architectures ranke
the 2nd, 5th, and 11th place. These architectures represe
the local minima of the cost function.

In our SA experiments, the initial temperature in the p
liminary SA run was chosen as 106 and the initial number of
iterations,N, was chosen as 10. These values were not v
critical because they were used only for estimation of
initial temperature to be used for the actual SA run~see Sec.
II E!. The initial architecture was arbitrarily selected as 1
5-3 ~the minimum numbers in the parameter space!. When
the Kirkpatrick annealing schedule was used, the cost va
increased in four of the ten iterations and the average
crease in the cost value,DC1, was found to be 0.014. We
selected the initial acceptance ratio,x0 , as 0.8, a value typi-
cally chosen in the SA experiments. Thus, the initial te
perature was calculated as 0.0205. The architecture with
lowest cost value in the first ten iterations was found to
6-2-7-7~its cost value is the 139th lowest cost among all 4
cost values!. Further SA experiments started with this ini
temperature value and random initial architectures.

Each cooling schedule of the SA algorithm has a differ
number of parameters. Parameters for each cooling sche
were varied over a wide range in order to provide a f
assessment for each algorithm. Table II shows the rang
these values. In the very fast reannealing algorithmNmax was
chosen to be 1000. Additionally, each experiment was
peated 100 times with different random number seeds
the results were averaged to reduce the variability due to

TABLE II. Parameters of simulated annealing algorithm.

Cooling schedule Parameter Range

Kirkpatrick a @0.7,0.998#

Boltzman Tf

T0

@0.1,0.3#

Fast annealing Tf

T0

k51 @0.0001,0.1#

k52 @0.001,0.5#
k53 @0.01,0.5#
k54 @0.1,0.5#

Very fast reannealing Tf

T0

k51 @0.01,0.5#

k52 @0.001,0.3#
k53 @0.001,0.2#
k54 @0.0001,0.1#
Medical Physics, Vol. 28, No. 9, September 2001
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stochastic nature of the SA algorithm. Figure 5 shows
average cost ranking plotted against the average numbe
architectures evaluated for some combinations of parame
used in this study. Note that a curve on this graph does
represent a functional relationship. The individual data poi
for the same annealing schedule were linked to facilit
reading. On a given curve each point represents the ave
performance of the SA with a given set of parameters. T
best results with fast annealing were obtained whenk53 and
the best results with very fast reannealing were obtai
whenk54. Thesek values were used in the plots of Fig.
Our results indicate that, for this application, the best res
are achieved using the Boltzman annealing schedule. The
with the Boltzman schedule andTf /T050.15 selected the
best architecture~14-4-5-5, testAz50.912!after evaluating,
on average, 167 architectures. The performance of fast
nealing is very similar to that of the Boltzman anneali
schedule. The fast annealing schedule withTf /T050.08
evaluated an average of 181 architectures to reach the
solution.

In our experiments with the GA, we varied the populati
size, the maximum number of generations, cross-over p
ability, and the mutation probability. Table III gives th
ranges of values for these parameters. Similar to the SA
periments, we varied each parameter within its param
space and initiated the experiments 100 times with differ
random number seeds to account for the variability due
the stochastic nature of the GA. Figures 6~a!–~c! show the
average cost ranking for these architectures versus the a

FIG. 5. Average cost ranking versus the average number of selected n
network architectures for different cooling schedules of the SA. The b
results are obtained using the Boltzman cooling schedule.

TABLE III. Parameters of the genetic algorithm.

GA parameter Parameter values

Population size 10, 40, 50, 80, 100, 150, 200
Max. no. of generations 5, 10, 15, 20, 30, 50, 75, 100
Cross-over rate 0.5, 0.6, 0.7, 0.8, 0.9
Mutation rate 0.005, 0.01, 0.02, 0.03
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age number of evaluated architectures for the three diffe
parent selection methods, respectively. It may be obse
from these figures that the GA achieved its best performa
with linearly scaled roulette-wheel parent selection, wh
needed to evaluate 391 different architectures, on averag

FIG. 6. Average cost ranking versus the average number of selected n
network architectures for GA.~a! Roulette-wheel parent selection metho
~b! Roulette wheel with linear scaling parent selection method.~c! Stochas-
tic remainder parent selection method.
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find the best architecture. The GA that reached this per
mance had a population size of 150, a maximum numbe
generations of 75, a cross-over probability of 0.7, and a m
tation probability of 0.005.

B. Results of optimization—Training with G2 and
testing with G1

We repeated the experiments in Sec. III A by swapp
the training and test sets. TheAz values for training with G2
and testing with G1 were larger than those values obtai
for training with G1 and testing with G2. This can be attri
uted to better training, an easier test set, or both. The sele
best architecture was 14-10-5-7 with a testAz value of 0.930,
which was the fourth architecture in our previous set of e
periments. We also observed that the SD algorithm co
always reach the best architecture regardless of the in
architecture. We checked the neighboring gradients of all
points on the cost surface and confirmed that this cost
face did not contain any local optima.

For this cost surface we observed that the SA a
achieved the best performance. As in the previous exp
ment, all SA schedules included in this study gave be
performance than the best GA parent selection method. H
ever, the best annealing schedule was the very fast rean
ing ~VFRA! schedule. We experimented with the paramet
of the different schedules to change their cooling rates
was observed that the faster the cooling rate is, the faste
global minimum can be found. From the temperature upd
relationships of the four SA cooling schedules~Sec. II E!, it
can be shown that the parameter of a VFRA schedule ca
chosen to have the fastest cooling rate among the four f
given number of iterations~Kirkpatrick can overtake VFRA
after some initial number of iterations!. We applied the fast-
est VFRA schedule to the first example, i.e., a cost surf
with local minima, and it was trapped in the local minim
most of the time, as was the SD algorithm. These exp
ments therefore indicate that, for a cost surface without lo
optima, a very fast cooling schedule such as VFRA or
will be the most efficient method to search for the glob
optimum. However, a very fast cooling schedule is alm
guaranteed to be trapped in a local optimum on a cost sur
with local optima.

IV. DISCUSSION

The SD, SA, and GA optimization methods are some
the most commonly used optimization techniques. In t
work, we compared their performance and demonstra
their usage as an alternative to a manual search met
Manual search can only examine a very limited parame
space because it is time consuming, requires human inter
tion, and can easily be trapped in a local optimum becaus
‘‘satisfaction of search.’’

In this study, we evaluated the automated optimizat
algorithms using two different cost surfaces, one of wh
did not contain any local minimum. For a general CAD o
timization problem, such a surface is rarely found. Therefo
we believe that the results obtained from the first cost s

ral
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face, which are presented in Sec. III A, are more general t
those obtained with the second cost surface. In the follow
paragraphs results for the first cost surface are discusse

In order to compare the SA and GA methods, we ch
the best performing SA cooling schedule~the Boltzman
schedule! and the best performing GA parent selecti
method~roulette-wheel selection with linear scaling!. Figure
7 compares the performance of the two optimizat
schemes. The performance of the SD on this cost surface
also plotted. If the performances of the algorithms are co
pared in terms of the average number of architectures ev
ated to reach the best architecture, the SA method was
to find the optimal solution with the least computational c
on average. The SA using Boltzman schedule selected
best architecture after evaluating, on average, 167 arch
tures. The GA using linearly scaled roulette-wheel par
selection, however, had to evaluate 391 different archi
tures, on average, to find the best one. These values
obtained by finding the minimum of the average number
architectures evaluated to obtain a cost ranking of 1 in Fig
Alternatively, if we compare the average cost ranking t
can be achieved for a fixed average number of architect
evaluated, the SA with Boltzman schedule could reac
lower cost architecture than the GA when the average n
ber of architectures was greater than about 50. Furtherm
if we choose a fixed average cost ranking, the SA require
lower average number of architectures evaluated than the
when the average cost ranking was lower than abou
Above this range the performance of GA was somewhat
ter. This relative performance is expected to depend on
shape of the cost surface but not on the absolute differe
in the costs of the architectures of consecutive ran
Whether the differences are statistically significant will n
change the relative performance comparison, except tha
user may want to select an appropriate stopping criterion
is suited for their problem.

FIG. 7. Comparison of the performance of three optimization procedures
simulated annealing, the genetic algorithm, and the steepest descen
simulated annealing algorithm used the Boltzman cooling schedule an
genetic algorithm used the roulette-wheel parent selection method with
linear scaling of the fitness values.
Medical Physics, Vol. 28, No. 9, September 2001
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Table IV~a!shows the mean and variation of the solutio
during repeated experiments with different random num
seeds. We repeated each GA and SA experiment 100 time
is observed that the SA and GA have similar variances. T
SD results were obtained from all 432 experiments cor
sponding to all possible initial configurations. We also s
lected 100 architectures randomly among the 432 archi
tures and compared the results of the SD experiment w
those of the GA and SA experiments as shown in Ta
IV~b!. It should be noted that, in the SD experiments, t
final Az rankings that the optimization procedure cou
achieve vary so that the average is also shown in the tabl
can be observed that, for the SD method, the results obta
from selecting 100 random architectures are similar to th
obtained from all 432 architectures.

For this application, the optimal CNN architecture o
both cost surfaces contained a relatively large number
node groups. However, since the cost surface was de
mined by test performance rather than training performan
it is expected that the CNNs were not overdesigned. Ov
trained neural networks usually have poor generalizati
For the CNN architectures included in this study, theAz val-
ues steadily increased~with statistical fluctuation! towards
the maximum. Figure 8 shows a surface plot demonstra
the dependence of the average testAz values on the node

e
he

he
he

TABLE IV. Variations in optimization solutions.

Mean
Standard
Deviation Minimum Maximum Median

~a! SA and GA comparison
SA
~Boltzman
schedule!
No. of Architectures

167 23.3 115 224 164

SA
~Kirkpatrick
schedule!
No. of Architectures

202 22.6 140 251 203

SA
~Fast
schedule!
No. of Architectures

181 22.8 142 235 180

SA
~VFRA
schedule!
No. of Architectures

172 22.9 123 219 170

GA
~Linear
scaling!
No. of Architectures

391 22.4 325 430 396

~b! SD experiments
SD—432 Expt.
No. of
Architectures

108 37.7 24 203 108

SD—432 Expt.
Solution rank

2 1.1 1 11 2

SD—100 Expt.
No. of
Architectures

108 38.9 24 195 110

SD—100 Expt.
Solution rank

2 1.3 1 11 2
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FIG. 8. Dependence of the average te
Az values on the node group numbe
in the first hidden layer~H.L. 1! and
the second hidden layer~H.L. 2!. The
averaging was performed over the di
ferent filter kernel sizes. As the num
ber of node groups increased, the a
erageAz value also increased.
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group numbers in the first hidden layer and the second
den layer when G1 was used for training and G2 for testi
Note that this was not the four-dimensional cost surface u
in the optimization process. To facilitate plotting, the testAz

values for a given pair of node group numbers in the t
hidden layers were averaged over the different filter ker
sizes. This graph indicated that the average testAz value
increased as the number of node groups increased in
layers within the range studied.

As demonstrated in this study, the optimization functio
~fitness function, annealing schedule, etc.! and parameters o
the algorithms have a strong influence on the results. The
and GA methods can have different variations of optimi
tion functions. We examined four SA methods using differe
cooling schedules and three GA methods using different
ent selection methods. Once the general form of an opt
zation function is determined, there are still more parame
that need to be set such as the population size in the GA
the final temperature in the SA as shown Tables II and III.
summary, the optimization process involves not only find
the best solution with one of the methods but also findin
good optimization function and parameters. The overall e
ciency for a given method will have to take into account h
to find the best function and parameters.

Depending on the nature of the problem and a particu
implementation, one optimization method can be found m
efficient than the others. Ingber and Rosen25 compared ge-
netic algorithms and the very fast simulated reannealing
gorithm and concluded that the SA was not only an effici
search strategy, but was also statistically guaranteed to
the optimum of the function. Mitchellet al.26 compared the
GA with the SD ~referred to as ‘‘Hill Climbing’’ in their
work! using the ‘‘Royal Road’’ function. While the SD out
Medical Physics, Vol. 28, No. 9, September 2001
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performed one version of GA, it was inferior to another ve
sion for the same problem.

Microcalcifications and the surrounding tissue texture i
mammogram image, on average, should not have a di
tional or spatial preference so that the CNN should be s
tially invariant and rotationally symmetric. If computatio
time is not a consideration, ideally one should mirror a
rotate each ROI and its mirror image at four orientations
create a set of training samples that are balanced in all di
tions. Mirroring and rotating an ROI image that contains
microcalcification simulate the ROI images with microcalc
fications at different orientations. Although a given weight
a kernel~node group!will be connected to each of the pixe
in the process of convolution without mirroring or rotatio
the kernel as a group sees different neighboring pixels i
mirrored or rotated ROI. This means that the weights in
node group will be trained by different neighborhoods
pixels by using a mirrored or rotated ROI image. T
weights in the CNN kernels will therefore be trained wi
more different pixel neighborhoods. This will provide an a
eraging effect to improve the training of the spatially inva
ant and rotationally symmetric properties of the CNN. It
possible to achieve similar training effect by increasing
number of independent training ROI samples, but it requi
at least an eightfold increase in the sample size. The mir
ing and rotating approach is much more efficient.

In this study, because of the very long processing time
training the 432 CNNs, we only included the mirrored im
ages of the malignant microcalcification ROIs without ro
tion. The trained CNNs may not be as robust as those wo
have been if all ROI patterns were included. However,
relative performance of the CNNs may be reasonably rank
Since a limited sample size generally causes poorer gene
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zation ~i.e., poorer test result!for classifiers with a larger
number of weights, the fact that the CNNs with large arc
tectures were ranked higher indicate that they were be
than the smaller ones despite the possible poorer train
Furthermore, for the purpose of demonstrating the appl
tion of the automated algorithms to neural network optim
zation, the cost surfaces formed with these testAz values
were adequate even though they might not be the best
sible.

When we performed some experiments without mirror
the ROIs in this study and without mirroring and rotation
our previous studies, the test results were consistently po
than those obtained from training with mirroring and ro
tion. Since overtraining generally leads to poor generali
tion rather than improved test results, the observed impro
ment in generalization supports our assumption t
inclusion of the mirrored ROI images provides addition
training samples that improve the training of a spatially
variant and rotationally symmetric CNNs.

In this study, we observed that linear scaling of the fitn
values improves the performance of the GA. This may
partly due to the fact that scaling changes the relative a
distribution on the roulette wheel and gives a bias towa
chromosomes with higher fitness values. At the same ti
chromosomes with the minimum fitness value are elimina
from the solution space~they can reappear through cros
over or mutation!. Since solutions with higher fitness valu
are closer to the optimal value, the scaling process impro
the chance of evolving toward the optimal result.

In an optimization task, ranking is the most common
used criterion by the optimization procedure. In each step
optimization algorithm compares the relative performance
the CNNs, such as the testAz ~or some other figures o
merit!, and that is a ranking process. We therefore did
emphasize the specific testAz values of the 432 CNNs. It is
possible to impose other criteria such as selecting the s
plest architecture among the already-evaluated architect
that have testAz values within one standard deviation of on
another, or stopping the iteration automatically if the testAz

value does not improve more than a standard devia
within a preset number of iterations, etc. However, the go
of this study are to demonstrate that an automated optim
tion procedure can be used to find the true global minim
on NN cost surfaces for a given CAD application, and
compare the efficiency of different automated optimizat
procedures. The most effective optimization procedure is
fined in this study as the one that finds the global minim
with the least effort, regardless of the depth of the glo
minimum relative to the others. The user may impose ot
criteria to select the ‘‘optimal’’ NN architecture based on
application, which is out of the scope of this study. We
not intend to compare the automated optimization proced
with different optimization criteria or for different optimiza
tion applications. However, interested readers may follow
similar approach as described in this article and investig
the different variations of this problem.

If a CAD system utilizes a NN, an architecture needs
be selected for the NN regardless of its type. The optimi
Medical Physics, Vol. 28, No. 9, September 2001
-
er
g.
a-
-

s-

rer
-
-

e-
t

l
-

s
e
ea
s
e,
d

s
es

n
f

t

-
es

n
ls
a-

e-

l
r

es

a
te

o
-

tion algorithms discussed here are not specific to the CN
the prescreening program, which detects suspicious regi
or the classification application. The algorithms require o
the definition of a cost function and the values of this c
function for a parameter space to select the architectur
the NN in a CAD system. Therefore, the automated meth
evaluated in this study can be easily adapted to other ne
network architecture selection problems in other CAD app
cations, or in any other applications.

The training and testing of the neural network for 4
architectures took about 1 month on a Compaq Alpha Wo
station~512 MB RAM, 600 MHz CPU speed!. In many NN
architecture selection problems, the number of architectu
needed to be evaluated using an exhaustive search app
can be so large that it is practically impossible. Many
searchers will instead use manual search for such an a
tecture selection problem for CAD system optimization. T
problems associated with manual search have been discu
earlier. Automated algorithms such as those investigated
will be much better alternatives because they are faster, m
systematic, and can be carried out with minimal opera
intervention This type of application is more general than
specific application of optimizing CNN for our CAD system
We intend to introduce the different automated optimizat
algorithms to other CAD applications. Our approach can
adapted by other researchers for optimization of NNs or
entire CAD system in their applications.

V. CONCLUSION

In this study, we investigated the utilization of automat
optimization methods for the selection of CNN architectu
We compared the performance of the SD, SA, and GA me
ods for the automated architecture selection task and dem
strated the variability of the optimization algorithms to th
input parameters. Our experiments indicate that, for the
timization of CNN architecture for microcalcification dete
tion, the SA using a Boltzman cooling schedule was the m
efficient approach for a general cost surface. While the
algorithms using the fastest cooling schedule~VFRA! were
the most efficient approach for a cost surface that did
contain any local minimum, they were inevitably trapped
local minima on a general cost surface. Since the charac
istics of the cost surface are generally not knowna priori in
an optimization problem, it is advisable that a moderat
fast algorithm such as an SA using a Boltzman cool
schedule be used to conduct an efficient and thorough sea
which may offer a better chance of reaching the global m
mum. Although the relative effectiveness of the optimizati
methods depends on the structure of the cost surface,
type, and the parameters of the chosen optimization a
rithms, we demonstrated the approach of using optimiza
algorithms as an alternative to the commonly used man
‘‘optimization’’ method. Furthermore, due to the variability
it is always advantageous to carry out optimization with d
ferent input parameters, within the constraint of compu
tional costs.

The CNN-based algorithm that classifies true and fa
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1948 Gurcan et al. : Comparison of automated optimization techniques 1948
microcalcifications is part of a microcalcification detecti
program.1 Since classification of true and false signals
only one of the steps in detection, the performance of
selected architecture should be further evaluated in term
the detection results of the CAD system. Alternative perf
mance measures for the optimal architecture selection ca
developed based on the overall detection results. Our pr
ous study of using a manually selected CNN in the mic
calcification detection system indicated that the CNN,
though it may not be optimal, improved the detection fr
response receiver operating characteristic cur
substantially.1 Further studies are underway to investigate
effects of optimal architecture selection on the detection p
formance of our current CAD system.
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