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Abstract
Data mining techniques are gaining in popularity among health researchers for an array of
purposes, such as improving diagnostic accuracy, identifying high-risk patients and extract-
ing concepts from unstructured data. In this paper, we describe how these techniques can
be applied to another area in the health research domain: identifying characteristics of
individuals who do and do not choose to participate in observational studies. In contrast to
randomized studies where individuals have no control over their treatment assignment,
participants in observational studies self-select into the treatment arm and therefore have
the potential to differ in their characteristics from those who elect not to participate. These
differences may explain part, or all, of the difference in the observed outcome, making it
crucial to assess whether there is differential participation based on observed characteris-
tics. As compared to traditional approaches to this assessment, data mining offers a more
precise understanding of these differences. To describe and illustrate the application of data
mining in this domain, we use data from a primary care-based medical home pilot pro-
gramme and compare the performance of commonly used classification approaches –
logistic regression, support vector machines, random forests and classification tree analysis
(CTA) – in correctly classifying participants and non-participants. We find that CTA is
substantially more accurate than the other models. Moreover, unlike the other models, CTA
offers transparency in its computational approach, ease of interpretation via the decision
rules produced and provides statistical results familiar to health researchers. Beyond their
application to research, data mining techniques could help administrators to identify new
candidates for participation who may most benefit from the intervention.

Introduction
With the rapidly growing size and availability of medical data,
health researchers are increasingly using data mining tools to
handle complex analytical problems [1,2]. Classification is the
most popular data mining application in health care and has been
used to improve diagnostic accuracy, identify high-risk patients
and extract concepts in unstructured data [3].

There is a fundamental difference between the data mining tools
used for classification (also referred to as predictive modelling) and
conventional statistical modelling methods (e.g. multivariate
regression). Specifically, data mining algorithms find the best fitting
model through automated processes (called machine learning) that
search through the dataset to detect patterns. These patterns may
include interactions between variables, as well as interactions
within subsets of variables. In conventional statistics, a model is
chosen based on an a priori hypothesis about the data, and then

statistical tests are performed after estimation to verify that the data
fit the model [4]. Investigators using conventional statistical
methods must manually enter variables, interactions and polyno-
mials, and there is no guarantee that the best fitting model will be
discovered.

However, rather than viewing data mining and statistics as rival
approaches to classification problems, health researchers may be
best served by considering the synergies between them. For
example, data mining algorithms can be applied first to identify
influential variables and interactions in the data, with the results
reviewed and, if needed, refined by a domain expert. Conventional
statistics would then be used to assess the model’s predictive
performance (e.g. area under the receiver operating characteristic
curve, effect strength for sensitivity (ESS)] [5,6] on the complete
dataset, as well as on hold-out samples in order to test
generalizability of the model (e.g. via leave-one-out cross valida-
tion, bootstrapping) [7,8]. Measuring predictive performance

Journal of Evaluation in Clinical Practice ISSN 1365-2753

835Journal of Evaluation in Clinical Practice 22 (2016) 835–843 © 2016 John Wiley & Sons, Ltd.

bs_bs_banner

mailto:alinden@lindenconsulting.org


allows the health researcher to identify the most accurate model
among competing approaches, whereas assessing generalizability
will help determine how well the model can identify new partici-
pants that may not have the identical characteristics as those in the
original sample.

In this paper, we describe another area of health research where
there are synergies between data mining techniques and conven-
tional statistics: characterizing the individuals who participate in
observational studies. In contrast to randomized studies where
individuals have no control over their treatment assignment, par-
ticipants in observational studies self-select into the treatment arm
and are therefore likely to differ in their characteristics from those
who elect not to participate. These differences may explain part, or
all, of the difference in the observed outcome (i.e. selection bias)
[9]. Data mining techniques can identify patterns in the data that
distinguish study participants from non-participants, revealing
potentially complex relationships among individual characteristics
that may bias the outcome analysis. From an administrative per-
spective, the results of data mining as applied to study participa-
tion could help identify new candidates for enrolment who may
most benefit from the intervention.

To develop and illustrate this approach, the paper is organized as
follows: In the second section, we briefly describe the data we use
to illustrate how data mining techniques can assist health research-
ers in identifying the selection issues intrinsic to observational
studies. In the third section, we describe two approaches from
conventional statistics most commonly used for characterizing
selection and assessing potential for bias, as well as describe their
limitations. In the fourth section, we describe data mining appli-
cations that may be considered for the same purposes. In the fifth
section, we discuss approaches to assessing model accuracy in
order to determine whether the selected model (from either con-
ventional statistics or data mining) fits the data, and then in the
sixth section, we apply these approaches to compare the alternative
methodologies (conventional statistics as well as different data
mining models). Finally, in the last section, we discuss the impli-
cations and applications of our findings.

Data
For exposition, we use data from a primary care-based medical
home pilot programme that invited patients to enrol if they had a
chronic illness or were predicted to have high costs in the follow-
ing year. The goal of the programme was to lower health care costs
for programme participants by providing intensified primary care
(see the study of Linden [10] for a more comprehensive descrip-
tion). The retrospectively collected data consist of observations for
374 programme participants and 1628 non-participants. Eleven
pre-intervention characteristics were available; these included
demographic variables (age and gender), health services utilization
(primary care visits, other outpatient visits, laboratory tests, radi-
ology tests, prescriptions filled, hospitalizations, emergency
department visits and home-health visits) and total medical costs
(the amount paid for all these health services).

Commonly used approaches for
identifying selection

Table of baseline characteristics

The most common approach for identifying selection in interven-
tion studies is by presenting a table of the summary statistics of
pre-intervention characteristics for the treatment and control
groups [11]. In a sufficiently large randomized trial, it is expected
that most, if not all, of the baseline characteristics will be compa-
rable between groups. However, in non-randomized studies where
individuals select to participate, there is no expectation that, prior
to adjustment, the treatment and control groups will be comparable
in their characteristics. Thus, in non-randomized studies, the base-
line characteristics table serves to identify the characteristics on
which the two groups differ due to selection.

Table 1 presents the observed pre-intervention characteristics of
the participants and non-participants in the pilot study [10]. Con-
tinuous variables are summarized by mean and standard deviation,
and categorical variables are presented as number and percent. For

Table 1 Baseline (12 months) characteristics of programme participants and non-participants [10]

Participants
(n = 374)

Non-participants
(n = 1628)

Standardized
differences P-value*

Demographic characteristics
Age 54.9 (6.71) 43.4 (11.99) 1.704 <0.001
Female 211 (56.4%) 807 (49.6%) 0.138 0.017
Utilization and cost
Primary care visits 11.3 (7.30) 4.6 (4.35) 0.914 <0.001
Other outpatient visits 18.0 (16.65) 7.2 (10.61) 0.647 <0.001
Laboratory tests 6.1 (5.27) 2.4 (3.31) 0.705 <0.001
Radiology tests 3.2 (4.46) 1.3 (2.48) 0.424 <0.001
Prescriptions filled 40.6 (29.96) 11.9 (17.14) 0.956 <0.001
Hospitalizations 0.2 (0.52) 0.1 (0.29) 0.326 <0.001
Emergency department visits 0.4 (1.03) 0.2 (0.50) 0.226 <0.001
Home-health visits 0.1 (0.88) 0.0 (0.38) 0.083 0.012
Total costs 8236 (9830) 3047 (5817) 0.528 <0.001

*A two-tailed t-test for independent samples was used for continuous variables, and a chi-squared test was used for dichotomous variables.
Continuous variables are reported as mean (standard deviation) and dichotomous variables are reported as N (percent).
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balance measures, we report the standardized difference, for which
perfect balance is zero [12], and the conventional P-value, where
variables with values ≤ 0.05 may be considered imbalanced. It is
clear that the participant group differed markedly from the non-
participant group on every characteristic. On average, participants
were older, were less likely to be female, and had higher utilization
and costs than non-participants. All standardized differences were
far greater than zero, and all P-values were ≤ 0.05.

There are three limitations to this descriptive approach for iden-
tifying selection. First, when reviewing summary statistics of indi-
vidual variables alone, any imbalances in interactions between two
or more variables go undetected. Also, although it is possible to
generate and test these additional terms, it is both tedious (to
account for all pairwise interactions presently, an additional 55
variables would need to be added) and the results may not be very
informative if the relationship between the variables is non-linear.
Second, this approach provides no way to assess the relative
importance of each variable in its contribution to the selection
process. For example, in Table 1, we see that there is a very large
difference in the mean ages of the two groups (54.9 versus 43.4 for
participants and non-participants, respectively). However, there is
no information as to whether age is a significantly more important
criterion for selecting to participate in the intervention than any
other variable. Third, these summary statistics do not indicate
whether there is a particular cut-off on a variable’s continuum,
above which individuals are more likely to participate, or below
which individuals are more likely not to participate. This informa-
tion could be useful when trying to understand what may have
caused the intervention to be particularly attractive to certain types
of participants.

Logistic regression

Whereas a table of baseline characteristics is descriptive, logistic
regression offers a predictive approach to assess selection in obser-
vational studies. In such a model, the outcome is the treatment
assignment (a binary value of 1 = treatment, and 0 = non-treat-
ment) and it is regressed on all observed baseline characteristics.
Thus, this model serves to determine which variables predict treat-
ment status. Table 2 presents the odds ratio of each variable in
predicting participation in the pilot. As seen, 6 of the 11 variables
significantly (P < 0.05) predict participation.

The limitations of this approach are similar to those described in
Table 1. First, this model includes only main effects, and thus,

interaction terms must be manually generated and tested. Second,
there is no simple way of determining the relative importance of
each variable in its contribution to predicting participation. Lastly,
there is no determination of a cut-off above or below which an
individual is more likely to participate.

Data mining tools for
identifying selection
Data mining classification tools overcome the limitations of the
two common approaches described above, while offering the
ability to both predict and explain selection in observational
studies. Additionally, a standard feature of the data mining process
involves cross-validating the model to assess its generalizability.
This is important if the goal of the analysis is to assist programme
administrators to identify new candidates for participation in an
ongoing intervention. Cross-validation is less important if the goal
is only to estimate treatment effects of the intervention.

There are hundreds of different machine learning algorithms
belonging to a large array of classifier families, including discri-
minant analysis, Bayesian, neural networks, support vector
machines (SVMs), decision trees, rule-based classifiers, boosting,
bagging, stacking, random forests (RFs) and other ensembles,
generalized linear models, nearest neighbours, partial least squares
and principal component regression, logistic and multinomial
regression, multiple adaptive regression splines and other
methods. In an extensive comparison across 121 datasets,
Fernández-Delgado et al. [13] identified two classifiers out of this
large collection that consistently outperformed all other algorithms
– SVMs [14] and RFs [15]. We therefore include SVM and RF
models in the current paper to represent the best of most com-
monly used algorithms. Additionally, we include classification tree
analysis (CTA) – a classifier that was not examined by Fernández-
Delgado et al. [13], but which has been shown to consistently
outperform other classifiers [8]. As compared to SVM and RF,
CTA also provides straightforward interpretable formulae and
visual displays to characterize the complex relationship between
the covariates and the outcome, enhancing the practical value of
data mining methods by elucidating the characteristics of individ-
uals who select to participate in observational studies.

SVMs

The SVM is an algorithm that attempts to find the greatest sepa-
ration between the two outcome categories (in this case, partici-

Table 2 Logistic regression for predicting
participation in the pilot programme [10]

Variable Odds ratio Std. Err. z P > z 95% CI

Age 1.113 0.011 10.760 <0.001 1.091–1.135
Female 1.091 0.163 0.580 0.560 0.813–1.463
Primary care visits 1.092 0.019 4.950 <0.001 1.054–1.130
Other outpatient visits 1.019 0.007 2.950 0.003 1.006–1.032
Laboratory tests 1.010 0.020 0.490 0.626 0.970–1.050
Radiology tests 1.002 0.021 0.090 0.931 0.960–1.044
Prescriptions filled 1.026 0.003 7.780 <0.001 1.019–1.032
Hospitalizations 1.955 0.515 2.550 0.011 1.167–3.275
Emergency department visits 1.018 0.109 0.170 0.864 0.826–1.255
Home-health visits 0.797 0.078 −2.310 0.021 0.657–0.966
Total costs 1.000 0.000 −0.490 0.627 0.999–1.000
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pation or non-participation in the pilot) on any one or more
variables. The line that separates the participants from the non-
participants is called the separating hyperplane, and the
maximum-margin hyperplane is that particular hyperplane that
defines the greatest separation between the two outcomes. The
individual observations closest to the maximum-margin hyper-
plane (on either side of the hyperplane) are called support vectors.
Thus, the objective is to identify the set of support vectors that
uniquely defines the maximum-margin hyperplane for the given
data problem [16]. SVM can also provide a solution for non-
linearly separable data by applying a kernel function to the data
[14].

RFs

To better understand how an RF works, it is first important to
describe how an individual decision tree – which serves as the
basis for the RF – is generated. As the name implies, a decision
tree [17,18] is a tree-like structure in which the first variable (root
node) is split into branches based on one or more cut-points on that
variable, and those branches either point to other variables (child
nodes) or terminate at the outcome variable (leaf) when the data
cannot be split any further. An individual’s predicted classification
can be ascertained by simply following the related decision rules
from the root node to the terminating leaf.

Constructing a decision tree is an iterative process that involves
identifying variables (or chains of variables) that are best able to
discriminate between individuals who fall into the different
outcome categories. There are several approaches for determining
the structure of the decision tree. A widely used decision tree
algorithm called C4.5 [18] uses a measure called the information
gain as a guide. In general, this measure represents the informa-
tional value of generating a new branch off of an existing node.
The information gain is calculated for all variables, and the node is
split on the variable that provides the largest information gain. This
procedure continues recursively until either the data cannot be split
any further, or until the information gain is zero [17].

An RF is an ‘ensemble’ method whereby multiple decision trees
are grown by a randomized tree-building algorithm [15]. The
algorithm involves two bootstrap procedures: individual observa-
tions are randomly sampled with replacement and a randomly
drawn subset of variables is considered at each node. Thus, RFs
achieve superior accuracy over other data mining methods by
combining the results of multiple decision trees – each generated
under various random conditions.

CTA

CTA is a ‘decision-tree’–like classification model that provides
accurate, parsimonious decision rules that are easy to interpret
(and visually display), while reporting P values derived via per-
mutation tests performed at each node. Two generations of CTA
models have been developed for which software is commercially
available: hierarchically optimal (HO-CTA) [19,20] and
enumerated-optimal (EO-CTA) [8,21]. All CTA models consist of
nodes, each representing a variable (also called an attribute)
selected on the basis of the predictive accuracy it achieves. For
each potential variable, a predictive model is identified that max-
imizes the ESS statistic (described in the fifth section). For an

ordered or continuous variable, the model has the form: if
score ≤ (value) it predicts that the observation is from outcome
class A; otherwise, it predicts that the observation is from outcome
class B. For a categorical variable, the model has the form: if
score = (category list), it predicts that the observation is from
outcome class A; otherwise, it predicts outcome class B. Statistical
significance of ESS is evaluated using a permutation probability
(no distributional assumptions are made), and a sequentially rejec-
tive Sidak–Bonferroni-type multiple comparisons methodology is
used to ensure the desired experiment-wise Type I error rate,
adjusting for the number of variables (nodes) in the CTA model
[8,20]. For CTA, an a priori minimum strata N (CTA models
terminate in two or more endpoints representing different sample
strata) is typically set at 10% of the overall study sample (assum-
ing this provides adequate statistical power) to inhibit over-fitting
and increase the likelihood of the model cross-generalizing to
independent random samples having comparable or smaller
sample size [8].

In HO-CTA, the root node is the variable that yields maximum
ESS for the total sample. If the root node achieves ESS = 0 or if
P > 0.05, then no model can be identified. However, if ESS < 100
and sufficient statistical power exists for sample strata identified
by the root node (i.e. A and B in the example above), then the
variable yielding the highest ESS with Bonferroni-corrected
P < 0.05 for each strata is added to the model. Model growth is
terminated when accuracy cannot be improved for any branch of
the model. After the model is grown, it is pruned in order to
explicitly maximize ESS [8,20]. In EO-CTA, the first three nodes
are enumerated (all variables satisfying the Bonferroni criterion
are enumerated for the first three nodes, and the CTA model
yielding maximum ESS is retained as the EO-CTA solution).

HO-CTA and EO-CTA models have been developed for many
applications and have consistently achieved greater accuracy in
training and validity analysis than competing models that maxim-
ize variance or the value of the likelihood function [8]. Studies of
EO-CTA and HO-CTA applied to the same data showed that
EO-CTA models are usually more accurate and more parsimoni-
ous – as model accuracy increases, the number of misclassified
observations (and statistical power) decreases [8,22].

Assessing classification accuracy
To determine which classification approach is the most accurate,
competing models are typically compared across several measures
of accuracy. The starting point in assessing a model’s accuracy is
by presenting the relevant counts of correctly and incorrectly clas-
sified observations in a standard classification table (also called a
confusion matrix), such as that presented in Table 3, and then
calculating the following measures: Sensitivity (true positive rate)
is the proportion of actual participants that are correctly predicted
by the model as being participants: D/(C + D) × 100% (Table 3).
Specificity (true negative rate) is the proportion of actual non-
participants that are correctly predicted by the model as being
non-participants: A/(A + B) × 100%. The positive predictive value
(PPV) is the probability that individuals predicted by the model to
be participants are true participants: D/(B + D) × 100%. Further-
more, the negative predictive value (NPV) is the probability that
individuals predicted by the model to be non-participants are true
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non-participants: A/(A + C) × 100%. The overall predictive accu-
racy is the proportion of the sample correctly classified: [(A + D)/
(A + B + C + D) × 100%].

A perfect classification model would have 100% sensitivity and
100% specificity, thereby correctly identifying all true cases (e.g.
participants) and never mislabelling non-cases (e.g. non-
participants). In reality, however, few models are that accurate.
There are at least three limitations to using these traditional meas-
ures of classification accuracy. First, when the test is based on a
continuous variable, the sensitivity and specificity will change as
the cut-point is moved up or down the continuum. For example, if
high values indicate participation, raising the cut-point will mean
fewer participants will be correctly classified, thereby decreasing
sensitivity but also decreasing the number of false-positives. Con-
versely, lowering the cut-point results in more participants cor-
rectly classified as participants (increased sensitivity), but at the
expense of a higher false-positive rate. The second limitation is
that the predictive values of the classification model are highly
sensitive to the prevalence rate of the observed outcome in the
population being evaluated [23]. When the population has a high
prevalence of the outcome, the PPV will increase and NPV will
decrease. Conversely, when there is low outcome prevalence, PPV
decreases and NPV increases. Thus, in a population where nearly
everyone is participating in the intervention, it would be much
easier to predict a person’s likelihood of being in the intervention,
and much harder to predict who will be a non-participant. The
third limitation (related to the first two limitations) is that these
metrics do not provide a consistent directional result. Sensitivity
(specificity) may be high while specificity (sensitivity) is low, and
PPV (NPV) may be high while NPV (PPV) is low. As a conse-
quence, the researcher may find it difficult to determine which of
the measures provide the most meaningful information about the
model’s accuracy.

Receiving operating characteristic (ROC) curves offer a more
robust alternative to these more conventional classification
methods. ROC analysis involves first obtaining the sensitivity and
specificity of every individual in the sample and then plotting
sensitivity versus 1 − specificity across the full range of values. So
that one does not have to rely on visual inspection to determine
how well the model performs, it is possible to assess the overall
classification accuracy by calculating the area under the curve
(AUC), also referred to as the C statistic. A model with perfect
discriminatory ability will have a C statistic of 1.0, whereas a
model unable to distinguish between participants and non-
participants will have a C statistic of 0.50. Other levels of discrimi-
nation have been proposed. For example, Yourman et al. [24]
considered C statistics in the range of 0.50–0.59 to indicate
poor, 0.60–0.69 to indicate moderate, 0.70–0.79 to indicate good,

0.80–0.89 to indicate very good, and 0.90 or greater to indicate
excellent discrimination.

The advantages of ROC analysis over conventional 2 × 2 tables
are threefold: (1) a pre-determined cut-off point is not required
because each possible decision threshold is calculated and incor-
porated into the analysis; (2) ROC analysis allows for visual
examination of scores on one curve or a comparison of two or
more curves using the same metric; and (3) the prevalence of the
outcome in the sample population is not a limiting factor as it is
with the conventional measures of accuracy.

Another measure of accuracy that is superior to the conventional
indices described above is the ESS, introduced by Yarnold and
Soltysik [6]. ESS is a chance-corrected (0 = the level of accuracy
expected by chance) and maximum-corrected (100 = perfect,
errorless prediction) index of predictive accuracy. The formula for
computing ESS for binary case classification is:

ESS Mean percent accuracy in classification= −
×

( )[ ]50
50 100%,

(1)

where

Mean percent accuracy in classification
Sensitivity Specif= + iicity( ) ×2 100. (2)

Yarnold and Soltysik [6] considered ESS values less than 25% to
indicate a relatively weak, 25%–50% to indicate a moderate, 50%–
75% to indicate a relatively strong, and 75% or greater to indicate
a strong effect. Using ESS, an investigator may directly compare
the performance of different models, relative to chance, regardless
of the structural features of the analyses, such as sample size,
number of outcome categories, number of covariates and covariate
metrics, and sample skew [25]. An advantage that ESS holds over
the C statistic is that it is easily calculated from values in the
classification table [26].

Comparison of approaches for
assessing selection in the medical
home pilot

Accuracy

In this section, we compare the accuracy between one conven-
tional statistical approach (logistic regression), and the three data
mining approaches described earlier, for assessing selection in the
medical home pilot data. The ‘base case’ is the full logistic regres-
sion (LR) model presented in Table 2. We then examine SVM and
RF, and enumerated CTA. We assess accuracy by comparing: (1)
sensitivity, specificity, NPV and PPV; (2) AUC; and (3) ESS, as
described previously.

Table 3 Classification table used for
assessing model accuracy (modified from
Linden [5]) Actual status

Model prediction

TotalNon-participation Participation

Non-participation True negative False positive
A B A + B

Participation False negative True positive
C D C + D

Totals A + C B + D A + B + C + D
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Generalizability

After assessing accuracy, assessing the generalizability of a model
helps determine how well it can identify new participants who may
have somewhat different characteristics than those in the original
sample. Such an application may be valuable for administrators of
ongoing interventions who want to limit their enrolment to those
individuals who may benefit most from the intervention.

To assess generalizability, a model is first estimated using the
entire sample (training set), and accuracy measures are calcu-
lated, as described previously. Next, the same model is subjected
to a procedure called cross-validation and then the accuracy
measures are recalculated. If the accuracy measures remain con-
sistent with those of the original model using the entire sample,
then we can say that the model is generalizable. Although there
are several cross-validation techniques available, the present
study utilizes one of two approaches: leave-one-out (LOO) cross-
validation is simply n-fold cross-validation, where n is the
number of observations in the dataset. Each observation in turn is
left out, and the model is estimated for all remaining observa-
tions. The predicted value is then calculated for the one hold-out
observation, and the accuracy is determined as success or failure
in predicting the outcome for that observation. The results of all
n predictions are used to calculate the final accuracy estimates
displayed in the classification tables, which are then compared to
the original estimates [16]. The k-fold cross-validation method is
a variant on the LOO approach. Here, the entire dataset is ran-
domly divided into k subsets, the specified model is fit using the
other k − 1 subsets and the resulting parameters are used to
predict the outcome in the remaining hold-out subset. Model
accuracy measures are calculated using the average values across
all hold-out models [16]. As above, the accuracy measures of the
cross-validated model are compared to those of the original
model using the entire dataset. The model is considered gener-
alizable if the accuracy measures remain consistent with those of
the original model.

Model estimation

For all models, the treatment assignment indicator (a binary value of
1 = treatment, and 0 = non-treatment) was the outcome (class), and
the 13 observed baseline characteristics were covariates (attrib-
utes). All models were estimated using cross-validation. We esti-
mated the LR model using a user-written command for Stata,
LOOCLASS [27], which performs LOO and produces the classifi-
cation measures described earlier. SVM was implemented using
the LibSVM library in Weka version 3.7.12 (http://www.cs
.waikato.ac.nz/ml/weka/) with a Gaussian kernel and 10-fold cross-
validation. The RF algorithm was also implemented in Weka, using
a forest of random tree-based classifiers with 100 trees and 10-fold
cross-validation. Enumerated CTA was implemented using Auto-
mated CTA Software [25]. All variables included in the CTA model
were constrained to achieve identical classification accuracy in
training (total sample) and LOO validity analysis. To ensure
adequate statistical power, inhibit over-fitting, and increase the
likelihood of cross-validation if the model is applied to classify a
(smaller) independent sample, model endpoints were constrained to
have N ≥ 10% of the total sample [8].

Results
Appendices A–D provide the classification tables and accuracy
measures for each of the four cross-validated models. As seen, the
models performed quite differently across the various measures.
For example, LR, SVM and RF had very high specificity (ranging
from 93.5% to 95.5%) and low sensitivity (ranging from 37.4% to
52.1% – values reflecting accuracy equal to or less than expected
by chance), while CTA had high sensitivity (86.6%) and somewhat
lower specificity (75.6%). Additionally, LR, SVM and RF all had
very similar NPV values (ranging from 86.9% to 89.5%), whereas
CTA had a much higher NPV (96.1%). Conversely, although LR,
SVM and RF all had very similar PPV (about 65%), CTA produced
a lower PPV (44.9).

It is on the two ‘holistic’ measures of accuracy – AUC and ESS
– where a clear differentiation between models is evident. Here,
the CTA achieved a high AUC of 0.81, which categorized it as a
‘very good’ classifier, whereas the other three models were cat-
egorized as only ‘moderate’ to ‘good’. Similarly, CTA achieved a
high ESS of 62.3%, categorizing it as ‘relatively strong’, whereas
the other three models were categorized as only ‘moderate’.

What is noteworthy about CTA outperforming the other models
is that only three covariates were needed to achieve maximal
accuracy (office visits, age and prescriptions filled), whereas the
other models used all 13 covariates, and achieved lower accuracy.
Figure 1 illustrates how those covariates are used in the CTA
model to predict participation and non-participation. The model
predicted that 47.12% of individuals having more than 7.5 office
visits in the previous year were likely to participate in the medical
home pilot. Additionally, 38.5% of individuals who had 7.5 or
fewer office visits, older than 50.5 years and filled more than 16.5
prescriptions in the previous year were likely to participate. Fol-
lowing the diagram down the left branches, one can see that the
model predicted non-participation nearly perfectly with no more
than three variables. And finally, from a statistical perspective,
health researchers can feel confident in the reliability of the
model’s discriminatory ability, given that the permutation tests,
performed at all nodes, had P values < 0.0001. To summarize,
CTA achieved higher accuracy than the competing models, while
using much fewer variables. Additionally, all nodes achieved high
levels of statistical significance, indicating that the overall model
met conventional conditions for demonstrating discriminatory
ability as well.

Discussion
Although data mining has broad application in health care, this
paper has focused on its use for characterizing the nature of indi-
viduals who participate in observational studies. Moreover, as we
have demonstrated using the medical home pilot data, CTA holds
several advantages over other classification algorithms that may
preclude their utility or acceptance by health researchers. First,
CTA models offer transparency in the computational approach,
unlike the more computationally intensive techniques that offer
no interpretable formulae or visual displays of the final model.
Second, CTA generally produces parsimonious models that
achieve classification accuracy as well as – if not better – than
more complex algorithms [8]. As a general rule, a simpler model
is always preferred over a more complex model, assuming both

Data mining in observational studies A. Linden and P.R. Yarnold

© 2016 John Wiley & Sons, Ltd.8 04

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


have the same classification accuracy. And third, CTA includes
permutation tests, adjusted for multiple comparisons, to ensure
that the final model meets rigorous statistical assumptions
[8,20,21]. Thus, one may consider CTA as an ‘all-in-one’ clas-
sification algorithm that combines the synergies of data mining
and conventional statistics. That is, the data mining component
ensures that the final model achieves maximum accuracy (as
measured by ESS), and the permutation tests, performed at each
node, ensure that the model’s discriminatory ability has met
accepted levels of statistical significance.

The synergies between data mining and statistics can be realized
using other models outside of CTA, although it would require
substantial manual processing. For example, a decision tree model
can be constructed using data mining software, after which the
prediction estimates at each node would be retrieved (i.e. the
number of correctly and incorrectly predicted cases), and permu-
tation tests on these values would be estimated in a statistical
software program. Unfortunately, statistical tests cannot be easily
combined with more complex algorithms, such as SVM and RF,
which do not provide straightforward interpretable formulae or

decision rules. However, it is possible that in the future these
models will begin to include statistical testing as a component of
their procedures.

For health researchers interested in leveraging data mining to
assess selection, the approach should be shaped by the investig-
ator’s purpose for determining selection. For example, in the case
where an administrator would like to create a tailored recruitment
plan targeting individuals who are most likely to benefit from the
intervention, a CTA model should be constructed to achieve the
highest generalizability while using the fewest variables (using
enumerated-optimal CTA). In other words, the model should be
accurate for classifying potentially new participants on the basis of
a short list of characteristics to minimize the administrative
burden. On the other hand, if the investigator wants to reveal
potentially complex relationships among individual characteristics
that may bias an outcomes study, then a CTA model should be
constructed to achieve maximum accuracy without consideration
of cross-validation. Additionally, the P values estimated at each
node will provide the investigator confidence that the results meet
the a priori statistical rigour they are willing to accept.

Number of
office visits

Number of
prescriptions

Age

Predict
non-participation

946 / 974
(97.13%)

Predict
non-participation

285 / 307
(92.83%)

Predict
participation

72 / 187
(38.50%)

Predict
participation

252 / 534
(47.19%)

P < 0.0001

P < 0.0001

P < 0.0001

≤7.5

≤50.5

≤16.5

>50.5

>16.5

>7.5

Figure 1 Enumerated classification tree
analysis for predicting participation and non-
participation in the pilot programme.
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One can also envision how the results from CTA using obser-
vational data may inform the inclusion criteria in a prospective
trial. Rather than recruiting subjects based on arbitrary cut-off
levels on certain covariates (e.g. age over 65), cut-offs can be
based on levels most likely to be associated with participation (or
non-participation). Subjects may therefore be stratified according
to their likelihood of participation, mitigating any subjectivity
from the model-selection decision-making process.

The CTA model can also help to identify pathways to further
understanding of the phenomenon under investigation, and improve
predictive accuracy, vis-à-vis inspection of model residuals (i.e.
misclassified observations). For example, in Fig. 1, the two left-
hand endpoints yield high predictive accuracy, correctly classifying
97.13% and 92.83% of the observations. In contrast, the two
right-hand endpoints yield substantially lower predictive accuracy.
Of these latter two endpoints, the right-most misclassifies n = 282
observations, and the second-from-the-right endpoint misclassifies
n = 115 observations. The most efficient follow-up study would
therefore obtain and study a sample of observations having eight or
more office visits. Classification accuracy for this cohort cannot be
improved by using any of the predictive variables (attributes) used
presently: a new set of potential predictors is needed. Less efficient
but still substantial improvement could be realized by studying a
cohort of patients having seven or fewer office visits, age greater
than 50.5 years, and 16 or more prescriptions [8].

Although this paper has focused solely on the application of
data mining techniques to classifying selection into an observa-
tional intervention or treatment, a logical extension of these
methods is in the evaluation of outcomes. Athey and Imbens [28]
offered a novel conceptual approach for estimating heterogeneous
causal effects using data mining techniques. However, this area of
research is open to much further exploration. In particular, empha-
sis should be placed on determining the most appropriate algo-
rithm – or a generalization to all algorithms, extension to outcomes
with censored data [29], and the development of specific sensitiv-
ity analyses for these applications [30].

In summary, this paper introduced data mining techniques as a
novel approach for characterizing the nature of individuals who
participate in observational studies. In our motivating example, we
found that enumerated CTA achieved the greatest classification
accuracy among the models tested, in addition to providing a
statistically robust, parsimonious, transparent model.
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Appendix A

Classification table and measures of accuracy
for a logistic regression model using all 11 base-
line variables to predict participation (and non-
participation) in the pilot intervention

Actual participation

Model prediction

TotalNon-participation Participation

Non-participation 1541 87 1628
Participation 215 159 374
Total 1751 251 2002

Measure of accuracy Value (%)

Overall accuracy 84.92%
Sensitivity (participants) 42.51%
Specificity (non-participants) 94.66%
Positive predictive value (participants) 64.63%
Negative predictive value (non-participants) 87.76%
Effect strength (Sensitivity) 37.17%
ROC area 0.69

Appendix B

Classification table and measures of accuracy
for a support vector machine (SVM) model to
predict participation (and non-participation) in
the pilot intervention

Actual participation

Model prediction

TotalNon-participation Participation

Non-participation 1554 74 1628
Participation 234 140 374
Total 1788 214 2002

Measure of accuracy Value (%)

Overall accuracy 84.62%
Sensitivity (participants) 37.43%
Specificity (non-participants) 95.45%
Positive predictive value (participants) 65.42%
Negative predictive value (non-participants) 86.91%
Effect strength (Sensitivity) 32.89%
ROC area 0.66

Appendix C

Classification table and measures of accuracy
for a random forest model to predict participa-
tion (and non-participation) in the pilot interven-
tion

Actual participation

Model prediction

TotalNon-participation Participation

Non-participation 1522 106 1628
Participation 179 195 374
Total 1701 301 2002

Measure of accuracy Value (%)

Overall accuracy 85.76%
Sensitivity (participants) 52.14%
Specificity (non-participants) 93.49%
Positive predictive value (participants) 64.78%
Negative predictive value (non-participants) 89.48%
Effect strength (Sensitivity) 45.63%
ROC area 0.73

Appendix D

Classification table and measures of accuracy
for an enumerated classification tree model to
predict participation (and non-participation) in
the pilot intervention

Actual participation

Model prediction

TotalNon-participation Participation

Non-participation 1231 397 1628
Participation 50 324 374
Total 1281 721 2002

Measure of accuracy Value (%)

Overall accuracy 77.67%
Sensitivity (participants) 86.63%
Specificity (non-participants) 75.61%
Positive predictive value (participants) 44.94%
Negative predictive value (non-participants) 96.10%
Effect strength (Sensitivity) 62.25%
ROC area 0.81
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