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Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in
digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF)
regularization.
Methods: With Institutional Review Board approval and written informed consent, two-view DBT
of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free
of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were
reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that
was designed to enhance MCs and reduce background noise while preserving the quality of other
tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-
modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian re-
sponse to enhance MCs by shape and bandpass filtering to remove the low-frequency structured
background. MC candidates were then located in the EMCR volume using iterative thresholding and
segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and
MC seed objects, were generated and the CNR of each object was calculated. The number of candi-
dates in each set was controlled based on the breast volume. Dynamic clustering around the centroid
objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false
positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster
shape, and cluster based maximum intensity projection. Free-response receiver operating characteris-
tic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance
and compare with that of a previous study.
Results: Unpaired two-tailed t-test showed a significant increase (p < 0.0001) in the ratio of CNRs
for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based
detection, a sensitivity of 85% was achieved at an FP rate of 2.16 per DBT volume. For case-based
detection, a sensitivity of 85% was achieved at an FP rate of 0.85 per DBT volume. JAFROC analysis
showed a significant improvement in the performance of the current CADe system compared to that
of our previous system (p = 0.003).
Conclusions: MBSF regularized SART reconstruction enhances MCs. The enhancement in the
signals, in combination with properly designed adaptive threshold criteria, effective MC fea-
ture analysis, and false positive reduction techniques, leads to a significant improvement in the
detection of clustered MCs in DBT. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4860955]
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1. INTRODUCTION

A recent study1 of 205 radiologists interpreting over one mil-
lion screening mammograms found the median sensitivity to
be 83.8% with a median recall rate of 9.3% requiring di-
agnostic workup for potential abnormal findings. Diagnos-
tic workup and biopsy of false positives (FP) increase health
care costs and patient anxiety. Digital breast tomosynthesis

(DBT) is a new quasi three-dimensional (3D) breast imag-
ing modality. DBT has the potential to reduce false positives
due to overlapping fibroglandular tissue and reduce false neg-
atives caused by camouflaging of lesions by overlying struc-
tures. Several preliminary clinical studies have found an im-
provement in mass detection and a reduction in recall rates
using DBT in comparison to digital mammography (DM).2–9

Comparison of mass visibility between DBT and DM showed
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consistent results in favor of DBT.3, 5, 10, 11 DBT, thus, is ad-
vantageous for breast mass detection and diagnosis, especially
in breasts with heterogeneously dense parenchyma.2–9

In addition to improving the sensitivity and specificity for
mass detection, the ability of DBT to detect microcalcifica-
tion clusters (MCs), which may be the only sign of early
breast cancer, is an important consideration for clinical appli-
cation of DBT as a standalone screening modality. Although
DBT improves the conspicuity of soft tissue lesions compared
to DM by reducing breast parenchymal complexity, it poses
challenges for detection of MCs. These challenges include:
(a) an MC may be split among many slices, (b) blurring due
to reconstruction from multiple angular projections, (c) blur-
ring due to potential patient motion, and (d) focal spot blur
in DBT systems with continuous x-ray source motion.12 The
detectability of subtle signals is also strongly affected by the
tomographic angle and the angular distribution of the projec-
tions of the DBT system.13–17 Preliminary results from studies
comparing the detectability of MCs in breasts between DBT
and DM varied. Some studies2, 18 indicate that MC detection
in DBT is inferior to that of DM, while others found that DBT
is comparable3 or even superior19 to DM. The different results
may be attributed to the differences in the aforementioned
DBT system design parameters, reconstruction techniques, as
well as other human factors such as experience in DBT read-
ing, reader fatigue caused by the large number of slices per
DBT volume, and lower visual quality and fewer numbers of
microcalcifications on each slice and their morphology. With
the success of computer-aided detection (CADe) for detection
of MCs in DM, it is expected that CADe may also play an im-
portant role in improving MC detection in DBT.

Limited preliminary studies on CADe for MCs in DBT
have been performed using small datasets. The detection was
performed in projection views (PVs), the reconstructed slices,
or in the reconstructed volume (RV). Peters et al.20 detected
calcifications on a small set of DBT. A bandpass filter based
wavelet kernel was used to separate the potential calcification
candidates from the background on the PVs. A feature map
was generated for each PV image and the correspondence
between two-dimensional (2D) and 3D locations determined
by the DBT acquisition geometry was used as a criterion to
identify the calcifications. Park et al.21 applied a 2D CADe
algorithm developed for digitized screen-film mammograms
(SFM) to the PV and the reconstructed DBT slices. Reiser
et al.22 developed an algorithm to detect MCs in PV images
to avoid the dependence of the CADe performance on the
reconstruction algorithm. Van Schie and Karssemeijer23 es-
timated a nonuniform noise model from each individual DBT
RV which was used for normalization of the local contrast
feature. Potential microcalcifications were detected by thresh-
olding of the local contrast feature and the microcalcification
candidates within 5 mm radius were grouped to form MCs.

We are developing a CADe system for microcalcification
cluster detection in DBT. In a previous study,24 our CADe
system achieved a sensitivity of 85% at an FP rate of 3.4 per
DBT volume. Our laboratory recently developed a regular-
ized simultaneous algebraic reconstruction technique (SART)
that utilizes multiscale bilateral filtering (MSBF) during the

iterative reconstruction to reduce noise and enhance the sig-
nal strength of microcalcifications.25 In this study, we investi-
gated the detection of microcalcifications in the DBT volume
reconstructed by the MSBF regularized SART. The CADe
system was trained to exploit the enhanced signal properties
and the overall performance was compared to the previous
results.24

2. METHODS AND MATERIALS

A General Electric GEN2 prototype system was used for
DBT imaging. The system uses a step-and-shoot design, a
stationary flat panel CsI/a:Si detector with a pixel pitch of
0.1 mm × 0.1 mm, Rh anode, and Rh filter, and acquires
21 PVs in 3◦ increments in a total tomographic angle of 60◦.
DBT reconstruction was performed using SART with multi-
scale bilateral regularization. All DBT volumes were recon-
structed at 1 mm slice spacing with an in-plane resolution
of 0.1 mm × 0.1 mm. The flow diagram in Fig. 1 can be
broadly divided into four processes: (a) regularized recon-
struction with enhancement (Sec. 2.B), (b) preprocessing to

FIG. 1. Schematic of our CADe system for microcalcification cluster detec-
tion in DBT.
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enhance the signals and suppress the structured background
(Sec. 2.C), (c) detection and segmentation of cluster seed ob-
jects and signal candidates (Sec. 2.D), (d) dynamic clustering
for cluster formation and false positive reduction to refine the
detected clusters (Sec. 2.E).

2.A. Data set

With approval of Institutional Review Board (IRB) and
written informed consent, 154 subjects were recruited from
the Breast Imaging Division, Department of Radiology at the
University of Michigan Health System. Craniocaudal (CC)
and mediolateral oblique (MLO) views of DBT were acquired
from the breast recommended for biopsy of a suspicious le-
sion. Of the 154 breasts, 116 had biopsy proven MCs (34 ma-
lignant, 120 benign) and 38 were free of MCs. The dataset
was split into two independent subsets for training and vali-
dation of the CADe system. The training set consisted of 64
cases (127 views – one view was lost due to technical prob-
lem) with MCs and the remaining 52 MC cases and 38 cases
free of MC (total 180 views) were used for testing. A Mam-
mography Quality Standards Act (MQSA) approved radiolo-
gist marked the location of the biopsied MC with a 3D bound-
ing box based on all clinical information available. For the
training set of 127 views and the test set of 104 views, 124
and 100 biopsy-proven MCs were marked, respectively. For
three breasts in the training set and four breasts in the test set,
the MC was visible only in one of the DBT views.

2.B. Multiscale bilateral filtering regularized
tomosynthesis reconstruction

We have been investigating regularized SART to im-
prove the contrast-to-noise ratio (CNR) of microcalcifica-
tions in DBT for both human and machine detection.25–27

Our early studies indicated that selective diffusion regular-
ization method is superior to total variation regularization in
terms of the CNR of microcalcifications. However, fine fi-
brous structures and mass spicules may be blurred and very
subtle microcalcifications may be inadvertently smoothed as
noise if they failed the selective diffusion criterion that de-
pends on the local gradient of the signals. Recently, we de-
veloped a new MSBF regularized SART that can enhance
the high frequency structures such as microcalcifications and
suppress noise without smoothing the spicules and fibrous
tissue. The details of the technique have been described in
Ref. 25. In brief, regularization is performed at the end of each
SART iteration. A reconstructed DBT slice is first separated
into low and high frequency bands using Laplacian pyramid
decomposition.28 Bilateral filtering is applied to the high fre-
quency bands that contain the noise and microcalcifications.
By properly choosing the domain and range filter parameters,
the bilateral filter29 can selectively enhance the microcalcifi-
cations while suppressing the noise. The DBT slice is then
reconstructed from all levels of the Laplacian pyramid. The
DBT volume is used as an input to the CADe system. In our
discussion, a DBT volume denotes the collection of all slices

reconstructed from the 21 PVs acquired for a DBT scan in a
given view (CC or MLO view).

2.C. Preprocessing

The purpose of preprocessing in a CADe system is to
enhance the lesion of interest and suppress the structured
anatomical background to improve signal detection. It is ob-
served that microcalcifications are compact, dense objects and
have higher CNR compared to soft tissue structures of compa-
rable sizes. Both of these properties are exploited using shape
information from second order derivatives (Sec. 2.C.1) and
contrast information from bandpass filtering (Sec. 2.C.2).

2.C.1. Multiscale calcification response

As described in our previous work,24 for enhancement of
microcalcifications, the input DBT volume is processed by
3D multiscale filtering and a calcification response is derived
from the Hessian matrices at each voxel. The same process is
applied to the regularized reconstructed DBT volume.

Second order spatial differential operators have been used
widely to extract features based on edges. The Hessian ma-
trix is a symmetric matrix consisting of second order partial
derivatives of the local structure. The three eigenvalues of the
Hessian matrix characterize the shape of an object at that spa-
tial location. To reduce the variation in the second derivatives
due to noise, the DBT volume I(x, y, z) is first convolved with
a 3D Gaussian smoothing function at a scale σ :

sσ (x, y, z) = 1

(2πσ 2)3/2
exp{−(x2 + y2 + z2)/2σ 2}, (1)

which results in a smoothed volume f(x, y, z). For every voxel
in f(x, y, z), the Hessian matrix is given by

Hσ (x, y, z) =

⎡
⎢⎣

fxx fxy fxz

fyx fyy fyz

fzx fzy fzz

⎤
⎥⎦ . (2)

The eigen decomposition of the Hσ gives the principal axes
(E1, E2, E3) of the local structure. The corresponding eigen-
values (λ1, λ2, λ3) can be effectively used to determine the
shape of the object. The response function (rσ ) is designed to
have high values if the object is an approximately spherical
structure at scale σ :

rσ =
{

λ2
3/λ1 if λ1 ≤ λ2 ≤ λ3 ≤ 0

0 otherwise
, (3)

where λ1, λ2, λ3 are the eigenvalues of the Hessian matrix at
(x, y, z) and scale σ . The response value is large if the scale
matches the size of the object. Because the sizes of microcal-
cifications are variable and the size of a potential object at a
given location is not known, this process is performed at mul-
tiple scales σ i, i = 1, . . . , n, to cover a range of possible sizes.
The multiscale calcification response (MCR) is then defined
as E(x, y, z) at a given location over different scales:

E(x, y, z) = rσi∗

σi∗
, where i∗ = arg maxi{rσi}. (4)
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FIG. 2. Filter F(x, y) used for CNR enhancement, which is composed of
three box filters with kernel sizes, M1 = 7, M2 = 3, M3 = 1.

With this approach for microcalcification detection, both the
object intensity and the shape information are taken into con-
sideration, and high response can be obtained from microcal-
cifications of various sizes.

2.C.2. CNR enhancement

Detection of microcalcifications is affected significantly by
the presence of anatomical structured noise. We implement
a 2D bandpass filter to suppress the structured background
and simultaneously enhance the signal, thereby enhancing
the CNR. The CNR enhancement filter is constructed from
a combination of three filters (F1, F2, F3), each with specific
purpose. Filters F1 and F2 with kernel sizes of M1 × M1 and
M2 × M2, respectively, are combined to obtain an estimate of
the background and filter F3 with a kernel size of M3 × M3 is
used to enhance the signal. Each filter kernel weight is 1/M2

i

in a Mi × Mi box and 0 elsewhere. The combined bandpass
filter F(x, y) selectively enhances the signal and simultane-
ously suppresses the background. The 2D filter is convolved
with the original input DBT volume slice-by-slice, resulting
in a CNR enhanced volume (C). An example of the bandpass
filter kernel with M1 = 7, M2 = 3, M3 = 1 is shown in Fig. 2:

F (x, y) = F3(x, y) − 1

M2
1 − M2

2

× [
M2

1 F1(x, y) − M2
2 F2(x, y)

]
, (5)

where M1 > M2 ≥ M3;

C(x, y, zj ) = I (x, y, zj ) ⊗ F (x, y), (6)

where j = 1, . . . ,K, and K is the total number of slices in the
volume.

2.C.3. EMCR volume

An enhancement-modulated calcification response
(EMCR) volume is generated from the CNR enhanced and

multiscale calcification response volumes. In the EMCR
volume, subtle signals are further emphasized because true
microcalcifications should have relatively high voxel values
in both volumes. We previously weighted the MCR with the
CNR enhanced volume:

EMCR1(x, y, z) = E(x, y, z) ∗ C(x, y, z). (7)

A more flexible weighting method is considered in this study:

EMCR2(x, y, z) = exp{2[w1 log(E(x, y, z))

+w2log(C(x, y, z))]}, (8)

where (w1, w2) are adjustable weights that can selectively
emphasize one of the volumes. Figure 3 illustrates different
stages of preprocessing steps for an MC that was biopsy-
proven to be ductal carcinoma in situ (DCIS).

2.D. Cluster and object seed detection

The aforementioned preprocessing steps produce a new
volume in which the potential microcalcifications are en-
hanced and the low frequency background is removed. The
subsequent steps are prescreening, segmentation, quantifica-
tion of the signal characteristics, false positive reduction, and
eventually forming clusters.

2.D.1. Seed object detection

The voxel values in the EMCR volume are CNR-weighted
calcification response that indicates the presence of a micro-
calcification. The stronger the response value, the higher the
likelihood. The N highest response objects are identified as
the cluster centroid objects that will be used as starting points
for forming clusters. The top Ns objects are identified as the
individual seed objects that will be used as seed points for seg-
mentation of the individual objects and as the potential mem-
bers of a cluster. The cluster centroid object set is a subset of
the individual seed object set.

High response objects are found in the EMCR volume by
an iterative process that combines thresholding and region
growing. The initial EMCR threshold is first chosen to be high
enough to detect only few objects. Voxels above the thresh-
old are grouped into 3D objects using 26-connectivity.30 The
threshold is then reduced iteratively until the preset numbers
of N centroid objects and top Ns seed objects are found. For
each detected 3D object, the maximum EMCR voxel value of
the object is used as a score to rank the top N and top Ns sig-
nals. The coordinates of the voxel with the maximum EMCR
value are used to identify the 3D location of the object.

The numbers of candidates for the cluster seeds N and the
individual calcifications Ns are chosen adaptively according
to the breast volume in the DBT view. Based on analysis of
the breast volumes of the training cases and the number of
prescreening candidates to include at this stage, the breast vol-
umes are partitioned into four brackets for the N and Ns values
as shown in Fig. 4. In the largest volume range of greater than
2000 × 103 mm3, the N and Ns values are chosen to be 100
and 800, respectively. The values are reduced to 80%, 50%,
and 40% for the three smaller volume ranges. The purpose of
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SART SART + MSBF MCR CNR EMCR2

FIG. 3. Different stages of CADe preprocessing module (Horizontally: SART-Simultaneous algebraic reconstruction technique, MSBF-Multiscale bilateral
filtering regularization, MCR-Multiscale calcification response, CNR-CNR enhanced volume, EMCR2-Enhancement-modulated calcification response). (Verti-
cally: slices 24–27). The case shown is biopsy-proven to be ductal carcinoma in situ. The ROI shown is 1.3 × 1.3 mm (130 × 130 pixels).

stratification of the volume range is to approximately main-
tain the number of seed objects per unit breast volume, which
improves the robustness of the CADe system for breasts of
different sizes.

2.D.2. CNR calculation and segmentation

For each seed object determined in the previous step, ob-
ject segmentation is performed in the CNR enhanced volume.
Local foreground (FG) and background (BG) information in
the CNR enhanced volume is estimated for the seed object in
a 5.1 × 5.1 × 5 mm box centered at the geometric center of
the object. Starting from the center location of the seed object,
region growing based on 26-connectivity and a CNR criterion
is used to determine if a neighboring voxel is a part of the
object. For a given voxel i, the CNRi is calculated as

CNRi = Vi − μBG

σBG
, (9) FIG. 4. The dependence of the numbers of top N and Ns objects based on

the breast volume in the DBT views of the training set.
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where Vi is the voxel value in the CNR-enhanced volume,
μBG and σ BG are the mean and standard deviation estimated
in the 5.1 × 5.1 × 5 mm box excluding all voxels that are
determined to belong to potential objects in the previous seed
object detection step. Object growth and segmentation are ter-
minated if no more neighboring voxel has CNR greater than
a chosen threshold. A CNR threshold of 3.0 is used as in our
previous study. The CNR of the object, CNRobj, is defined as
the maximum CNR among all voxels of the grown object:

CNRobj = Vmax − μBG

σBG
. (10)

Feature extraction is subsequently performed on the seg-
mented object. Any object connected more than 12 mm in
the depth direction is considered artifact and removed. Arti-
facts generated from surgical clips and large dense calcifica-
tions are removed through this criterion. Size and eccentricity
of each object are calculated. Based on the training set, crite-
ria are chosen such that objects with number of voxels >30
voxels and eccentricity >3 are considered large benign calci-
fications or FPs and are eliminated from the Ns object list.

2.D.3. Adaptive CNR thresholds

The CNRobj values and number of microcalcifications
within an MC vary over a wide range. To analyze the char-
acteristics of MCs, a subset of 20 cases (40 DBT volumes)
were randomly selected from the training set and the loca-
tions of the individual microcalcifications in the cluster were
manually marked by an experienced medical physicist within
the bounding box of the cluster identified by the radiologist.

Figure 5(a) shows the number of manually marked mi-
crocalcifications in the 40 clusters and the subset of those
included in the top Ns objects at the prescreening stage.
Figure 5(b) shows the mean and standard deviation of the
CNRobj values for the manually marked microcalcifications
within the top Ns objects in each cluster and the mean and
standard deviation of the CNRobj values for all top Ns objects
excluding those overlapped with the manually marked micro-
calcifications, which would be predominantly FPs. It can be
seen that there are large variations in the distributions of the
CNRobj values among the different DBT volumes except that
the mean CNRobj for the FPs is relatively consistent. In order
to compensate for such a variation, thresholds are estimated
adaptively for the individual volumes. These thresholds are
used to classify the detected objects as noise, subtle, moder-
ate, or strong. For each DBT volume, based on the distribu-
tion of the CNRobj values of the Ns objects, four thresholds
are generated as

Tt = μ + kt ∗ σCNR, (11)

where μ is the mean, σ CNR is the standard deviation of the
CNRobj distribution, and Tt with t = 0, . . . , 3 are the adap-
tive CNR thresholds. Tt are determined automatically from
the CNR distributions of the candidate objects in the breast
volume being analyzed and the kt values. The kt values and
the usage of each of the four thresholds are described in
Sec. 2.E.

FIG. 5. (a) Number of microcalcifications within each radiologist provided
3D box for a subset of 20 cases (40 DBT volumes) from the training set.
Squares: manually marked microcalcifications. Circles: the subset of top Ns

objects that overlapped with manually marked microcalcifications. The DBT
volume numbers followed the same ordering as in Fig. 5(b). (b) Mean and
standard deviation of the CNRobj values in the same 40 DBT volumes. Cir-
cles: the top Ns objects that overlapped with manually marked microcalcifica-
tions. Triangles: all Ns objects in the DBT volume excluding those overlapped
with the manually marked MCs. The DBT volume numbers were ordered by
sorting the mean CNRobj values of the true microcalcifications (circles) in the
CC-view DBT and assigned them the odd numbers, and the MLO view of the
same case was ordered next to its CC view (even numbers). The DBT volume
numbers of the false positives (triangles) followed the same order as the true
microcalcifications but were offset by 0.5 to avoid overlap of the error bars
(±1 standard deviation). Note: The cluster in DBT volume 1 was not visible,
as determined by the radiologist so there was no CNRobj value.

2.E. Cluster detection and false positive reduction

2.E.1. Dynamic clustering

The top N cluster seeds and the top Ns objects are sepa-
rately ranked based on their CNRobj values. A dynamic clus-
tering process groups the objects into clusters as follows.
Starting from the highest ranked cluster seed, clustering starts
if the given seed has a CNR value greater than the T0 thresh-
old. This is the initial cluster centroid. From the cluster cen-
troid object, it searches for cluster members from the N and Ns
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lists. The objects within a distance of 5 mm and greater than
the T1 threshold are added to the cluster sequentially. During
the addition of each individual object to the cluster, the cluster
centroid location is dynamically updated based on the collec-
tive geometric center of the objects already included as cluster
members. This cluster size is, therefore, not limited to 10 mm
in diameter and can potentially grow to cover larger clusters.
Dynamic clustering extends the cluster size adaptively, which
will reduce the chance of grouping widely scattered calcifica-
tions and FPs to be a cluster compared to the use of a fixed and
large radius for clustering. Any object that has been included
as a member of a cluster will be eliminated from the lists. A
cluster stops growing when no more objects satisfy the crite-
ria. The next highest ranked cluster seed on the N list will then
be used to grow the next cluster. The dynamic clustering pro-
cess ends when the N list is exhausted. The k0 and k1 values
were experimentally chosen to be 0.2 and −0.1, respectively,
based on the training set.

2.E.2. False positive reduction

The cluster formation stage only considers the distance
from the centroid object and the CNR values of the ob-
jects. FP clusters can be formed from individual FPs in
close proximity that originate from different sources. Some
examples of FP clusters are shown in Fig 6. The follow-
ing FP reduction steps make use of the features of micro-
calcifications and clusters to distinguish the true and FP
clusters.

Size, CNR, and number of objects in cluster. Object-based
features such as size (SZt), CNR, number of objects (ct),
within each cluster are combined to form cluster features.
Three rules are designed as shown in Table I to identify clus-
ters of a range of subtlety. The adaptive CNR thresholds Tt

are determined by Eq. (11) and the kt values. The k2 and k3

values were chosen experimentally to be 0.5 and 0.6, respec-
tively, from the training set. The SZt values (t = 1, 2, 3) were
experimentally selected to be 5, 8, and 14 voxels, representing
subtle, medium, and obvious MCs, respectively.

Because the breast boundaries and the vessels and connec-
tive tissue in the breast periphery cause strong enhancement
in tomosynthesis reconstruction and multiscale bilateral regu-
larization, more stringent criteria are used to reduce FPs near
the breast peripheral region. Thus, for clusters with its cen-
troid falling within 6 mm of the breast boundary, only rules 1
and 2 will be applied.

Cluster shape. The shape of the bounding box of a clus-
ter is used to estimate the distribution of the calcifications
in the cluster. A long and narrow shaped box may indicate
FPs caused by artifacts of high density objects in the breast
such as metallic markers or benign calcifications. Given the
bounding box of a cluster, the cluster is eliminated as FP if
the smaller dimension of the box is smaller than a narrow di-
mension threshold of 3 mm and the rectangularity of the box
is greater than 7.

Maximum intensity projection (MIP). Some of the curved
or branching tissue or vascular structures appear as multiple
disconnected objects in 3D and form a cluster. To detect this

type of FP clusters, MIP of a cluster in the CNR enhanced do-
main is projected along the depth direction to the (x, y) plane.
The CNR based segmentation (see Section 2.D.2) is then per-
formed for every object in the MIP plane. If the objects are
connected on the MIP plane and the number of objects in the
cluster is reduced to below the threshold, then the cluster is
classified as FP.

2.F. Performance analysis

Rank-sensitivity plot. To optimize the parameter selection
during the training stage, a curve similar to a free response
receiver operating characteristic (FROC) plot is used to eval-
uate the detection performance of cluster seed objects at the
prescreening stage. The x-axis of the rank-sensitivity plot is
the rank threshold R of the highest rank objects based on the
EMCR score that are kept as cluster seeds at prescreening.
The y-axis is the fraction (F) of DBT volumes that have at
least one cluster seed within the bounding box of the true clus-
ter at the rank threshold R, defined as

F (R) =
∑

all volumes Vn

V
, (12)

where Vn = 1 if the true cluster in a given DBT volume con-
tains at least one cluster seed object, and Vn = 0 otherwise.∑

all volumes Vn is the number of volumes that the true cluster
is included in the R highest rank objects and V is the total
number of volumes containing true clusters in the data set.
Therefore, the rank-sensitivity plot at a given R is the per-
centage of true clusters that contain at least one cluster seed
when the top R objects are kept in the DBT volume at the
pre-screening stage. The rank-sensitivity plot is useful for op-
timization of the performance of the CADe system at the pre-
screening stage. It is important to maximize the sensitivity at
this stage because missed clusters will never be recovered at
later stages.

FROC. The performance of the CADe system was assessed
using FROC analysis. The highest CNR value among the sig-
nals within each cluster, i.e., the CNR score, is used as the
decision variable for detection. The FROC curve is generated
by varying the CNR threshold over a range from the high-
est to the lowest sensitivity and counting the clusters that ex-
ceeds each threshold. A cluster is classified as TP if the loca-
tion of the cluster centroid lies within the 3D bounding box
marked by the radiologist and FP otherwise. FROC curves for
the test set are reported in two ways. The view-based analysis
treats the same cluster imaged in the two views as indepen-
dent targets while case-based analysis treats the same cluster
in the two views as the same target such that detection of the
cluster in either one or both views is considered to be a TP
detection.

JAFROC. Jackknife alternative FROC (JAFROC)
analysis31 is used to measure the performance difference
between the previous study and the current method as two
different treatments within a multicase scenario. Each view
has only one biopsy-proven TP cluster, in case of multiple
computer-detected clusters with centroid lying within the
radiologists’ bounding box, only one TP is counted for FROC
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Case A

Case B

(a)

(b)

(c)

FIG. 6. (a) Examples of FPs from in-plane artifacts of metallic marker (Case A, slice numbers 43–45) and benign calcification (Case B, slice numbers 4–8). The
FPs were eliminated by the cluster shape criterion. (b) Example of FPs from in-plane artifacts from surgical clips (slice number 39, 41, and 43). The resulting
FP cluster was eliminated using the decision rules in Table I. (c) Example of FPs from branching tissue structures (slice number 2934) upper row: DBT slices,
lower row: maximum intensity projection of the corresponding slices using a running 11-slice window. The resulting FP cluster in (c) was eliminated by the
MIP analysis.

TABLE I. Decision rules based on features extracted from candidate signals in a cluster.

Cluster containing microcalcifications Rule for each object Number of objects satisfying
with characteristics of in a cluster the rule within a cluster Criterion

1 Low CNR but larger in number ≥SZ1 and ≥ T1 c1 if (c1 ≥ 4)
2 Medium and high CNR ≥SZ2 and ≥ T2 c2 if (c2 ≥ 3)
3 Mixed low CNR and high CNR but few in number ≥SZ3 and ≥ T3 c3 if (c3 = 1) and (c1 ≥ 2)
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FIG. 7. Illustration of CNRobj in DBT with and without MSBF regulariza-
tion. (a) The subset of N cluster centroid objects that overlapped with the
manually marked true microcalcifications, (b) all other N cluster centroid ob-
jects excluding those overlapping with the true microcalcifications in (a) for
a subset of 20 cases (40 DBT volumes) from the training set. The CNRobj for
the microcalcifications (or other objects) in the DBT volumes reconstructed
without MSBF were sorted by magnitude and the CNRobj of the correspond-
ing microcalcifications (or other objects) in the DBT volumes reconstructed
with MSBF were plotted in the same order.

and JAFROC analyses. JAFROC analysis is applied to the
view-based FROC curves, which provides the figure-of-merit
(FOM) of each curve and the significance of the differences
between the two curves being compared.

3. RESULTS

3.A. Effect of multiscale bilateral regularization

To investigate if there is a gain in the CNR of microcalci-
fications relative to that of FPs in the DBT volumes by regu-
larized SART, the CNRobj values of the top N cluster centroid
objects that overlapped with the manually marked true mi-
crocalcification locations in 20 training cases (40 DBT vol-
umes) when the MSBF-SART reconstructed volumes were
used as input were compared to those when the conventional
SART reconstructed volumes were used as input, as shown in

Fig. 7(a). The same comparison for the top N objects detected
at prescreening excluding the manually marked microcalcifi-
cation locations, which would be predominantly FPs due to
noise and other structures, was shown in Fig. 7(b). It can be
seen that both the true microcalcifications and the other ob-
jects were enhanced by the MSBF regularized reconstruction.
However, the improvement in the CNRobj for the true signals
was, on average, higher than that for the other objects. We cal-
culated the ratio of the CNRobj values with and without MSBF
regularization for each individual calcification [objects in
Fig. 7(a)] and FPs [objects in Fig. 7(b)] and compared the
distributions of the two groups of CNR ratios by unpaired
two-tailed t-test. The analysis shows that the CNR ratios of
the true calcifications were significantly higher (p < 0.0001)
than those of the FPs. The results indicate that MSBF can
differentially enhance the true microcalcifications more than
the FPs, thereby improving the classification between true and
false positives.

3.B. Effect of EMCR formulation

The parameters for Hessian multiscale response filter
and CNR enhancement were optimized during our previ-
ous work.24 Based on the training data, the Gaussian scales
for MCR volume generation were fixed at 0.25, 0.30, and
0.40 mm and the kernel sizes (M1, M2, M3) for CNR enhance-
ment were fixed at (7, 3, 1). For EMCR volume generation,
the weights were chosen to be w1 = 0.4 and w2 = 0.6, for
the weighted EMCR2 volume in Eq. (8). The rank-sensitivity
plots are compared in Fig. 8 for the two alternative EMCRs
defined in Eqs. (7) and (8). A trend can be observed that more
true clusters would contain a larger number of cluster seed
objects in some range of R if EMCR2 was used instead of
EMCR1. Alternatively, for some range of sensitivities, the
EMCR2 curve required a smaller R than the EMCR1 curve,
indicating that the cluster seeds in the biopsy-proven clusters

FIG. 8. Rank-sensitivity plots comparing two EMCRs for detection of clus-
ter seeds at the prescreening stage. The two EMCRs were compared for the
fractions of true clusters containing at least 1, 2, 3, and 4 cluster seeds, de-
noted as 1, 2, 3, 4 in the legend, respectively, when the top R objects are kept.
The fraction of clusters was relative to the total of 124 clusters in the 127
training volumes.
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FIG. 9. Comparison of FROC curves for fixed and adaptive CNR thresholds.
For the fixed threshold curves, the values in the legend indicate the CNR
threshold, the size threshold, and the number of signals in a cluster used for
the detection. Refer to Sec. 2.E.2 for size and signal count parameters related
to the adaptive threshold approach. The sensitivity was relative to the total of
124 clusters in the 127 training volumes.

were ranked higher when the weighted EMCR2 volume was
used. EMCR2 was, therefore, chosen for the current CADe
system.

3.C. Fixed CNR threshold vs adaptive CNR threshold

In our previous work, a fixed CNR threshold was used
across all volumes for formation of the clusters, contrary to
the adaptive CNR threshold approach described in Sec. 2.D.3.
Figure 9 compares the FROC curves for the fixed and adaptive
CNR threshold methods for the training set. The detection re-
sults were analyzed after the first FP reduction step using size,
CNR, and number of objects within a cluster.

3.D. Effect of false positive reduction

FROC curves are compared for the training set at different
FP reduction stages, as summarized in Fig. 10 and Table II.
The FP rate for 85% sensitivity was initially at 3.15 FPs per
DBT volume and reduced to 1.70 FPs per DBT volume after
all the FP reduction steps.

3.E. Validation

The CADe system with the trained parameters and deci-
sion rules was applied to the test set. The view-based and
case-based test FROC curves, respectively, of the current sys-
tem with and without the MSBF regularization are compared
to the corresponding curve obtained from the CADe system
in our previous study24 in Figs. 11(a) and 11(b). The sensi-
tivity was assessed from 52 cases (104 views) with MCs and
the average number of FPs per DBT volume was estimated
from 38 cases (76 views) free of MCs. Comparing the previ-
ous CADe system without MSBF and the current CADe sys-
tem with MSBF, at 85% view-based sensitivity, the FP rate

FIG. 10. FROC curves for the training set at different stages of false positive
reduction. In the legend, “+ cluster shape” indicates the addition of the clus-
ter shape criterion to the three criteria: size, CNR, and the number of objects
in the cluster, “+ MIP” indicates the addition of the MIP criterion to the four
preceding criteria. The sensitivity was relative to the total of 124 clusters in
the 127 training volumes.

reduced from 5.42 to 2.16 FPs per DBT volume; at 85% case-
based sensitivity, the FP rate decreased from 2.72 to 0.85 FPs
per DBT volume. It may be noted that the performance of
85% view-based sensitivity at 5.42 FPs per DBT volume from
the previous version of our CADe system was obtained from
the subset of cases matched to the current test set. The pre-
viously reported results24 were obtained from 72 breasts (144
views) with MCs and the 38 breasts (76 views) free of MCs,
of which 20 breasts with MCs were included in our current
training set so that they were excluded from the current test
set. JAFROC analysis of the view-based FROC curves shows
a statistically significant improvement in the FOM with a p-
value < 0.05 as shown in Table III.

To evaluate the improvement in the detectability of the
MCs due to MSBF regularization, we applied the current
CADe system to the DBT reconstructed with SART without
regularization. It can be seen from Fig. 11(a) that, for about
70% of the clusters that are detected at relatively high CNR
thresholds (the region of the curve at low FP rates), the de-
tection sensitivities in the DBTs with and without MSBF are
comparable, and both are better than the curve from the pre-
vious CADe system. However, without MSBF enhancement,
the very subtle clusters cannot be detected by the current

TABLE II. FROC estimated FPs at cluster formation and different FP reduc-
tion stages for the training set.

FPs per DBT volume
at 85% sensitivity

Initial clusters 3.15
FP reduction (size, CNR, number of
objects in cluster)

1.91

FP reduction (cluster shape) 1.90
FP reduction (MIP) 1.71
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FIG. 11. FROC curves for the test set of 180 DBT volumes from 52 breasts
with MCs and 38 breasts free of MCs obtained from the current and previous
methods. The sensitivity was estimated relative to the total of 100 clusters in
the 104 DBT volumes of the 52 cases with MCs. The FP rates were estimated
from the 76 DBT volumes free of MCs. (a) View-based FROC curves: the MC
in each view was counted as an independent target. (b) Case-based FROC
curves: the MC in a breast was considered as detected if it was detected in
either one or both views. The FP rate per case can be derived by multiplying
the FP rate per DBT volume with the number of DBT volumes per case.

CADe system. This gain in sensitivity by MSBF surpasses
what could be achieved even when the CADe system was de-
signed to trade-off specificity for sensitivity as was done in
our previous CADe system.

TABLE III. Improvement in the FROC curves for the test set between the
preliminary and the current study by JAFROC analysis. The difference in the
Figure-of-Merit (FOM) between the two treatments is statistically significant
with a p-value < 0.05.

Treatment FOM 95% Confidence interval

Previous CADe 0.49 (0.42, 0.55)
Current CADe with MSBF 0.58 (0.52, 0.65)
p-value 0.003

4. DISCUSSION

The SART with multiscale bilateral regularization en-
hances the high frequency calcification signals (Fig. 3) and
smoothens the noise without blurring the mass margins and
spiculations.25, 27 The microcalcifications in the DBT volumes
by regularized SART have higher CNR than those in the
conventional SART. The increased CNR is important for the
separation of TP (true-positive) and FP microcalcifications,
which contributed substantially to the improvement in the de-
tection accuracy of our current CADe system.

The regularized DBT volume was further transformed to
generate the MCR and CNR enhanced volumes. The response
function of the Hessian analysis was optimized to obtain high
MCR values for spherical objects. The CNR enhanced vol-
ume highlighted the high contrast structures while suppress-
ing the background. Combination of the MCR and the CNR
enhanced volumes generated an EMCR volume which takes
advantage of the enhanced structure and contrast information.
The generation of EMCR can be considered to be an FP sup-
pression process at the signal level. As seen in Fig. 8, the new
EMCR improved the ranking of the true cluster seeds within
the set of potential cluster seeds. The higher ranking or larger
number of seeds in the cluster provides a greater chance that
a cluster would be formed in the clustering stage. EMCR2 is,
therefore, chosen in the current CADe system.

The multiscale bilateral regularization increases the CNR
of the true microcalcifications relative to the FP objects,
which will lead to higher EMCR ranking, on average, of the
true microcalcifications in the set of top Ns candidates. The
increase in the ranking of the true signals will increase the
chance that the individual microcalcifications will be captured
as cluster members earlier in the clustering process to form a
true cluster.

The overall impact of MSBF regularization on the de-
tectability of subtle MCs is well demonstrated in the FROC
curves with and without MSBF compared in Fig. 11. Without
MSBF enhancement, the CADe system cannot differentiate
the subtle microcalcifications and noise effectively. Our previ-
ous CADe system had to make compromise in order to detect
the subtle clusters but also retain a larger number of FPs at all
sensitivities. With MSBF and redesigning the CADe system
to exploit the increased separation between the microcalcifi-
cations and FPs, the FP rate is reduced at a given sensitiv-
ity, or alternatively, the sensitivity is increased at a given FP
rate, compared to that achieved with the previous CADe sys-
tem. The new adaptive strategies can accommodate microcal-
cifications that have reasonably good CNR with and without
MSBF, as observed from the consistent performance in the
region of the curves at low FP rates. For the very subtle MCs
that are close to noise, they will be lost without regularization
if the FP rate has to be kept low.

The variation of the CNRobj of the detected objects
at prescreening depends on the complexity of the breast
parenchyma; dense breasts have larger variations than fatty
breasts due to the fibroglandular structures. The regularized
reconstruction enhances the conspicuity of TP signals as well
as fibrous structures, although the enhancement of true signals
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is greater than that of FPs [Figs. 7(a) and 7(b)]. The use of a
low fixed CNR threshold across volumes to increase sensitiv-
ity would result in a high FP rate, while a high fixed threshold
to reduce the FP rate might lead to low sensitivity. In order
to adapt to the CNR variations across breast volumes, we de-
signed an adaptive CNR threshold method in which the CNR
threshold is calculated for each volume based on the distri-
bution of the CNRobj of the segmented Ns objects. Figure 9
shows the effect of the fixed CNR threshold, the microcalcifi-
cation size, and the number of microcalcifications in the clus-
ter on the FROC curves. With an increase in the threshold for
the number of microcalcifications, the sensitivity increased
steeply at the low FP range but it leveled off and could not
reach as high sensitivity as the other conditions. The adaptive
CNR threshold method could reach a higher sensitivity in the
mid FP range and it is more robust against changes in the CNR
distribution from different DBT volumes. The adaptive CNR
threshold method was, therefore, implemented in our current
CAD system.

Based on the analysis of the TP and FP clusters on the
training set, several major types of detected objects were
identified, (a) true microcalcifications, (b) arterial calcifica-
tions, (c) bending or branching fibrous tissue, ducts, or vas-
cular structures, (d) inter- or in-plane artifacts due to metal
clips or dense benign calcifications, and (e) random noise.
Some of the true calcifications that were considered clinically
insignificant and were not marked by the radiologist were
counted as FP signals. The decision rules based on size, CNR,
and number of signals in a cluster (Table I) effectively re-
duced the FPs either at the individual object or cluster levels.
Figure 10 indicates that the FP rate was reduced from 3.15 to
1.91 FPs per DBT volume at 85% sensitivity. The shape of
the cluster is related to the distribution of the objects within
the cluster. Clusters that are too elongated can be an indica-
tion of arterial calcifications, the shadows of metal clips, or
edges of fibrous tissue or other structures. A rectangularity
criterion was imposed on the shape of the bounding box to re-
duce some of the FPs. Vessels and fibrous structures can also
extend across slices and be detected as separated objects due
to noise in the images. Because of the blurring in the depth
direction in DBT, the vessels and fibrous tissues cannot be
traced as a continuous structure in 3D. Instead, we used the
maximum intensity projection of the cluster to the plane par-
allel to the DBT slices to obtain a planar image. The connec-
tivity of the detected objects and their shape are assessed in
the CNR enhanced domain to eliminate extended connected
structures, reducing the FP rate to 1.71 per DBT volume for
the training set. The effectiveness of these criteria depends on
the parenchymal structures of the breast.

The current CAD system showed a significant improve-
ment in the figure-of-merit of the FROC curve from 0.49 to
0.58 compared to our previous CAD system (Table III). The
current system is different from the previous system in several
ways. The microcalcifications are first enhanced by the MSBF
regularized SART. The EMCR formulation is improved. The
fixed CNR threshold method is replaced by an adaptive CNR
threshold method. The numbers of cluster seeds and indi-
vidual seeds are adaptively determined based on the recon-

structed breast volume. The decision rules that combine the
CNR threshold, the signal size threshold, and the number of
signals in a cluster for FP reduction are redesigned. A maxi-
mum intensity projection method is added to identify FPs due
to extended structures detected as points in 3D. The collective
effects of these improvements significantly increase the sen-
sitivity and specificity of the CAD system. The reduction in
FPs will facilitate correspondence analysis between clusters
found in CC and MLO views. We will investigate methods to
register the DBT volumes in CC and MLO views and com-
bine the detected cluster information from the two views to
further reduce FPs.

The current CADe system is designed to be adaptive to
the CNRs of microcalcifications in the input DBT volume.
The difference in the CNRs may be caused by many factors
such as differences in the reconstruction techniques, regular-
ization, image acquisition parameters, and the detector and
system design characteristics of the DBT systems, in addition
to the natural variations in the properties of the lesions in the
patient population. Without testing the CADe system with the
wide varieties of DBTs, it is not known whether the system is
robust against these factors. However, some hints may be ob-
served from the analysis of the CNRobj in our dataset, which
contains microcalcifications with CNRobj over a range of
5–50 [Fig. 7(a)] and mean CNRobj over a range of about 5–25
[Fig. 5(b)]. The comparison of the FROC curves in Fig. 11 for
DBT with and without MSBF shows that the performance of
the current CADe system is comparable for about 70% of the
MCs with and without MSBF. This indicates that the CADe
system is adaptive to a relatively wide range of CNRs. How-
ever, for DBTs in which the CNRs of the microcalcifications
are low relative to the FPs due to any factors mentioned above,
the sensitivity of the CADe system will be low without trad-
ing off the specificity, which is expected for any CAD systems
or human readers. It is, therefore, important to acquire and re-
construct DBT with good image quality for detection of sub-
tle microcalcifications. This study demonstrates that MSBF
regularization is an effective approach to enhancing the CNR
of subtle microcalcifications, which is expected to increase
their chance of being detected by this or other CADe systems.
Evaluation of the performance of our CADe system for DBTs
of different image quality is out of the scope of the current
study.

Detection of breast cancer at early stage can reduce the
mortality rate and DBT is poised to surpass DM in sensitivity
and specificity.2–11, 19 However, the time and effort required to
search for microcalcifications in the large DBT volume and
the inevitable oversight under the workflow demand is a ma-
jor concern of replacing DM with DBT. Slab view and synthe-
sis of a 2D image from the DBT volume to create a DM-like
image are potential approaches that can facilitate the visual
search of microcalcifications by radiologists. A CADe sys-
tem that can efficiently search for subtle lesions in the DBT
volume will further assist radiologists and utilize the 3D in-
formation. It will be of interest to develop CADe methods for
detection of microcalcifications in the synthesized DM when
synthesized DMs become commonly available, to com-
pare the detectability of microcalcifications between the
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reconstructed DBT volumes, the synthesized DMs, and the
original projection views without reconstruction, and to in-
vestigate if combining the information from any of these ap-
proaches may improve detection accuracy. Ultimately, the
utility of CADe for assisting radiologists in DBT interpreta-
tion will need to be investigated.

5. CONCLUSION

This study shows that the detection performance of our
CADe system for clustered MCs in DBT has significantly im-
proved over our previous work. The multiscale bilateral reg-
ularized SART reconstruction of DBT increased the CNR of
the microcalcifications, which, in combination with the im-
proved design of the computer vision techniques at the vari-
ous stages of the CADe system, especially the adaptive CNR
thresholds and FP reduction methods, improved the differen-
tiation of true and false positives. Further investigations will
be needed to reduce FPs caused by the in-plane and inter-
plane artifacts from high density objects such as metal clips
and large benign calcifications and to improve the sensitivity.
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