
Computer-aided detection of clustered microcalcifications in digital
breast tomosynthesis: A 3D approach

Berkman Sahiner,a),b) Heang-Ping Chan, Lubomir M. Hadjiiski, Mark A. Helvie, Jun Wei,
Chuan Zhou, and Yao Lu
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109

(Received 16 April 2011; revised 28 September 2011; accepted for publication 19 October 2011;

published 9 December 2011)

Purpose: To design a computer-aided detection (CADe) system for clustered microcalcifications in

reconstructed digital breast tomosynthesis (DBT) volumes and to perform a preliminary evaluation

of the CADe system.

Methods: IRB approval and informed consent were obtained in this study. A data set of two-view

DBT of 72 breasts containing microcalcification clusters was collected from 72 subjects who were

scheduled to undergo breast biopsy. Based on tissue sampling results, 17 cases had breast cancer

and 55 were benign. A separate data set of two-view DBT of 38 breasts free of clustered microcal-

cifications from 38 subjects was collected to independently estimate the number of false-positives

(FPs) generated by the CADe system. A radiologist experienced in breast imaging marked the biop-

sied cluster of microcalcifications with a 3D bounding box using all available clinical and imaging

information. A CADe system was designed to detect microcalcification clusters in the reconstructed

volume. The system consisted of prescreening, clustering, and false-positive reduction stages. In

the prescreening stage, the conspicuity of microcalcification-like objects was increased by an

enhancement-modulated 3D calcification response function. An iterative thresholding and 3D

object growing method was used to detect cluster seed objects, which were used as potential centers

of microcalcification clusters. In the cluster detection stage, microcalcification candidates were

identified using a second iterative thresholding procedure, which was applied to the signal-to-noise

ratio (SNR) enhanced image voxels with a positive calcification response. Starting with each cluster

seed object as the initial cluster center, a dynamic clustering algorithm formed a cluster candidate

by including microcalcification candidates within a 3D neighborhood of the cluster seed object that

satisfied the clustering criteria. The number, size, and SNR of the microcalcifications in a cluster

candidate and the cluster shape were used to reduce the number of FPs.

Results: The prescreening stage detected a cluster seed object in 94% of the biopsied microcalcifi-

cation clusters at a threshold of 100 cluster seed objects per DBT volume. After clustering, the

detection sensitivity was 90% at 15 marks per DBT volume. After FP reduction, at 85% sensitivity,

the average number of FPs estimated using the data set containing microcalcification clusters was

3.8 per DBT volume, and that estimated using the data set free of microcalcification clusters was

3.4. The detection performance for malignant microcalcification clusters was superior to that for

benign clusters.

Conclusions: Our study indicates the feasibility of the 3D approach to the detection of clustered

microcalcifications in DBT and that the newly designed enhancement-modulated 3D calcification

response function is promising for prescreening. Further work is needed to assess the generalizabil-

ity of our approach and to improve its performance. VC 2012 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3662072]
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I. INTRODUCTION

Digital breast tomosynthesis (DBT) is a promising new mo-

dality for detection and diagnosis of breast cancer. DBT

imaging involves acquiring projection views (PVs) of the

compressed breast over a range of projection angles using a

full-field digital mammography (FFDM) detector. Each PV

can be obtained using a fraction of the x-ray exposure used

in conventional mammography so that the total DBT dose

can be comparable with or slightly higher than that of mam-

mography. A variety of techniques have been used to recon-

struct the DBT volume from the acquired PVs.1–7 Since the

PVs in a DBT scan are acquired only within a limited range

of acquisition angles of the compressed breast, the recon-

structed 3D DBT volume contains artifacts due to missing

information, regardless of the reconstruction technique

applied. Despite reconstruction artifacts, DBT is considered

to have a strong potential to improve breast imaging, by

reducing the camouflaging effect of the overlapping fibro-

glandular breast tissue that is usually a limiting factor for

lesion detection and characterization in mammography. The
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potential of DBT in comparison to or as an adjunct to mam-

mography has been demonstrated by several observer

studies.8–12

Computer-aided detection (CADe) systems for cancer

detection in mammography have been under development

for over two decades and have been commercially available

for over a decade. Based on Medicare data, CAD was used

in 74% of screening mammographic studies that were

performed in 2008.13 The effect of CADe on radiologists’

cancer detection performance has been investigated in a num-

ber of prospective clinical trials.14–23 Two of the studies with

historical controls16,21 did not find a major effect or found a

large increase in the call-back rate with CADe; however,

other studies14,15,17–20,22,23 found an increase in sensitivity

accompanied by a moderate increase in the call-back rate.

As a new modality, a number of important issues con-

cerning DBT are still under investigation including how

DBT can be optimized for breast cancer detection and diag-

nosis, and how it will fit into the current breast imaging prac-

tice. Some of these issues are related to the development and

use of CADe. Similar to mammography, there may be

lesions missed by radiologists in DBT due to a number of

factors, and a consistent second reader may be helpful.

Because of the large volume of image data needed to be

interpreted in DBT, the chance of missing cancers may not

be negligible. CADe may be of particular interest in DBT

for microcalcification detection. The detection of microcalci-

fication clusters by radiologists in DBT volumes may be

more difficult compared with mammography for two rea-

sons: First, the cluster of microcalcifications may be sepa-

rated into several reconstructed slices, the number of

microcalcifications on each slice will be fewer, making it

less conspicuous. Although visualization techniques such as

maximum intensity projection (MIP) or slab view may alle-

viate this problem, these techniques may also cause image

blur, and their optimal parameter settings are currently

unknown. Second, the microcalcifications may appear

blurred due to many factors that can cause blurring in DBT

reconstruction, including inaccuracy in the system geometry

and the projection model, a range of oblique incidence

angles to the detector, focal spot motion and patient motion.

A recent study by Spangler et al.24 found that the detection

performance of radiologists for microcalcification clusters

was higher in FFDM compared with DBT, although the dif-

ference did not reach statistical significance for the data set

used in that study. In addition to the radiologists’ detection

performance, searching for microcalcification clusters in a

3D DBT volume may be more demanding than on mammo-

grams and false negatives may not be negligible. For these

reasons, it is expected that CADe may play an even more im-

portant role in microcalcification detection in DBT than in

mammography.

A number of studies investigated the development of

CADe techniques for the detection of masses in DBT.25–29

Compared with the detection of masses, studies investigating

the detection of microcalcification clusters on DBT are more

preliminary.30–33 Reiser et al.30 investigated the detection of

microcalcifications on individual PVs. The detected micro-

calcifications were then backprojected into the 3D volume.

A second-stage detection was performed after this 3D vol-

ume was transformed using MIP. False-positive reduction

was performed with features extracted from the PVs,

followed by 3D clustering. On a data set of 30 image sets

with microcalcification clusters and 30 image sets without

visible findings, their detection method achieved a sensitivity

of 86% with 1.3 false-positive (FP) clusters per DBT vol-

ume. Bernard et al.31 developed an algorithm for the detec-

tion of microcalcification clusters on filtered back-projection

reconstructed slices. The voxel contrast was enhanced by

convolving the image volume with a Mexican hat wavelet at

a specific scale. A voxel was selected as a candidate based

on its contrast and the local noise level. A set of scales cov-

ering the microcalcification size range was used for the

Mexican hat. On a data set of 13 DBT volumes containing

microcalcification clusters and 37 normal DBT volumes,

their method had a sensitivity of 85% at an average of 1.4

FP marks per breast volume. Park et al.32 compared two pre-

liminary detection methods. The first method detected

microcalcification clusters on the individual PVs, and the

second method detected clusters on the individual recon-

structed slices. Both methods then grouped the detected clus-

ters using location information. The first method detected 14

of 20 (70%) clusters seen on the PV images with an average

of 3.99 FPs per DBT volume. The second method detected

35 of 40 (86%) of clusters seen on the reconstructed slices

with an average of 15.9 FPs per DBT volume. In our pilot

study, we investigated the detection of microcalcification

clusters in the reconstructed DBT volume using 3D multi-

scale filtering and SNR enhancement.33 On a data set of two-

view DBTs of 39 breasts containing microcalcification

clusters, a view-based sensitivity of 80% (59=74) was

achieved at 2.0 FPs per DBT volume. In this paper, we

expanded this preliminary study by almost doubling the data

set size for DBT with clustered microcalcifications. We also

investigated the effects of filter parameters for both multi-

scale Hessian enhancement and SNR enhancement and the

effect of clustering, and compared the detection performance

of the enhancement-modulated 3D calcification response

function with that of using SNR enhancement alone. An in-

dependent data set of DBTs was also collected to evaluate

the FP rate on images free of clustered microcalcifications.

II. METHODS AND MATERIALS

The DBT scans were acquired with a GE GEN2 prototype

system in the breast imaging research laboratory at the Uni-

versity of Michigan. The DBT system acquires 21 PV

images over a 630 angular range in 3 increments in a step-

and-shoot operation. Rh target and Rh filter are used for

breasts of all thicknesses. The DBT system has a CsI=aSi

active matrix flat panel digital detector with dimensions of

19.20 cm � 23.04 cm and a pixel pitch of 0.1 mm � 0.1

mm. The digital detector is stationary during image acquisi-

tion. The dose per DBT view was set to be about 1.5 times

that of a single-view conventional mammogram in this pro-

totype DBT system. The DBT volumes were reconstructed
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at 1 mm slice interval using the simultaneous algebraic

reconstruction technique (SART), with a relaxation parame-

ter k of 0.5 and a single iteration.4

II.A. Data Set

The subject recruitment protocol was IRB approved.

Breast imaging patients in our health system who were rec-

ommended for breast biopsy based on suspicious mammo-

graphic microcalcifications were eligible. Written informed

consent was obtained from each subject. DBT scans of the

breast were acquired in both craniocaudal (CC) and medio-

lateral oblique (MLO) views before biopsy was performed.

For this study, we collected two-view DBT scans of 72

breasts containing microcalcifications. The location of the

biopsy-proven microcalcification cluster was marked by a

3D box in each DBT volume by an experienced Mammog-

raphy Quality Standards Act (MQSA) radiologist using the

clinical mammograms and the biopsy report as references. A

total of 139 microcalcification clusters were identified on the

144 DBT scans. In five breasts, the microcalcification cluster

was visible only in one of the DBT views. The radiologist

also subjectively rated the visibility of the microcalcification

clusters on a scale of 1 to 10, where 1 corresponded to the

most visible cluster. Figure 1 shows the histogram of visibil-

ity ratings for the 139 visible clusters. Of the 72 breast biop-

sies, 17 of the clusters were found to be malignant and 55

benign. This data set is referred to as the abnormal data set.

To investigate the number of FPs generated by our CAD

system on cases that were free of microcalcification clusters,

we used a data set of two-view DBT scans from 38 breasts

(76 DBT volumes). These DBTs were acquired from sub-

jects who were scheduled for biopsy due to a suspicious

mass. The cases were verified to be free of microcalcification

clusters by the same experienced radiologist. For the pur-

poses of this study, these cases are referred to as the “normal

data set” since they did not contain any microcalcification

clusters,

II.B. Detection algorithm

In this study, a prototype microcalcification cluster detec-

tion system was developed using a 3D approach in which the

reconstructed 3D DBT volume was used as input. Figure 2

shows a block diagram of the CADe system, which consists

of prescreening, cluster detection, and false-positive reduc-

tion stages. The details of each stage of the CADe system

are described below.

II.B.1. Prescreening

In the prescreening stage, the microcalcifications are first

enhanced using two parallel processes: One process is based

on multiscale Hessian enhancement with a calcification

response function, and the other is based on SNR enhance-

ment of the microcalcifications in the reconstructed DBT

volume. The calcification response volume resulting from

Hessian enhancement is weighted by the SNR enhanced vol-

ume to obtain the enhancement-modulated calcification

response (EMCR) at each voxel, and a maximum-gradient

object growing and selection process is applied to the

EMCR to identify seed objects for microcalcification

clusters.

II.B.1.a. Multiscale calcification response

The multiscale Hessian enhancement method34 is adapted

to detect small bright objects with a spherical shape in DBT.

It is based on the principle that at the center of a spherically

symmetric object with positive contrast, the eigenvalues of

the Hessian matrix are all negative and equal to each other.

The Hessian matrix at voxels that are part of other kinds of

shapes, such as lines or elongated ellipses, will have unequal

eigenvalues. In practice, in order to tune the Hessian

FIG. 1. Visibility of the malignant and benign microcalcification clusters on

the DBT volume, as rated by a breast radiologist experienced in the interpre-

tation of mammograms and DBT. A rating of 1 corresponded to the most

visible clusters. The malignant and benign clusters had average visibilities

of 4.0 and 4.5, respectively.

FIG. 2. The block diagram of the microcalcification detection system for

DBT.
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enhancement to objects at different scales and to reduce the

noise that is amplified by the second-order derivatives in the

Hessian operator, the image Iðx; y; zÞ is first convolved with

a 3D Gaussian smoothing filter with scale r

srðx; y; zÞ ¼
1

ð2pr2Þ3=2
exp �ðx2 þ y2 þ z2Þ=2r2
� �

: (1)

Let fðx; y; zÞ denote the smoothed image volume,

Hrðx; y; zÞ ¼
fxx fxy fxz

fyx fyy fyz

fzx fzy fzz

2
4

3
5; (2)

denote the Hessian matrix at a voxel (x,y,z) of the smoothed

volume, and

k3j j � k2j j � k1j j; (3)

denote the eigenvalues of the Hessian matrix at (x,y,z). One

of the methods proposed in the literature35 for enhancement

of spherically symmetric object is to define a response rr at

scale r as

rr ¼ �k2
3=k1 if k1 � k2 � k3 � 0

0 otherwise

�
: (4)

If the object has a Gaussian shape with

Iðx; y; zÞ ¼ exp �ðx2 þ y2 þ z2Þ=2r2
0

� �
; (5)

then it can be shown that among all possible scales for the

filter srðx; y; zÞ, the scale

rð¼
ffiffiffiffiffiffiffiffi
3=2

p
r0; (6)

maximizes rr. In general, the size of the object is not known.

A common approach in this case is to use a bank of Hessian

filters S ¼ sr1
; sr2

;…; srN
f g, at multiple scales frg

¼ r1; r2;…; rNf g. A response vector R ¼ rr1
; rr2

;…; rrN
f g

is obtained at (x,y,z), and the elements of R are combined to

achieve the desired signal enhancement. In a previous study

on pulmonary nodule registration, we used a neural network

to combine the elements of R.36 In the current study, we first

defined

i� ¼ arg max
i

rri
f g: (7)

The multiscale calcification response at (x,y,z) was then

defined as

Eðx; y; zÞ ¼ rri�

ri�
: (8)

II.B.1.b. SNR enhancement

SNR enhancement was applied to each slice independ-

ently. It consisted of a combination of three filters, F1, F2,

and F3, of sizes M1 �M1, M2 �M2, and M3 �M3, respec-

tively, where M1 > M2 � M3. The filters can be linear or

nonlinear. If linear filters are chosen, the filters can be com-

bined as follows to produce a single band-pass filter before

convolution with the image to reduce processing time. The

kernels of the filters are designed based on the following

considerations. When the kernels are centered at the calcifi-

cation candidate, a linear combination of the filters F1 and F2

is designed to obtain an estimate of the background image

intensity around the calcification candidate. M1 should be

large enough to include the background, and M2 large

enough so that the microcalcification signal is excluded from

the background estimation. The filter F3 is used to estimate

or increase the average signal intensity for the microcalcifi-

cation candidate, depending on the selection of M3. In this

study, for simplicity, we chose to use boxcar filters for F1,

F2, and F3, where the kernel weights of the filter Fi is 1=M2
i

in an Mi �Mi box, and 0 elsewhere. Other filters such as

Gaussian filters with appropriate kernels can be used as well.

SNR enhancement was accomplished by convolving the

combined band-pass filter with the DBT volume

Fðx; yÞ ¼ F3ðx; yÞ �
1

M2
1 �M2

2

�
h
M2

1F1ðx; yÞ �M2
2F2ðx; yÞ

i
:

(9)

Examples of the enhancement filter for different values of

M1, M2, and M3 are shown in Fig. 3.

II.B.1.c. Cluster seed object detection

The EMCR volume was defined as the voxel-by-voxel

weighting of the multiscale calcification response volume by

the SNR-enhanced volume

EMCRðx; y; zÞ ¼ Eðx; y; zÞ � Iðx; y; zÞ � Fðx; yÞ½ �; (10)

where Iðx; y; zÞ � Fðx; yÞ denotes the SNR-enhanced vol-

ume. Since both multiscale calcification response and SNR-

enhancement are intended to make the microcalcifications

more discernable, their product may also be expected to

improve microcalcification detection. Although other meth-

ods can be used to fuse these two images (including super-

vised methods), we did not investigate other potential

methods in this feasibility study.

Figure 4(a) shows a slice of a DBT volume containing a

microcalcification cluster that was biopsy-proven to be duc-

tal carcinoma in situ. Figures 4(b)–4(d) show the SNR-

enhanced image, multiscale calcification response image,

and EMCR image, respectively, corresponding to the same

slice.

In the EMCR volume, an iterative thresholding and object

growing technique was designed to detect at least 500 initial

objects. The technique started with an initial threshold. Vox-

els that were above the initial threshold were marked and

grouped into 3D connected objects using 26-connectivity.37

The initial threshold was chosen to be relatively high so that

only a few connected objects would be initially detected.

The threshold was then iteratively decreased until the num-

ber of connected objects was at least 500. For each detected

initial object, the voxel with the highest EMCR value was

defined as the initial seed point.

In the early stage of development, it was found that these

initial objects included small, noncalcified densities in the

image. The sizes of these densities were larger than those of

most microcalcifications, and the transition from the density
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to the background was smoother than that for microcalcifica-

tions. To eliminate some of these noncalcified densities, we

first segmented all initial objects in the original image vol-

ume using a maximum-gradient object growing method.28

Starting with the initial seed point, the object was segmented

in a local region of the original DBT reconstruction volume

using a multiple thresholding technique. The local region

was selected as a 2.1 mm 2.1 mm box centered at the initial

seed point. The maximum threshold was chosen to be the

largest voxel value in the local 3D region. The threshold was

lowered from this maximum value in multiple equal-sized

steps of 16 gray levels. At each threshold value, the con-

nected object grown around the initial seed point was

extracted, and the average radial gradient magnitude around

the object resulting from the particular threshold was calcu-

lated. The object with the highest average radial gradient

magnitude was retained as the final segmented object.

Objects with a volume larger than a predefined threshold

Volmax(Volmax¼ 0.25 mm3) were eliminated. The remaining

objects are referred to as cluster seed objects below.

II.B.2. Cluster detection

For cluster detection, we first located individual microcal-

cification candidates, independent of the cluster seed object

detection, described in Sec. II B 1 c above. To detect the

microcalcification candidates, we applied a second iterative

thresholding and object growing procedure, which was simi-

lar to that described above except that it was applied to the

SNR-enhanced volume. In the object growing process, any

voxel that had a zero value for the multiscale calcification

response volume [refer to Eqs. (4) and (8)] was excluded.

The threshold was reduced iteratively until at least 5000

objects, referred to as individual microcalcification candi-

dates below, were detected in the DBT volume. The final

threshold determined above was termed the global object

detection threshold.

The SNR around each individual microcalcification can-

didate was estimated using the SNR-enhanced volume as

follows: All voxel grayscale values referred to in this step

were values in the SNR-enhanced volume. Let Locmax

denote the (x,y,z) location of the voxel with the highest

FIG. 3. The filter F used for SNR enhancement. (a)

M1¼ 7, M2¼ 3, M3¼ 1. The white, light gray, and

dark gray parts of the image representing the filter ker-

nel have weights of 1, 0, and �1=40, respectively. (b)

M1¼ 7, M2¼ 1, M3¼ 1. The white and dark gray parts

of the image representing the filter kernel have weights

of 1 and �1=48, respectively. The pixel size of the fil-

ter kernel was 0.1 mm � 0.1 mm.

FIG. 4. (a) A DBT slice containing a small microcalcification cluster, (b) The SNR-enhanced image, (c) The calcification response image, and (d) The EMCR

image of the same slice.
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grayscale value within a segmented microcalcification candi-

date. The background region around Locmax was defined as a

5� 5� 5 mm cube centered at Locmax with voxels that had

values less than the global object detection threshold. The

average of the background voxels was calculated and sub-

tracted from the grayscale value at Locmax to define the sig-

nal level. The SNR of the microcalcification candidate was

then found as the ratio of the signal level to the standard

deviation of the background voxels. The segmentation of the

microcalcification candidate centered at Locmax was refined

by extracting voxels that had an SNR greater than a selected

threshold and were connected by 26-connectivity. An SNR

threshold of 3.0 was chosen for including a voxel in the

microcalcification candidate. The final size of the microcal-

cification candidate was estimated from the SNR-segmented

object.

After the set of cluster seed objects and the set of individ-

ual microcalcification candidates were detected, as described

above, a dynamic clustering process was used to detect clus-

ter candidates as follows. Note that although at least 5000

individual microcalcification candidates were detected, clus-

tering was performed only around the cluster seed objects.

Starting with a cluster seed object as the initial cluster center,

individual microcalcification candidates that satisfied the

membership criteria below were included as cluster mem-

bers one at a time. Microcalcification candidates were

ranked with respect to their SNR and were sequentially

included as members of the cluster candidate following their

rank order if their SNR exceeded an SNR threshold, chosen

as 3.0 in this study, and if they were within a 5 mm radius of

the cluster center. These parameters were chosen based on

our experience in microcalcification detection on mammo-

grams38+40 and further experiments with DBT. After the

inclusion of each new microcalcification candidate, the clus-

ter center was updated as the centroid of all individual

microcalcification locations included in the cluster. The

SNR of the cluster was also updated as the highest SNR

among the individual microcalcifications within the cluster.

Individual microcalcification candidates that were included

into a given cluster were marked and were excluded from

being a candidate member of other clusters.

II.B.3. False-positive reduction

We used a rule-based classifier with three rules related to

the size, SNR, and the number of individual microcalcifica-

tions within a candidate cluster for false-positive reduction.

First, we counted the number of individual microcalcification

candidates within a cluster candidate with an SNR of 3.5 or

more. The first rule specified that if this number was less than

4, the cluster candidate would be eliminated. Second, we

counted the number of individual microcalcification candi-

dates with a size of seven voxels or more within a cluster can-

didate. As described above, an SNR threshold of 3.0 was

used as a region-growing criterion to find the individual

microcalcification size. The second rule specified that if this

number was less than 4, the cluster candidate would be elimi-

nated, unless the third rule, described below, was satisfied.

As an example, according to the second rule, if a cluster can-

didate had eight microcalcification candidates, but only three

of them had a size larger than or equal to 7, the cluster candi-

date was eliminated. This rule was therefore aimed at elimi-

nating FP clusters with small objects that are presumably

caused by image noise. However, some true clusters may

consist of a large number of tiny microcalcifications. In order

not to eliminate these clusters, the third rule specified that

cluster candidates with ten or more members should be kept,

regardless of the individual object sizes and their SNRs.

The bounding boxes of the clusters were also examined for

false-positive reduction. The width and height of the cluster

were defined as the two dimensions of the bounding box in

the plane parallel to the detector, while the depth was defined

as that in the perpendicular direction. A width or height less

than 2 mm, and a rectangularity >3, where rectangularity is

defined as the ratio of the larger dimension to smaller dimen-

sion, was considered to be an indication of a linear artifact,

and such cluster candidates would be eliminated.

II.C. Performance evaluation

In order to select parameters for prescreening, we per-

formed a number of experiments. The prescreening perform-

ance was estimated using only the abnormal data set of 144

DBT scans that contained microcalcification clusters. The

normal data set was not used at this stage. At this early phase

of design, we used a simple method to plot a curve similar to

a free-response receiver operating characteristic (FROC)

curve to evaluate the performance of the prescreening stage.

First, we defined the score of each object as the highest

EMCR value within the object. Next, we ranked the objects

within the DBT volume according to their scores. Finally,

we determined what fraction F of DBT volumes would

have a correctly localized cluster if we only kept R highest-

scoring objects per volume. As an example, assume that

each DBT volume contained one true cluster, V0 out of a

total of V volumes had the true cluster as the highest ranking

object, and V1 different volumes had the true cluster as the

second-highest ranking object. Then one would have

FðR ¼ 1Þ ¼ V0=V, and FðR ¼ 2Þ ¼ ðV0 þ V1Þ=V. The

resulting plot of (R, F) pairs is referred to as a rank-

sensitivity plot below. At a given operating point defined by

the number of retained objects R0, the rank-sensitivity plot

indicates that F(R0)*V true clusters were detected in the

data set. However, this is a minimum number in terms of

TP objects because some clusters may be detected as

multiple objects. Since the total number of computer marks

at this operating point is R0*V, the average number of

FPs per image unit at this operating point is at most

(R0 - F(R0))*V.

After parameter selection, the overall performance of the

detection system, including clustering and FP reduction, was

evaluated using FROC analysis. For this purpose, the highest

SNR value among the objects within a detected cluster was

defined as the SNR of the cluster and used as the decision

variable. The detected cluster was considered to be a true-

positive if its centroid was within the 3D ground-truth box
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determined by the radiologist. Otherwise, the detected clus-

ter was considered a false-positive. Separate FROC curves

were constructed for malignant, benign, and all calcification

clusters for comparison. We separately used the normal data

set of 76 DBT volumes, and the abnormal data set of 144

DBT volumes to estimate the average number of FPs at each

SNR threshold. FPs estimated from these two data sets were

used to plot two sets of FROC curves.

III. RESULTS

III.A. Effect of the Hessian response function
parameters

As discussed above, a bank of Gaussian filters S corre-

sponding to a set of N scales frg ¼ r1; r2;…; rNf g was

used for multiscale Hessian response function. We evaluated

the effect of the scales on the calcification response. A small

number of scales, N¼ 3, was used to keep the computational

cost low. The scale of the Gaussian filter was varied between

r ¼ 0:15 mm and 0:45 mm, with various combinations of the

scales to constitute the bank of filters S. In this part of the

investigation, the SNR enhancement filter was fixed at

M1 ¼ 0:7 mm, M2 ¼ 0:1 mm, and M3 ¼ 0:1 mm. The rank-

sensitivity plots are shown in Fig. 5. Based on these results,

the set of scales was selected as frg ¼ 0:2 mm; 0:25 mm;f
0:35 mmg because it could reach the highest sensitivity

(with lax rank threshold) at this prescreening stage.

III.B. Effect of the SNR enhancement filter parameters

To investigate the effect of SNR enhancement filter

parameters, we first changed M1 in the range of 0.3 mm to

1.1 mm. In this part of the investigation, we fixed the other

two filters to be M2 ¼ M3 ¼ 0:1 mm, and the Hessian multi-

scale filters at frg ¼ 0:20 mm; 0:25 mm; 0:35 mmf g. The

resulting rank-sensitivity plots are shown in Fig. 6. It is

observed that a small background area, M1¼ 0.3, resulted in

a slightly poorer performance, while the other values of M1

led to comparable rank-sensitivity curves. We then studied

the effect of M2 and M3. Figures 7(a)–7(c) show the effects

of varying M2 and M3 for M1 ¼ 0.3, 0.7, and 0.11 mm,

respectively. Because the seed object detection appeared to

be relatively stable for M1 from 0.7 to 1.1 mm, we selected

M1 ¼ 0:7 mm, M2 ¼ 0:1 mm, and M3 ¼ 0:1 mm for the

SNR enhancement. As shown in Fig. 7(b), at an operating

point of rank threshold of 100, which was equivalent to a

threshold of keeping 100 cluster seed objects per DBT

volume, 94% of biopsied calcification clusters contained a

seed object.

III.C. Effect of enhancement modulated calcification
response

We investigated the effect of modulating the multiscale

calcification response with the SNR-enhanced image. We

compared the prescreening rank-sensitivity plot with the

calcification response function in place (frg ¼ 0:20 mm;f
0:25 mm; 0:35 mmg) to that when the output of the multi-

scale calcification response (see Fig. 2) was replaced by a

spatially constant value over the DBT volume. This was

equivalent to removing the multiscale calcification response

enhancement and using only SNR-enhancement during pre-

screening. The parameters of the SNR enhancement filter

were M1 ¼ 0:7 mm, M2 ¼ 0:1 mm, and M3 ¼ 0:1 mm, as

discussed above. Figure 8 shows a comparison of the two

prescreening approaches.

III.D. Effect of clustering and false-positive reduction

The next step in our detection system was clustering. We

first compared the rank-sensitivity plots with and without the

multiscale calcification response in Fig. 9. At this stage, the

cluster SNR (i.e., the highest SNR value of the microcalcifi-

cation candidates within a cluster) was available, as

described in Sec. II B 2 above. Similar to the final FROC

curves described below, we used the cluster SNR as the deci-

sion variable, since the unit of interest at this stage was the

cluster, instead of the cluster seed objects as in Figs. 5–8.

FIG. 5. The effect of the size of the Hessian multiscale filters on the prescre-

ening performance. The plot shows the fraction of true clusters in the data

set that included a cluster seed object as a function of the rank of the objects

that were retained per DBT volume. In this part of the investigation, the

SNR enhancement filter kernels were fixed at M1 ¼ 0:7 mm, M2 ¼ 0:1 mm,

and M3 ¼ 0:1 mm.

FIG. 6. The effect of the size of the outer filter kernel (M1) on the prescreen-

ing performance. The inner filter kernel sizes were selected as

M2 ¼ M3 ¼ 0:1 mm, and the Hessian multiscale filters were fixed at

frg ¼ 0:20 mm; 0:25 mm; 0:35 mmf g
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Figure 9 is similar to Fig. 8 except that the cluster SNR was

used as the decision variable for ranking. At an operating

point of ten clusters per DBT volume, 88% and 79% of the

true calcification clusters could be correctly identified with

and without the multiscale calcification response, respec-

tively. The rank-sensitivity curve after clustering was higher

than those before clustering (Figs. 5–8) because the cluster-

ing process eliminated some of the false positives. A com-

parison of the sensitivity of the system at different rank

thresholds before and after clustering is shown in Table I.

The final FROC curves for the detection system, with the

FP rate estimated from the abnormal data set after false-

positive reduction, are shown in Figs. 10(a) and 10(b) for

view-based and case-based scoring, respectively. In view-

based scoring, the same cluster seen in the CC and MLO

views was counted independently such that the total number

of true clusters was 139. In case-based scoring, a cluster was

considered to be detected if its score exceeded the decision

threshold in either one or both of the CC and MLO views

and the total number of true clusters were 72. The FROC

curves for view-based and case-based scoring with the aver-

age FP rates estimated from the normal data set are shown in

Figs. 11(a) and 11(b), respectively. Using view-based scor-

ing, at 85% sensitivity, the average number of FPs estimated

using the abnormal and normal data sets were 3.8 and 3.4

per DBT volume, respectively. The FP rates estimated using

the two data sets at these sensitivity levels for both scoring

FIG. 7. The effect of the sizes of the inner filter kernels (M2 and M3) on the

prescreening performance. The Hessian multiscale filters were fixed at {r}

¼ {0.20 mm, 0.25 mm, 0.35 mm}. The outer filter kernel M1 was set to be

0.3, 0.7, and 0.11 mm in Figs. 7(a)–7(c), respectively.

FIG. 8. Rank-sensitivity plots for the prescreening performance with and

without the multiscale calcification response (CR) enhancement.

FIG. 9. Rank-sensitivity plots for the performance after the clustering stage

with and without the multiscale CR enhancement.
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methods for the entire data set, the malignant subset, and the

benign subset are shown in Table II.

IV. DISCUSSION

Our results indicate the feasibility of automated detection

of microcalcification clusters in reconstructed DBT volumes

using our new enhancement-modulated 3D calcification

response approach. This approach utilized the combination

of two calcification enhancement processes: (1) enhance-

ment of calcification response based on Hessian analysis and

(2) SNR enhancement based on a combination of filters. The

SNR enhancement technique may be effective in highlight-

ing small, high-contrast objects, as demonstrated by the

example image in Fig. 4. However, it also enhances line-

type structures, which may result in FP detections or FNs in

the prescreening stage that may propagate to other stages

of the detection process. Figures 8 and 9 show that the com-

bination of the two enhancement processes resulted in an

improved performance compared to SNR enhancement

alone.

The calcification response derived from multiscale Gaus-

sian filters with the smallest widths (frg ¼ 0:15 mm;f
0:20 mm; 0:30 mmg) had a lower rank-sensitivity plot than

the other filter sets, as shown in Fig. 5. This may indicate

that if a cluster included at least one larger microcalcification

to provide a seed point, the chance of detecting that cluster

would be higher. For SNR enhancement, the size of the outer

TABLE I. A comparison of the sensitivity of the system at different rank

thresholds before and after clustering (also compare solid lines in Figs. 8

and 9). The filter parameters were frg ¼ 0:2 mm; 0:25 mm; 0:35 mmf g
and (M1, M2, M3)¼ (0.7 mm, 0.1 mm, 0.1 mm).

Rank threshold 1 2 3 5 10 20 30

Sensitivity before clustering 0.38 0.50 0.58 0.64 0.78 0.83 0.88

Sensitivity after clustering 0.40 0.57 0.77 0.80 0.88 0.90 0.91

FIG. 10. The overall performance of the microcalcification detection system

in terms of the FROC curves for all clusters, and the subsets of malignant

clusters and benign clusters. The average number of false-positives per DBT

volume was estimated using the abnormal data set. (a) view-based and (b)

case-based detection performance. In case-based detection, a cluster was

considered to be detected if the cluster was detected on either one or both

views.

FIG. 11. The overall performance of the microcalcification detection system

in terms of the FROC curves for all clusters, and the subsets of malignant

clusters and benign clusters. The average number of false-positives per DBT

volume was estimated using the normal data set. (a) view-based and (b)

case-based detection performance. In case-based detection, a cluster was

considered to be detected if the cluster was detected on either one or both

views.
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box used for background estimation, M1, did not have a

major effect on the prescreening performance, as shown in

Fig. 6, when it was 0.5 mm or larger. Because most micro-

calcifications of interest were smaller than 0.5 mm, this

result was consistent with the expectation that the back-

ground should be estimated in a small region surrounding

the microcalcification without including the calcification

itself. The prescreening performance was slightly degraded

when the inner box sizes were increased from (M2,

M3)¼ (0.1 mm, 0.1 mm), as shown if Fig. 7. The final choice

of (M1, M2, M3)¼ (0.7 mm, 0.1 mm, 0.1 mm) showed that

the reconstructed DBT slices were relatively smooth so that

no additional smoothing was needed to achieve the best

SNR for our data set.

The FP rate estimated from the abnormal data set was

higher than that estimated from the normal data set

(Table II). To investigate the cause of the difference in the

FP rates, the reference radiologist inspected each of the 832

FP marks (5.8 FPs=DBT volume) produced by the CAD sys-

tem for the abnormal data set at the highest sensitivity level

in Fig. 10 (sensitivity¼ 88%). A similar inspection was also

performed for the normal data set. The results indicated that

an average of 1.8 FP marks per DBT volume in the abnormal

data set contained individual microcalcifications that were

not considered clustered, while the normal data set contained

an average of 0.7 such FP marks per DBT volume. It there-

fore appears that the abnormal cases more likely contained

scattered microcalcifications that were not considered clini-

cally significant clusters. However, when they were com-

bined with microcalcification candidates caused by image

noise, these microcalcifications increased the likelihood of

producing FP clusters, resulting in the higher FP rates esti-

mated from the abnormal data set.

Similar to previous results for the detection of microcalci-

fication clusters on mammograms,41 the detection perform-

ance for malignant clusters in this work was superior to that

for benign clusters. For malignant clusters, a case-based sen-

sitivity of 80% was obtained at about 1.2 FP per DBT vol-

ume, while the FP rate was about 1.9 for benign clusters at

the same sensitivity. However, the number of malignant

cases in this work was relatively low (17 of 72), which may

limit the generalizability of this result. Due to the small data

set size for both malignant and benign clusters in this prelim-

inary study, independent testing was not performed for the

detection system. Although the performance in the prescre-

ening stage was not very sensitive to filter parameters within

the studied range, and the FP reduction stage included sim-

ple rule-based decision criteria to reduce overtraining, our

results may be optimistically biased due to the lack of inde-

pendent testing. Future study with independent training and

test sets is required to assess the generalizability of our

detection system.

The processing parameters used in prescreening may

depend on the reconstruction algorithm. The DBT volumes

in this study were reconstructed using the SART algorithm.

Other techniques, such as filtered-backprojection or

maximum-likelihood reconstruction methods may produce

DBT with different noise and signal properties. Likewise,

the relaxation parameter, number of iterations, and the

access order to the PVs in SART reconstruction may affect

the reconstructed images. The effect of the reconstruction

algorithm and parameters on the detection performance, and

whether the techniques and parameters in the detection sys-

tem need to be redesigned to adapt to different quality of

DBT images are topics for further investigation.

Our CAD system contained a large number of parameters

for presecreening, clustering, and FP reduction stages. In this

preliminary study, we focused on the effect of the filter pa-

rameters for the multiscale calcification response and SNR

enhancement. The choices of other parameters, such as the

Volmax threshold, the minimum number of cluster seed

objects detected in the EMCR volume, and the minimum

number of microcalcification candidates detected in the

SNR-enhanced volume, were based on initial experience

rather than systematic investigations. Further studies with a

larger database to optimize these and other processing pa-

rameters have a potential to improve the microcalcification

detection performance.

The calcification response function used in this study was

designed for spherically symmetric objects. True microcalci-

fications will have a variety of shapes, including oblong and

irregular. In addition, the interplane artifacts from the recon-

struction algorithm will distort the shape of the microcalcifi-

cations in the depth direction. The design of the parameters

in this preliminary study did not take into consideration the

anisotropic properties of the signal and the noise. Accurate

modeling of the electronic, quantum, and structured noise

components, the microcalcification signal, and the artifacts

introduced by the limited-angle reconstruction and studies of

their effects on detection performance will be interesting

topics of future investigation.

This study investigated the detection of microcalcification

clusters only in the reconstructed DBT volumes, while some

other studies have investigated microcalcification detection

TABLE II. Average number of false-positives per reconstructed DBT volume at a sensitivity of 80% and 85%. For each level of sensitivity, the number of

false-positives estimated from abnormal cases (i.e., cases containing microcalcification clusters) and estimated from normal cases (i.e., cases free of microcal-

cification clusters) are listed in columns labeled “Abnorm” and “Norm,” respectively.

80% sensitivity (view-based) 85% sensitivity (view-based) 80% sensitivity (case-based) 85% sensitivity (case-based)

Clusters Abnorm Norm Abnorm Norm Abnorm Norm Abnorm Norm

All 2.5 1.4 3.8 3.4 1.8 0.9 2.1 1.1

Malignant 2.1 1.1 2.4 1.4 1.2 0.6 1.4 0.7

Benign 2.9 1.9 5.4 5.4 1.9 1.1 3.5 1.8
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on PVs.30,32 These two approaches may have different

strengths. Detection on PVs may leverage existing detection

algorithms on mammograms and does not depend on specific

reconstruction method. However, due to the low SNR on

each PV, some of the parameters in the existing detection

algorithms on mammograms will require adjustment. It is

generally accepted that preprocessing is one of the key com-

ponents of a CADe algorithm. Tomosynthesis reconstruction

can be considered to be a preprocessing step in the 3D detec-

tion approach, which combines the information from the

multiple PVs and increases the SNR of the targets. We have

previously demonstrated that fusion of information from

mass candidates detected in the 3D volume and those

detected in the 2D PVs can improve the detection accuracy

compared to the individual approaches.28 The usefulness of

such strategy should be investigated for microcalcification

detection in future studies.

V. CONCLUSION

We have investigated the feasibility of developing a

CADe system for detection of microcalcification clusters in

reconstructed DBT volumes. The results indicate that our

new enhancement-modulated 3D calcification response

method is a promising approach although the current false-

positive rate is too high to be acceptable in clinical practice.

Future work includes further optimization of the machine

vision techniques and parameters using a large training set

and evaluation using an independent test set, the combina-

tion of 2D detection on PVs with 3D detection in the recon-

structed volume, study of the effects of reconstruction

technique and parameters on detection accuracy, and com-

parison of microcalcification detection in DBT and in corre-

sponding mammograms. Further improvement in detection

accuracy is needed before observer performance studies can

be conducted to evaluate whether the CADe system may be

useful as a second reader to assist radiologists in detection of

clustered microcalcifications in DBT.
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