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Computer-aided diagnosis �CAD� for characterization of mammographic masses as malignant or
benign has the potential to assist radiologists in reducing the biopsy rate without increasing false
negatives. The purpose of this study was to develop an automated method for mammographic mass
segmentation and explore new image based features in combination with patient information in
order to improve the performance of mass characterization. The authors’ previous CAD system,
which used the active contour segmentation, and morphological, textural, and spiculation features,
has achieved promising results in mass characterization. The new CAD system is based on the level
set method and includes two new types of image features related to the presence of microcalcifi-
cations with the mass and abruptness of the mass margin, and patient age. A linear discriminant
analysis �LDA� classifier with stepwise feature selection was used to merge the extracted features
into a classification score. The classification accuracy was evaluated using the area under the
receiver operating characteristic curve. The authors’ primary data set consisted of 427 biopsy-
proven masses �200 malignant and 227 benign� in 909 regions of interest �ROIs� �451 malignant
and 458 benign� from multiple mammographic views. Leave-one-case-out resampling was used for
training and testing. The new CAD system based on the level set segmentation and the new
mammographic feature space achieved a view-based Az value of 0.83±0.01. The improvement
compared to the previous CAD system was statistically significant �p=0.02�. When patient age was
included in the new CAD system, view-based and case-based Az values were 0.85±0.01 and
0.87±0.02, respectively. The study also demonstrated the consistency of the newly developed CAD
system by evaluating the statistics of the weights of the LDA classifiers in leave-one-case-out
classification. Finally, an independent test on the publicly available digital database for screening
mammography with 132 benign and 197 malignant ROIs containing masses achieved a view-based
Az value of 0.84±0.02. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2820630�
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I. INTRODUCTION

Breast cancer is the second leading cause of cancer death of
American women between 40 and 55 years of age.1 Early
diagnosis and treatment can improve survival rate of breast
cancer patients.2–4 Screening mammography is currently the
most cost-effective method to detect early breast cancer.5–7

Breast masses are one of the important mammographic indi-
cators of malignancy. Clinical studies show that only a mi-
nority of biopsied masses are malignant.8–10 It is therefore
important to improve methods for diagnosis of malignancy
and the positive predictive value of mammography.

Computer-aided diagnosis �CAD� systems can be used to
assist radiologists in mammographic mass detection and
classification.11 Automated mass detection has been applied
to digitized screen-film mammograms �SFM� and full field
digital mammograms �FFDM� and achieved encouraging
performance.12 Several investigations have shown that CAD
has the potential to improve radiologist’s accuracy in assess-

11,13–18
ing malignant and benign masses. This study focuses
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on automated classification of malignant and benign masses.
Our purpose is to develop a new segmentation algorithm and
to design new mammographic features in combination with
patient information for improving computerized character-
ization of mammographic masses.

Segmentation is a crucial step for computerized classifi-
cation of malignant and benign breast masses. Image seg-
mentation is a common step in the field of computer vision.
Popular segmentation methods include local and global
thresholding, region growing, deformable models, random
fields, and edge detection.11,19 Segmentation of mammo-
graphic masses is more challenging than segmenting other
natural or artificial images because breast masses on mam-
mograms typically have fuzzy and irregular edges and low
contrast. The American College of Radiology Breast Imaging
Reporting and Data System20 �BI-RADS� classifies breast
mass margins into five major categories, of which only cir-
cumscribed mass margin might have an abrupt transition be-
tween the lesion and the surrounding tissue. To segment this

type of medical images, researchers have developed or re-
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fined several breast mass segmentation methods. Guliato et
al. refined the region growing method using fuzzy set
theory.21 The method considered the uncertainty of the
boundary around the mass. Huo et al. also used the region
growing method for mass segmentation. Region growing
was terminated by using the multiple transition point
technique.16,22 Timp and Karssemeijer proposed an auto-
mated segmentation technique based on dynamic
programming.23 Our previous investigations also developed
a fully automated, two-step segmentation method.15 It used
K-means clustering for initial segmentation, which was then
refined by the active contour �AC� method.

Features can be extracted from original regions of interest
�ROIs�, segmented masses, and patient information. Most
CAD systems in the literature explore mammographic fea-
tures based on segmented masses. Useful features include:
�1� statistics of mass intensity, e.g., average and variance; �2�
morphological features, e.g., perimeter and area of masses,
normalized radial length,24 and the Fourier descriptors;25 �3�
textural features, e.g., run-length statistics �RLS� and spatial
gray level dependence �SGLD�;26 and �4� features that can
describe mass margins, such as spiculation measure.14,27

Our previous CAD system, which used AC segmentation,
and morphological, textural, and spiculation features, has
shown encouraging results in classifying malignant and be-
nign masses. In this study, we introduced the increasingly
popular method, level set �LS� segmentation, and added two
new types of image features related to the presence of mi-
crocalcifications within the mass and abruptness of the mass
margin, in combination with patient age, to improve the
CAD system. Breast masses with microcalcifications are
more likely to be malignant. However, since the probability
that a breast mass contains microcalcification is low, the mi-
crocalcification feature has not been extensively used for the
purpose of mass classification. We used our previously de-
veloped automated algorithm28 to detect microcalcifications
within the ROI containing the mass and extracted a feature
related to the likelihood of microcalcification presence in the
ROI from our detection results. Circumscribed mass margin
is a predominantly benign feature.20 Although some of the
features in our previous CAD system may be correlated with
this characteristic, we designed new features specifically for
characterizing the abruptness of the transition between the
mass and the surrounding tissue in this study. Finally, patient
age is an objective feature which can be collected
conveniently.24 In this study, we studied the usefulness of
combining patient age with our image features for breast
mass classification.

II. METHODS

Figure 1 presents the flowchart of our method for mam-
mographic mass classification. It involves three major stages:
mass segmentation, feature extraction, and classification. In
this study, we combined stepwise feature selection and linear
discriminant analysis �LDA� classification as a wrapper
algorithm29 during classifier training. Feature selection30 is

an important process during the development of the CAD
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system. However, once the system is developed, the features
will be fixed when the system is applied to unknown test
cases.

II.A. Data sets

Our primary data set was collected with Institutional Re-
view Board �IRB� approval from patient files in the Radiol-
ogy Department at the University of Michigan who had un-
dergone breast biopsy. The mammograms were acquired
with MinR2000 screen-film systems �Eastman Kodak, Roch-
ester, NY�, and were digitized with a LUMISCAN 85 laser
film scanner �Lumisys, Los Altos, CA�. The biopsied mass
location was identified by a Mammography Quality Standard
Act �MQSA� radiologist �M.A.H.� with 20 years of experi-
ence in mammography using available clinical information
and a bounding box containing the mass was defined. The
data set consisted of 427 biopsy-proven masses �200 malig-
nant and 227 benign� in 909 ROIs �451 malignant and 458
benign� from multiple views including craniocaudal �CC�,
mediolateral oblique �MLO�, and/or lateral.

The MQSA radiologist provided a likelihood of malig-
nancy �LM� rating for each mass on each mammographic
view on a scale of 1 �most benign appearance� to 10 �most
malignant appearance�. For most masses, the LM rating was
provided in the same reading session as the identification of
the biopsied mass location and bounding box. Because the
identification procedure utilized available clinical informa-
tion including pathology report, the radiologist was aware of
the outcome of the biopsy. However, he was asked to make
an assessment of malignancy based on the visual appearance
of the mass on the mammogram. Figure 2�a� shows the dis-
tribution of the LM ratings of the masses. As expected from
the fact that all cases underwent biopsy, the two distributions
partially overlap. Figure 2�b� shows the distributions of the
size of the malignant and benign masses. The size was mea-
sured as the longest dimension of the lesion by the radiolo-
gist. It ranged from 4 to 100 mm with a mean size of 17 mm.

FIG. 1. The flowchart of the newly developed CAD system for mammo-
graphic mass classification.
The distributions of the size of malignant and benign masses
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are similar to each other. Figure 2�c� shows the distributions
of patient age for the malignant and benign cases. Patient age
ranged from 23 to 86 years �mean: 54 years�. The age distri-
butions for benign and malignant cases overlap to a great
extent.

In order to evaluate the performance of the microcalcifi-
cation likelihood feature, discussed below, a MQSA radiolo-
gist �A.N.� identified locations of microcalcification clusters
on the digitized ROIs using a graphical user interface that
allowed windowing, leveling, and magnification. Assessment
of microcalcification presence was performed in an indepen-
dent session. The radiologist was not informed of the biopsy
outcome of the masses when the microcalcifications were
marked. The radiologist was asked to judge whether clus-
tered microcalcifications was present regardless of the ap-
pearance of the masses or the microcalcifications. Thirty-
seven benign and 115 malignant ROIs contained
microcalcification clusters, while the remaining 757 ROI
were determined to be free of microcalcification clusters.

We used a second data set to independently test the per-
formance of the newly developed CAD system. We previ-
ously evaluated31 the accuracy of a mass detection system on
a subset of the digital database for screening
mammography32 �DDSM� publicly available from the Uni-
versity of South Florida. The data set for that evaluation
consisted of 142 two-view mammograms �CC and MLO�
acquired between 1992 and 1998 and digitized with a Lumi-
sys 200 laser film scanner. In this study, we used the same set
of 142 mammogram pairs for our mass classification system.
All images in this data set had a pixel size of 50 �m and
12-bit gray-level resolution. The data set consisted of 167

biopsy-proven masses �66 benign and 101 malignant� in 329
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ROIs �132 benign and 197 malignant� from 136 patients.
Patient age ranged from 31 to 86 years �mean: 56 years�.

II.B. Initial mammographic mass segmentation

Mass segmentation was performed in a ROI containing
the radiologist-identified mass. The ROI was selected to in-
clude the bounding box described above, plus a 5-mm-wide
band surrounding the bounding box that contains breast tis-
sue around the mass. The ROI was preprocessed by back-
ground gray-level correction, which was designed to reduce
the nonuniformity caused by the overlapping breast struc-
tures and the location of the lesion on mammograms. We
then used the K-means clustering algorithm followed by a
morphological opening operation, for initial mass
segmentation.33

II.C. Level set segmentation

The LS method, also called implicit AC in the literature,
provides a flexible mechanism allowing topological change
of target objects, for example, object splitting and merging.
Evolving curves in two-dimensional �2D� images or surfaces
in three-dimensional �3D� volumes based on the LS numeri-
cal technique have been used in various applications of im-
age processing, computer graphics, and computational
geometry.34–36 For example, the LS method is used for re-
storing images degraded by noise and blurring or estimating
object surface from given objects sample points. We have
previously utilized the 3D LS method for segmenting head
and neck lesions on CT scans.37 In this study, the breast

FIG. 2. Characteristics of the data set
included in this study. �a� The distribu-
tion of the LM rating of the masses by
the radiologist. �b� The distributions of
mass size. To show the size for the
majority of the masses in detail, 16
masses with sizes over 50 mm were
grouped to the bar representing mass
size=50 mm. �c� The distributions of
ages for patients with malignant or be-
nign masses.
masses were collected from mammograms, so we limit our
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discussion to 2D curve evolution. The method can be ex-
tended in a straightforward manner to 3D mass segmentation
in emerging breast imaging modalities.

While the explicit AC model is a Lagrangian integral for-
mation tracking the curve, the LS model is an Eulerian for-
mulation capturing the curve.34 It can work on a Cartesian
grid without having to parameterize target object boundaries.
Mathematically, let ��x ,y�=c be an isocontour in a 2D space
where each location has a unique level c. The isocontour
��x ,y�=0, which encloses a region �, is specifically named
as the zero LS in the literature. For the purpose of segment-
ing a mammographic mass ROI, we first need to construct
the initial zero LS, which can be performed by using a gen-
eral object model �e.g., a circle� or using the boundary of an
initially segmented mass �e.g., the K-means clustering re-
sult�. For iterative evolution, we incorporate the time param-
eter and track the zero LS. Mathematically, the evolution can
be described as

��x�t�,y�t�,t� = 0,

∀t � 0, �1�

with the initial condition

��x�0�,y�0�,0� = ��x�0�,y�0�� .

Differentiating both sides of Eq. �1� and using the chain
rule yields the partial differential equation �PDE�

��

�t
+

��

�x

�x

�t
+

��

�y

�y

�t
=

��

�t
+ V� · �� = 0, �2�

where ��= ��� /�x ,�� /�y� is the gradient of the distance

function and V� = ��x /�t ,�y /�t� is the velocity field that
guides the curve evolution. The success of the LS segmenta-

tion is subject to appropriate design of V� . In analogy to the
explicit AC model, we may incorporate internal forces to
guarantee the smoothness of the curve and external forces to
attract the curve to desired image edges. The mean curvature
�=−� ·�� / ���� is a popular term34 to constrain the curve

evolution and the edge information G� =�I�x ,y� of the origi-
nal image I�x ,y� is used to construct external force. Based on
the methods reviewed by Suri et al.,35 this study formulates
the LS PDE for mammographic mass segmentation as fol-
lows:

��

�t
+ ��V� 0� − b������ + G� · �� = 0, �3�

where �V� 0�=1 / �1+ �G� �� and b=2�V� 0� balance the effect of in-
ternal and external forces. The intuitive idea behind Eq. �3� is
that the curve should move fast on a flat surface, while it
should evolve slowly as it approaches object edges. Equation
�3� is a Hamilton–Jacobi equation. It can be solved
numerically.34 One disadvantage of using the LS segmenta-
tion is its high computational cost, but researchers have pro-
posed several solutions to increase the efficiency, e.g., the
fast marching method which evolves curves only in one di-

rection and the narrow band method which updates the
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signed distance function only in the region near the zero
LS.38

Because mammograms typically have low contrast and
boundaries of breast masses are vague or obscured by soft
tissue or even are not visible on the mammograms at all,
segmentation leak is a challenge for mammographic mass
segmentation. We borrow the idea of the region growing
method to reduce leak. During the curve evolution, each up-
date of the signed distance function maintains the high ho-
mogeneity of mass gray level. We compute the average gray
level ���k� of the region that is enclosed by the zero LS at
the kth iteration. For each pixel in I�x ,y� on the zero LS at
the �k+1�th iteration, i.e., ��x ,y ,k+1�=0, the local mean
�l�x ,y ,k+1� is computed by a 3�3 average. The purpose of
local averaging is to reduce the effect of noise. We update the
zero LS as

��x,y,k + 1� = �0 if �l�x,y,k + 1� � 	���k�
��x,y,k� otherwise

.�
�4�

	 was chosen experimentally to be 0.7 in our study. Increas-
ing the ratio 	 may reduce segmentation leak, but it also may
cause undersegmentation.

Figure 3�a� shows an example ROI which contains a mi-
crolobulated mass that was biopsy-proven to be an invasive
ductal carcinoma. The mass edge is blurred and partially
overlapped by other soft tissues, so the traditional segmenta-
tion methods are prone to segmentation leak. Figure 3�b�
shows the boundary resulting from the K-means clustering
and morphological opening. The boundary is then refined by
the LS segmentation as shown in Fig. 3�c�. The LS segmen-
tation covers most mass edges visually, though it still slightly
undersegmented on the upper right corner of the mass.

We compared the segmentation results of the newly de-
veloped LS method and our previous AC method on our
primary data set of 909 masses. Three measures the average
minimum distance, the Hausdorff distance, and the area
overlap measure, that we previously chose for comparing AC
segmentation to radiologists’ manual segmentation15 were
used for the current comparison. The first two measures use
the minimum Euclidean distance �MED� between a point on
one contour and the other contour in the Cartesian plane. The
Hausdorff distance computes the maximum of MED while

FIG. 3. An example of mammographic mass segmentation using the LS
method. �a� Original ROI. �b� Initial boundary obtained by K-means clus-
tering and morphological opening. �c� LS boundary.
the point is moved along one of the contours and the average
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minimum distance computes the mean. The area overlap
measure is defined as the ratio of the intersection to the union
of the two segmented areas. Their mathematical definitions
can be found in the literature.15

II.D. Feature extraction

We designed two new types of image features, the pres-
ence of microcalcifications and margin abruptness, for our
new CAD system. These new image features are combined
with our previously developed 20 RLS features, three spicu-
lation features, and twelve morphological features including
the normalized radial length �NRL� features14,15 to form a
new image feature space. We compared these features ex-
tracted from contours obtained by the AC segmentation and
the LS segmentation to evaluate the effectiveness of the seg-
mentation methods. The new mammographic features are de-
scribed in detail below.

Patient age is a feature which can be collected conve-
niently and has been included in CAD systems by several
groups.17,39,40 As described below, we investigated classifiers
that relied on purely mammographic features, as well as clas-
sifiers that merged the mammographic features with the pa-
tient age information.

II.D.1. Microcalcification likelihood feature

Although it is clinically known that masses with micro-
calcification are more likely to be malignant, this feature has
received little attention in CAD. Samulski et al. attempted to
incorporate the number of calcifications found in the seg-
mented mass region to characterize mass malignancy,18 but
its classification capability was not reported. We have devel-
oped an automated system for microcalcification detection
on digitized screen-film41 and full field digital
mammograms.28 This study tailored the automated microcal-
cification detection system to mass ROIs and summarized
the output as a feature that describes the likelihood that the
ROI contained a microcalcification cluster. Briefly, we used
the same image enhancement and individual microcalcifica-
tion segmentation methods as in our previous publications,41

with the exception that the number of prescreened signals in
this study was lower �N=40�, because the detection was per-
formed in an ROI as opposed to the entire mammogram.
After individual microcalcification candidate locations were
determined, we used a trained convolution neural network
�CNN� to estimate the likelihood that the signal corresponds
to a true microcalcification. We thus obtained a CNN score
for each microcalcification candidate. We defined the aver-
age of the top three scores in a ROI as the microcalcification
likelihood feature.

II.D.2. Margin abruptness features

Breast mass shape and margin are important features to
differentiate malignant and benign masses. We have explored
spiculation features in our previous studies to improve mam-
mographic mass characterization. In this study, we propose

new features to estimate the abruptness of the transition be-
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tween the mass and the surrounding tissue and the length of
the longest segment of this well-circumscribed mass bound-
ary. We first segmented the mass images using either the LS
or AC methods. The rubber-band straightening transform26

�RBST� was used to map a band of pixels surrounding the
mass onto a rectangular image. Figure 4�a� shows an ex-
ample of the resulting image after applying the RBST trans-
form to the mass in Fig. 3�c�. The mass edge was stretched
into several vague lines, which were enhanced by finding the
gradient magnitude using the Sobel operator as shown in Fig.
4�b�.

After the RBST gradient magnitude was obtained, Hes-
sian analysis42 was applied to obtain a Hessian line enhanced
RBST �HLE-RBST� image. The Hessian response, which es-
sentially is based on the tensor analysis of a data volume in
terms of the second-order derivatives, has many applications
in computer-aided diagnosis, for example, microcalcification
analysis in mammograms43 and nodule detection and regis-
tration in thoracic CT scans.44,45 The eigenvalues of the Hes-
sian matrix contain important information about the shape of
the object around a pixel.46 For better utilizing the Hessian
eigenvalues and reducing noise in the second-order deriva-
tives, a common technique is to compute the Hessian matri-
ces at multiple scales. At each scale, the image volume is
convolved with an isotropic Gaussian function with a differ-
ent standard deviation. In this study, we used four different
standard deviations with 
i=4�3i/3 , i� �0,1 ,2 ,3	 pixels.
We then defined the line response function as described in
the literature45 to enhance line structures and selected the
maximum response under the four different scales. Figure
4�c� shows the resulting HLE-RBST image, in which line
structures were enhanced. An ideally circumscribed mass
margin corresponds to a long connected line on the HLE-
RBST image. We used the depth first search47 �DFS� algo-
rithm to search the longest line, starting from candidate lo-
cations on the HLE-RBST image. A candidate location is
defined as a pixel whose Hessian response is larger than the
average response in the entire HLE-RBST image. Figure
4�d� shows the segment of Fig. 4�c� that contains the longest
line by using the DFS algorithm.

Two features were extracted for measuring the margin
abruptness: normalized line length and normalized line Hes-
sian response. The normalized line length measures the ratio
of the horizontal span of the longest line �i.e., the width of

FIG. 4. Extraction of the margin abruptness feature. �a� RBST image from
the margin of the mass in Fig. 3�c�. �b� The gradient image of �a� in the
vertical direction. �c� The HLE-RBST image. �d� The segment that contains
the longest line in terms of the DFS algorithm.
Fig. 4�d�� to the length of the whole RBST image �i.e., the
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width of Fig. 4�a��. The normalized line Hessian response
measures the ratio of the average Hessian response along the
longest line to the average Hessian response on the segment
of HLE-RBST image that contains the line in Fig. 4�d�.

II.E. Classification

The primary data set was partitioned into training and test
sets using leave-one-case-out resampling. For a given round,
this resampling method used one case for testing and the
remaining cases for training. The case chosen for testing was
changed at each round, until all cases had been used once for
testing. If a case had multiple views, all views were grouped
in either the test set or the training set in the same round, but
not both. In each resampling round, the wrapper algorithm29

with stepwise feature selection48,49 was used to select the
most effective features and then trained a LDA classifier. The
designed classifier was applied to all views of the left-out
case. The stepwise procedure selected effective features us-
ing the Wilks lambda criterion and F statistics.49 Since our
primary data set had 427 cases, 427 different sets of features
were selected and 427 classifiers were trained.

The discriminant scores from leave-one-case-out testing
were analyzed with the receiver operating characteristic
�ROC� methodology.50 The classification performance was
measured in terms of the area Az under the ROC curve. Two
types of ROC curves are presented, view-based and case-
based. In view-based ROC analysis, the mass on each mam-
mogram was considered an independent sample. The num-
bers of malignant and benign mass ROIs in the primary data
set were therefore 451 and 458, respectively. For case-based
ROC analysis, the LDA scores of the same mass seen on
different views were averaged. The numbers of malignant
and benign mass ROIs were 200 and 227, respectively.

To compare the effect of new features, we designed clas-
sifiers in three feature spaces: �1� the previous mammo-
graphic feature space that contained the morphological, RLS,
and spiculation features, �2� the new mammographic feature
space that contained the microcalcification likelihood feature
and the margin abruptness features in addition to �1�, and �3�
the new combined feature space that contained the patient
age feature in addition to �2�. The same set of features was
extracted from the masses segmented by the LS and the AC
methods. The view-based systems with the LS and AC seg-
mentation methods are referred to as LS-V and AC-V, re-
spectively. Similarly, the corresponding case-based systems
are referred to as LS-C and AC-C, respectively.

II.F. Radiologist classification

As shown in Fig. 2�a�, a LM rating was provided by an
expert radiologist for all masses based on their appearance
on individual mammographic views. Using these ratings, we
are able to estimate a view-based ROC curve for the radiolo-
gist. To compare with the case-based computer classifiers, a
case-based ROC curve was simulated for the radiologist by
averaging the LM ratings of the same mass from different
mammographic views. To compare with the computer clas-

sifiers that use patient age, we designed LDA classifiers that
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combined the radiologists’ LM rating with patient’s age.
Similar to the computer classifiers, the weights of the classi-
fiers were trained and tested using a leave-one-case-out
scheme.

II.G. Statistical comparisons

We performed ROC analysis on pairs of conditions to
investigate a primary interest and to explore a few other is-
sues. Our primary interest was to compare the performance
of the CAD system based on LS segmentation and the new
mammographic feature space compared to the CAD system
based on AC segmentation and the previous mammographic
feature space. The other issues of interest include �1� the
effect of LS and AC segmentation methods on the mass clas-
sification performance of the CAD system, �2� the effect of
patient age on mass classification, and �3� performance of the
newly developed CAD system compared to the radiologist’s
assessment.

III. RESULTS

III.A. Segmentation

Automated breast mass segmentation is an important step
for the CAD system. As discussed in Sec. II, we quantita-
tively compared the difference between the LS and AC seg-
mentation methods using the average minimum distance, the
Hausdorff distance, and the area overlap measure. For the
909 ROIs in the primary data set, the average minimum dis-
tance, the Hausdorff distance, and the area overlap measure
were 1.12±0.78 mm, 3.47±1.91 mm, and 0.73±0.10 �mean
± standard deviation�, respectively.

III.B. Classification performance of individual features

Table I shows the Az values of the features extracted from
LS segmentation and used individually to characterize mass
malignancy. The average spiculation measure had the best Az

of 0.78±0.02. As demonstrated in our previous investigation,
the spiculation features were very effective for mass charac-
terization. RLS features had Az values ranging between 0.52
and 0.64 and NRL features had Az values ranging between
0.55 and 0.64. With an Az of 0.68±0.02, patient age also had
a limited classification capability. The two margin abruptness
features, the normalized line length and normalized line Hes-
sian response, had Az values of 0.64±0.02 and 0.60±0.02,
respectively.

We used the microcalcification detection results of the
MQSA radiologist as the reference standard to evaluate the
microcalcification likelihood feature as an indicator for the
presence of microcalcifications. The data set for this evalua-
tion therefore contained 152 positive and 757 negative ROIs.
ROC analysis indicated that the microcalcification likelihood
feature achieved an Az value of 0.90±0.01 in distinguishing
between ROIs that were positive and negative for microcal-
cification presence. In terms of distinguishing between the
malignant and benign masses, however, the microcalcifica-

tion likelihood feature had an Az of 0.64±0.02.
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III.C. Comparisons of classification accuracy

We first evaluated how well the new segmentation and
new mammographic features can work together to improve
the performance of our previous CAD. Figure 5�a� shows the
ROC curves for the LS-V system in the new mammographic
feature space �Az=0.83±0.01� and the AC-V system in the
previous mammographic feature space �Az=0.80±0.01�. Fig-
ure 5�b� is the counterpart of Fig. 5�a� for case-based classi-
fication. ROC analysis50 using the CLABROC program indi-
cated that the differences between the view-based Az values
of the two systems �Fig. 5�a�� and between the case-based Az

values �Fig. 5�b�� were statistically significant �p=0.02 and
p=0.03, respectively�.

To investigate the effect of the segmentation method on
the classification accuracy, we compared the Az values ob-
tained with the LS and AC methods in the new mammo-
graphic feature space. Replacing the LS segmentation with
the AC segmentation in the new mammographic feature
space reduced the Az value from 0.83±0.01 to 0.82±0.01 for
view-based classification �p=0.23� and from 0.85±0.02 to
0.83±0.02 for case-based classification �p=0.18�.

We also investigated how computer-extracted mammo-
graphic features can be combined with patient information.
Patient age, which is known to have a positive correlation

TABLE I. Az values of individual features in charact
LS-segmented masses.

Feature name

Patient age
Microcalcification likelihood
Normalized line length
Normalized line Hessian response
Average spiculation measure
Average spiculation measure of above � /4
Percentage of spiculation measure above � /4
Gray-level nonuniformity �GLN�
Run length nonuniformity �RLN�
Run percentage �RP�
Short runs emphasis �SRE�
Long runs emphasis �LRE�
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with breast cancer risk, was used as a nonimage feature. In
the new combined feature space, the use of the patient age
improved the Az value of the LS-V system from 0.83±0.01
to 0.85±0.01 �p=0.0005� and that of the AC-V system from
0.82±0.01 to 0.84±0.01 �p=0.006�. For case-based sys-
tems, the use of the patient age improved the Az value of the
LS-C system from 0.85±0.02 to 0.87±0.02 �p=0.09� and
that of the AC-C system from 0.83±0.02 to 0.85±0.02 �p
=0.16�.

Figure 6�a� includes four ROC curves obtained for the
comparison of the LS system to radiologist’s LM ratings: �1�
radiologist’s view-based LM ratings alone �Az=0.86±0.01�,
�2� radiologist’s view-based LM ratings combined with pa-
tient age �Az=0.87±0.01�, �3� the LS-V system designed in
the new mammographic feature space �Az=0.83±0.01�, and
�4� the LS-V system in the new combined space �Az

=0.85±0.01�. The radiologist’s ratings had a higher Az value
than the computer classifier with �p=0.05� or without �p
=0.34� the age feature. Figure 6�b� shows the corresponding
case-based ROC curves. As in view-based classification, the
radiologist’s ratings had a higher Az value than the computer
classifier with �p=0.46� or without �p=0.21� the age feature.

g mass malignancy for features extracted from the

Az Feature name Az

8 Perimeter 0.71
4 Fourier descriptor 0.68
4 Square ratio 0.66
0 NRL zero crossing count 0.64
8 NRL mean 0.62
7 Area 0.61
5 Circle ratio 0.60
9–0.64 NRL entropy 0.57
6–0.63 NRL standard deviation 0.57
2–0.62 NRL area ratio 0.55
7–0.62 Circularity 0.52
2–0.55 Contrast 0.50

FIG. 5. Classification performances of
the LS system in the new mammo-
graphic feature space and the AC sys-
tem in the previous mammographic
feature space. �a� View-based analysis.
�b� Case-based analysis.
erizin

0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.5
0.5
0.5
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Tables II and III, respectively, summarize the Az values of
various computer classifiers and the radiologist’s rating with
and without including patient age.

III.D. Statistics of selected features for classification

We used the leave-one-case-out resampling for perfor-
mance evaluation in our primary data set. It included 427
cases, so 427 LDA classifiers were trained. For the LS sys-
tem in the new combined feature space, the average number
of selected features was 7.9. A total of 11 features were se-
lected at least once for at least 1 of the 427 classifiers. In
order to study the consistency of these classifiers, we inves-
tigated how many times each feature was selected and how
similar the weights were for the selected features. The first
and second columns in Table IV, respectively, list the se-
lected features and how many times they were selected
among the 427 classifiers. Only 9 of the 11 features are
shown; two RLS features that were selected less than three
times were not included. Three out of the five features that
were selected in all resampling rounds were the newly de-
veloped features, although their individual Az values were
low �refer to Table I�. Among the morphological features,
only the mass area was selected. The RLS texture features
were selected less frequently. The coefficient of variation,
which expresses the standard deviation as a percentage of the
mean for the weights of each feature in the LDA classifiers,
is also shown in Table IV. A small coefficient of variation
indicates a small variation in the LDA weights of a feature as
the training set changes in the leave-one-case-out resampling

TABLE II. Az values of the classifiers using the AC
case-based analyses, in different feature spaces.

Segmentation

Previous mammographic

View-based Case-based Vi

Active contour 0.80±0.01 0.82±0.02 0.
Level set 0.81±0.01 0.84±0.02 0.
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procedure. This variation was less than 4% for any selected
feature, which demonstrates the consistency of the newly
developed CAD system for this data set.

III.E. Independent test

In order to verify the classification accuracy of the newly
developed CAD system, a subset of the DDSM database,
described in Sec. II, was used as an independent test set. Five
features that were consistently selected in the 427 LDA clas-
sifiers for the primary data set with the LS system �Table IV�,
i.e., patient age, mass area, average spiculation measure, mi-
crocalcification likelihood, and normalized line length, were
used for training a LDA classifier for the LS system using the
primary data set. Similarly, five features, i.e., patient age,
mass perimeter, average spiculation measure, microcalcifica-
tion likelihood, and normalized line length, consistently se-
lected for the primary data set with the AC system were used
for training another LDA classifier for the AC system using
the primary data set. The two trained LDA classifiers were
then tested in the independent test data set. The view-based
Az values for the LS-V and the AC-V systems were
0.84±0.02 and 0.81±0.02, respectively. The case-based Az

values for the LS-C and the AC-C systems were 0.85±0.03
and 0.83±0.04, respectively. The difference of the LS and
AC systems was not significantly different, using either
view-based �p=0.17� or case-based �p=0.25� analysis.

FIG. 6. Classification performances of
the LS system and the radiologist
�RAD�. �a� View-based analysis. �b�
Case-based analysis.

LS segmentation methods, under view-based and

eature space
mammographic New combined �with age�

sed Case-based View-based Case-based

.01 0.83±0.02 0.84±0.01 0.85±0.02

.01 0.85±0.02 0.85±0.01 0.87±0.02
and

F
New

ew-ba

82±0
83±0
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IV. DISCUSSION

In this study, we investigated how LS segmentation and
the new features may improve the CAD performance. When
compared with the AC segmentation in the same feature
space, LS segmentation demonstrated slightly higher perfor-
mance in terms of the ROC curves, but the improvement was
not statistically significant. One reason is that the segmenta-
tion of mammographic masses is inherently a very challeng-
ing task so that both the AC and the LS methods may fail to
achieve accurate segmentation for some masses. Our LS seg-
mentation was designed to reduce segmentation leak by
maintaining the homogeneity of the mass. The side effect
was that the homogeneity constraint may cause underseg-
mentation of some masses. Further improvement of mammo-
graphic mass segmentation is important for breast cancer
CAD systems.

Our current and previous studies have demonstrated that
the mass spiculation features were powerful in characterizing
mass malignancy. Spiculated mass margin often indicates
high likelihood of malignancy, while circumscribed mass
margin often indicates benignity. In this study, we developed
features that described the abruptness of the mass margin.
Our results showed that one of the new margin abruptness
features was consistently selected by stepwise feature selec-
tion and, in combination with other mammographic features,
improved the CAD performance. However, the accuracy of
the individual margin abruptness features in classifying the
masses as malignant or benign was low. Another feature de-

TABLE III. Az values obtained by using the radiologist’s LM rating in com-
bination with patient age under view-based and case-based analyses. For
case-based analysis, the LM rating of the radiologist was simulated by av-
eraging the view-based LM ratings from different views. A LDA classifier
was designed for combining the radiologist’s LM rating with patient age.

Feature space Evaluation mode

View-based Case-based

Radiologist’s LM rating 0.86±0.01 0.88±0.02
Radiologist’s LM rating with patient age 0.87±0.01 0.88±0.02

TABLE IV. The number of times each feature was selected and the coeffi-
cients of variation of the weights of each feature in the LDA classifiers for
the LS system. Two RLS features that were selected less than three times
were not included.

Feature name
Number

of times selected

Coefficient
of variation

�%�

Patient age 427 1.0
Mass area 427 3.6

Average spiculation measure 427 3.0
Microcalcification likelihood 427 2.5

Normalized line length 427 1.7
Horizontal GLN 90 398 1.8
Horizontal RLN 90 400 1.5

Vertical GLN0 399 1.0
Vertical SRE0 27 2.4
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veloped in this study was related to the presence of micro-
calcification clusters in the mass ROIs. Similar to the abrupt-
ness of the mass margin, microcalcification by itself had
limited classification capability, but was selected consistently
in stepwise selection. Patient age has been incorporated in
several CAD systems by other groups.17,24,39,40 Our study
shows that when combined with view-based features, patient
age can improve the accuracy of mass characterization. Be-
cause patient age is an objective feature that can be collected
conveniently, it may be a cost-effective adjunct to the mam-
mographic features.

For most masses, the LM rating was provided by the
MQSA radiologist in the same reading session as the identi-
fication of the bounding box using available clinical informa-
tion. There is a possibility that the radiologist’s ROC curve
may have been optimistically biased by this information.
However, we believe that a comparison of the computer clas-
sifiers with the radiologist’s classification is useful for pro-
viding a reference about the performance of the CAD sys-
tem. When patient age was not used, radiologists’ LM rating
achieved a higher Az value than that using the computer clas-
sifier scores, for both view-based �p=0.05� and case-based
�p=0.21� analysis. In order to compare the performance of
the CAD system in the new combined feature space �which
included patient age� to that of the radiologist, we designed
LDA classifiers that combined the radiologist’s LM ratings
with patient age. Our results indicated that the difference in
the Az values between the CAD system and the radiologist,
both with patient age information, did not achieve statistical
significance, �p=0.34 and 0.46 for view-based and case-
based analysis, respectively� although the radiologist’s per-
formance was still better. Since radiologists may use patient
age in different ways �e.g., nonlinear combination� for pa-
tient management, future work is needed to establish the op-
timal use of patient age in a computer classifier.

This investigation presented several p values for various
statistical comparisons. While it is true that searching in dif-
ferent subgroups or with different hypotheses until some p
value happens to fall below the alpha level of 0.05 is unwar-
ranted, there is debate in the biostatistical literature concern-
ing when adjustment for multiple testing is needed or how
adjustment should be made.51,52 In this study, we use an al-
pha level of 0.05 for statistical significance for our primary
interest, which is the comparison of the performance of our
new and old CAD systems. For statistical tests on other ex-
ploratory issues, if the p value is less than 0.05, we do not
make a comment about whether the test result is statistically
significant because the significance may depend on the ad-
justment of the alpha level for multiple hypothesis testing. If
the p value is larger than 0.05, we state that the test does not
achieve significance because this would be the case either
without or with an adjustment of the alpha level.

V. CONCLUSION

We investigated the LS segmentation method and de-
signed new types of mammographic features including

abruptness of the mass margin and the presence of microcal-
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cifications in the mass. We also investigated the effect of
combining patient age with mammographic features for im-
proving computerized characterization of masses. The indi-
vidual performance of the new features was poorer than
some of our previous features, especially the spiculation fea-
tures. However, the new features were consistently selected
using the stepwise feature selection method for LDA classi-
fication. Statistical tests showed that our new CAD system
based on LS segmentation and the new mammographic fea-
ture space performed significantly better than our previous
CAD system that was based on AC segmentation and the
morphological, RLS, and spiculation features. Patient age by
itself had limited capability in classifying breast mass malig-
nancy. However, when combined with mammographic fea-
tures, patient age improved the performance of the CAD sys-
tem. Our experimental results also indicate that the new
CAD system may have the potential to approach the perfor-
mance of an expert radiologist in classification of masses.
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NOMENCLATURE
AC � active contour

AC-C � AC segmentation for case-based systems
AC-V � AC segmentation for view-based systems

Az � area under the ROC curve
BI-RADS � breast imaging reporting and data system

CAD � computer-aided diagnosis
CC � craniocaudal

CNN � convolution neural network
DDSM � digital database for screening

mammography
DFS � depth first search

FFDM � full field digital mammograms
HLE-RBST � Hessian line enhanced RBST

IRB � Institutional Review Board
LDA � linear discriminant analysis

LM � likelihood of malignancy
LS � level set

LS-C � LS segmentation for case-based systems
LS-V � LS segmentation for view-based systems
MED � minimum Euclidean distance
MLO � mediolateral oblique

MQSA � Mammography Quality Standard Act
NRL � normalized radial length
PDE � partial differential equation
RAD � radiologist

RBST � Rubber-band straightening transform
RLS � run-length statistics
ROC � receiver operating characteristic
ROI � original region of interest

SFM � digitized screen film mammograms

SGLD � spatial gray level dependence
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