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Purpose: To develop efficient algorithms for fast voxel-by-voxel quantification of tissue longitudinal
relaxation time (T1) from variable flip angles magnetic resonance images (MRI) to reduce voxel-level
noise without blurring tissue edges.
Methods: T1 estimations regularized by total variation (TV) and quadratic penalty are developed to
measure T1 from fast variable flip angles MRI and to reduce voxel-level noise without decreasing the
accuracy of the estimates. First, a quadratic surrogate for a log likelihood cost function of T1 estima-
tion is derived based upon the majorization principle, and then the TV-regularized surrogate function
is optimized by the fast iterative shrinkage thresholding algorithm. A fast optimization algorithm for
the quadratically regularized T1 estimation is also presented. The proposed methods are evaluated by
the simulated and experimental MR data.
Results: The means of the T1 values in the simulated brain data estimated by the conventional, TV-
regularized, and quadratically regularized methods have less than 3% error from the true T1 in both
GM and WM tissues with image noise up to 9%. The relative standard deviations (SDs) of the T1

values estimated by the conventional method are more than 12% and 15% when the images have 7%
and 9% noise, respectively. In comparison, the TV-regularized and quadratically regularized methods
are able to suppress the relative SDs of the estimated T1 to be less than 2% and 3%, respectively,
regardless of the image noise level. However, the quadratically regularized method tends to overblur
the edges compared to the TV-regularized method.
Conclusions: The spatially regularized methods improve quality of T1 estimation from multiflip
angles MRI. Quantification of dynamic contrast-enhanced MRI can benefit from the high quality
measurement of native T1. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4722747]
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I. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has shown its value for diagnosis of neurologi-
cal disorders,1 detection of tumors, and evaluation of tissue
response to therapies.2–4 Quantification of tissue longitudi-
nal relaxation time (T1)-weighted DCE-MRI using pharma-
cokinetic models requires measurement of T1 prior to con-
trast injection.5 Since T1 values vary in tissue and tumor and
can change during and after therapy, an accurate T1 mea-
surement is vital for characterization of perfusion parameters
from DCE-MRI. Furthermore, quantitative tissue T1 could be
a distinctive metric for tissue discrimination, disease detec-
tion, and therapy monitoring.6

The conventional T1 estimation is based upon either an
inversion-recovery (IR) or a saturation-recovery (SR) pulse
sequence. Although the methods generate accurate results,
the prolonged acquisition time of these methods makes them
less practical to be a part of a DCE-MRI protocol in clinical
setting.7–10 The approach that is widely used in a DCE-MRI
study is to acquire gradient-echo images with variable flip an-

gles (VFA) and with one or more short TRs.11–16 The scanning
time of VFA imaging can be further decreased by undersam-
pling acquisition.17 Estimation of T1 values is usually done
by nonlinear least-squares fitting (NLS) of the VFA MRI,18

but also can be done by linear least-squares fitting after trans-
forming intensities of MRI into a linear form with T1.9, 13, 19

Several authors have shown that the VFA method can achieve
accuracy of the T1 estimation similar to those by the IR and
SR techniques for the image data having a high signal-noise
ratio (SNR), which are usually accomplished by performing
computation in a region of interest.14, 19 However, voxel-by-
voxel estimated T1 values show a large amount of fluctuation
due to the noise in the original images and the limited num-
ber of flip angles. This poor repeatability of the T1 estimation
affects utilization of the T1 map in voxel-based DCE quantifi-
cation. In order to reduce the variation in the T1 estimation,
a different approach is needed. T1, as a characteristic prop-
erty of the tissue, should exhibit locally spatial continuity,
except at the boundary of tissue compartments. The locally
spatial continuity has been successfully incorporated into the
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PET reconstruction,20 the B1 magnetic field correction,21 and
the DCE-MRI kinetic parameter quantification.22 In addition,
the pharmacokinetic modeling of DCE-MRI with spatial reg-
ularization reduces both bias and variance of derived kinetic
parameters.22

Tikhonov quadratic regularization, the most commonly
used spatial regularization in image applications,20, 23 has
been proposed for the T1 estimation from IR MR signals,24

and improves the SNR in the resultant T1 map. However, it
is well-known that the quadratic penalty tends to oversmooth
image at the boundaries of tissue compartments.25 Total vari-
ation (TV), a nonquadratic regularization, can preserve edges
at tissue boundary. In this study, we proposed an efficient
method by incorporating the TV regularization in the T1 NLS
cost function in order to reduce voxel-level noise without blur-
ring edges or decreasing the accuracy in the estimates. First,
we develop a quadratic surrogate function from a log like-
lihood cost function according to the majorization principle,
and then extend the fast iterative shrinkage thresholding al-
gorithm (FISTA) for the TV-regularized (TVR) least-squares
fitting of T1. To the best of our knowledge, this has not been
done before. We also present an efficient quadratically reg-
ularized (QR) method for T1 estimation from the VFA MR
images. The proposed methods were evaluated by using syn-
thesized, phantom, and clinical MR data.

II. MATERIALS AND METHODS

II.A. Nonlinear least-squares T1 estimation

Based upon the Bloch equation,26 a steady-state MR signal
intensity (sk) acquired by a T1-weighted spoiled gradient-echo
sequence with a flip angle (FA) of αk (k = 1, 2, . . . , NFA; NFA

is the number of FAs) and a repetition time TR is given by

sk = s0 sin ak(1 − E)

1 − E cos ak

, (1)

where s0 is the equilibrium longitudinal magnetization, and
E = exp (−TR/T1). The T1 and s0 values at a pixel are con-
ventionally estimated from measured MR signals {yk} by a
NLS fitting:

�(T1, s0) =
NFA∑
k=1

(yk − sk)2

subjecting to : lT1 ≤ T1 ≤ uT1, (2)

where l T1 and uT1 are defined by the T1 range of the tissue
and utilized as a constraint to avoid unrealistic solutions and
improve robustness of the computation.

It has been shown that the SNR (T1/σT1 ) of the T1 val-
ues relates to the SNR (s0/σ ) of the images by (T1/σT1 )
∝ (TR/T1)(s0/σ ),27 indicating the noise in the original im-
ages is amplified into the T1 map by the ratio of T1/TR.
Therefore, the voxels with large T1 values are prone to po-
tential errors. In addition, the image noise and the limited
number of flip angles can cause a solution of the NLS fitting
[Eq. (2)] to be trapped into a local minimum before reach-
ing the real solution during minimization.22 Although opti-
mally selecting image acquisition parameters can improve the

T1 estimation,13, 14 the errors seem to persist. Therefore, we
propose to incorporate prior knowledge of tissue T1 spatial
continuity to improve T1 estimation without compromising its
accuracy.

II.B. Spatially regularized T1 estimation

II.B.1. TV-regularized T1 estimation

TV-regularized T1 estimation is to minimize the NLS cost
function incorporated with TVR which is defined as

�(T1, s0) = L(T1, s0) + 2λT V (T1)
(3)

subject to : lT1 ≤ T1 ≤ uT1,

where L(T1, s0) =
N∑

i=1

M∑
j=1

ln
(
1 + �

(
Ti,j

1 , s
i,j

0

))
(4)

and TV(T1) =
N∑

i=1

M∑
j=1

√(
Ti+1,j

1 − Ti,j

1

)2 + (
Ti,j+1

1 − Ti,j

1

)2
,

(5)

where (i, j) are pixel indices in a 2D space, L is a log like-
lihood function, and λ is a constant that controls the relative
strength of the spatial regularization.

To minimize � over the two unknown parameters (T1 and
s0), we use a block alternating approach, in which T1 (T1-step)
and s0 (s0-step) are iteratively determined by minimizing one
parameter at a time while holding the other at the previously
obtained value. To minimize � in the s0-step, an analytic so-
lution of s0 is given by

s
i,j

0 =
NFA∑
k=1

fk

(
T

i,j

1

)
y

i,j

k

/
NFA∑
k=1

(
fk

(
T

i,j

1

))2
, (6)

where fk(Ti,j

1 ) = sin ak(1 − Ei,j )/(1 − Ei,j cos ak). How-
ever, minimizing � for T1 in the T1-step is a nontrivial
problem, because � is nonlinearly related to T1 and the TV
function [Eq. (5)] is not continuously differentiable. We de-
velop a fast iterative method to minimize � with respect to
T1. First, we convert the log likelihood L to a quadratic surro-
gate function using the majorization principle. Then, we min-
imize the TV-regularized surrogate function using an efficient
algorithm based on a gradient-based dual approach.

II.B.2. Quadratic surrogate

We develop a quadratic surrogate function of the log like-
lihood L using the majorization principle.28 The derivation is
provided in the Appendix. In brief, L(T1) is approximated by
‖T1 − z‖2 for T1 near the nth iteration solution T1,n, where
z = T1,n − v/(2μ) is given in the Appendix. Then, using a
matrix format, the TV-based cost function [Eq. (3)] at the
(n + 1)th iteration becomes

�n+1 = μ ‖T1 − z‖2 + 2λTV(T1), (7)

where μ is the spatially variant weighting defined in the
Appendix [Eq. (A3)]. As demonstrated by Eq. (A1) in the
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FIG. 1. Quadratic surrogates of the likelihood term of the cost function. The
likelihood function has a minimum at T1 = 1000. The quadratic surrogates
equate the likelihood function at T1 = 700 and 1300, but are above the like-
lihood curve at all other locations. The minima of the quadratic functions are
converging toward the minimum of the likelihood function over iterations.

Appendix, the quadratic function is always greater than L ex-
cept at T1,n, and so can be a surrogate of L.28 Figure 1 plots
an original log likelihood function L(T1) with the true mini-
mum at T1* = 1000 and quadratic surrogate functions at T1,n

= 700 ms and T1,n = 1300 ms. At each iteration, the mini-
mum of the surrogate function moves toward the minimum of
L (T1*).

II.B.3. Optimization of the TV-regularized
surrogate function

The surrogate function transforms the original cost func-
tion [Eq. (3)] to Eq. (7) which is a typical TV-based denoising
problem with a spatially variant weight μ and a spatially in-
variant weight λ. Minimization of Eq. (7) still is a challenging
problem due to the noncontinuously differentiable TV term.
Beck29 proposes to convert the TV-based minimization to a
smooth dual problem and then solves the dual problem us-
ing FISTA. According to the approach, two new spatially dis-
tributed parameters (p, q) are introduced to convert the TV-
based cost function equation (7) to a smooth dual function.
The minimizer of the smooth dual function (p, q) is deter-
mined by iterating

(pt , qt ) = (pt−1, qt−1)

+ 1

8(λ/μ)
�T

(
Pc

(
z − λ

μ
�(pt−1, qt−1)

))
, (8)

where Pc and � are two projection operators,29 and t is the
iteration index. The iteration started with (p, q) being 0. After
convergence of iteration (8), the T1 solution at the (n + 1)th
step is computed as

T1,n+1 = Pc

[
z − λ

μ
�(p, q)

]
. (9)

The final solutions of s0 and T1 are sought via these inter-
leaved iterations of s0-step and T1-step.

II.B.4. Quadratic-regularized T1 estimation

We also develop a method to estimate T1 with the con-
ventional quadratic regularization, namely, QR, which is to
minimize

�̄(T1, s0) = L(T1, s0) + βR(T1) (10)

with R(T1) = 1
2

∑N
i=1

∑M
j=1

∑
m,n (Ti,j

1 − Ti−m,j−n

1 )2, the
pair index (m, n) = (1,0), (–1,0), (0,1), (0,–1) denotes the
coordinate offsets of the four nearest neighbors, and β

is a weighting parameter for the quadratic regularization.
The minimization of Eq. (10) is also done by interleaved
optimizations of s0 and T1. At the T1-step, again, the log
likelihood L(T1, s0) is converted to the quadratic surrogate
function. As both terms in Eq. (10) become quadratic, T1 at
the (n + 1)th iteration is analytically solved as

T1,n+1 = T1,n − 1

μ + 4β

(
ν

2
+ β

2
∇R(T1,n)

)
, (11)

where matrix μ and v are given in the Appendix. The final
solutions of the QR method are obtained by iterating s0-step
[Eq. (6)] and T1-step [Eq. (11)].

II.C. Implementation of T1 estimation algorithms

II.C.1. NLS T1 estimation

We implement the voxel-based NLS T1 estimation (Eq. (3)
with λ = 0) by using the quadratic surrogate function, and re-
fer it as QS-NLS method. The computation is initialized with
T1 = 800 ms at each voxel and cycles through s0-step [Eq. (6)]
and T1-step. In T1-step, the solution at the (n + 1)th iteration
is analytically determined as

T1,n+1 = T1,n − v

2μ
. (12)

The iteration is terminated when the T1 tolerance meets
|T1,n+1 − T1,n|/|T1,n| ≤ 10−6 or the number of iterations
n ≥ 500.

II.C.2. TV-regularized T1 estimation

The TVR minimization begins with the T1 estimated by
the QS-NLS method. Then s0 and T1 are sought iteratively
through s0-step [Eq. (6)] and T1-step [Eq. (9)]. This iterative
process is terminated when the relative change in T1 < 10−6

or the number of iterations n ≥ 250. In each T1-step, the T1

[Eq. (9)] is determined by (p, q) that result from iteration of
Eq. (8). The iteration to obtain (p, q) terminates when the
(p, q) tolerance is <10−6 or the iteration numbern ≥ 100.
Selection of λ will be described below.

II.C.3. Quadratic regularized T1 estimation

The QR optimization is also initialized with the T1 ob-
tained by the QS-NLS method, and the iterative process is
terminated when T1 tolerance is less than 10−6 or the number
of iterations n ≥ 250.
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II.C.4. Selection of weighting parameters

The “hyperparameter” λ and β weigh the spatial regular-
ization terms in the TVR and QR cost functions, respectively.
Large values of the parameters can cause overweighing of the
spatial regularizations, and lead to oversmoothing in the re-
sulting T1 map; conversely, small values can result in insuffi-
cient noise reduction. To determine an appropriate weighting
value of λ (or β), we estimated T1 maps of a central slice in
the simulated brain MR data with various noise levels using
the TVR (or QR) method and varying λ (or β) values on a
regular grid. We selected the λ (or β) value that minimized
the averaged difference between the true and estimated T1 in
the central slice. We found that λ = 1 and β = 0.001 were
appropriate for the images with noise levels less than 7%, and
λ = 10 and β = 0.01 for the data with higher level noise. We
applied these values to both the simulated and experimental
image data for evaluation of the methods.

II.C.5. T1 bound constraints

For all three methods of QS-NLS, QR, and TVR, T1 bound
conditions were set to be l T1 = 50 ms and uT1 = 3000 ms in
the simulated and phantom experiments, and uT1 = 6000 ms
for the patient data.

II.D. Simulation studies

In order to evaluate the performance of the proposed meth-
ods, we utilized the Brainweb MRI simulator to simulate VFA
MRI data.30 This simulator accounts for the effects of var-
ious image acquisition parameters, including partial volume
averaging, noise, and sampling in Fourier domain, and inten-
sity inhomogeneity in the brain tissue.31 We simulated T1-
weighted MRI of a normal brain phantom using a spoiled
gradient-echo pulse sequence (TR / TE of 18/10 ms, matrix
size of 217 × 181 × 60, resolution of 1 × 1 × 3 mm3,
and flip angles of 5◦, 10◦, 20◦, 30◦, and 40◦). Gaussian noise
was added onto both real and imaginary components of MR
signals in the Fourier domain to obtain noise levels of 1%,
3%, 5%, 7%, and 9% in the images. The QS-NLS, QR, and
TVR methods were applied to the simulated data to estimate
T1. Because of the high in-plane resolution, spatial regular-
izations in both QR and TVR methods were applied in 2D
images.

In order to quantitatively evaluate the methods, relative
mean and relative standard deviation (rSD) are computed as
the percentages of the mean and SD of the estimated T1 to
the true T1 value, respectively. For the rSD calculation, the
original T1 variations in WM or GM were removed. The rel-
ative mean and SD measure the accuracy and stability of the
methods, respectively. For statistical analysis in GM and WM,
we excluded the voxels within a 2-pixel wide band from the
boundary to remove the effect of blurring edges.

We also examined whether the spatially regularized meth-
ods can estimate a T1 map with spatial variations. We created
a digital phantom that consists of the regions with (a) linear
and quadratic T1 spatial variations, (b) uniform but high T1

value (1200 ms), and (c) uniform but low T1 values (200 ms).
MR images of the digital phantom were simulated using the
Bloch equation [Eq. (1)] with five FAs (10◦, 20◦, 30◦, 50◦,
and 70◦) and TR 13 ms. Random Gaussian noise was added
to make the MR data have a noise level of 5%.

II.E. Experimental MRI studies

We applied the methods to experimental MR data
of a EuroSpin TO5 phantom from the RIDER project,3

which was designed to evaluate the accuracy and re-
peatability of MR T1 measurement. The phantom consist-
ing of 18-compartments with different T1 contrasts was
imaged on a 1.5 T GE scanner.3 The acquisition pro-
tocol included a 2D IR spin-echo sequence and a 3D
multiple flip angles fast-spoiled gradient-echo sequence
(FSPGR). The FSPGR images were acquired with seven
flip angles (2◦, 5◦, 10◦, 15◦, 20◦, 25◦, and 30◦), TR/TE
= 6.4/1.2 ms, and a resolution of 0.55 × 0.55 × 5 mm3. Our
methods were applied to the MRI data of five of the seven flip
angles (5◦, 10◦, 15◦, 20◦, and 25◦) to estimate T1. The correla-
tion of the compartmental means of the T1 estimated from the
IR and the VFA data was computed to evaluate the accuracy
of the T1 quantification by the proposed methods.

The methods were also tested on the brain MRI of a patient
who was enrolled in a prospective DCE-MRI study of brain
radiation therapy. Multiflip angle MR data were acquired on
a clinical 3 T MR scanner (Ingenia, Philips Medical Systems,
Best, Netherlands) with a fast spoiled gradient-echo sequence.
The image parameters were TR/TE of 30 ms/2.8 ms, matrix
size of 256 × 256 × 80, resolution of 1 × 1 × 2 mm3, and
flip angles of 5◦, 15◦, 20◦, and 45◦. To evaluate the proposed
methods, the patient was also imaged using a SR sequence
with the TR of 100, 200, 500, 1000, and 2000 ms. The SR
images have the same resolution and matrix as the VFA MRI.
T1 values were estimated voxel-by-voxel from the SR MRI by
nonlinear least-square fitting.

III. RESULTS

III.A. Simulated brain

Figure 2 shows estimated T1 maps of a slice in the sim-
ulated brain with 5% of noise using the QS-NLS, QR, and
TVR methods, as well as relative differences between the esti-
mated T1 and the ground truth. There are substantial amounts
of noise in the regions of GM, WM, and cerebrospinal fluid
(CSF) of the T1 map and the difference map calculated by the
QS-NLS method [Figs. 2(a) and 2(d)], indicating the QS-NLS
method propagates or even amplifies noise from the origi-
nal images onto the T1 map. In contrast, the QR and TVR
methods reduce the noise in each of tissue compartments sub-
stantially [Figs. 2(b) and 2(c) and 2(e) and 2(f)]. However,
the relative differences between the T1 estimated by the QR
method and the true values are greater at edges of tissue com-
partments and in the small regions [see edge enhancement in
Fig. 2(e)], indicating the effect of overblurring of the QR
method. The TVR method preserves boundaries well while
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FIG. 2. T1 maps (top) estimated from the simulated brain dataset with five FAs and 5% noise by the QS-NLS (a), QR (b), and TVR (c). The relative differences
between the estimated T1 and the ground truth are displayed in bottom row (d)–(f). The T1 values range from 0 to 3000 ms in (a)–(c). The relative differences
vary from –0.2 to 0.2 in (d)–(f).

producing marked reduction of the intraregion noise in the T1

map [Figs. 2(c) and 2(f)].
Quantitative evaluations of the performance of the meth-

ods with respect to noise on the simulated data are shown in
Fig. 3. The means of the T1 estimated by all the three meth-

ods show less than 3% errors from the true T1 values in both
GM and WM with image noise up to 9% [Figs. 3(a) and 3(b)].
The relative SDs of the T1 estimated by the QS-NLS method
increase nonlinearly with noise in the images, reaching ap-
proximately 12% and 15% when there are 7% and 9% noise

FIG. 3. The relative means and standard deviations of the T1 values in WM (a) and GM (b) estimated by the QS-NLS, QR, and TVR methods vs noise levels in
the original images. (c) and (d) are the relative standard deviations for WM and GM with the inner-structure T1 variation (rSD at noise level 0%) removed. The
three methods have a similar accuracy, but the QR and TVR methods substantially decrease the standard deviations of the estimated T1 values for noise >3%.
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FIG. 4. T1 maps of a simulated digital phantom with spatial variations of T1: homogeneous low T1 values at the left and right peripheries, homogeneous high
T1 values at the central region, and linearly and quadratically changed T1 values from the low to high T1 values in left and right, respectively. (a) The simulated
T1-weighted MRI with 5% of noise and a flip angle of 20◦; (b) the T1 map without noise; (c) the T1 map estimated by the QS-NLS methods; (d) the T1 map
obtained by the TVR method; and (e) central-line profiles of the T1 maps obtained by the QS-NLS and TVR methods compared to the true values.

[Figs. 3(c) and 3(d)], respectively. In comparison, the TVR
method is able to suppress the relative standard deviations of
the T1 values to less than 2% in both WM and GM regardless
of the noise level in the image. The QR method also reduces
the noise-related variations in the T1 values to be less than
3%, which is slightly greater than the one obtained by the
TVR method and possibly due to the edge-blurring effect of
the quadratic regularization [Figs. 3(c) and 3(d)].

III.B. Simulated digital phantom with spatial variations

Evaluation of the performance of the spatially regularized
methods on the simulated phantom with linear and quadratic
spatial variations in T1 is shown in Fig. 4. As expected, the
T1 map estimated by the QS-NLS method is very noisy, and

the central region, where the T1 value is homogeneous and
high, cannot be recognized [Figs. 4(c) and 4(e)]. The noise
in the T1 map estimated by the TVR method is reduced sub-
stantially, and the T1 estimates clearly differentiate the homo-
geneous region from the surrounding [Fig. 4(d)]. Figure 4(e)
plots profiles of the T1 values along a horizontal line of the
phantom estimated by the QS-NLS and TVR methods. Com-
pared to the true T1 values along the line, the TVR method
reduces the variance in the T1 values to be 3% from 7% by
the QS-NLS method.

III.C. Phantom experiments

Figure 5 shows T1 maps of the 18-compartment RIDER
phantom estimated by the QS-NLS, QR, and TVR methods

FIG. 5. The T1 maps (top) of a phantom estimated from the VFA MR data using the QS-NLS (a), QR (b), and TVR methods (c), and the relative differences
(bottom) of the estimated T1 between the three VFA-based methods and the IR method (d)–(f). Gray bars denote the ranges of the T1 values (top) and the relative
differences (bottom).
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FIG. 6. Plots of the compartmental means of the estimated T1 from the phantom MRI using the QS-NLS (left), QR(middle), and TVR methods (right) vs T1

values from the IR MRI data. The error bars are the standard deviations of the T1 values estimated from the VFA MR data in each compartment.

from the VFA MR data. Using the T1 values in each of the
compartments estimated from the IR acquisition as a refer-
ence, the pixelwise relative differences between the T1 values
estimated by the three VFA-based methods and the reference
are shown in Figs. 5(d)–5(f). Again, the TVR method pro-
duces the T1 map with better noise reduction and better edge
preservation compared to the QS-NLS and QR methods. It is
interesting to see that the QR method causes underestimation
of T1 values [enhancement in Fig. 5(e)] around the tube edges
due to overblurring of the quadratic regularization.

T1 measurements of the RIDER phantom are shown in
Fig. 6. There are strong linear correlations (R2 > 0.99) be-
tween the compartmental averaged T1 values estimated from
the VFA MR data using the QS-NLS, QR, and TVR meth-
ods and the T1 measured from the IR MRI (a reference mea-
sure). The SDs obtained by the QS-NLS method increase with
the T1 values but not by the TVR method. Overall, the TVR
method reduces the SDs of the T1 values by a factor of 2–4 in

most of the compartments compared to the QS-NLS method.
The SDs obtained by the QR method are similar to the ones
obtained by the QS-NLS method due to the edge-blurring ef-
fect of the QR method.

III.D. Human brain study

Figure 7 shows T1 maps of the human brain of a patient by
using the QS-NLS, QR, and TVR methods. Compared with
the T1 estimated by the SR method [Figs. 7(d) and 7(h)],
the T1 maps estimated by the QS-NLS method [Figs. 7(a)
and 7(e)] are presented with noise, which could compromise
physiological parameters derived from DCE-MRI if used in
DCE quantification. The T1 maps obtained by the QR method
[Figs. 7(b) and 7(f)] show noise reduction but also edge
blurring, as evidenced by enhanced edges on the relative
difference maps between by the QR and SR methods. How-
ever, the TVR method [Figs. 7(c) and 7(g)] not only reduces

FIG. 7. T1 maps of two brain slices (first and third rows) from a patient data by the QS-NLS (a) and (e); QR (b) and (f); TVR (c) and (g); and SR (d) and (h)
methods. The relative differences of the three VFA-based T1 estimates to the SR results are shown, respectively, in the second and forth rows for the two slices.
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FIG. 8. Mean T1 in the five brain ROIs on the patient images by the QS-
NLS, QR, TVR, and SR methods.

noise but also preserves structure boundaries in the T1 maps,
as shown in the relative difference maps between the TVR and
SR methods.

The ROIs related to five different tissue structures were
manually delineated on the brain images. Compared with the
T1 values obtained by the SR method, the mean T1 in the ROIs
estimated by QS-NLS, QR, and TVR methods has errors less
than 5% (Fig. 8). But the QS-NLS results have greater T1

variations in the ROIs compared with the spatially regular-
ized methods. Due to edge blurring, the QR method increases
the standard deviation of T1 estimates in gray matter, which
is also shown in the difference maps in Fig. 7.

IV. DISCUSSION

In this paper, we propose spatially regularized methods to
improve T1 estimation based upon prior knowledge of T1 lo-
cal continuity. We develop a theoretical framework for fast
iterative optimization of the spatially regularized T1 quantifi-
cation, including majorizing the log likelihood function to a
quadratic surrogate function, converting the TV-based opti-
mization to a smooth dual problem, and providing an iterative
solution for T1 calculation. The TVR method substantially re-
duces the noise in the T1 map without image blurring or de-
creasing the accuracy of the estimated T1 values. Given that
the quadratic surrogate only uses the T1 gradient of the MR
signals, our methods can be generalized to estimate T1 val-
ues from MR data acquired with variable flip angles, variable
TRs, or a combination of the two. Incorporating the T1 pro-
duced by our methods into quantification of DCE-MRI will
improve the robustness of the pharmacokinetic analysis, re-
duce potential errors in local perfusion estimates, and pos-
sibly improve the spatial discrimination of local changes in
perfusion parameters.

The basic assumption of spatial regularization is the T1

local continuity in the tissue. To reduce the noise influence
on the T1 estimation, we enforce local continuity of the T1

values while permitting rapid changes of T1 at tissue bound-
aries. Our results show that the quadratic regularization, al-
though reducing noise in the T1 map compared to the QS-NLS
method, overblurs the boundaries at the tissue compartments.
In contrast, the TVR method is able to overcome the overblur-

ring problem present in the quadratic regularization method as
well as reduce the noise in the T1 map. A gradual T1 change in
a region can also be preserved by the TVR method. These two
spatial regularization methods can be selected in the clinical
application based upon the organ or anatomy of interest. The
organs with fine tissue compartments, e.g., brain and kidney,
could benefit from the TVR method. One of the potential ben-
efits of the spatially regularized methods for the T1 estimation
is voxel-by-voxel quantification of DCE-MRI using pharma-
cokinetic models, e.g., Toft model.32 The noise in the T1 map
can propagate into the DCE quantification and reduce repro-
ducibility of derived kinetic parameters,33 which could sub-
sequently reduce the ability of these quantitative imaging pa-
rameters as a biomarker for assessment of tumor and normal
tissue response to therapy. The spatially regularized methods
have the potential to overcome this challenge.

The total variation, as an edge-preserving regularization,
has been long considered for image restoration. However, the
total variation has not been widely used in the medical image
field due to the complexity of the method, which involves op-
timizing a noncontinuously differentiable TV function. The
optimization becomes even more computation demanding
when the likelihood function is a complicate nonlinear func-
tion, i.e., the T1 problem. A quadratic surrogate can be used
to replace the nonlinear least-squares likelihood function,
and therefore to simplify the optimization process. However,
direct majorization of the original nonlinear least-squares
cost function [Eq. (2)] to a quadratic surrogate results in a
slow converging process in the T1 minimization due to the
large Lipschitz constant.34 Instead, we majorize a logarithm
likelihood function to a quadratic surrogate that converges
much more rapidly. Furthermore, we apply the gradient-based
dual approach that has been theoretically proven to have a
converging rate in the order magnitude of 1/t2 (t is the iter-
ation number).29 Our experiments show that the T1 solution
can converge within 100 iterations with a tolerance of 10−6.

The computation of the QS-NLS method is much faster
than the conventional NLS T1 estimation,18 due to that the
QS-NLS method updates T1 of all pixels in an image slice si-
multaneously in each of the iterations, while the conventional
NLS method minimizes the cost function voxel-by-voxel. For
the computation of the simulated data on a Xeon 2.668 GHz
machine and using MATLAB 2010b, it takes ∼6 s to compute
T1 of a 256 × 256 slice by the QS-NLS method, but 8 min
by the conventional NLS method (using “fminsearch” in
MATLAB). Also, the differences between the T1 computed by
the conventional NLS and the QS-NLS method are less than
1%, indicating there is no compromise in the accuracy of the
estimated T1 using the QS-NLS method. With the spatial reg-
ularizations, both the QR and TVR minimizations are con-
verged within 100 iterations (Fig. 9). Initialized with the T1

estimated by the QS-NLS method, the QR and TVR methods
take additional 1.2 s and 15 s to compute the final T1 values
of a 256 × 256 slice, respectively.

The TVR method preserves edges at tissue boundaries in
a T1 map. However, the minimum size of an object or a le-
sion, which can be detected by the TVR method, has not been
tested and compared to the conventional methods. Like other
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FIG. 9. Convergence of the QR and TVR methods from the simulated brain
data with five FAs and 5% noise. The cost functions are normalized to the
maximal value at the initial iteration. The two methods reach a tolerance of 1
× 10–6 within 100 iterations.

VFA-based methods, B1 inhomogeneity can bias the T1 esti-
mated by the proposed methods because B1 inhomogeneity
causes variation of flip angles. Approaches have been pro-
posed to map B1 inhomogeneity.16, 35 Therefore, correcting
the flip angles can be performed prior to using the proposed
methods.

V. CONCLUSION

T1 estimation based upon variable flip angles gradient-
echo MRI has been improved by applying the prior knowl-
edge of spatial continuity. Spatial regularization, either QR or
TVR, can reduce random fluctuation in the T1 estimates com-
pared to the conventional NLS method, and thereby improve
the repeatability of the pixelwise estimates. The TV regular-
ization can preserve the sharp transitions between the tissue
compartments better than the QR method.
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APPENDIX: QUANDRATIC SURROGATE

The log likelihood L near the nth iteration solution of T1,n

at pixel (i, j) can be approximated by

L(T i,j
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(A1)

The right-hand side of the inequality is greater than or
equal to the original L(Ti,j

1 ), and therefore, can be a surro-
gate for L.28 By defining dk(Ti,j

1 ) = 1/(1 − Ei,j cos(αk)), ak

= tan αk, and bk = tan αk(cos αk − 1), we have fk(T1) = ak

+ bkdk(T1). Substituting fk(T1) into the right side of Eq. (A1)
and applying the first order Taylor expansion to dk(T1), Eq. (3)
in matrix format at the (n + 1)th iteration of T1-step becomes

�n+1 = μ ‖T1 − z‖2 + 2λTV(T1), (A2)

where z = T1,n − v/(2μ), μ = {μi, j}, and ν = {ν i, j} are ma-
trix formats of μi, j and ν i, j over the images computed as
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where ∇dk

(
Ti,j

1,n

)
is a gradient of dk with respect to T1 at T1, n.

The quadratic surrogate function is always above L except at
the point T1,n, and thus iteratively converges to the minimum
of L. Now, minimization of Eq. (3) becomes a conventional
TV-based denoise problem.36
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