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Many computer-aided diagnosi€AD) systems use neural networlddNs) for either detection or
classification of abnormalities. Currently, most NNs are “optimized” by manual search in a very
limited parameter space. In this work, we evaluated the use of automated optimization methods for
selecting an optimal convolution neural netwd@NN) architecture. Three automated methods, the
steepest descefED), the simulated annealif@A), and the genetic algorithfGA), were com-

pared. We used as an example the CNN that classifies true and false microcalcifications detected on
digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were
considered for optimization, the numbers of node groups and the filter kernel sizes in the first and
second hidden layers, resulting in a search space of 432 possible architectures. Thguareer

the receiver operating characterisfROC) curve was used to design a cost function. The SA
experiments were conducted with four different annealing schedules. Three different parent selec-
tion methods were compared for the GA experiments. An available data set was split into two
groups with approximately equal number of samples. By using the two groups alternately for
training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD
method was trapped in a local minimum 91882/432)of the time. The SA using the Boltzman
schedule selected the best architecture after evaluating, on average, 167 architectures. The GA
achieved its best performance with linearly scaled roulette-wheel parent selection; however, it
evaluated 391 different architectures, on average, to find the best one. The second cost surface
contained no local minimum. For this surface, a simple SD algorithm could quickly find the global
minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same
SA scheme, however, was trapped in a local minimum on the first cost surface. Our CNN study
demonstrated that, if optimization is to be performed on a cost surface whose characteristics are not
known a priori, it is advisable that a moderately fast algorithm such as a SA using a Boltzman
cooling schedule be used to conduct an efficient and thorough search, which may offer a better
chance of reaching the global minimum. @01 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1395036]
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I. INTRODUCTION In order to overcome the difficulties associated with

Many computer-aided diagnosi€AD) systems use neural manual optimization, automatgd methods have been devel-
networks(NNs) for either detection or classification of ab- OPed. In thestep-by-stepevolution method, there are two
normalities on medical imagés? Different CAD systems ™M&jor approaches to the automatic selection of NN
have different NN implementations with different architec- architecture$. One approachconstructive, starts with a
tures. An NN architecture is basically determined by theminimal architecture and keeps on enlarging it until no sig-
number of input and output nodes, the number of hidderificant improvement can be observed in the performance of
layers, and the number of nodes in the hidden layers. Ther&e NN? The other approacttestructive, starts with a large
are no well-established rules to determine the best architednitial architecture and prunes it until there is no significant
ture. Therefore, selecting a network architecture to achievehange in the performanéeBoth of these approaches re-
the best detection or classification results is an open problenquire the decision of how smalbr how large)the initial

A commonly used approach is to try different combinationsarchitecture must be, and how much change in the perfor-
of parameters in aad hocmanner and empirically select the mance should be considered as the stopping criteria. Addi-
“best” architecture based on the test results. However, thigionally, the solution offered by either approach could be a
manual “optimization” process usually only searches verylocal optimum of the overall cost function, a problem that
limited regions of the large-dimensional parameter space. also manifests itself in the manual search method.
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Moody et al. proposed the use of a three-stage heuristianated algorithms for optimization of a neural network archi-
method for architecture selection in a two-layer back-tecture. We used the problem of optimizing a CNN for clas-
propagation NN:8 The first stagesequential network con- sification of true and false microcalcifications as an example
struction (SNC), determines the number of hidden layerto compare the different automated methods. Although the
nodes. While the number of nodes is increased from a minibest automated algorithm may depend on the optimization
mum number to a maximum number, the NN weights ob-problem, our study demonstrated the feasibility of this ap-
tained at each increase are utilized in further steps in a nestgtoach and the variations of the different techniques. This
manner. As this is a constructive process, the sequential preépproach may be adapted to other optimization problems in
cess is terminated when there is no significant performanc€AD.
change. Nextsensitivity-based pruningSBP) reduces the
number of input nodes. To measure the sensitivity of the NNI. MATERIALS AND METHODS
to an input node, the NN is fed with the sample average ofA Data set
that input node over time and the effect of this replacement™
on the training error is measured. Inputs with minimal influ-  Our data set consisted of region-of-inter@0OI) images
ence on the error are pruned. In the final stgptjmal brain  extracted from 108 mammograms, which were randomly se-
damage(OBD), the connections of the NN are pruned if the lected from the files of patients who had undergone biopsies
influence of their weights on the NN training error is not at the University of Michigan. The images included micro-
large. In our problem, we keep the number of nodes fixedtalcifications of visibility ranging from subtle to obvious that
and assume a fully connected network structure. Thereforgre typically encountered in mammography practice. The
the second and the third stages of this heuristic method ammammograms were digitized with a LUMISCAN 85 scanner
not applicable to our problem. The SNC differs from theat a pixel resolution of 0.080.05 mnf with 4096 gray lev-
manual search method in the respect that NN weights arels and then converted to xD.1 mnf resolution by aver-
calculated in a nested manner, i.e., NN weights calculated iaging adjacent 2X2 pixels and subsampling. The optical den-
one iteration are utilized in other iterations. However, it issity (OD) range of this digitizer was 0 to 4.0. The digitizer
basically a constructive method and is still prone to beingwas calibrated so that the gray values were linearly and in-
trapped in a local optimum while increasing the number ofversely proportional to the OD with a slope 610.001 OD/
nodes of the architecture in the process of optimization.  pixel value.

Another approach to automated architecture selection uti- The locations of individual microcalcifications in these
lizes genetic evolution and evolutionary algorithms.images were manually identified and saved in a truth file.
Maniezzo considered the selection of the architecture and th&fter the prescreening stage of the microcalcification detec-
weightsby genetic evolutiofl.In genetic evolution, genetic tion program® the detected signals were labeled as TP or FP
algorithms determine both the architecture and the weighautomatically by comparing with the truth file. A ¥@6
distribution of NNs. Angelinest al. proposed the use @vo-  pixel ROl was then extracted for each of the detected signals
lutionary programmingdor the same problertf Evolutionary ~ and these ROI images were used for training and testing the
programming is similar in principle to the genetic algorithm CNN. Either a true or a false microcalcification was located
but mainly uses mutation schemésee Sec. IIF). In this at the center of the ROI. The microcalcification detection
approach, anetwork temperaturés defined in terms of the program detected more FP ROls than TP ROI images at the
ratio of individual fitness values to the maximum fitnessprescreening stage. In order to have approximately equal
value in the population. This temperature determines the wagumbers of TP and FP ROIs, only a randomly selected subset
and the severity of the mutation applied to a generation. Irof FP ROl images was used.
our problem, the number of the NN connection weights is The selected ROIs were divided into two separate groups.
large due to the process of convolution. Therefore, we~or the first part of the experiments, the first group, G1, was
mainly considered the optimization of the architecture andised for training the CNN and the second group, G2, was
left the task of optimization of the weights to the NN training used for testing the trained CNN. For the second part of the
by error back-propagatioh. experiment, the roles of G1 and G2 were switched. The first

In this article, we considered the optimization of a feed-group, G1, consisted of 533 TP and 553 FP ROlIs. Of the 533
forward convolution neural networKCNN) architecture. TP ROIs, 293 were extracted from benign clusters and 120
Four parameters of the NN architecture were considered fdirom malignant clusters. Mirror images of the malignant
optimization: the number of nodes in the first and secondROIls were also included so that the CNN would be less
hidden layers, and the kernel sizes of the filters in theselependent on the potential biases on the directions of the
hidden layers. These parameters were limited to a finite sehicrocalcification or the tissue texture in the training ROIs.
of values. In this application, the CNN performed the classi+urthermore, this would make the numbers of malignant and
fication of true-positiveTP) and false-positivédFP) micro-  benign ROIs almost balanced. The second group G2 had 547
calcifications detected on digitized mammograms. We commicrocalcification ROIs, 295 of which were benign. The re-
pared three automated methods: steepest des@&Dj, maining ROIs consisted of 126 malignant microcalcifications
simulated annealin¢SA), and a genetic algorithfGA) for  and their mirror images. There were 570 FP ROls in G2.
selecting an optimal CNN architecture. Therefore, G1 contained a total of 1086 ROIs and G2 con-

The goal of our study is to investigate the use of auto-tained 1117 ROls.
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First Hidden Second Hidden  Output TaBLE |. Search space for the current optimization problem. Each CNN
Layer Layer Node architecture was a combination of four parameters. The other CNN param-
eters were fixed.
Optimization parameter Search space
Node groups in hidden layer 1 1,2,4,6, 8, 10, 12, 14
Input Node groups in hidden layer 2 1,2,4,6,8, 10
Node Kernel size in hidden layer 1 57,9
Kernel size in hidden layer 2 3,57
[—1

threshold valug(0.03) or the number of epochs exceeded
1000.

C. Optimization procedure

Fic. 1. Convolution neural network architecture. The node values in one Because of the computational requirements, we limited
layer are convolved with the weights in the “filter” kernels to obtain the ourselves to the optimal selection of four parameters of the
node yalues in the next layer. Input node is an image and only one output NN architecture in this optimization study: the numbers of
node is used. node groups in the first and second hidden layers, and the
kernel sizes of the filters in these hidden layers. However,
these are not all the parameters that can be included in the
optimization process. Other possibilities may include the
numbers of hidden layers and output nodes, or the form and

The CNN, which is based on the neocognitron structure oparameters of the activation functions. These latter param-
Fukushimat! was previously used for the detection of lung eters were fixed in the current study.
nodules on chest radiographs, detection of microcalcifica- Each optimization parameter can theoretically have a
tions on mammograms, and classification of mass and notarge number of different values. However, it would not be
mal breast tissue on mammogratd.The CNN structure, practical, again in terms of computational requirements, to
shown diagrammatically in Fig. 1, is explained in detail in search the entire parameter space for an optimal solution.
the literature: The task of the CNN was to classify the input Therefore, we limited our parameter choices to finite sets of
ROI as containing a TP or a FP. During training, the desiredralues. The ranges of these parameters were chosen based on
output of the CNN was set to 1 for microcalcification ROIs our previous experience with the CNN. Table | shows these
and to 0 for FP ROIs. In this work, the CNN structure hadparameters and their range of values. The complete set of
one input image, one output node, and two hidden layers. Alparameters that define a NN architecture is callestade.
node groups in the two hidden layers were fully connectedTherefore, there were 432=8x6X3X3) possible states in
The node values in one layer were convolved with theour experiments and four parameters defined in each state.
weights in the filter kernels to obtain the node values in the At each iteration, the state of the network changed if at
next layer. A sigmoidal activation function was used. Theleast one of the paramete(e.g., the number of node groups
initial weights of the CNN were chosen to be uniformly dis- in the first layer)changed. Two states are calledighbor
tributed random numbers betweer0.5 and 0.5. The CNN statesif the parameters of the states differ only by consecu-
was trained using the error back-propagation fule. tive numbers(e.g., 6 and 8 for the first parameteFor in-

For a given CNN architecture, after completion of eachstance, 2-4-5-7 and 2-6-5-5 are neighbor states. There can be
training epoch, the classification performance was evaluatechore than one neighboring state. Note that a change from the
on the test set. For evaluation purposes, receiver operatinginimum value of a parameter to the maximuyand vice
characteristic(ROC) methodology?>'® was applied to the versa)is not considered a consecutive charge., 1 and 14
output values of the CNN. A ROC curve is the relationshipfor the first parameter or 10 and 1 for the second parameter
between the true-positive fractiofifPF) and the false- and the resultant states with such changes are not considered
positive fraction(FPF) as the decision threshold varies. A as neighbor states. A change in the state means a chaage in
commonly used figure of merit for classification performanceleast oneof the parameters in an architecture.
is the areaA,, under the ROC curve. ThA, value for Definition of a cost function plays an important role in the
classifying the test samples was calculated using the LAselection of the architectures. A good cost function should
BROC1 progrant* At an epoch, whenever the curreAt  reflect the overall performance of the selected architecture.
value became higher than all the previo@s values, the One such choice is suggested by the ROC methoddfbigy.
corresponding kernel weights were recorded to be used in theur experiments, the cost functidgA) for an architecture,
selection of the best architecture, as described later in thi8, is defined as + A,. An alternative for the cost function
work. The CNN training was terminated when the totalcould be designed by replacig with the partialA, above
squared error value per training sample fell below a presetPF=0.9 for the ROC curve.

B. Convolution neural network
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To facilitate the comparison of the performance of the [ Initialize architecture, A, and Temperature,T |
automated methods, we first trained and obtained theAtest
values of all 432 possible architectures in the search space. -’| A’ = Random neighbor, A = f(A’) - f(A) |

The ranking of each solution architecture was determined
from the testA, values. The tesf, values were stored in a
look-up table. During the optimization process using any al-
gorithm, the performance of any CNN in the search space
could be obtained from the look-up table. Since no CNN u

o . pdate T
training was actually performed, we could evaluate different NO
algorithms and initialization conditions very efficiently.

While evaluating automated optimization methods, two
figures of merit were considered: the number of different
architectures that were evaluated in the selection process,
and the ranking of the selected architecture. Evaluation ofic. 2. Flow diagram of the SAp is a uniformly distributed random number
each architecture requires the training and testing of the NNetween 0 and 1. The algorithm terminates when the temperature reaches a
and this process is orders of magnitude slower than all th@redetermined final temperature value.
other computational requirements. Therefore, the first figure
of merit is related to theomputational cosbf the architec- _ . _ o _
ture selection procedure. The second figure of merit indicates 1€ SA algorithm is summarized in Fig. 2. The solution,
its ability to select a successful architecture for the classifify IS initially set to a random architecture and the algorithm
cation problem among all possible architectures. _start; at an mmgl temperatur€g, which is updated at each
iteration according to an update rule. The cdgtd), for
each architecturéd, is defined in the same way as in the SD
method. At each iteration, one of the neighbor states is ran-

The SD is one of the most commonly used forms of itera-domly chosen as a candidate for the next solution according
tive optimization. In our SD implementation, the search forto the transition diagram shown in Fig. 3. For a particular
the optimal architecture starts with a randomly selected arparameter other than the first and the final parameter values,
chitecture. At each iteration, the cost values of the neighbothe transition to a larger, a smaller, or staying in the same
states are calculated. The neighbor state with the highest value is random with equal probabilitiéy. For the first and
value (therefore the lowest cost valubecomes the current the final parameter values, the probabilities of transition to
state and the next iteration of SD starts from that state. Thehe neighboring value or staying in the same value are both
iterations continue until no neighbor state with a lower costequal to3.
value can be found. After each transition, the differencd, between the cost

The SD method may suffer from a number of drawbacksof the neighbor state and that of the current state is calculated
depending on the shape of the cost funcfidfihe usual one  (Fig. 2). If the difference is negative, the neighbor state is
is the local minima problem. If the cost of one of the archi-always accepted as the current state and the iterations pro-
tectures is lower than the costs of all its neighbors but stillceed from this state. If the difference is zero or positive, the
higher than that of a global minimum, then this architectureneighbor state is accepted with a probability of acceptance,
represents a local minimum on the cost surface. Once thg, defined asc=exp(—A/T), wher€T is the current tempera-
method selects this architecture, it will be trapped in thistyre. A uniformly distributed random numbey, between 0
local minimum. and 1, is drawn. Ifp is less thank, then the neighbor state

In order to overcome the inherent problems of the SDpecomes the current state. Otherwise, the original state is
method, some stochastic optimization methods have been dgsed to start the next iteration. A& is very small, solutions
veloped. The SA algorithm and the GA are two commonlythat increase the cost will be accepted with relatively high
used methods. We compared the performances of these metsrobability until the system reaches a very Igeool) tem-
ods along with the SD method for the automated NN archiperature. IfA is large, the probability of accepting the new
tecture selection problem, as described later. solution decreases rapidly with decreasing temperature.

NO

Termination?

D. Steepest descent method

E. Simulated annealing algorithm

The SA algorithm emulates the process of determining the
lowest energy ground state of a physical system with many ! AR AL !
interacting atoms® An efficient path of searching for a glo-

Q91I3Qﬁ1/3 1/3 Q27.1/2 Qo
bal minimum is guided by a scalar cost function. The anneal- . 3 s e
ing process brings in iterative improvement. Occasionally,
solutions with higher cost values are accepted. This reducdwge. 3. Transition diagram used with the simulated annealing program. Each
the chances that the optimization will be trapped in a locaP2/ameter value is one of the possible values for a given parameter. The
.. . . . . arrows indicate the transition probabilities, which are equaﬁ &xcept for
minimum. For this reason, the SA algorlthm is used in Manythe first (S;) and the last$,) values. The transition probabilities for the first

applications for optimization of multi-parameter probleths. and the last values are equal3o
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The SA algorithm requires setting an initial temperature, Another annealing schedule is known @&oltzman
To, a termination condition, and a method of updating theannealing'® In this schedule, the temperature is updated ac-
temperature. These parameters and conditions are known esrding to the following relation:
the annealing schedule. The success and efficiency of the T
simulated annealing algorithm depend on the annealing Tn=—0, (4)
schedule. Theoretically, it has been shown that the SA algo- In(n+1)
rithm converges to the global minimum with probability 1 if whereT, is again the initial temperature ands the number
an appropriate annealing schedule is uSeHowever, the  of iterations.
annealing schedule depends on the underlying distribution of The annealing schedule known as fast annealinghas

the data samples, making it difficult to identifypriori. the following relationshig?
Proper selection of the initial temperature in the SA algo-
. ; . : To
rithm influences the quality of solution. There are several —— (5)
approaches in the literature. In a method proposed by Kirk- n

patrick et al., a very high initial temperature valu€, is  \herek=1,2,3,... determines the speed of cooling. As the
chosen at the beginnin§.The SA is then iterated several value ofk increases, the cooling becomes slower.
times. After each iteration, the acceptance raiois calcu- The final cooling schedule we evaluated wasy fast

lated as the ratio of number of accepted solutions to all soegnnealing?® In this cooling schedule the temperature is
lutions up to that point. Ify is less than a predetermined pqated according to the relationship

acceptance ratigyy, then the initial temperature is doubled,
otherwise it is halved. To=Toexp(—cn'™), (6)

In our experiments we used a method developed by Laakyherec determines the speed of convergence. The vale of
hoven et al., which is a refined version of Kirkpatrick’s s calculated using the relationship
method® A preliminary SA is run to estimate an appropriate
initial temperature. In the preliminary run, the SA iteration C:N—l/kmE @)
starts with a very high initial temperature. This guarantees maC Ty

that all the initial moves are accepted regardless of their cogthere T, is the final temperature is the number of
max

values. Each time an architecture with a cost value higheerations allowed to go from the initial temperature to the
than the current cost value is selected, it will be recordedg, temperature, anki=1,2,3,... is the speed factor.

Finally, afterN iterations, the initial temperature is calculated

as
F. Genetic algorithm optimization
AC* The GA optimization is inspired by the concepts of
TO:In[N+ T(xoN: — (1= xo)N )]’ (1) evolution?222The optimization parameters are coded as the

chromosomes of the individuals of a population. Each popu-
whereN, is the number of times a solution with a higher lation generates a new population through evolutionary con-
cost value is acceptedyC* is the average of all the cost Cepts suctas parent selection, cross over, and mutatitinis
value increasedy_=N—N, is the number of times a solu- assumed that each generation will produce some better off-
tion with a lower cost value is accepted, apglis the initial ~ SPring and that the strength of these offspring will be trans-
acceptance ratio. The calculated initial temperature is theferred to new generations through evolutionary mechanisms.
used in the further iterations of the SA method. Figure 4 summarizes the steps in the GA. Solutions in the

The initial temperature is updated according toomling ~ GA terminology are callechromosomesnd they are ex-

schedule. This step also plays an important role in the sud2ressed as binary strings. The first step in the GA process is
cess of the SA. Many methods have been suggested in ttffcoding of solutions as strings. For instance, in our search
literature®1°2%|n this study, we investigated the use of four SPace, the first and the second parameters, i.e., the number of
of these methods, namely, the Kirkpatrick, Boltzman anneallode groups in the first and second hidden layers, can be
ing, fast annealing, and very fast reannealing. In the coolin@xPressed by 3 bits whereas only 2 bits are enough to encode
schedule of Kirkpatriclet al.!® the temperature is reduced to the third and the fourth parameters. Hence, the chromosome
a certain percentage of its current value at each iteration: length is 10. Each architecture in our search space is ex-

pressed as a 10 bit binary chromosome. For example, the

To=Th 1Xa, 2) architecture 12-8-5-5 is expressed as 1101000001. Note that

this encoding is applied to the array indices for 12, 8, 5, 5
whereT, is the temperature value at théh iteration andvis ~ which are the seventfi10), fifth (100), first(00), and second
a constant between 0 and 1. This temperature update is al§d1) values, respectively, for the four parameters in the pa-

equivalent to rameter space.
In the GA terminology, each chromosome has a fithess
T,=ToXa", (3)  value and the GA method tries to maximize the fitness values
in each generation. In the SA method, the optimization tar-
whereTj is the initial temperature. gets to minimize the cost value, which was chosen as (1
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mosomes. The fitness value of each chromosaditie), is
normalized as f'(k)=(f(k) = f i)/ (fmax—fmin)  for Kk
=1,..,N The random selection procedure previously de-
scribed is then applied to these normalized fitness values.
In the stochastic remaindeparent selection method, the
average fitness valudy,, is first calculated” Then, each

‘ Determine an initial population |

->| Calculate fitness values of chromosomes |

| Select Parents |

| Cmsj_over | fitness valu_e within the popu!atiqq i§ divided by this average
value. The integer parts of this division for each chromosome

v determine how many copies of the chromosome will be used

| Mutate | in the reproduction process. The remaining candidates for

reproduction are determined by a roulette-wheel selection on
the fractional parts of the division.
After parent selection, the chromosomes evolve using two
basic genetic operationsross-overand mutation. In the
Fic. 4. Flow diagram of the GA. The algorithm terminates when the maxi-cross-over progess, chromosome information from the Se-
mum number of generations is reached or a stable solution is obtained. lected parents is exchanged. The cross-over probability de-
termines the chance that genetic materials from two parents
will be mixed to produce offspring. A random number in
(0,1]is generated and it is compared to the preselected cross-
—Ay). Accordingly, we chose the fitness value of an architecxyer probability. If the generated random number is smaller
ture as its teSAZ value. The fitness values of arChiteCtUreSthan the cross-over probabmty, a cross-over occurs. The par-
that are not among the search space of 432 architectures batht chromosomes are cut at a random location into left and
still generated during the GA procegdue to 10 bit repre-  right parts. Then, the left part of the first parent is combined
sentationjare assigned to be zero. with the right part of the second parent, and vice versa. The
The search for an Optlmal architecture Usua”y starts With‘nutation process creates new Oﬁspring by random|y Chang_
a randomly created population of architectures. The choicmg some bits in the chromosome according to a mutation
of the population size is a critical factor for the quality of the probability. Mutation brings diversity to the population. The
solution. The larger the population, the higher the chances ghytation probability determines the chance that a mutation
achieving the optimal solution. On the other hand, a larg&il| occur. A random number i{0,1]is generated for each
population increases the computational cost of the GA. it in the chromosome. If the generated random number is

The reproduction process starts after an initial populationsmaller than the preselected mutation probability, then that
has been chosen. Reproduction directs the search to areasgf is replaced with its binary complement value.

the search space with high fitness values. The first step in
reproduction isparent selection. In this step, chromosomes

in the current population are chosen and matched to produce

the next generation. There are several heuristic methods - RESULTS

the literature for parent selectiéfln this work, we experi- We performed two sets of experiments by using the two

mented with three different variations: roulette-wheel selecy) groups alternately as training and test sets. These two

tion, r_oulette-_wheel selection with linear scaling, and the stoxombpinations of training and test sets resulted in two differ-

chastic remainder method. _ ent cost surfaces; one surface had several local minima and
In theroulette-wheel parent selectianethod, the chances ne other surface did not contain local minimum. The fest

of reproducing from a chromosome is directly proportionalyaiyes for the evaluated architectures of the first cost surface

to its fitness value. First, a running total fitness value for(train Gl—test G2yaried between 0.793 for the architecture

NO

Termination?

chromosome, F(i), is calculated: 2-1-9-7 and 0.913 for the architecture 14-4-5-5, which was
i the optimal architecture on this cost surface. For the second

F(i)= E f(K), ®) cost surfacdtrain G2—test Gljhese values varied between
k=1 0.787 for the architecture 4-1-5-3 and 0.930 for the architec-

ture 14-10-5-7, which was the optimal architecture on this
where f(k) are individual fitness valuek=1,...N, for a cost surface. Note that if the data set is infinitely large, the

population of sizéN. Then, a random numbey, is generated cost surface of the two combinations should be essentially
between 0 andF(N). The’ roulette-wheel sel’ection strategy identical, other than small statistical fluctuations. However,

selects théth chromosome for reproduction if the small sa_mple size available for this study caused the Iarge
differences in the two cost surfaces. For the purpose of this
F(i—1)<y<F(i). (9)  study, this offered us the opportunity to demonstrate the de-

pendence of the performance of the optimization algorithms

In the linearly scaled version of the roulette-whesdlec- on the characteristics of cost surfaces. In the following two

tion, the minimum fitness valué,,,, and the maximum fit- sections, the results of optimization for these two types of
ness valuef ., are determined in the population dfchro-  surfaces will be discussed.
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TasLE Il. Parameters of simulated annealing algorithm. 25 S T .. . S ———
Cooling schedule Parameter Range o
- - < —o— Boltzman Annealing
— 2 4
Kirkpatrick a [0.7,0.998] _E Fast Annealing
Boltzman T, [0.1,0.3] E —a— Kirkpatrick Annealm_g
! - —O— Very Fast Re-annealing
To 7]
8 1.5 1 .
Fast annealing T k=1 [0.0001,0.1] °
To &
k=2 [0.001,0.5] ]
k=3 [0.01,0.5] 2
k=4 [0.1,0.5] 14 |
Very fast reannealing E k=1 [0.01,0.5] 70 90 110 130 150 170 190 210
To .
k=2 [0.001,0.3] Average Number of Architectures
k=3 (000102 = p i h ber of selected |
k=4 [0.0001,0.1] 1G. 5. Average cost ranking versus the average number of selected neura

network architectures for different cooling schedules of the SA. The best
results are obtained using the Boltzman cooling schedule.

A. Results of optimization—Training with G1 and

testing with G2 stochastic nature of the SA algorithm. Figure 5 shows the

average cost ranking plotted against the average number of
In our experiments with the SD method, we experiencedarchitectures evaluated for some combinations of parameters
the local minimum problem for this cost surface. We initiatedused in this study. Note that a curve on this graph does not
the SD optimization starting at each of the possible architecrepresent a functional relationship. The individual data points
tures, resulting in 432 different experiments. On the averagepr the same annealing schedule were linked to facilitate
the SD method evaluated 108 architectures before reachingraading. On a given curve each point represents the average
solution and the average ranking of the solution architectureperformance of the SA with a given set of parameters. The
was 2.0. The architecture of the first rank was selected as thgest results with fast annealing were obtained wker3 and
solution architecture in only 9%0/432)of the experiments. the best results with very fast reannealing were obtained
The other 91% of the solutions were architectures ranked ashenk=4. Thesek values were used in the plots of Fig. 5.
the 2nd, 5th, and 11th place. These architectures represent@dir results indicate that, for this application, the best results
the local minima of the cost function. are achieved using the Boltzman annealing schedule. The SA
In our SA experiments, the initial temperature in the pre-with the Boltzman schedule anf;/T;=0.15 selected the
liminary SA run was chosen as &@nd the initial number of best architecturél4-4-5-5, test,=0.912) after evaluating,
iterations,N, was chosen as 10. These values were not vergn average, 167 architectures. The performance of fast an-
critical because they were used only for estimation of thenealing is very similar to that of the Boltzman annealing
initial temperature to be used for the actual SA fsee Sec. schedule. The fast annealing schedule with/T,=0.08
[1E). The initial architecture was arbitrarily selected as 1-1-evaluated an average of 181 architectures to reach the best
5-3 (the minimum numbers in the parameter spat&hen  solution.
the Kirkpatrick annealing schedule was used, the cost value In our experiments with the GA, we varied the population
increased in four of the ten iterations and the average insize, the maximum number of generations, cross-over prob-
crease in the cost valua,C*, was found to be 0.014. We ability, and the mutation probability. Table Ill gives the
selected the initial acceptance ratyg,, as 0.8, a value typi- ranges of values for these parameters. Similar to the SA ex-
cally chosen in the SA experiments. Thus, the initial tem-periments, we varied each parameter within its parameter
perature was calculated as 0.0205. The architecture with thgpace and initiated the experiments 100 times with different
lowest cost value in the first ten iterations was found to beandom number seeds to account for the variability due to
6-2-7-7(its cost value is the 139th lowest cost among all 432the stochastic nature of the GA. Figure@)s-(c) show the
cost values). Further SA experiments started with this initialaverage cost ranking for these architectures versus the aver-
temperature value and random initial architectures.
Each cooling schedule of the SA algorithm has a different
number of parameters. Parameters for each cooling scheduleste lll. Parameters of the genetic algorithm.
were varied over a wide range in order to provide a fair

. GA parameter Parameter values
assessment for each algorithm. Table Il shows the range of
these values. In the very fast reannealing algorityp, was Population size 10, 40, 50, 80, 100, 150, 200
chosen to be 1000. Additionally, each experiment was re- ™M&- no. of generations 5, 10, 15, 20, 30, 50, 75, 100
. . . Cross-over rate 0.5, 0.6, 0.7, 0.8, 0.9
peated 100 times with different random number seeds and p; iation rate 0.005, 0.01, 0.02, 0.03

the results were averaged to reduce the variability due to the
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: EE— ! find the best architecture. The GA that reached this perfor-
mance had a population size of 150, a maximum number of
generations of 75, a cross-over probability of 0.7, and a mu-
tation probability of 0.005.

N
o
1
T

o Roulette Wheel

-
o
1

B. Results of optimization—Training with G2 and
testing with G1

We repeated the experiments in Sec. Ill A by swapping

i the training and test sets. The values for training with G2

and testing with G1 were larger than those values obtained
- for training with G1 and testing with G2. This can be attrib-
0 100 200 300 400 uted to better training, an easier test set, or both. The selected
best architecture was 14-10-5-7 with a tAstvalue of 0.930,
which was the fourth architecture in our previous set of ex-
periments. We also observed that the SD algorithm could
L I always reach the best architecture regardless of the initial
L architecture. We checked the neighboring gradients of all 432
points on the cost surface and confirmed that this cost sur-
face did not contain any local optima.

For this cost surface we observed that the SA also
achieved the best performance. As in the previous experi-
ment, all SA schedules included in this study gave better
performance than the best GA parent selection method. How-
ever, the best annealing schedule was the very fast reanneal-
ing (VFRA) schedule. We experimented with the parameters
of the different schedules to change their cooling rates. It
was observed that the faster the cooling rate is, the faster the
global minimum can be found. From the temperature update
relationships of the four SA cooling schedul&ec. Il E), it
can be shown that the parameter of a VFRA schedule can be
chosen to have the fastest cooling rate among the four for a
given number of iteration&Kirkpatrick can overtake VFRA
R after some initial number of iterationsNe applied the fast-
est VFRA schedule to the first example, i.e., a cost surface
with local minima, and it was trapped in the local minima
most of the time, as was the SD algorithm. These experi-
ments therefore indicate that, for a cost surface without local
optima, a very fast cooling schedule such as VFRA or SD
will be the most efficient method to search for the global
optimum. However, a very fast cooling schedule is almost
guaranteed to be trapped in a local optimum on a cost surface
with local optima.

Average Cost Ranking
(4]

Average Number of Architectures
(@)

20 -

_}'*.: ‘ - Roulette Wheel - linear scaling
104 W B
%
L3

Average Cost Ranking

Average Cost Ranking

0 100 200 300 400
Average Number of Architectures

IV. DISCUSSION

The SD, SA, and GA optimization methods are some of
© the most commonly used optimization techniques. In this
work, we compared their performance and demonstrated
Fic. 6. Average cost ranking versus the average number of selected neurgheijr usage as an alternative to a manual search method.
network architecture_s fo_r GAa) unlette-wheel pal_’ent selection method. Manual search can only examine a very limited parameter
(b) Roulette wheel with linear scaling parent selection metliodStochas- .. . . .
tic remainder parent selection method. space because it is time consuming, requires human interven-
tion, and can easily be trapped in a local optimum because of
“satisfaction of search.”
age number of evaluated architectures for the three different In this study, we evaluated the automated optimization
parent selection methods, respectively. It may be observealgorithms using two different cost surfaces, one of which
from these figures that the GA achieved its best performancdid not contain any local minimum. For a general CAD op-
with linearly scaled roulette-wheel parent selection, whichtimization problem, such a surface is rarely found. Therefore,
needed to evaluate 391 different architectures, on average, tee believe that the results obtained from the first cost sur-
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TaBLE IV. Variations in optimization solutions.

1 L 1 1
20 —_? -
2 Standard
E‘ } —e— SA: Boltzman Annealing Mean Deviation Minimum Maximum Median
X ol . - li i
c 101 % o gt‘: éR:;I%t;es(\:Z:fel linear scaling . (a) SA and GA comparison
& i P SA 167 233 115 224 164
w (Boltzman
o 97 i schedule)
o No. of Architectures
g, SA 202 22.6 140 251 203
© 5 | (Kirkpatrick
g schedule)
< No. of Architectures
1 g | SA 181 22.8 142 235 180
T T T T (Fast
] 100 200 300 400 schedule)
. No. of Architectures
Average Number of Architectures SA 172 229 123 219 170

(VFRA
Fic. 7. Comparison of the performance of three optimization procedures, th%chedule)

simulated annealing, the genetic algorithm, and the steepest descent. TN% of Architectures
simulated annealing algorithm used the Boltzman cooling schedule and th&A' 391 224 395 430 396
genetic algorithm used the roulette-wheel parent selection method with thﬁ_inear '

linear scaling of the fitness values. )
scaling)

No. of Architectures
(b) SD experiments

face, which are presented in Sec. Ill A, are more general thaiD—432 Expt. 108 377 24 203 108
those obtained with the second cost surface. In the followinqo- of
paragraphs results for the first cost surface are discussed. Sgﬂfgéugspt. ) 1 L " 5

In order to compare the SA and GA methods, we chosetion rank
the best performing SA cooling schedu(the Boltzman sp—100 Expt. 108 38.9 24 195 110
schedule)and the best performing GA parent selectionNo. of
method(roulette-wheel selection with linear scalingrigure ~ Architectures

.. SD—100 Expt. 2 1.3 1 11 2

7 compares the performance of the two optimizationg | "
schemes. The performance of the SD on this cost surface was
also plotted. If the performances of the algorithms are com-
pared in terms of the average number of architectures evalu-
ated to reach the best architecture, the SA method was able Table IV(a)shows the mean and variation of the solutions
to find the optimal solution with the least computational costduring repeated experiments with different random number
on average. The SA using Boltzman schedule selected theeeds. We repeated each GA and SA experiment 100 times. It
best architecture after evaluating, on average, 167 architeis observed that the SA and GA have similar variances. The
tures. The GA using linearly scaled roulette-wheel parenSD results were obtained from all 432 experiments corre-
selection, however, had to evaluate 391 different architecsponding to all possible initial configurations. We also se-
tures, on average, to find the best one. These values wekected 100 architectures randomly among the 432 architec-
obtained by finding the minimum of the average number oftures and compared the results of the SD experiment with
architectures evaluated to obtain a cost ranking of 1 in Fig. 7those of the GA and SA experiments as shown in Table
Alternatively, if we compare the average cost ranking thatiV(b). It should be noted that, in the SD experiments, the
can be achieved for a fixed average number of architectureétal A, rankings that the optimization procedure could
evaluated, the SA with Boltzman schedule could reach achieve vary so that the average is also shown in the table. It
lower cost architecture than the GA when the average numean be observed that, for the SD method, the results obtained
ber of architectures was greater than about 50. Furthermor&om selecting 100 random architectures are similar to those
if we choose a fixed average cost ranking, the SA required abtained from all 432 architectures.
lower average number of architectures evaluated than the GA For this application, the optimal CNN architecture on
when the average cost ranking was lower than about Shoth cost surfaces contained a relatively large number of
Above this range the performance of GA was somewhat bethode groups. However, since the cost surface was deter-
ter. This relative performance is expected to depend on theined by test performance rather than training performance,
shape of the cost surface but not on the absolute differencésis expected that the CNNs were not overdesigned. Over-
in the costs of the architectures of consecutive rankstrained neural networks usually have poor generalization.
Whether the differences are statistically significant will notFor the CNN architectures included in this study, feval-
change the relative performance comparison, except that thees steadily increase@vith statistical fluctuation towards
user may want to select an appropriate stopping criterion thahe maximum. Figure 8 shows a surface plot demonstrating
is suited for their problem. the dependence of the average tAstvalues on the node
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Fic. 8. Dependence of the average test
A, values on the node group numbers
in the first hidden layefH.L. 1) and
the second hidden layéH.L. 2). The
averaging was performed over the dif-
ferent filter kernel sizes. As the num-
ber of node groups increased, the av-
erageA, value also increased.

Nodes in H.L. 1 0 o

Nodes in H.L. 2

group numbers in the first hidden layer and the second hidperformed one version of GA, it was inferior to another ver-
den layer when G1 was used for training and G2 for testingsion for the same problem.
Note that this was not the four-dimensional cost surface used Microcalcifications and the surrounding tissue texture in a
in the optimization process. To facilitate plotting, the tAst mammogram image, on average, should not have a direc-
values for a given pair of node group numbers in the twotional or spatial preference so that the CNN should be spa-
hidden layers were averaged over the different filter kernetially invariant and rotationally symmetric. If computation
sizes. This graph indicated that the average fgswalue time is not a consideration, ideally one should mirror and
increased as the number of node groups increased in botbtate each ROI and its mirror image at four orientations to
layers within the range studied. create a set of training samples that are balanced in all direc-
As demonstrated in this study, the optimization functionstions. Mirroring and rotating an ROI image that contains a
(fitness function, annealing schedule, ptmd parameters of microcalcification simulate the ROl images with microcalci-
the algorithms have a strong influence on the results. The Sfications at different orientations. Although a given weight in
and GA methods can have different variations of optimiza-a kernel(node groupwill be connected to each of the pixels
tion functions. We examined four SA methods using differentin the process of convolution without mirroring or rotation,
cooling schedules and three GA methods using different pathe kernel as a group sees different neighboring pixels in a
ent selection methods. Once the general form of an optimimirrored or rotated ROI. This means that the weights in a
zation function is determined, there are still more parameteraode group will be trained by different neighborhoods of
that need to be set such as the population size in the GA arpixels by using a mirrored or rotated ROl image. The
the final temperature in the SA as shown Tables Il and Ill. Inweights in the CNN kernels will therefore be trained with
summary, the optimization process involves not only findingmore different pixel neighborhoods. This will provide an av-
the best solution with one of the methods but also finding @&raging effect to improve the training of the spatially invari-
good optimization function and parameters. The overall effi-ant and rotationally symmetric properties of the CNN. It is
ciency for a given method will have to take into account howpossible to achieve similar training effect by increasing the
to find the best function and parameters. number of independent training ROI samples, but it requires
Depending on the nature of the problem and a particulaat least an eightfold increase in the sample size. The mirror-
implementation, one optimization method can be found moréng and rotating approach is much more efficient.
efficient than the others. Ingber and RoSecompared ge- In this study, because of the very long processing time for
netic algorithms and the very fast simulated reannealing altraining the 432 CNNs, we only included the mirrored im-
gorithm and concluded that the SA was not only an efficientages of the malignant microcalcification ROIs without rota-
search strategy, but was also statistically guaranteed to fintibn. The trained CNNs may not be as robust as those would
the optimum of the function. Mitchekt al?® compared the have been if all ROI patterns were included. However, the
GA with the SD (referred to as “Hill Climbing” in their  relative performance of the CNNs may be reasonably ranked.
work) using the “Royal Road” function. While the SD out- Since a limited sample size generally causes poorer generali-
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zation (i.e., poorer test resultfor classifiers with a larger tion algorithms discussed here are not specific to the CNN,
number of weights, the fact that the CNNs with large archi-the prescreening program, which detects suspicious regions,
tectures were ranked higher indicate that they were bettar the classification application. The algorithms require only
than the smaller ones despite the possible poorer traininghe definition of a cost function and the values of this cost
Furthermore, for the purpose of demonstrating the applicafunction for a parameter space to select the architecture of
tion of the automated algorithms to neural network optimi-the NN in a CAD system. Therefore, the automated methods
zation, the cost surfaces formed with these tstvalues evaluated in this study can be easily adapted to other neural
were adequate even though they might not be the best posetwork architecture selection problems in other CAD appli-
sible. cations, or in any other applications.

When we performed some experiments without mirroring  The training and testing of the neural network for 432
the ROIs in this study and without mirroring and rotation in architectures took about 1 month on a Compag Alpha Work-
our previous studies, the test results were consistently pooretation(512 MB RAM, 600 MHz CPU spegdin many NN
than those obtained from training with mirroring and rota-architecture selection problems, the number of architectures
tion. Since overtraining generally leads to poor generalizaneeded to be evaluated using an exhaustive search approach
tion rather than improved test results, the observed improvesan be so large that it is practically impossible. Many re-
ment in generalization supports our assumption thagearchers will instead use manual search for such an archi-
inclusion of the mirrored ROI images provides additionaltecture selection problem for CAD system optimization. The
training samples that improve the training of a spatially in-problems associated with manual search have been discussed
variant and rotationally symmetric CNNSs. earlier. Automated algorithms such as those investigated here

In this study, we observed that linear scaling of the fitnessvill be much better alternatives because they are faster, more
values improves the performance of the GA. This may besystematic, and can be carried out with minimal operator
partly due to the fact that scaling changes the relative aret@tervention This type of application is more general than the
distribution on the roulette wheel and gives a bias towardspecific application of optimizing CNN for our CAD system.
chromosomes with higher fitness values. At the same tim@)Ve intend to introduce the different automated optimization
chromosomes with the minimum fitness value are eliminateelgorithms to other CAD applications. Our approach can be
from the solution spacéthey can reappear through cross- adapted by other researchers for optimization of NNs or the
over or mutation). Since solutions with higher fitness valuesntire CAD system in their applications.
are closer to the optimal value, the scaling process improves
the chance of evolving toward the optimal result.

In an optimization task, ranking is the most commonlyv' CONCLUSION
used criterion by the optimization procedure. In each step, an In this study, we investigated the utilization of automated
optimization algorithm compares the relative performance obptimization methods for the selection of CNN architecture.
the CNNs, such as the te#t, (or some other figures of We compared the performance of the SD, SA, and GA meth-
merit), and that is a ranking process. We therefore did nobds for the automated architecture selection task and demon-
emphasize the specific tea} values of the 432 CNNs. It is strated the variability of the optimization algorithms to the
possible to impose other criteria such as selecting the simnput parameters. Our experiments indicate that, for the op-
plest architecture among the already-evaluated architecturdisnization of CNN architecture for microcalcification detec-
that have tesf\, values within one standard deviation of one tion, the SA using a Boltzman cooling schedule was the most
another, or stopping the iteration automatically if the test  efficient approach for a general cost surface. While the SA
value does not improve more than a standard deviatiomlgorithms using the fastest cooling sched(/&RA) were
within a preset number of iterations, etc. However, the goalshe most efficient approach for a cost surface that did not
of this study are to demonstrate that an automated optimizazontain any local minimum, they were inevitably trapped in
tion procedure can be used to find the true global minimumocal minima on a general cost surface. Since the character-
on NN cost surfaces for a given CAD application, and toistics of the cost surface are generally not knaavpriori in
compare the efficiency of different automated optimizationan optimization problem, it is advisable that a moderately
procedures. The most effective optimization procedure is defast algorithm such as an SA using a Boltzman cooling
fined in this study as the one that finds the global minimumschedule be used to conduct an efficient and thorough search,
with the least effort, regardless of the depth of the globaWwhich may offer a better chance of reaching the global mini-
minimum relative to the others. The user may impose othemum. Although the relative effectiveness of the optimization
criteria to select the “optimal” NN architecture based on its methods depends on the structure of the cost surface, the
application, which is out of the scope of this study. We dotype, and the parameters of the chosen optimization algo-
not intend to compare the automated optimization proceduresthms, we demonstrated the approach of using optimization
with different optimization criteria or for different optimiza- algorithms as an alternative to the commonly used manual
tion applications. However, interested readers may follow doptimization” method. Furthermore, due to the variability,
similar approach as described in this article and investigaté is always advantageous to carry out optimization with dif-
the different variations of this problem. ferent input parameters, within the constraint of computa-

If a CAD system utilizes a NN, an architecture needs totional costs.
be selected for the NN regardless of its type. The optimiza- The CNN-based algorithm that classifies true and false
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