
A similarity study of content-based image retrieval system
for breast cancer using decision tree

Hyun-chong Cho and Lubomir Hadjiiskia)

Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904

Berkman Sahiner
U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993

Heang-Ping Chan, Mark Helvie, Chintana Paramagul, and Alexis V. Nees
Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904

(Received 11 August 2012; revised 15 November 2012; accepted for publication 16 November
2012; published 19 December 2012)

Purpose: We are developing a decision tree content-based image retrieval (DTCBIR) CADx system
to assist radiologists in characterization of breast masses on ultrasound images.
Methods: Three DTCBIR configurations, including decision tree with boosting (DTb), decision tree
with full leaf features (DTL), and decision tree with selected leaf features (DTLs) were compared.
For DTb, features of a query mass were combined first into a merged feature score and then masses
with similar scores were retrieved. For DTL and DTLs, similar masses were retrieved based on the
Euclidean distance between feature vectors of the query and those of selected references. For each
DTCBIR configuration, we investigated the use of full feature set and subset of features selected by
the stepwise linear discriminant analysis (LDA) and simplex optimization method, resulting in six
retrieval methods and selected five, DTb-lda, DTL-lda, DTb-full, DTL-full, and DTLs-full, for the
observer study. Three MQSA radiologists rated similarities between the query mass and computer-
retrieved three most similar masses using nine-point similarity scale (9 = very similar).
Results: For DTb-lda, DTL-lda, DTb-full, DTL-full, and DTLs-full, average Az values were 0.90
± 0.03, 0.85 ± 0.04, 0.87 ± 0.04, 0.79 ± 0.05, and 0.71 ± 0.06, respectively, and average similarity
ratings were 5.00, 5.41, 4.96, 5.33, and 5.13, respectively.
Conclusions: The DTL-lda is a promising DTCBIR CADx configuration which had simple tree struc-
ture, good classification performance, and highest similarity rating. © 2013 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4770277]
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I. INTRODUCTION

Breast cancer is one of the leading causes of death for women
all over the world. In 2012, it was estimated that there would
be approximately 226 870 newly diagnosed cases and 39 510
deaths in the United States.1 Treatment at an early stage
is important in order to reduce mortality from breast can-
cer. Screening mammography has been accepted as the ma-
jor modality to reduce breast cancer mortality due to the
increased detection of early cancers.2 Despite the improve-
ment in mammographic quality, however, the low sensitivity
of screening mammography in dense breast remains a major
limitation.3 Ultrasonography (US) has been shown to be an
useful modality for characterizing breast masses as malignant
or benign.4, 5 Improved imaging techniques have enabled bet-
ter characterization of sonographically visible breast lesions,
allowing for less invasive management. In Ref. 5, a sensitiv-
ity of 98.4% and a specificity of 67.8% were achieved to dis-
tinguish 750 benign and malignant lesions using US. Taylor
et al. showed that when sonography was combined with mam-
mography in characterizing 761 breast masses, the specificity
was improved from 51.4% to 63.8%, the positive predictive

value was improved from 48% to 55.3%, and the sensitivity
was improved from 97.1% to 97.9%.6 Mammography is com-
plemented by sonography for the diagnosis of breast masses
in most breast imaging clinics of the United States. However,
sonography is most effective if it is used for real-time eval-
uation by an experienced interpreter,4–6 which in most clin-
ical situations may not be practical. Moreover, there is con-
siderable overlap in the sonographic characteristics between
malignant and benign lesions due to the heterogeneous ap-
pearance of breast cancer. Many equivocal solid masses are
recommended for biopsy, which increases health care costs
and causes anxiety and morbidity to the patients. Currently,
the positive predictive value for biopsy ranges only from 20%
to 40%.7–13 Therefore, it is very important to improve the ac-
curacy of noninvasive methods of distinguishing malignant
from benign masses and reduce the number of unnecessary
biopsies.

Computer-aided diagnosis (CADx) is one of the research
areas that have been explored to improve radiologists’ accu-
racy in distinguishing between malignant and benign lesions.
Earlier work on CADx for breast imaging focused on masses
and microcalcifications on mammograms.14–19 Although the
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development of CADx systems for breast masses on US im-
ages started somewhat later than that on mammograms, nu-
merous publications have appeared in the literature in the
past 15 years. A survey of techniques for the computerized
analysis of breast lesions on US images was provided by
Cheng et al.20 An incomplete sampling of work related to
this study is presented below. Chen et al. used an artificial
neural network (ANN) to classify 140 pathologically proven
solid masses on US images21 and obtained an area Az under
the receiver operating characteristic (ROC) curve of 0.96. In
Ref. 22, Horsch et al. obtained an average Az value of 0.87
from 11 independent experiments with their CADx system
on a database of 400 cases. Sahiner et al.23 studied computer-
ized characterization of 102 breast masses on 3D US volumet-
ric images and achieved an Az value of 0.92. Sehgal et al.24

used patient age, margin echogenicity, and angular variation
of margin to distinguish malignant from benign masses us-
ing a logistic regression classifier. The leave-one-out testing
Az value was 0.87 on a dataset of 58 biopsy-proven masses.
Joo et al.25 trained an ANN classifier with five morphological
US features to characterize masses using 584 histologically
confirmed cases and to test it on an independent dataset of
266 cases. The test Az value was 0.98. In Ref. 26, an auto-
mated method to segment breast masses on US images was
designed by Cui et al., achieving Az values between 0.88
and 0.92.

To characterize a lesion, radiologists not only analyze
individual features of that lesion, but they also depend on
their recollection of clinically similar cases as references.
Radiologists develop a pattern recognition memory of
specific appearances of lesions and their characterization.
This process has been labeled “Aunt Minnie” (Refs. 27
and 28) as an analogy to human recognition of facial fea-
tures. The importance of image similarity for diagnostic
decision making has prompted a wide research interest for
the development of content-based image retrieval (CBIR)
technology in medical imaging areas.29, 30 Several groups are
developing methods to incorporate CBIR approaches into
image database systems31–35 and specifically for detection
of masses on mammograms,36–38 retrieval of liver lesions,39

characterization of similar masses,40, 41 diagnosis of clustered
microcalcifications on mammograms,42 diagnosis of masses
on US,43, 44 and diagnosis of masses on both mammograms
and US.43

Previous work in CBIR for breast masses on US images
included studies by Kuo et al.45 and Chen et al.46 Kuo et al.
used three texture parameters, contrast, covariance, and
dissimilarity at various pixel pair distances and a weighted
Euclidean distance similarity measure (SM) for the retrieval
of similar breast masses on US images. They retrieved the
first k candidates with smaller distance values from the image
database for differential diagnosis of malignant and benign
lesions, and obtained a sensitivity of 94% with a specificity
of 91% on a dataset of 129 malignant and 134 benign breast
masses. Chen et al. used different texture feature spaces
followed by principle component analysis and the Euclidean
distance similarity measure. The performance of their image
retrieval technique was evaluated by the separation between

malignant and benign masses using tenfold cross validation
on a dataset of 255 breast masses. The best combination of
feature spaces yielded an Az value of 0.925.

In our previous study,44 we compared the effectiveness
of seven SM: [i.e., Euclidean distance (ED), Manhattan dis-
tance, distance-weighted k-NN, correlation, cosine (Cos), lin-
ear discriminant analysis (LDA), and Bayesian neural net-
work (BNN)] in a CBIR system. The performances of the
CBIR CADx system were evaluated by radiologists’ visual
assessment of the similarity between the query and the re-
trieved masses. Although the BNN and LDA SMs had com-
parable classification performance that were higher than the
other SMs in the CBIR CADx scheme, ED exhibited higher
agreement (i.e., similarity ratings) from three radiologists’ as-
sessment than the Cos, LDA, and BNN measures.

To our knowledge, radiologists’ visual similarity assess-
ments have not been used by other research groups in the as-
sessment of CBIR system retrieval of breast masses on US im-
ages and especially in CBIR systems based on decision trees.

In this study, we reported results for a CBIR system based
on decision tree (i.e., DTCBIR) for CADx of US mass im-
ages that we are developing. The decision tree has advantages
in some respects over other classifiers such as LDA and BNN,
which were used in the CBIR CADx in our previous study.44

A single decision tree classifier is a binary structure which
is easy to understand and can be converted to rule sets that
help improve the interpretation. At the same time a DTCBIR
system is expected to provide more information than just like-
lihood of malignancy estimate to the radiologist by retrieving
lesions similar to the query mass from the reference library
and showing the known pathology of the retrieved masses as
references to assist the radiologist in making diagnosis deci-
sion of the query mass. Moreover, the likelihood of malig-
nancy of the query mass can be estimated by the DTCBIR
system from the proportion of retrieved malignant and be-
nign masses if the reference library is statistically represen-
tative of the population and the prevalence is properly taken
into account.47 Therefore, it is very important to investigate
whether a given DTCBIR method can retrieve lesions that are
considered to be similar by radiologists, what the best similar-
ity measure is for image retrieval, and what the best method
is for estimation of the likelihood of malignancy.

In this study, we investigated some of these issues for
US image containing breast masses by comparing three
DTCBIR configurations with or without additional feature se-
lection steps and evaluating the performance of representative
DTCBIR configurations in retrieving similar masses by radi-
ologists’ visual assessment. It is expected that this investiga-
tion will obtain relevant information for the design of a robust
DTCBIR system for breast masses in US images.

II. MATERIALS AND METHODS

II.A. Dataset

A dataset was collected from the files of patients who
had undergone breast US imaging in the Department of
Radiology at the University of Michigan with approval by the
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institutional review board (IRB). US images from 250
patients with breast masses (96 malignant and 154 benign)
were acquired using a GE Logiq 700 scanner with an M12
linear array transducer for this study. All masses have biopsy
proven pathology. A total of 488 US images were selected
by two MQSA radiologists (R1 and R2) for these masses, as
described below.

For each mass two optional orthogonal US views were
selected by the radiologist R1 or R2, where the mass has
been seen the best. However, if two orthogonal views were
not available for a mass, only one view was selected. The
patient cases were randomly partitioned into two subsets:
S1 including 129 masses and S2 including 121 masses. The
MQSA radiologist R1 selected US images corresponding to
the biopsy-proven masses from the set S1 with the help of
the pathology and radiology reports. The mass location was
marked by the radiologist on every of the selected US images
that correspond to the selected orthogonal or single US views.
The second MQSA radiologist R2 selected and read images
in the set S2 following the same procedure. As a result of
the selection process, 258 images from 55 malignant and 74
benign masses were included in S1, and 230 images from
41 malignant and 80 benign masses were included in S2. In
addition, the approximate center of the mass was provided
by R1 and R2 for each image of the S1 and S2 subsets. The
image selection and image annotation have been described in
greater detail previously.26

II.B. Feature extraction and selection

An automated method proposed by Cui et al.26 was used
to segment breast masses on ultrasound images. A two-stage
active contour model was used which automatically estimated
an initial contour based on a manually identified point approx-
imately at the mass center. By using the approximate mass
centers from radiologists R1 and R2 two different computer
segmentations were obtained for every image in the S1 and
S2 datasets.

Based on the automated segmentation, we extracted fea-
tures for the design of our DTCBIR system, which included
width-to-height (WH), posterior shadowing (PS) and texture
features. We defined WH ratio feature as a descriptor of the
taller-than-wide shape of a sonographic mass, which is a good
indication of malignancy.5 The PS feature also has been re-
ported to be useful for differentiation of malignant and benign
masses. We described PS as the normalized average gray-level
difference between the interior of the segmented mass and the
darkest posterior strip.23 The texture features were extracted
from the spatial gray-level dependence (SGLD) matrices. Six
texture features were extracted: information measures of cor-
relations 1 and 2 (IC1 and IC2), difference entropy (DE), en-
tropy (EN), energy (EY), and sum entropy (SM). The mathe-
matical definitions of these features can be found in Ref. 48.
The texture features were extracted from two disk-shaped re-
gions containing the boundary of each mass, as well as the
mass and normal tissue adjacent to the boundary of the mass.
The areas for the upper and lower disk-shaped regions were
selected to be equal, and their sum was the same as the area

of the segmented mass. Six SGLD matrices (2 directions and
3 pixel-pair distances) were constructed for each disk-shaped
region, and the total number of texture features extracted from
an image containing the segmented mass was 72 (6 features
× 6 SGLD matrices × the upper and the lower disk-shaped
regions). The feature extraction methods have been described
in greater detail previously.23, 44 Each feature was normalized
to have values from 0 to 1, based on its own distribution in the
training dataset.

The masses were classified as malignant or benign using a
twofold cross-validation method and a LDA classifier49 with
stepwise feature selection. In the two cycles of twofold cross
validation, the two data subsets S1 and S2 (see Sec. II.A)
served alternately as the training and the test partition. The
stepwise feature selection is based on the F statistics and uses
three threshold values, Fin for feature entry, Fout for feature
elimination, and tolerance of correlation. The appropriate val-
ues of these thresholds were not known a priori, and they
were estimated using a leave-one-case-out resampling method
and simplex optimization applied to the training set.50

The full set of features and the selected subset of features
are used to characterize each mass. Table I shows the selected
features sets for the four combinations of test set, training set,
and centroid locations. The notation of each texture feature in-
cludes the information of direction, distance, and region. For
example, IC2_0_2L denotes IC2 feature at direction θ = 0◦,
pixel-pair distance d = 2, and lower disk-shaped region.44

II.C. Retrieval methods by decision tree

A flowchart of our DTCBIR scheme is shown in Fig. 1.
The mass on each US image from the reference database are
segmented and the features characterizing the mass are stored
in the reference library, composing a reference feature dataset.
From every query sample submitted to the DTCBIR system
to search for similar masses, the system first extracts the same
features as that of the reference library. Using DTCBIR con-
figurations, the similarity scores are then computed between
the features of the query sample and those of the reference
library. The system retrieves the masses in the reference li-
brary that are most similar to the query sample based on the
similarity scores. In order to evaluate the effectiveness of the
DTCBIR system in retrieval of similar masses, we conducted
an observer study in which radiologists visually assessed the
similarities between the query and the retrieved samples. Be-
cause our current reference library is still small, the DTCBIR
system can only estimate a relative malignancy rating instead
of the probability of malignancy for the query mass. ROC
analysis of the relative malignancy rating estimated from the
retrieved samples was used to evaluate the capability of the
system in characterizing malignant and benign masses.

Using either the full set of features or the selected subset
of features (described in Sec. II.B), we trained three decision
trees. Each decision tree yielded a DTCBIR configuration,
which could be used in our DTCBIR system. They included
(1) decision tree with boosting (DTb), (2) decision tree with
full leaf features (DTL), and (3) decision tree with selected
leaf features (DTLs). One DTCBIR configuration (DTb) is
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TABLE I. Selected feature sets by stepwise linear discriminant analysis and simplex optimization for the four
combinations of test set, training set, and centroid location.

Selected
features

Test S1 (train S2),
centroids by R1

Test S2 (train S1),
centroids by R1

Test S1 (train S2),
centroids by R2

Test S2 (train S1),
centroids by R2

WH X X X X
PS X X X X
IC1_0_2L X
IC1_0_4L X X
IC1_0_4U X
IC1_90_2L X X X
IC1_90_6L X
IC1_90_6U X
IC2_0_2L X
IC2_0_4L X
IC2_0_6L X
IC2_90_4U X
IC2_90_6L X
IC2_90_6U X
DE_0_4U X
DE_0_6L X
DE_90_2L X
DE_90_2U X
EN_0_4U X
EY_90_6L X

output-score-based and the other two DTCBIR configurations
(DTL and DTLs) are input-feature-based. For the output-
score-based DTCBIR configuration, the features of a query
mass are combined first into a classifier score by decision
tree with boosting, which is then compared to the classifier
scores of the samples in the reference library to calculate the
similarity scores. For the input-feature-based DTCBIR con-
figuration, the individual features of a query mass are com-
pared directly to the corresponding features of the samples
in the reference library and the similarities of the individ-
ual features are combined into a similarity score for the pair.
The six DTCBIR methods derived from the full feature set
(“full”) and the feature subset selected by the stepwise LDA
and simplex optimization method (“lda”) are denoted as DTb-
lda, DTb-full, DTL-lda, DTL-full, DTLs-lda, and DTLs-full.

FIG. 1. The framework of our decision tree content-based image retrieval
(DTCBIR) system.

The decision tree and DTCBIR configurations are described
in detail below.

In our DTCBIR system, in order to retrieve k reference
masses that have the highest similarity scores with the query
mass, the k-nearest neighbor (k-NN) algorithm is used.

II.C.1. Decision trees

A decision tree is a simple tree structure where nontermi-
nal nodes represent tests on one or more attributes and termi-
nal nodes reflect decision outcomes. Each nonterminal node
has a threshold associating with one or more features to di-
vide the data into its descendants, and the process stops either
when each terminal node only contains one class or all the
selected attributes based on entropy have been exhausted.51

Thus, decision tree can be used as a classification tool after
the thresholds are set in the training process. The decision tree
has advantages in some respects over other classifiers such as
LDA, neural network, and support vector machine. For ex-
ample, a single decision tree classifier is a binary structure,
which is easy to understand, a decision tree can be converted
to rule sets that help improve the interpretation, it can conve-
niently handle both continuous and discrete features, and it is
independent of data distribution.

A well-known algorithm for constructing decision trees is
C4.5.52 This algorithm has been incorporated into the free
classifier package WEKA (it is called J48 in WEKA) and is
widely used in artificial intelligence. An updated version C5.0
that includes a boosting technique for improved performance
is used in this study.
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II.C.2. Decision tree with boosting retrieval

The basic idea behind boosting53 is to design an ensemble
of relatively simple base classifiers, and to combine the classi-
fiers in this ensemble to improve the accuracy of the base clas-
sifier. When each classifier in the ensemble is being trained,
the base classifier and the training method for the base clas-
sifier remain fixed, while the weighting of the training data
changes. The first classifier of the ensemble, or the first iter-
ation, uses unity weights for each case. At each subsequent
iteration, the weights of the training cases are modified such
that cases that have been misclassified in the previous itera-
tion are weighted more heavily than those that are correctly
classified. For a given test case, the C5.0 algorithm provides
a confidence level that combines the results of the boosting
iterations into a merged score.

In DTb, for every mass in the reference library a boosting
merged score is calculated as described above. For the query
mass, a boosting merged score is also calculated. The k-NN
algorithm with the Euclidean distance is used for the retrieval
scheme. All features were normalized before applying the Eu-
clidean distance [Eq. (1)]

D(Q,Ri) =
√√√√

n∑
s=1

(ls(Q) − ls(Ri))2, (1)

where Q is the query mass, Ri is a reference mass i from the
reference library, ls is the sth feature, and n is the dimension-
ality of the feature space. A smaller distance D indicates a
higher degree of similarity between the two compared masses.
For the output-score-based DTb, the classifier score is the
only feature so that n = 1 and l1 is the boosting merged score
and, from Eq. (1), it simply selects the k closest scores using
the absolute difference between the query mass score and the
scores of masses in the reference library.

From the k-NN algorithm, a characterization score which
represents the relative malignancy rating of the query mass is
computed as

P = 1

k

k∑
i=1

Bi, (2)

where k is the number of retrieved masses and Bi is a binary
label indicating whether a retrieved mass is malignant (1) or
benign (0) from the known pathology of each mass in the ref-
erence library. All DTCBIR configurations (DTb, DTL, and
DTLs) used Eq. (2) for estimating the characterization scores
in the retrieval scheme.

II.C.3. DTL and DTLs retrieval

Figure 2 shows an example of a single decision tree trained
with the reference library masses. Within each leaf the final
distribution of the malignant and benign images from the ref-
erence database are presented. The DT selected features (from
full feature set or from LDA selected feature set) and the cor-
responding decision thresholds are also presented in Fig. 2.
When a query mass is presented to the DT, it will be classi-
fied into one of the leaves.

FIG. 2. A single decision tree (DTL-lda) using training set S1 with mass
centroids marked by R2. Before training the decision tree, a subset of features
was selected by the stepwise LDA and simplex optimization method. The
numbers of malignant and benign masses reaching each leaf are indicated.

The similarity score of DTL is obtained by calculating the
Euclidean distance [Eq. (1)] between the query mass features
and the features of each reference mass within the same leaf
into which the query mass was classified. Top k most similar
masses are selected within the same leaf. However, if there
are less than k masses in the leaf, we retrieved all masses. The
feature space consists of the features selected by the single
decision tree during training. For example, in Fig. 2, if a query
mass reaches the benign leave [benign (0/11) marked in bold],
the DTL will apply Euclidean distance measure using all three
selected features (i.e., WH, IC2_0_2L, and PS) between the
query and the 11 reference masses.

The similarity score of the DTLs is similar to the DTL,
except that it uses only the features that are utilized to clas-
sify the query mass into the specific leaf. For example, in
Fig. 2, if the query mass reaches the benign leaf, benign
(0/11), the DTLs will use the Euclidean distance measure
with only two corresponding features (IC2_0_2L and WH)
between the query and the 11 reference masses.

II.D. Evaluation methods

II.D.1. Evaluation of classification performance
of DTCBIR

The three DTCBIR configurations (DTb, DTL, and DTLs)
used Eq. (2) to estimate the characterization scores. The
characterization scores were then analyzed by the ROC
methodology54 and the area under ROC curve (Az) was calcu-
lated using LABROC.54 As described above, prior to image
retrieval, the DTb method produces a one-dimensional clas-
sifier score. This score, termed DTbDI score below, was also
used to estimate the performance of the DTb method directly,
without any involvement of the retrieval scheme. In most
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FIG. 3. A malignant query mass and three retrieved masses (k = 3) by our DTCBIR scheme using the DTL-lda method: (a) a malignant query mass, (b) first
retrieved mass, (c) second retrieved mass, (d) third retrieved mass. The biopsy results of (a)–(d) are malignant. The similarity ratings from three radiologists
(R1, R2, and R3) estimating the similarity between the query mass and the retrieved masses are: (b) 7, 8, and 8; (c) 8, 9, and 6; (d) 8, 6, and 7.

CADx studies, this direct performance evaluation is reported.
However, in this study, since our main focus was image re-
trieval, the direct performance evaluations was reported only
for comparison purposes, and the main performance evalua-
tion of DTb was based on the calculation of characterization
scores using Eq. (2).

II.D.2. Similarity evaluation by radiologists

The similarity between the query and the retrieved masses
by the DTCBIR CADx system were evaluated by radiolo-
gists’ visual similarity assessments. We used one of the four
partitions for this experiment. The partition testing on set S1,
training on set S2, segmentation initialized by R1, was se-
lected because its Az is close to the average Az (k = 3) of the
four partitions. The dataset for similarity study therefore in-
cluded 121 reference library masses on 230 (79 malignant and
151 benign) images (S2 set) and 100 query masses from S1
on 100 (49 malignant and 51 benign) images. Finding a good
balance among the number of observers, the proper number
of similarity measures, the number of query masses, and the
k value is difficult because of time constraint. We selected the
number of query masses as 100. The 49 malignant and 51 be-
nign masses were randomly selected from the malignant and
benign subsets in S1, respectively. Among six retrieval meth-
ods (i.e., three DTCBIR configurations with and without fea-
ture selection), we selected five, DTb-lda, DTL-lda, DTb-full,
DTL-full, and DTLs-full, for the observer study. For classifi-
cation of masses as malignant and benign, our results [see
Sec. III and Fig. 5(e)] indicated that DTb and DTL had bet-
ter performance than DTLs for k = 3. DTLs-full was selected

to represent the lowest Az value. In this way, we attempted
to cover the performance range for classification of masses
as malignant or benign. For each query mass, 3 most simi-
lar masses (k = 3) were retrieved from the reference library
with each method. Therefore, there were a total of 1500 (100
query masses × 3 most similar masses × 5 methods) pairs of
query and retrieved masses. A graphical user interface was de-
veloped to present the image pairs of the query and retrieved
masses to the radiologists. The observer assessed the two im-
ages of a pair that were displayed side-by-side in full resolu-
tion on a display workstation and was allowed to zoom and
adjust the contrast and brightness of the images if needed.
The mass pairs were mixed and presented to the radiologists
in random order, one pair at a time. Three MQSA radiolo-
gists, with breast imaging experience of 9, 25, and 29 years,
rated the similarity between the query mass and the computer-
retrieved masses. They used a nine-point similarity scale (1
= very dissimilar, 3 = quite dissimilar, 5 = some degree of
resemblance, 7 = quite similar, and 9 = very similar). The
similarity ratings 2, 4, 6, and 8 were intermediate ratings.
The radiologists were instructed to estimate the similarity as
they would do in clinic by considering both the visual sim-
ilarity and the similarity based on clinical malignant/benign
descriptors. Examples of similarity evaluation by radiologists
are shown on Figs. 3 and 4 with both malignant and benign
query masses. Two of the three radiologists (R1, R2) were
the same as the two that helped collect the dataset, marked
the masses on the US images, and provided the centroid loca-
tions. However, none of the masses were viewed in pairs dur-
ing dataset collection, and the collection of the dataset did not
involve comparing the similarity of the masses. Furthermore,

FIG. 4. A benign query mass and three retrieved masses (k = 3) by our DTCBIR scheme using the DTL-lda method: (a) a benign query mass, (b) first retrieved
mass, (c) second retrieved mass, (d) third retrieved mass. The biopsy results of (a)–(d) are benign. The similarity ratings from three radiologists (R1, R2, and
R3) estimating the similarity between the query mass and the retrieved masses are: (b) 8, 8, and 8; (c) 8, 7, and 7; (d) 7, 7, and 8.
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FIG. 5. The area under the ROC curves, Az, for top k retrievals using segmentation initialized by mass centroids marked by R1 or R2 for the two cycles of cross
validation: (a) Test set S1 (training set S2), mass centroids marked by R1, (b) Test set S2 (training set S1), mass centroids marked by R1, (c) Test set S1 (training
set S2), mass centroids marked by R2, (d) Test set S2 (training set S1), mass centroids marked by R2, (e) Average of (a)–(d).

data collection was done two years before the similarity
study and only ROI images were provided in the similarity
study. Therefore, the participation in the similarity observer
study of the two radiologists is not expected to introduce
biases.

II.D.3. Normalized discounted cumulative gain (NDCG)

The performance of the DT retrieval methods were also
evaluated by NDCG,55 a standard technique used to measure
the effectiveness of information retrieval algorithms when
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graded truth is available, as represented by the nine-point ra-
diologists’ similarity scale in this study.

The discounted cumulative gain (DCG) is computed as

DCG(k) =
k∑

i=1

2simi − 1

log2(1 + i)
, (3)

where i is the rank of the retrieved masses based on similar-
ity measures, k is the total number of retrieved masses (here
k = 3), and simi is the relevance value (i.e., similarity ratings
from radiologists) of the result at rank i. NDCG is defined as

NDCG(k) = DCG(k)

IDCG(k)
, (4)

where IDCG(k) denotes the DCG(k) value for an ideal ranked
list for query mass. In a perfect algorithm, DCG(k) will be
the same as the IDCG(k) producing a NDCG(k) of 1.0. The
NDCG is used to measure the usefulness (gain) on a scale of
0 to 1 (or 0 to 100%) of k retrieved masses on the basis of
their positions in the ranked list when the DT retrieval was
used, and on the basis of their similarity to the query mass ac-
cording to a separate similarity reference standard (the radi-
ologist’s rating on nine-point scale). The accumulated gain is
evaluated with the weight of each retrieved lesion discounted
at lower ranks. Thus, for a given k, higher NDCG(k) means
more masses similar to the query mass are ranked ahead of
dissimilar ones, with NDCG(k) equal to 1 implying perfect
retrieval of k images.39, 56 The advantage of NDCG is that
among the classifiers with the same accuracy, the classifier
that can rank the similar masses higher will be rewarded more.

III. RESULTS

III.A. DTbDI classification accuracy

Table II shows the Az values for the DTbDI with the two
features sets (full features and the features selected by the
stepwise LDA and simplex optimization) obtained directly
from analysis of the classifier scores for the different dataset
partitions. The average test Az value for both DTbDI-lda and
DTbDI-full were 0.86 ± 0.02. The maximum number of
boosting iterations was 10.

III.B. Retrieval methods’ characterization accuracy

The DT selected the WH ratio feature consistently in the
four combinations of test set, training set, and centroid lo-

TABLE II. The Az values for DTbDI classifiers with two feature set (full fea-
ture and LDA-selected feature set) for the four combinations of test set, train-
ing set, and centroid location.

Dataset DTbDI-lda DTbDI-full

Test S1 (train S2), centroid by R1 0.88 ± 0.02 0.88 ± 0.02
Test S2 (train S1), centroid by R1 0.85 ± 0.03 0.85 ± 0.03
Test S1 (train S2), centroid by R2 0.85 ± 0.02 0.86 ± 0.02
Test S2 (train S1), centroid by R2 0.87 ± 0.02 0.86 ± 0.02
Average 0.86 ± 0.02 0.86 ± 0.02

TABLE III. Average Az values of the DTCBIR-CADx system using k-NN
with six different retrieval methods for several k values. The average was
performed over the test sets from the four combinations of test set, training
set, and centroid location.

DTCBIR
methods k = 3 k = 5 k = 10 k = 25

DTb-lda 0.84 ± 0.04 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03
DTL-lda 0.80 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
DTLs-lda 0.78 ± 0.03 0.77 ± 0.03 0.78 ± 0.03 0.79 ± 0.03
DTb-full 0.86 ± 0.04 0.86 ± 0.03 0.86 ± 0.03 0.85 ± 0.03
DTL-full 0.78 ± 0.04 0.79 ± 0.03 0.80 ± 0.03 0.79 ± 0.03
DTLs-full 0.76 ± 0.04 0.73 ± 0.03 0.76 ± 0.03 0.75 ± 0.03

cation. The PS feature was selected in three of four com-
binations in the case of DT selection from the full features
and in all four combinations in the case of DT selection from
the stepwise LDA preselected features. The malignant-versus-
benign classification performance of the DTCBIR system for
each dataset is presented in Fig. 5. The performance accuracy
in terms of Az of the DTCBIR depends on the number of the
retrieved most similar masses, k. The dependence of Az val-
ues on k averaged over the four datasets is shown in Fig. 5(e)
for all methods. The average Az values of the DTb-lda and
DTb-full based systems remain relatively unchanged for all
k, and those of other DTCBIR methods do not change sub-
stantially for k ≥ 10. The C5.0 DT algorithm was executed
with its default parameter values, except that we set the min-
imum of training instances within each leaf to be 10. This
value was chosen because we observed that the resulting DTs
have compact structure with relatively small number of se-
lected features and, in DTCBIR system, it is good enough as
a retrieved number. Overall, DT with boosting, DTb-lda and
DTb-full, achieve a better performance compared to other sin-
gle DT classification. The average Az values of DTb-lda and
DTb-full at k = 3 were 0.84 ± 0.04 and 0.86 ± 0.04, re-
spectively. Table III shows the average Az values of the six
DTCBIR methods for several k values. Results for other k val-
ues can be found in Fig. 5(e). Table IV presents the Az values
for the 100 query images. The Az value at k = 3 was sig-
nificantly (p ≤ 0.01) higher for the DTL-lda than the DTLs-
full. However, the differences between DTL-lda and the rest
of the retrieval methods did not reach statistical significance
(p ≥ 0.1).

TABLE IV. The Az values for the top k retrieval using the DTCBIR-CADx
system trained by S2, centroid by R1, and 100 test query images from S1.

DTCBIR
methods k = 3 k = 5 k = 10 k = 25

DTb-lda 0.90 ± 0.03 0.89 ± 0.03 0.90 ± 0.03 0.89 ± 0.03
DTL-lda 0.85 ± 0.04 0.86 ± 0.04 0.85 ± 0.04 0.84 ± 0.04
DTb-full 0.87 ± 0.04 0.87 ± 0.04 0.87 ± 0.04 0.89 ± 0.03
DTL-full 0.79 ± 0.05 0.80 ± 0.05 0.81 ± 0.04 0.81 ± 0.04
DTLs-full 0.71 ± 0.06 0.72 ± 0.05 0.74 ± 0.05 0.76 ± 0.05
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FIG. 6. The number of retrieved masses that were identical between two DTCBIR methods. The results for k = 1 to k = 10 are shown. The partitions: Test S1
(train S2), centroid by R1, was used. (a) DTb-lda, (b) DTL-lda, (c) DTb-full, (d) DTL-full, and (e) DTLs-full, was compared to the other four DTCBIR methods
in each graph.

III.C. Number of similar masses retrieved
by different methods

We studied the consistency of the different DTCBIR meth-
ods by comparing the number of identical masses retrieved by

the different DTCBIR methods for a specified k. The DTL-
lda, DTb-full, DTL-full and DTLs-full and DTb-lda are com-
pared in Fig. 6 and Tables V and VI. For example, DTL-
lda, DTb-full, DTL-full, and DTLs-full are compared with
DTb-lda in Fig. 6(a), where the average number of identical
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TABLE V. The average number of retrieved masses from the reference library
that were identical (k = 3): test S1 (train S2), centroid by R1.

DTCBIR configurations
DTCBIR
methods DTb-lda DTL-lda DTb-full DTL-full DTLs-full

DTb-lda 3 0.14 0.22 0.12 0.07
DTL-lda 0.14 3 0.07 0.95 0.40
DTb-full 0.22 0.07 3 0.10 0.06
DTL-full 0.12 0.95 0.10 3 0.45
DTLs-full 0.07 0.40 0.06 0.45 3

masses retrieved by the different DTCBIR methods for a
given k (k = 1, . . . , 10) are shown. The same DTCBIR config-
uration with different features set (i.e., DTb-lda and DTb-full
as well as DTL-lda and DTL-full) retrieved more identical
masses than others. The DTL retrieved more masses, on aver-
age, that were identical to those retrieved by DTLs than DTb.
The comparisons in Table VI show that, on average, 4.03 of
the 10 masses retrieved by DTL-lda and DTL-full in 10-NN
(k = 10) were the same. On the other hand, both DTb-lda
and DTb-full retrieved less than two masses, on average, that
were identical to those retrieved by DTL-lda, DTL-full, and
DTLs-full.

III.D. Evaluation of retrieval methods by radiologists’
visual assessment

Table VII shows the average similarity ratings of the three
radiologists for all 100 query masses and the subset of ma-
lignant masses retrieved by the DTb-lda, DTL-lda, DTb-full,
DTL-full, and DTLs-full methods and k = 3. The three radi-
ologists’ average similarity ratings were as follows: 5.00 for
DTb-lda, 5.41 for DTL-lda, 4.96 for DTb-full, 5.33 for DTL-
full, and 5.13 for DTLs-full. The average similarity ratings
from the three radiologists were higher for the retrieval meth-
ods based on DTL compared to the ratings for the retrieval
methods based on DTb. Statistical comparison was performed
by finding the average similarity rating for each query mass
(averaged over three readers and three retrieved masses) for
each retrieval method, and then conducting a paired t-test of
the average similarity ratings between pairs of retrieval meth-
ods. The radiologists’ average similarity ratings were signif-
icantly (p < 0.0001) higher for the DTCBIR method based

TABLE VI. The average number of retrieved masses from the reference li-
brary that were identical (k = 10): test S1 (train S2), centroid by R1.

DTCBIR configurations
DTCBIR
methods DTb-lda DTL-lda DTb-full DTL-full DTLs-full

DTb-lda 10 1.34 1.64 1.16 0.84
DTL-lda 1.34 10 0.94 4.03 2.32
DTb-full 1.64 0.94 10 0.97 0.80
DTL-full 1.16 4.03 0.97 10 3.38
DTLs-full 0.84 2.32 0.80 3.38 10

on DTL-lda than those based on a classifier score (DTb-lda
or DTb-full). The average similarity ranking for DTL-lda was
also significantly higher (p < 0.0008) than the ones for DTLs-
full. However, the difference between DTL-lda and DTL-full
did not reach statistical significance (p = 0.27). For malig-
nant query masses, the average similarity ratings were 5.16
for DTb-lda, 5.52 for DTL-lda, 5.15 for DTb-full, 5.48 for
DTL-full, and 5.09 for DTLs-full. We observed a tendency
that one of the radiologists was giving lower similarity rat-
ings than the other two. On average, the DTCBIR system
retrieved masses that were moderately similar to the query
masses based on radiologists’ similarity assessments. Masses
of higher similarities were retrieved for the malignant masses
than for all query masses except for the DTLs-full retrieval
method.

Table VIII shows the NDCG values of the DTCBIR-CADx
system with five different DTCBIR methods for k = 3. The
average NDCG values of DTL-lda and DTL-full have slightly
higher values than those of DTb-lda, DTb-full or DTLs-full.

This study shows that among the six DTCBIR methods the
DTL-lda is the best for searching similar masses and its Az

value is also acceptable (Tables IV and VII).

IV. DISCUSSION

We used two types of initial feature sets as input to
DTCBIR (DTb, DTL, and DTLs) configurations. One set con-
sisted of all extracted features and the other consisted of the
features selected by the stepwise LDA and simplex optimiza-
tion method. DT has its own feature selection, which is based
on entropy,57 and is performed within the DT training step.
The DT feature selection proved to be efficient, because for k
= 3, the average Az values for DTb, DTL, and DTLs with the
initial set of features selected by LDA are similar to the ones
with the initial set of all features (Table III).

When compared to other DTCBIR methods, the DTL with
LDA selected feature set and DTL with full feature set re-
trieved on average more masses that were identical (0.95 and
4.03 for k = 3 and k = 10, respectively, see Tables V and VI).
DTL-full and DTLs-full were next (0.45 and 3.38 for k = 3
and k = 10, respectively). The masses retrieved by DTb-lda
were more similar to those retrieved by DTb-full (0.22 and
1.64 for k = 3 and k = 10, respectively) than to those by the
other three DTCBIR methods. However, masses retrieved by
the input-feature-based configurations (e.g., DTL or DTLs)
were very different from the masses that were retrieved by
the output-score-based (DTb) configurations in the DTCBIR
scheme because the input-feature-based methods used the in-
dividual features in the multidimensional feature space while
the output-score-based methods used the merged classifier
scores.44

The higher similarity of the query and retrieved masses for
the input-feature-based configurations (DTL and DTLs) com-
pared to the output-score-based configurations (DTb) was ob-
served also based on the radiologists’ visual assessments ob-
tained in the observer study. On the other hand, the average
Az value of the output-score-based configurations (DTb) for
the top retrievals (k) (Table IV) was higher than those of the
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TABLE VII. The average similarity ratings of the three radiologists for all masses and the subset of malignant
masses retrieved by the DTCBIR methods (k = 3).

R1 R2 R3 Average
DTCBIR
methods Total Malignant Total Malignant Total Malignant Total Malignant

DTb-lda 4.72 4.65 5.27 5.65 5.01 5.19 5.00 5.16
DTL-lda 5.14 4.99 5.81 6.08 5.29 5.49 5.41 5.52
DTb-full 4.49 4.51 5.39 5.67 5.00 5.27 4.96 5.15
DTL-full 4.99 4.95 5.69 6.00 5.30 5.5 5.33 5.48
DTLs-full 4.88 4.64 5.41 5.45 5.09 5.17 5.13 5.09

input-feature-based configurations (DTL and DTLs). These
results indicated that using the combined similarity of the in-
dividual features in the multidimensional feature space can
match the similar masses more reliably than using a merged
classifier score. The same classifier score can be obtained
from many different combinations of the individual features
and therefore masses retrieved based on similar classifier
scores to the query mass may have large variations and very
different individual features, which is also in agreement with
our previous study.44

The performance of the CADx systems briefly reviewed in
the Introduction varied considerably (Az range of 0.87–0.98).
However, it is difficult to directly compare the performances
of different CADx systems because they generally depend on
the subtlety of the abnormal cases and the size of the datasets
used. The performance of our DT classifier without retrieval
DTbDI (Az range of 0.85–0.88) was in the same range as the
CADx systems of Horsch et al.22 (Az of 0.87) and Sehgal
et al.24 (Az of 0.87), but was slightly lower than the conven-
tional classifiers LDA and BNN (Az range of 0.86–0.91) from
our previous study44 and some of the other studies.23, 25, 26 The
classification performance of our DTCBIR CADx systems (Az

range of 0.71–0.90) was comparable to Chen et al.46 (Az range
of 0.893–0.925 for different feature combinations). However,
our study is different from the studies of other investigators
in that we investigated whether the DTCBIR CADx systems
can retrieve lesions on US images that are considered to be
similar by radiologists.

In this study, our focus was the design of a CBIR CADx
system using decision trees. We also aimed at comparing
the performance of the input-feature-based and output-score-
based DTCBIR systems. The ultimate benchmark for a CADx

TABLE VIII. The NDCG values of the five different DTCBIR methods for
k = 3.

DTCBIR
methods R1 R2 R3 Avg.

DTb-lda 0.81 0.83 0.86 0.83
DTL-lda 0.84 0.87 0.88 0.86
DTb-full 0.80 0.84 0.85 0.83
DTL-full 0.85 0.88 0.88 0.87
DTLs-full 0.82 0.84 0.89 0.85

system is the improvement in the performance of the radiol-
ogists when they are aided by the CADx system. The evalu-
ation of DTCBIR CADx system performance is a relatively
new area, and the tradeoffs between the performance of the
standalone system for retrieval and classification as they are
related to this ultimate benchmark are not yet known. Future
observer studies will be needed to evaluate the relative impor-
tance of these two performance criteria.

There are limitations in our similarity study. Three radiolo-
gists participated in the observer study. They rated the similar-
ity of a query mass to the top three (k = 3) retrieved masses.
The total number of query masses was 100. Five DTCBIR
methods were used for retrieval. These resulted in 1500 (3
× 5 × 100) readings performed by each radiologist. Even
though the total number of readings was relatively large, the
number of readings for each mass and the number of query
masses were still small. One practical and important way to
obtain more robust results is to increase the number of ob-
servers, which we plan to do in a future study. More reliable
results may also be produced by increasing k; however, we
have to choose carefully the value of k in order to avoid exces-
sive reading times for the radiologists. Likewise, for the ob-
server study five representative DT based SM methods were
chosen from the six developed to reduce the number of read-
ings needed. A search for a good balance among the number
of query masses, the number of retrieved masses, the proper
number of similarity measures, and the number of observers,
will be carried out in the future. In addition, the available
dataset for this study was relatively limited and future stud-
ies with larger datasets will be needed.

V. CONCLUSIONS

In this study, we compared six different DTCBIR methods
with full features and subset of features selected by the
stepwise LDA and simplex optimization method (DTb-lda,
DTb-full, DTL-lda, DTL-full, DTLs-full, and DTLs-full).
Even though the DTb retrieval methods had the best classifi-
cation performance (i.e., highest Az) in the DTCBIR scheme
while DTLs had the worst performance for k = 3, DTLs-full
exhibited higher similarity ratings from the three radiologists’
assessment than the DTb retrieval methods for the 100 query
masses on average. In future investigations, we will study the
relationship between the usefulness of the retrieved masses as
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references for radiologists and the accuracy of estimating the
likelihood of malignancy of the query mass. Future work in-
cludes applying the DTCBIR system to a larger and indepen-
dent dataset, expanding the feature space, and combining the
developed US characterization method with mammographic
characterization method. The effects of the different DTCBIR
CADx systems on the characterization of breast masses by
radiologists will also be evaluated by observer study.
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