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Purpose: To introduce a method to efficiently identify and calculate meaningful tradeoffs between

criteria in an interactive IMRT treatment planning procedure. The method provides a systematic

approach to developing high-quality radiation therapy treatment plans.

Methods: Treatment planners consider numerous dosimetric criteria of varying importance that,

when optimized simultaneously through multicriteria optimization, yield a Pareto frontier which

represents the set of Pareto-optimal treatment plans. However, generating and navigating this fron-

tier is a time-consuming, nontrivial process. A lexicographic ordering (LO) approach to IMRT uses

a physician’s criteria preferences to partition the treatment planning decisions into a multistage

treatment planning model. Because the relative importance of criteria optimized in the different

stages may not necessarily constitute a strict prioritization, the authors introduce an interactive pro-

cess, sensitivity analysis in lexicographic ordering (SALO), to allow the treatment planner control

over the relative sequential-stage tradeoffs. By allowing this flexibility within a structured process,

SALO implicitly restricts attention to and allows exploration of a subset of the Pareto efficient fron-

tier that the physicians have deemed most important.

Results: Improvements to treatment plans over a LO approach were found by implementing the

SALO procedure on a brain case and a prostate case. In each stage, a physician assessed the tradeoff

between previous stage and current stage criteria. The SALO method provided critical tradeoff in-

formation through curves approximating the relationship between criteria, which allowed the physi-

cian to determine the most desirable treatment plan.

Conclusions: The SALO procedure provides treatment planners with a directed, systematic process

to treatment plan selection. By following a physician’s prioritization, the treatment planner can

avoid wasting effort considering clinically inferior treatment plans. The planner is guided by crite-

ria importance, but given the information necessary to accurately adjust the relative importance at

each stage. Through these attributes, the SALO procedure delivers an approach well balanced

between efficiency and flexibility. VC 2012 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4720218]
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I. INTRODUCTION

When addressing a radiation therapy case, a physician gener-

ally presents the treatment planner with a number of dosimet-

ric goals of varying importance. While the general objective

is to deliver a prescribed radiation dose to the target(s) while

simultaneously sparing critical structures, a major challenge

remains how to make the unavoidable tradeoffs between these

conflicting goals. The literature on radiation therapy treatment

planning as well as clinical treatment planning systems
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contains a multitude of evaluation criteria that can be used to

quantify various properties of a treatment plan. Because treat-

ment planning is generally a time-consuming endeavor which

has to be performed for individual patients, providing a treat-

ment planner with tools that allow for an efficient assessment

of the interplay and tradeoffs between conflicting treatment

plan evaluation criteria is essential to an efficient and effec-

tive treatment planning process.

Traditionally, radiation therapy treatment planning is

based on optimization models containing a single objective

function to be optimized subject to a set of hard constraints

on the treatment plan. The objective function is typically a

simple weighted sum of individual treatment plan evaluation

criteria (see Ref. 1). Since there is no formal basis for choos-

ing a priori values for these weights, their values are usually

updated manually by the treatment planner in an iterative

fashion in order to arrive at a clinically desirable treatment

plan. Occasionally this method yields acceptable results

quickly, but in general this approach is inefficient and may

lead to inferior treatment plans.

A modern technique for exploring the tradeoffs between

treatment plan evaluation criterion is based on multicriteria

optimization (MCO) (see, e.g., Ref. 2 for a recent overview

of this area). In this approach, the goal is to approximate the

Pareto surface containing all efficient treatment plans, i.e.,

treatment plans with the property that it is not possible to

improve the plan with respect to one of the criteria without

deteriorating the plan with respect to at least one other.

While there are many methods for generating this surface

(see, e.g., Ref. 3), a common technique is to solve a

sequence of single-objective optimization problems, each

using an appropriately chosen set of weights for the individ-

ual criteria. When all criteria are convex functions of the

dose distribution delivered to the patient, each of the corre-

sponding solutions will represent a point on the Pareto sur-

face. If the number of such solutions is large enough to

allow the Pareto frontier to be accurately approximated (typ-

ically using interpolation), the treatment planner can assess

the tradeoffs between competing objectives by navigating

the frontier and use this information to select a treatment

plan. Using MCO as a means of quantifying tradeoffs is con-

ceptually attractive, in the sense that it provides the treat-

ment planner with complete and comprehensive tradeoff

information on all criteria. However, the number of compet-

ing criteria can be large (say on the order of 10–25 in a typi-

cal clinical setting), which means that the Pareto frontier is

embedded in a correspondingly high-dimensional space.

Many solutions may then be required to accurately approxi-

mate the Pareto frontier, which reduces its efficiency (see

Ref. 4). Moreover, visualizing and interpreting the plethora

of tradeoffs can prove difficult (see Ref. 5). Of course a

reduction in the number of criteria or data reduction in the

form of a coarser representation of patient geometry and=or

capabilities of the delivery equipment may mitigate these

drawbacks, but this may affect the accuracy of the frontier or

the quality of the tradeoff information (see, e.g., Ref. 6).

A key observation is that the full Pareto frontier identi-

fied by MCO will likely contain many tradeoff regions that

are clinically unacceptable or irrelevant. This not only com-

plicates the navigation process as outlined above but it also

means that a large amount of time may be spent identifying

such uninteresting tradeoffs. It therefore seems appropriate

to explicitly incorporate better a priori clinical information

on priorities associated with the different criteria into the

treatment plan optimization process. One such approach is

lexicographic optimization (LO), which is sometimes also

referred to as prioritized optimization (see Refs. 7–9). This

is a multistage approach that is based on a complete ranking

or prioritization of treatment planning goals. In its purest

form it starts by optimizing the highest ranked criterion.

The optimal value to this problem is then used to constrain

the value of the corresponding criterion in subsequent opti-

mization models. In particular, in the following stage the

second criterion on the prioritized list is optimized subject

to the value of the first criterion being optimal. This

approach is then repeated for each criterion on the list,

and the solution to the final optimization problem in the

sequence is the optimal treatment plan with respect to the

prioritized list of criteria. LO is computationally efficient

and provides a clear, systematic approach. In contrast with

MCO, LO does not rely on interaction with the treatment

planner (once the prioritization is fixed). However, much

flexibility is sacrificed in the wake of the computational

and structural benefits. In particular, a notable drawback

of using an LO approach is that the treatment planner may

be unaware of opportunities that may exist to improve a

treatment plan. In terms of MCO, the LO approach can be

interpreted as confining the treatment planner’s view to a

specific extreme solution on the full Pareto frontier of inter-

criterion tradeoffs. If a minor sacrifice in high-priority

criteria could yield meaningful benefits with respect to

lower-priority criteria, the pure LO approach would not rec-

ognize or identify this opportunity. In order to introduce

some flexibility into the process one might relax the opti-

mality constraint on high-priority criteria and instead

require previously optimized criteria to remain “near-

optimal.” Since tradeoffs are not characterized and assessed

explicitly, it is not clear how to quantify the concept of

near-optimality nor how to predict the consequences

of allowing a deviation from optimality. In contrast, our

method will provide an interactive way for the user to select

the relaxation based on a formal sensitivity analysis.

In this paper, we propose a systematic approach, sensitivity

analysis in lexicographic ordering (SALO), which combines

the benefits of MCO (flexibility and comprehensiveness) and

LO (efficiency and clinical focus) while avoiding their pit-

falls. Similar to LO, it incorporates clinical information

through a prioritized list of treatment plan evaluation criteria.

However, in contrast with LO, it uses this information to, in

an interactive and iterative fashion, efficiently navigate the

clinically interesting and relevant segment of the Pareto effi-

cient frontier. In Sec. II of this paper, we will provide a formal

and detailed description of the SALO approach. In Sec. III,

we will then illustrate the approach on two clinical cases and

discuss SALO. In Sec. IV, we will discuss some implementa-

tion characteristics and conclude the paper.
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II. METHODS AND MATERIALS

The goal of the SALO approach is to provide local infor-

mation on the shape of the Pareto frontier to treatment plan-

ners for use as a decision making aid, based on clinical

preferences represented via a prioritized list of treatment

plan evaluation criteria. This local information takes the

form of a two-dimensional Pareto frontier that, in each stage,

characterizes the tradeoff between two consecutive criteria

while (i) constraining higher priority criteria to values that

have been established earlier in the process and (ii) tempo-

rarily ignoring lower priority criteria. The treatment planner

can then examine this tradeoff curve and select a point that

appropriately captures the tradeoff between the two criteria

currently under consideration. This point then defines an

upper bound for the criterion that has the higher priority.

II.A. Notation and model

Optimization models for radiation therapy treatment plan-

ning are usually classified as “beamlet-based” (yielding an

optimal fluence map, which subsequently needs to be con-

verted into a deliverable plan in a leaf-sequencing stage) and

“aperture-based.” We have chosen to use the latter, direct

aperture optimization (DAO), approach (see, e.g., Refs.

10–13) since it not only eliminates the need for a leaf-

sequencing stage but can also allow for a more efficient

implementation and solution since an instance of the DAO

model is typically much smaller and hence can be solved

more rapidly than an instance of a beamlet-based fluence

map optimization (FMO) problem. This is particularly im-

portant since many of these problems will need to be solved

during the course of the SALO procedure. However, if

desired the general SALO approach can be based on a more

traditional FMO model with only minor modifications.

As is traditionally done in radiation therapy treatment

planning, we discretize the relevant patient geometry into a

finite set of voxels V. Moreover, we assume that there is a fi-

nite set of deliverable apertures K. The dose delivered to

voxel j 2 V from aperture k 2 K at unit intensity is given by

Dkj, which we will refer to as aperture-based dose deposition

coefficients. The decision variables are the aperture inten-

sities, denoted by yk ðk 2 KÞ. For convenience, we will add

as decision variables the dose zj delivered to each voxel

j 2 V. For convenience we will let y ¼ ðyk : k 2 KÞ and

z ¼ ðzj : j 2 VÞ denote the corresponding vectors. Finally,

let Z denote a convex set that excludes all clinically unac-

ceptable treatment plans. Convexity of this set is important

for tractability of our approach, and we usually expect this

set to contain only simple lower and upper bound constraints

on the individual voxel doses. In principle other hard con-

straints on treatment plan evaluation criteria could be

included as well, although we envision those tradeoffs to be

made in the actual SALO procedure rather than by a priori
excluding certain dose distributions.

The treatment plan evaluation criteria are given as functions

of the dose distribution: G‘ : RjVj ! R ð‘ ¼ 1;…; Lþ 1Þ,
where we assume that the criteria are indexed in order of

decreasing priority. For mathematical convenience we will

assume that these criteria are such that smaller values are pre-

ferred to larger values. Of course the essence of our approach

could be generalized to cases where this assumption is vio-

lated, and in fact our examples in Sec. III will include criteria

for which larger values are preferred. In addition, we will gen-

erally assume that they are all convex functions. Note that, in a

multi-criteria context, many common treatment plan evalua-

tion criteria, such as voxel-based penalty functions, (general-

ized) equivalent uniform dose (EUD, gEUD), tumor control

probabilities (TCP), normal-tissue complication probabilities

(NTCP), or conditional value-at-risk (CVaR), are either con-

vex or can equivalently be replaced by convex ones (see

Ref. 14). Our proposed approach could in principle be general-

ized to accommodate a nonconvex set Z and=or truly noncon-

vex criteria, such as traditional dose-volume histogram (DVH)

constraints, albeit at the expense of computational efficiency.

The last criterion, GLþ1, is typically chosen in order to mini-

mize total dose delivered to the patients while maintaining

treatment plan quality with respect to all previously considered

criteria. The SALO approach then interactively searches for a

treatment plan by solving a sequence of bicriteria optimization

models of the following form (for ‘ ¼ 1;…; L) referred to as

stages of the procedure:

minimize G‘ðzÞ; G‘þ1ðzÞf g
subject to ðPð‘ÞÞ
zj ¼

X
k2K

Dkjyk for j 2 V

G‘0 ðzÞ � �G‘0 for ‘0 ¼ 1;…; ‘� 1

yk � 0 for k 2 K
z 2 Z;

where �G‘0 is an upper bound on treatment plan evaluation

criterion G‘0 that is set by solving the prior bicriteria optimi-

zation problem ðPð‘0ÞÞ (for ‘0 ¼ 1;…; ‘� 1) and making the

corresponding tradeoff.

Due to the convexity of the criterion functions, the solu-

tion to the bicriteria optimization problem ðPð‘0ÞÞ can be

found by solving single-criterion optimization problems with

an objective function of the form

aG‘ðzÞ þ ð1� aÞG‘þ1ðzÞ (1)

for all a 2 ½0; 1�.

II.B. Sensitivity analysis in lexicographic optimization

If the set of all deliverable apertures is manageable, we

could directly apply the approach outlined above. Unfortu-

nately, in general the cardinality of the set K is very large

and the optimization problems ðPð‘0ÞÞ cannot be solved

explicitly. One potential approach would be to generate

high-quality apertures “on the fly” according to a column

generation approach that has been proposed for solving

single-criterion DAO problems (see, e.g., Refs. 11–13).

However, this would mean that the set of apertures consid-

ered in later stages of the algorithm is different from (in fact,

larger than) the set of apertures allowed in earlier stages.

This means that the tradeoffs between the higher priority,
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and hence clinically more important, criteria are based made

on a more limited set of apertures. Intuitively it would seem

more attractive to base the more important (or, in fact, and

all) tradeoff decisions on the most accurate representation of

the optimization model rather than the least accurate, which

makes a straightforward application of this idea undesirable.

In order to address this issue we propose to start the

SALO procedure with an initial phase in which a high-

quality pool of apertures is generated, which is then kept

fixed throughout the L stages of the SALO procedure. This

does not only improve the computational efficiency of the

approach, but also ensures that all decisions are made based

on consistent input and information. However, it is clear

that, in this process, the tradeoff decisions are not made with

respect to the full information regarding all deliverable aper-

tures. We therefore also propose a final phase in which a full

DAO model is solved to identify a new set of apertures that

minimizes the last criterion, GLþ1, subject to all bounds

imposed on criteria G1;…;GL. Clearly, this final phase could

also take other considerations, such as treatment delivery

efficiency, into account. In summary, we propose a SALO

procedure that proceeds in three phases:

Phase 1. Generation of a clinically relevant aperture pool of

computationally manageable cardinality.

Phase 2. Generation of patient-specific treatment planning

goals �G‘ ð‘ ¼ 1;…; LÞ by solving a sequence of bicriteria

optimization problems ðPð1ÞÞ;…; ðPðL�1ÞÞ.
Phase 3. Generation of final treatment plan that satisfies the

patient-specific treatment planning goals while minimiz-

ing an overall single objective function.

In the remainder of this section, we will discuss these

three stages in more detail.

II.B.1. Aperture pool generation

We generate an aperture pool by solving a traditional

single-criterion treatment plan optimization model based on

the treatment plan evaluation criteria

minimize
PL
‘¼1

a‘G‘ðzÞ

subject to ðPÞ
zj ¼

X
k2K

Dkjyk for j 2 V

yk � 0 for k 2 K
z 2 Z;

where a‘ � 0 ð‘ ¼ 1;…; LÞ are nonnegative criterion

weights. The set of weights used in the aperture generation

phase could either be based on experience with other, similar,

patient cases. Alternatively, we could use a sequence of crite-

rion weights, allowing for the generation of apertures that are

attractive with respect to a variety of tradeoffs. For conven-

ience, we will denote the set of apertures in the pool by K.

II.B.2. Solving a bicriteria optimization problem

We use the so-called Sandwich Algorithm (see, e.g.,

Refs. 2, 15, and 16) to approximate the Pareto frontier at a

given stage of the SALO procedure. This algorithm, which

tries to balance clinical accuracy and computational effi-

ciency, applies when all treatment plan evaluation criteria

are convex, and is particularly efficient in the bicriteria case.

The idea behind this algorithm is to approximate the entire

Pareto frontier by constructing both an upper (conservative)

and a lower (optimistic) bound on the frontier based on a fi-

nite set of points on the frontier. This is done by solving a

sequence of optimization problems of the form ðPð‘ÞÞ with

objective function of the form (Sec. II.A) for different values

of a. The optimal solutions to these problems yield points

on the Pareto frontier. For convenience, let z�ða; ‘Þ denote

an optimal solution to ðPð‘ÞÞ when parameter a is used.

Then, let

G�‘ða; ‘Þ ¼ G‘ z�ða; ‘Þð Þ;
G�‘þ1ða; ‘Þ ¼ G‘þ1 z�ða; ‘Þð Þ;
G�‘;‘þ1ða; ‘Þ ¼ aG�‘ða; ‘Þ þ ð1� aÞG�‘þ1ða; ‘Þ:

The Sandwich algorithm then determines upper and lower

bounds on the Pareto frontier as follows.

II.B.2.a. Upper bound. Using simple linear interpolation

of a set of Pareto efficient solutions, we obtain a piecewise-

linear and convex function which is well-known to form an

upper bound on the Pareto frontier. This follows immedi-

ately from the fact that the line segment connecting any two

points of the form G�‘ða; ‘Þ;G�‘þ1ða; ‘Þ
� �

for different values

of a is guaranteed to be entirely on or above the Pareto fron-

tier. More formally, such a line segment can be characterized

as

fðkG�‘ ða; ‘Þ þ ð1� kÞG�‘ða0; ‘Þ; kG�‘þ1ða; ‘Þ
þ ð1� kÞG�‘þ1ða0; ‘ÞÞ : k 2 ½0; 1�g; (2)

where 0 < a 6¼ a0 < 1. It is interesting to note that we can

find an even better bound on the Pareto frontier by, instead

of interpolating the pairs of optimal objective function val-

ues for different values of a, interpolating the optimal treat-

ment plans (or, equivalently, and optimal dose distributions)

for different values of a. In other words, the curve of the

form

fðG‘ kz�ða; ‘Þ þ ð1� kÞz�ða0; ‘Þð ÞG‘þ1 kz�ða; ‘Þð
þð1� kÞz�ða0; ‘ÞÞÞ : k 2 ½0; 1�g;

where 0 < a 6¼ a0 < 1 is guaranteed to not only be entirely

on or above the Pareto frontier, but also entirely on or below

the curve in Eq. (1).

II.B.2.b. Lower bound. A lower bound can be deter-

mined by observing that the line given by

ag‘ þ ð1� aÞg‘þ1 ¼ G�‘;‘þ1ða; ‘Þ (3)

is entirely on or below the Pareto frontier [where g‘; g‘þ1ð Þ
denotes a point in R2]. This follows since (i) the Pareto fron-

tier is convex by convexity of the criteria functions G‘ and

G‘þ1 and (ii) the point G�‘ ða; ‘Þ;G�‘þ1ða; ‘Þ
� �

lies both on the

efficient frontier and the line (2). This means that the upper

envelope of these lines over a collection of different values

of a 2 ð0; 1Þ is a piecewise-linear convex function that is

entirely on or below the Pareto frontier as well.
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II.B.2.c. Choosing objective function weights a. There

are different ways in which the set of values for a to be used

at a particular SALO stage can be determined. In an interac-

tive implementation, the treatment planner could indicate

which value to use with the goal of refining the approxima-

tion of the Pareto frontier in the clinically most relevant or

interesting areas. In an automated setting this can be done by

measuring the discrepancy between the upper and lower

bounds, and choosing that value of a where the discrepancy

is largest. Since the bounds are themselves curves, different

discrepancy measures can be used, and each of them will

yield a different sequence of values for a and a different

bounding of the frontier. However, when designed carefully,

we can ensure that the lower and upper bounds both con-

verge to the Pareto frontier as the number of values for a
increases (see Ref. 17).

II.B.3. Final treatment plan optimization

This full model clearly has a feasible solution (by con-

struction), i.e., by generating a new set of apertures from

scratch we know it will be possible to achieve all previously

identified treatment planning goals. The DAO column gener-

ation procedure can therefore be initialized with the final so-

lution obtained by the SALO procedure. However, if there is

an additional goal related to treatment plan delivery effi-

ciency, such as limiting the beam-on-time or number of

apertures, it may be preferable to discard the original aper-

ture pool and start the DAO algorithm from scratch. Since a

feasible solution is needed to start the procedure, the algo-

rithm is then started by first optimizing an auxiliary problem

of the following form:

minimize
PL
‘¼1

max G‘ðzÞ � �G‘; 0
� �

subject to ðIÞ
zj ¼

X
k2K

Dkjyk for j 2 V

yk � 0 for k 2 K
z 2 Z:

Any feasible solution to this problem with objective function

value 0 is a feasible solution to the actual problem from

which the DAO algorithm can be started.

II.C. Treatment plan evaluation criteria

For our experiments we have chosen to use a single mea-

sure of generalized equivalent uniform dose (gEUD) for each

target and major critical structure as our main treatment plan

evaluation criteria. Letting S denote the set of structures and

Vs the set of voxels in structure s 2 S, the gEUD correspond-

ing to the dose distribution in structure s 2 S is given by

gEUDsðz; asÞ ¼
1

jVsj
X
j2Vs

zas

j

 ! 1
as

;

where 1 � as � 1 if s is a critical structure while

�1 � as � 1 if s is a target, and where

gEUDsðz; asÞ ¼

maxj2Vs
zj if as ¼ 1

1
jVsj
P
j2Vs

zj if as ¼ 1

minj2Vs
zj if as ¼ �1

8>><
>>:

(see, e.g., Refs. 18 and 19). For the sake of computational ef-

ficiency, we have chosen to use an approximation of gEUD

given by a convex combination of mean and maximum dose

for critical structures and of mean and minimum dose for tar-

gets (see Refs. 20 and 21). In particular, we choose treatment

plan evaluation criteria functions G‘ of the form

csgEUDsðz; 1Þ þ ð1� csÞgEUDsðz;1Þ

¼ cs

1

jVsj
X
j2Vs

zj þ ð1� csÞmax
j2Vs

zj;

if s is a critical structure, and

csgEUDsðz; 1Þ þ ð1� csÞgEUDsðz;�1Þ

¼ cs

1

jVsj
X
j2Vs

zj þ ð1� csÞmin
j2Vs

zj;

if s is a target, where in both cases cs 2 ½0; 1�. (Note that,

when s is a target, the criterion described above is a function

for which larger values are preferred to smaller values,

which means that in the optimization problems as described

earlier in this paper, we actually use the negative of this cri-

terion.) The advantage of using these approximations is that

our optimization problems can be formulated and solved as

linear programs.

As our final criterion we have chosen to minimize the

sum of all voxel doses

GLþ1ðzÞ ¼
X
j2V

zj:

Moreover, we assume that no tradeoff takes place

between gEUD-criterion GL and this final criterion GLþ1, so

that, in problem ðPðLÞÞ, we limit ourselves to a ¼ 1 in the

corresponding objective function (Sec. II.A).

II.D. Data and computations

We illustrate our SALO procedure on two clinical cases

from different sites: brain and prostate. The brain cancer

case has 8 beams and 575 beamlets while the prostate cancer

case had 7 beams and 796 beamlets. In both cases, the beam-

lets were of dimension 5� 5 mm2, and only beamlets whose

primary trajectory intersected with the target(s) were

included in the model. We chose the set Z to be of the form

Z ¼ z 2 RjVj : zs � zj � �zs; j 2 Vs; s 2 S
n o

:

The weighting parameters cs in the gEUD-approximation

described in Sec. II.C were found by evaluating both the

gEUD and its approximation on a clinically acceptable dose

distribution, where suitable values of the gEUD parameters

as were taken from the works of Burman et al.,22 Lawrence

et al.,23 Mayo et al.,24 Michalski et al.,25 Roach et al.,26 Vis-

wanathan et al.,27 and clinical practice at the University

of Michigan, Department of Radiation Oncology. Table I
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provides, for each of the two cases, the structures and two

prioritization scenarios, as well as the number of voxels jVsj
in each structure s 2 S, the gEUD parameters as and cs, and

the dose upper and lower bounds �zs and zs (where the latter

is 0 if omitted). The structures without prioritization values

will be addressed in the final treatment plan optimization,

but not in the interactive portion of the algorithm.

The optimization problems were all optimized on a Mac

Pro 4.1 with a single 2.93 GHz Quad-Core Intel Xeon proc-

essor and 12 GB DDR3 memory at 1066 MHz. All model

generation code was written in Cþþ and executed in Xcode,

and the primal simplex method of CPLEX 12.2 was used as

the solver. Since the number of coefficients Dkj are too

numerous to be precomputed and stored, and since the col-

umn generation relies on an efficient representation of these

coefficients, we make the common assumption that these

coefficients can be expressed in terms of so-called beamlet-

based dose deposition coefficients.

Dkj ¼
X
i2Ak

dij;

where Ak � B is the subset of beamlets that is exposed in

deliverable aperture k 2 K, B is a set of beamlets that discre-

tizes the beams used for treatment, and dij is the dose deliv-

ered to voxel j 2 V from beamlet i 2 B. Storing the

(nonzero) coefficients dij for all j 2 V and i 2 B is managea-

ble in a sparse format. Finally, in Phase 1 of the SALO pro-

cedure we generated a pool of jKj ¼ 100 apertures.

III. RESULTS AND DISCUSSION

In this section, we will describe in detail how the treat-

ment planning process based on the SALO procedure would

proceed in the two clinical cases. We will illustrate the

SALO procedure by going through all steps that a treatment

planner would take when developing a treatment plan. For

both cases, we will show two examples of potential a priori

clinical priority lists, along with a potential sequence of deci-

sions made by the treatment planner, for a total of four

SALO applications. Furthermore, for ease of exposition we

limit ourselves in both cases to a relatively small set of crite-

ria. The tradeoff decisions made during the SALO process

were made by radiation oncologists. Note that, in addition to

the tradeoff curves, in our experiments the treatment plan-

ners were also provided with summary dose distribution

information for the different structures (such as minimum,

maximum, and mean dose, as well as DVH endpoints) dur-

ing the process.

III.A. Brain case

For the brain case, we distinguish L ¼ 5 major gEUD cri-

teria, one for each of the first five structures listed in Table I.

We consider the two alternative priority scenarios A and B

as indicated in that table. Figures 1 and 2 show the L� 1

stages of Phase 2 of the SALO procedure for these two sce-

narios, while Fig. 3 shows the final sets of DVH curves.

These curves show how scenario A compares to (a) LO and

(b) scenario B.

Consider scenario A for the brain case in Fig. 1. When

the treatment planner begins the process, Fig. 1(a) is gener-

ated and presented to the planner. The treatment planner

then uses this information to assess the relationship between

the gEUDs delivered to the PTV and the chiasm. In this

instance, the treatment planner used this information to

choose a lower bound on the gEUD to the PTV of 53.96 Gy,

as indicated by the dot. From the graph we can then also con-

clude that this means that the gEUD to the chiasm will have

to be at least equal to 47.94 Gy. The optimization model

then adds the lower bound on the gEUD to the PTV to the

set of constraints and generates Fig. 1(b). As we can see, by

slightly increasing gEUD to the chiasm it is possible to

reduce the gEUD to the brainstem by a meaningful amount.

However, as we allow more dose to the chiasm, the benefit

to the brainstem lessens. Without this accurate information,

the planner would not be able to identify the clinically most

beneficial tradeoff between these two criteria. The treatment

planner then follows this procedure for all other stages.

After optimizing the final criterion (i.e., minimizing the

sum of all voxel doses and generating a new set of apertures

given the chosen gEUD bounds) we obtain a treatment plan

whose DVHs are shown in Fig. 3(a). In addition, the DVHs

obtained by using pure LO are shown as well. We conclude

that, by accepting a minor reduction in PTV dose, all other

TABLE I. Structures with corresponding number of voxels and gEUD-

parameters for the two clinical test cases.

Priority

Site A B Structure ðsÞ jVsj as cs �zs zs

Brain 1 2 PTV 6318 �15 0.9 63 56

2 1 Chiasm 216 10 0.38 57 —

3 3 Brainstem 1836 10 0.5 60 —

4 4 Optic nerve (contralateral) 218 10 0.54 63 —

5 5 Optic nerve (ipsilateral) 247 10 0.33 63 —

Left eye 363 — — 63 —

Right eye 345 — — 63 —

Left lens 167 — — 63 —

Right lens 136 — — 63 —

Normal tissue ring 1 6723 — — 62 —

(0–1.5 cm from PTV) — — — —

Normal tissue ring 2 4652 — — 57 —

(1.5–3 cm from PTV) — — —

Normal tissue ring 3 13 037 — — 45

(>3 cm from PTV) — — — —

Total 34 258 — — — —

Prostate 1 2 PTV 3586 �5 0.3 85.5 73

2 1 Rectum 8766 8 0.4 78 —

3 3 Bladder 5373 2 0.85 78 —

4 4 Penile bulb 294 1 1 85.5 —

5 5 Femora 7049 4 0.8 85.5 —

Normal tissue ring 1 2700 — — 83 —

(0–1.5 cm from PTV) — — — —

Normal tissue ring 2 7203 — — 77 —

(1.5–3 cm from PTV) — — — —

Normal tissue ring 3 9419 — — 65 —

(>3 cm from PTV) — — — — —

Total 44 390 — — — —
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FIG. 1. SALO progression for the brain case, scenario A: (a) stage 1, (b) stage 2, (c) stage 3, and (d) stage 4.

FIG. 2. SALO progression for the brain case, scenario B: (a) stage 1, (b) stage 2, (c) stage 3, and (d) stage 4.
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high priority structures receive improved dose distributions,

particularly the chiasm. Our treatment planners consider the

plan generated by the SALO procedure to be superior to the

one created using pure LO. This is consistent with expecta-

tions, for if the LO plan were more desirable, then the treat-

ment planner would have selected the extreme points on the

tradeoff curves (representing strict prioritization). Scenario

B for the brain case provides an alternate prioritization for

the criteria, and the choices made by the treatment planner

are shown in Fig. 2. In this scenario, the chiasm is of higher

importance than the PTV and is constrained before the

gEUD to the PTV. Finally, Fig. 3(b) shows that the differ-

ence between the two scenarios is relatively small, indicating

a level of robustness of the procedure with respect to inter-

changing the priorities of PTV and chiasm.

III.B. Prostate case

For the prostate case we also distinguished L ¼ 5 major

gEUD criteria, again one for each of the first five structures

listed in Table I. We consider the two alternative priority

scenarios A and B as indicated in that table. Figures 4 and 5

show the L� 1 stages of Phase 2 of the SALO procedure for

these two scenarios, while Fig. 6 shows the final set of DVH

curves. These curves show how scenario A compares to (a)

LO and (b) scenario B.

For the prostate case, the procedure progresses in a similar

fashion as for the brain case. However, in this case most of the

clinically desired treatment planning goals was more easily

satisfied. Therefore, instead searching for a clinically feasible

treatment plan, the SALO process as applied here primarily

focused on finding the most desirable treatment plan. For sce-

nario A the first tradeoff is presented in Fig. 4(a). Instead of

just focusing on meeting treatment goals, the treatment plan-

ner can decide how aggressively they wish to treat the PTV.

For the next sets of tradeoffs, a similar line of reasoning is

used, and Fig. 6(a) allows a comparison of the DVHs obtained

by the SALO procedure and pure LO. As in the brain case, a

minor reduction in PTV dose allowed for significant reduc-

tions in dose to critical structures, especially the rectum.

FIG. 3. Brain case: DVHs for treatment plan for (a) scenario A versus LO and (b) scenario A versus scenario B.
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FIG. 4. SALO progression for the prostate case, scenario A: (a) stage 1, (b) stage 2, (c) stage 3, and (d) stage 4.

FIG. 5. SALO progression for the prostate case, scenario B: (a) stage 1, (b) stage 2, (c) stage 3, and (d) stage 4.
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When selecting desired tradeoffs on the plots, it is criti-

cal to pay close attention to the scales on the axes. For

example, in Fig. 4(c) it can be seen that small changes in

the bladder yields relatively large improvements in the

femora. In contrast, in Fig. 4(d) the absolute differences are

very small in magnitude and clinically insignificant due to

the model being very tightly constrained at that stage in the

optimization.

In scenario B for the prostate case the rectum received the

highest priority. In this case, the treatment planner decided

to be slightly more aggressive with respect to the PTV. As

seen in Fig. 6(b), the rectum receives more dose using the

priorities in scenario B, while the femora receives less. How-

ever, these changes are less dramatic than those between

scenario A and pure LO.

III.C. General discussion

Through these processes, we can see how the prioritiza-

tion aspect of LO has been integrated with the interactive

nature of MCO. By combining these two characteristics,

clinically desirable treatment plans were generated system-

atically and efficiently.

Without a treatment planning system with the flexibility

to automate the SALO procedure, this analysis would not be

clinically feasible. For treatment planning systems that allow

plug-ins, implementing the SALO procedure is a straightfor-

ward process, and the clinical benefits could be realized

quite easily. That is, the procedure can be implemented with-

out changing a clinic’s current treatment plan solver.

Programmers need only to set up some background data

structures and a coherent user interface.

The main downside to this type of implementation is that

the usability heavily depends on efficiently approximating

the tradeoff curve between criteria. If the solver is too slow,

the treatment planner could be wasting time waiting for the

tradeoff generation. One way to quicken the solving process

is to solve a model that benefits from previous solution infor-

mation. For the linear program applied to the brain and pros-

tate cases in Sec. III, the model used the most recent solving

iteration’s solution to initialize the solver for the next point

on the tradeoff curve. Another way to speed up the process

FIG. 6. Prostate case: DVHs for treatment plan for (a) scenario A versus LO and (b) scenario A versus scenario B.
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is to design a solver to run on a graphics processing unit

(GPU). When properly designed and coded, models solved

using GPUs allow for significant increases in speed (see,

e.g., Ref. 28).

In practice, it might be beneficial to supplement the SALO

procedure with other dose distribution information. Dose dis-

tribution statistics and DVHs for points along the tradeoff

curves can be generated will little extra computational effort

and would bolster the information presented treatment plan-

ners. Because all calculations up to the first stage tradeoff

assessment can be computed without treatment planner inter-

action, different first stage scenarios can be generated to

influence decisions on the full prioritization. That is, a treat-

ment planner can assess multiple initial tradeoffs before

deciding the relative importances of criteria. Finally, for the

treatment planners interested in the final relative weights

between the different criteria, these values can be recreated

after the SALO approach (see Ref. 1 for this method).

IV. CONCLUSIONS

The SALO procedure provides treatment planners with a

directed, systematic process to treatment plan selection. By

following a physician’s prioritization, the treatment planner

can avoid wasting effort considering clinically inferior treat-

ment plans. The planner is guided by criteria importance, but

given the information necessary to accurately assess the

tradeoff between criteria each stage. When applied to clini-

cal cases, the SALO procedure efficiently generated desira-

ble treatment plans. As treatment planning becomes more

individualized and complex with new techniques and mod-

els, methods that efficiently guide the treatment planner

towards desirable plans will be necessary to implement these

advances at the clinical level.
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