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The goal of this study was to develop an automated method to segment breast masses on dynamic
contrast-enhanced �DCE� magnetic resonance �MR� scans and to evaluate its potential for estimat-
ing tumor volume on pre- and postchemotherapy images and tumor change in response to treat-
ment. A radiologist experienced in interpreting breast MR scans defined a cuboid volume of interest
�VOI� enclosing the mass in the MR volume at one time point within the sequence of DCE-MR
scans. The corresponding VOIs over the entire time sequence were then automatically extracted. A
new 3D VOI representing the local pharmacokinetic activities in the VOI was generated from the
4D VOI sequence by summarizing the temporal intensity enhancement curve of each voxel with its
standard deviation. The method then used the fuzzy c-means �FCM� clustering algorithm followed
by morphological filtering for initial mass segmentation. The initial segmentation was refined by the
3D level set �LS� method. The velocity field of the LS method was formulated in terms of the mean
curvature which guaranteed the smoothness of the surface, the Sobel edge information which
attracted the zero LS to the desired mass margin, and the FCM membership function which im-
proved segmentation accuracy. The method was evaluated on 50 DCE-MR scans of 25 patients who
underwent neoadjuvant chemotherapy. Each patient had pre- and postchemotherapy DCE-MR scans
on a 1.5 T magnet. The in-plane pixel size ranged from 0.546 to 0.703 mm and the slice thickness
ranged from 2.5 to 4.5 mm. The flip angle was 15°, repetition time ranged from 5.98 to 6.7 ms, and
echo time ranged from 1.2 to 1.3 ms. Computer segmentation was applied to the coronal T1-
weighted images. For comparison, the same radiologist who marked the VOI also manually seg-
mented the mass on each slice. The performance of the automated method was quantified using an
overlap measure, defined as the ratio of the intersection of the computer and the manual segmen-
tation volumes to the manual segmentation volume. Pre- and postchemotherapy masses had overlap
measures of 0.81�0.13 �mean�s.d.� and 0.71�0.22, respectively. The percentage volume reduc-
tion �PVR� estimated by computer and the radiologist were 55.5�43.0% �mean�s.d.� and
57.8�51.3%, respectively. Paired Student’s t test indicated that the difference between the mean
PVRs estimated by computer and the radiologist did not reach statistical significance �p=0.641�.
The automated mass segmentation method may have the potential to assist physicians in monitoring
volume change in breast masses in response to treatment. © 2009 American Association of Physi-
cists in Medicine. �DOI: 10.1118/1.3238101�
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I. INTRODUCTION

Neoadjuvant or presurgical chemotherapy can reduce the
size of locally advanced masses and increase the chance of
electing breast conserving surgery.1–3 Results of several ran-
domized trials comparing adjuvant �postoperative� to neoad-
juvant chemotherapy for operable breast cancer indicated no
statistically significant difference in the long-term overall
survival between the adjuvant and neoadjuvant arms.4–6

Neoadjuvant chemotherapy may therefore be a safe approach
in reducing the mastectomy rate for women with locally ad-
vanced breast cancer.7

During neoadjuvant chemotherapy it is useful to monitor

the changes in the tumor to assess treatment efficacy and to
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intervene based on response so that the patient can be spared
the associated morbidity by early termination of an ineffec-
tive regimen or benefit from effective regimens sooner.8 In
addition, there is evidence that compared to poor responders,
good responders to neoadjuvant chemotherapy have superior
outcome both in terms of disease-free survival and overall
survival.7 This indicates that the response to neoadjuvant
chemotherapy may also be used as an early surrogate of
long-term outcome. Evaluation of tumor response to neoad-
juvant chemotherapy is therefore an important clinical task.

Clinical trials indicate that the effect of neoadjuvant che-
motherapy on breast masses may fall into pathologic re-

sponses ranging from complete response to progressive
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disease.9 Mass diameter has been used widely to describe
mass extent and to monitor the response to therapy3,10,11 be-
cause it can be measured conveniently by physicians. For a
solitary tumor, the World Health Organization criterion for
partial response is a 50% or more decrease in the product of
two measurements �the maximum diameter and the largest
diameter perpendicular to this maximum diameter�.12 The
Response Evaluation Criteria in Solid Tumors �RECIST�, in-
troduced in 2000, defines partial response as a 30% or more
decrease in the longest diameter of the lesion.13 However,
both of these criteria are based on the assumption that the
tumor is spherical and has a circular cross section. For
masses with an irregular shape and those that may shrink
nonuniformly in different directions, dual or single diameter
measurements may be inadequate for response monitoring.14

Partridge et al. found that mass volume in dynamic contrast-
enhanced �DCE� breast magnetic resonance �MR� imaging
may provide a more sensitive assessment of neoadjuvant
chemotherapy efficacy than mass diameter.15 One obstacle in
adopting three-dimensional �3D� volume is that manual seg-
mentation of 3D MR scans is time consuming and may have
large inter- and intraobserver variabilities. Automated or
semiautomated 3D segmentation methods potentially will be
more efficient and reproducible.

Investigators have presented a number of segmentation
methods14–21 for lesions in breast MR scans. Lucas-Quesada
et al.16 designed two semiautomatic techniques for segmen-
tation of breast masses on DCE-MR images. Method 1 used
the correlation of the enhancement curve of a pixel in the
image to that of a user-defined ROI to generate a similarity
map. A user-defined threshold was then used on the similar-
ity map for segmentation. Method 2 used a feature map gen-
erated from a scatter plot of pixel intensities in the pre- and
postcontrast images. They found that although both methods
have similar accuracy indices, Method 1 required less user
interaction and was less affected by image noise. Chen et al.
proposed a fuzzy c-means �FCM� based method,17 which
focuses on temporal intensity information of DCE-MR
scans. Experimental results based on 121 breast masses indi-
cated that the FCM clustering was more effective and effi-
cient than their previously developed volume growing
method. One drawback of their FCM implementation is that
it utilizes mainly intensity enhancement in the temporal do-
main without including spatial constraints among neighbor-
ing voxels. Szabo et al.18 also performed pixel-by-pixel seg-
mentation of breast tumors based on the signal enhancement
curves in time. However, no comparison was made to
manual segmentation. Wu et al. segmented DCE breast MR
images based on the Markov random field �MRF� model.19

The challenge of this method is how to appropriately design
and optimize the parameters of the MRF model to fit various
mass structures. Alderliesten et al.14 used a volume growing
method with a voxel-based stopping criterion automatically
derived from the enhanced mass volume. The mass diameter
was also manually measured by two radiologists on
DCE-MR images. The ground truth was established by mea-
suring the tumor volume at histopathology. The investigators

found that semiautomatic volumetric measurement at
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DCE-MR provided a more accurate assessment of tumor ex-
tent with respect to histopathology. Although their results
supported the usefulness of semiautomatic measurement in
improving tumor size estimation, they did not analyze
postchemotherapy masses, which is often more challenging,
so that its role in assessing volume change in response to
treatment is not known. Partridge et al.15 used a threshold-
based semiautomatic method for tumor volume measurement
on DCE-MR images and showed that both initial MRI vol-
ume and final change in volume were strong predictors of
recurrence-free survival for breast cancer patients who un-
derwent neoadjuvant chemotherapy. Bulow et al.20 designed
a segmentation method that included lesion selection, auto-
mated threshold estimation, hole closing, and leakage re-
moval steps. They compared computer segmentation with
manual segmentation by two radiologists on a data set of five
breast masses and investigated the effect of lesion selection
on computer segmentation. The commercial software CAD-
stream �Confirma, Seattle, WA� also provides a segmentation
function, but it is based on global thresholding without con-
sidering the spatial structures of mass.21

Although previous studies evaluated the performance of
automated or semiautomated segmentation methods for
breast masses on DCE-MR images, very few studies in-
cluded postchemotherapy images. Partridge et al.15 investi-
gated semiautomated measurement of tumor volume in both
pre- and postchemotherapy DCE-MR images, but they did
not compare the segmented lesion boundaries and volume to
manual segmentation. With the increased use of neoadjuvant
chemotherapy and the increase in radiologists’ workload, au-
tomated and semiautomated segmentation methods for the
evaluation of tumor response to treatment will become more
appealing. It is therefore important to evaluate the perfor-
mance of computer segmentation methods on both pre- and
postchemotherapy images and compare the performance
with manual segmentation by experienced radiologists. The
goal of our study was to develop a segmentation method for
breast masses on DCE-MR images and to evaluate its poten-
tial for estimating tumor volume on pre- and postchemo-
therapy images and tumor change in response to treatment.

We have previously designed a level set �LS� method for
mass segmentation in mammograms and obtained encourag-
ing results.22 In a preliminary study,23 we extended our
implementation from 2D to 3D for breast MR exams and
evaluated the method on the pre- and postchemotheraphy
scan of ten lesions. The initial segmented volume in our
preliminary study was provided by k-means clustering. In
this study, we improved the performance by using FCM-
based clustering for initial mass segmentation and adding a
new propagation term that used FCM clustering as an addi-
tional external force to regulate the LS evolution. The newly
proposed mass segmentation method takes advantage of both
mass morphology �3D spatial structure� and mass pharmaco-
kinetics �voxelwise 1D temporal intensity enhancement
curve� information on DCE-MR scans. The LS method can
flexibly handle the variation of 3D mass structures. Our
method for breast mass segmentation was validated by com-

paring its results to manual segmentation by an experienced
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radiologist on pre- and postchemotherapy DCE-MR scans of
25 patients who underwent neoadjuvant chemotherapy. The
capability of the computerized method in estimation of tu-
mor volume change was also evaluated. The performance of
the newly proposed segmentation method was compared to
that in our preliminary study by using the radiologist’s
manual segmentation as the reference standard. The same
radiologist repeated the segmentation of all breast mass im-
ages after 1 year to estimate the intraobserver variability in
manual segmentation.

II. MATERIALS AND METHODS

Figure 1 shows the flowchart for our breast mass segmen-
tation method. A new 3D volume of interest �VOI� represent-
ing the local pharmacokinetic activities in the mass VOI,
referred to as the “spatial-pharmacokinetic VOI” in the fol-
lowing discussion, was generated from the 4D VOI sequence
by summarizing the temporal intensity enhancement curve of
each voxel with its standard deviation. The FCM clustering
was applied to the spatial-pharmacokinetic VOI, together
with one 3D postcontrast VOI in which the average voxel
intensity enhancement was the highest. The segmented vol-
ume resulting from the FCM clustering was adjusted using
morphological filtering. The LS method was initialized using
the filtered FCM clustering result. It evolved in the same 3D
postcontrast VOI as that used by the FCM clustering and was
regulated by the FCM membership function. With this ap-
proach, both spatial and time �4D� information in the input
VOI sequence from the DCE-MR scan was utilized in the
computer processing to produce the 3D output VOI.

II.A. Data set

DCE-MR scans were performed for 37 patients who un-
derwent neoadjuvant chemotherapy as part of a previous
study at our institution.24 We collected data from this previ-
ous study with Institutional Review Board approval.
DCE-MR scans were available and evaluable for 25 patients.
Each patient had one pre- and one postchemotherapy
DCE-MR scans performed on a 1.5 T General Electric �GE�
magnet with the Medrad dual-phased array dedicated breast
coil for optimal resolution and signal-to-noise ratio. Three-
dimensional volume acquisition gradient echo sequences
were performed with fat saturation before and after the intra-
venous administration of 0.15 mmol/kg gadolinium diethyl-
enetriamine penta-acetic acid �Gd-DTPA�. A hybrid sequence
was used to combine rapid dynamic imaging with high res-
olution imaging. Dynamic imaging was preformed in 26.7 s
intervals for about 4 min. Gd-DTPA was administered in the

Breast MR

Mass VOI

Variation of

Enhancement

Fuzzy

C-Means

Morphological

Filtering

Let Set

Segmentation
4D 3D 3D 3D

Most Enhanced 3D VOI

FIG. 1. Flowchart for mass segmentation on breast DCE-MR scans.
first 30–45 s of the scan; therefore, the first 3D volume in the
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scan sequence was contrast-free. Each DCE-MR scan se-
quence in the data set included ten consecutively acquired
volumes. Computer segmentation was applied to the coronal
T1-weighted images. The in-plane pixel size ranged from
0.546 to 0.703 mm and the slice thickness ranged from 2.5 to
4.5 mm. The flip angle was 15°, repetition time ranged from
5.98 to 6.7 ms, and echo time ranged from 1.2 to 1.3 ms.

For each MR sequence, an expert radiologist, with more
than 25 years of experience in breast imaging and 7 years of
experience in interpreting breast MR scans, located and de-
fined a 3D cuboid VOI that enclosed the mass on one of the
postcontrast scans. An in-house developed graphical user in-
terface was used to define the mass VOI in both pre- and
postchemotherapy scans for all 25 patients in our data set. As
an example, Fig. 2 shows one postcontrast coronal slice that
included both left and right breasts. The radiologist marked
the mass with a rectangle on the slice where it was best
visualized and indicated the top and bottom slices where the
mass was visible. By stacking the rectangles with the same
size and the same in-plane location on the other slices con-
taining the mass, a 3D cuboid VOI was obtained. A total of
50 VOIs �25 prechemotherapy masses and 25 postchemo-
therapy masses� were thus collected. The same radiologist
also manually segmented each mass on each slice of the VOI
twice in two reading sessions, so that the intraobserver vari-
ability could be estimated. To minimize the potential effect
associated with memorization, the two readings were sepa-
rated by more than 1 year. The manually segmented contours
were used as the reference standard to compare with our
automated segmentation method.

II.B. Analysis of pharmacokinetic curves

Pharmacokinetic assessment from breast DCE-MR scans
has been used for mass detection, diagnosis, and staging.25–29

Figure 3 illustrates four typical pharmacokinetic curves that
characterize the uptake and washout properties of contrast
agent in fat, parenchyma, malignant tissue, and benign tis-
sue, respectively. Normal tissue typically has a flat curve,
while malignant tissue typically shows a rapid uptake and
washout.30 Benign masses may have various patterns of the
uptake and washout curve. Because all masses undergoing
neoadjuvant chemotherapy are malignant, we need only to
differentiate normal from malignant tissue. A number of re-
searchers have been investigating pharmacokinetic modeling

FIG. 2. A 2D postcontrast breast MRI slice. The prechemotherapy mass was
enclosed by the rectangular ROI drawn by the radiologist.
methods to quantify physiological parameters that describe
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the dynamics of tissue enhancement. However, the estimated
parameters from experimental data may show a large varia-
tion depending on the mathematical model and the experi-
mental design.30–32

Ten volumes corresponding to the ten time points in each
DCE-MR scan sequence in our data set provided samples for
initial voxelwise statistical analysis, which was performed by
computing the standard deviation of temporal intensity en-
hancement of each voxel. Voxels of a malignant mass typi-
cally had large standard deviations, while most voxels of the
normal breast tissue had small standard deviations. Some
normal voxels, such as those containing vessels, may also
demonstrate large standard deviations. These voxels are ex-
cluded from the segmented mass in subsequent processing
steps.

In this study, the LS segmentation method was applied to
the most enhanced postcontrast VOI, which was selected
from the DCE-MR VOI sequence by the following steps: �1�
Define the precontrast �the first time point� VOI as the refer-
ence and one of the remaining nine volumes in the sequence
as the search VOI, �2� subtract the reference VOI from the
search VOI, �3� average all non-negative voxels, i.e., voxels
with enhancement, in the difference VOI, and �4� perform
steps �2� and �3� for each of the nine postcontrast time points
and choose the VOI that has the maximum average.

Figure 4�a� shows ten 3D VOIs at ten sequential time
points acquired before, during, and after contrast injection.
The top row represents the 3D VOI acquired at the precon-
trast time point and the bottom row represents the last post-
contrast time point. Figure 4�b� shows the spatial-
pharmacokinetic VOI, in which the gray-level value of each
voxel is proportional to the standard deviation of the tempo-
ral intensity variation of that voxel among the ten time points
shown in Fig. 4�a�. The analysis of standard deviation at each
voxel summarizes the spatial-variant pharmacokinetic 4D in-
formation in a 3D ROI, which enhances the malignant mass
while suppressing most background tissue. The spatial-
pharmacokinetic VOI shown in Fig. 4�b� and the 3D VOI
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FIG. 3. Illustration of typical pharmacokinetic curves for various types of
breast tissue in DCE-MR scans.
with the highest average enhancement �the sixth row in Fig.
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4�a� for the mass in this example� were then used as inputs to
the FCM clustering. For each voxel vi in the 3D VOI to be
segmented, a two-element vector xi was defined such that the
first element corresponded to the standard deviation and the
second element to the gray-level in the VOI with the highest
enhancement.

II.C. Initial segmentation

In a preliminary study,23 we had implemented a simpler
LS model that used k-means clustering for initialization. In
this study, FCM clustering was used both for initial segmen-
tation and for LS evolution. The previous implementation
with the k-means initialization was compared to the current
implementation in this study. We first describe the FCM ini-
tialization below, followed by a short description of the
k-means initialization used in our previous preliminary study.

FCM is an unsupervised machine learner.33 It has been
used widely in data analysis and medical image
segmentation.34 Similar to k-means clustering, the FCM clus-
tering is an iterative process that optimizes a specific objec-
tive function. However, unlike k-means clustering where
each data sample is exclusively assigned to one cluster, the
FCM clustering assigns each data sample to all predefined

(a)

(b)

FIG. 4. Breast mass VOIs defined from a DCE-MR scan sequence. �a� Slices
of a sequence of 3D VOIs at ten time points from the top row to the bottom
row. The first time point is a precontrast scan. For each row �time point�, the
leftmost slice is the closest to the nipple. �b� The 3D spatial-pharmacokinetic
VOI derived by using the voxelwise standard deviation of temporal intensity
enhancement over the ten scans.
clusters with respective likelihoods.
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For breast mass segmentation on DCE-MR scans, the ob-
jective function for the FCM clustering was the generalized
least-squares error defined as

J = �
i=1

N

�
j=1

2

uij
2 �xi − c j�2, �1�

subject to

ui1 + ui2 = 1, ∀ i = 1, . . . ,N ,

where N is the number of voxels in the 3D VOI, xi is a
two-element vector at voxel i described above, c j �j=1 and
2� are two-element vectors obtained from weighted averag-
ing of xi for the background tissue and the mass, respec-
tively, uij is the likelihood that the voxel xi belongs to cluster
j, and � · � stands for the Euclidean distance. Starting with
random assignments for c1 and c2, we alternately updated the
likelihoods:

ui1 =
�xi − c2�2

�xi − c1�2 + �xi − c2�2

and

ui2 =
�xi − c1�2

�xi − c1�2 + �xi − c2�2 , �2�

and the cluster centers cj:

c1 =
�i=1

N ui1
2 xi

�i=1
N ui1

2 and c2 =
�i=1

N ui2
2 xi

�i=1
N ui2

2 . �3�

This iterative optimization stopped when the objective func-
tion J changed very little �in this study, �Jn+1−Jn��0.01�
between two consecutive iterations or when a predetermined
number of iterations was reached �N=100�.

For each voxel vi in the 3D VOI, FCM clustering resulted
in a likelihood ui2 that vi belonged to the malignant mass. To
binarize the FCM clustered VOI, we experimentally deter-
mined a threshold T=0.3 on ui2 which was then applied con-
sistently to all masses in the data set. A voxel vi was assigned
to the mass if and only if ui2 was larger than T. Within the
binary 3D VOI, the largest 3D connected component based
on 26 connectivity was selected, and the other voxels were
grouped into the background. Since breast masses on
DCE-MR scans may demonstrate rim enhancement �i.e., the
enhancement is more pronounced at the periphery than the
internal region of the mass�, the object segmented by the
FCM clustering algorithm may contain holes, formed by
groups of voxels assigned to the background tissue that were
completely surrounded by mass voxels. These holes were
filled using morphological filling operation. The final step for
the initial mass segmentation was the morphological opening
operation. It slightly reduced the size of the initial segmented
volume so that the initial segmentation can be inside the
desired mass region. Morphological opening may also split
one connected component into multiple isolated components,
which can be handled effectively using the LS segmentation

algorithm described below.
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The clustering method described above utilized the phar-
macokinetic information, because the standard deviation of
the voxel value over the time sequence was one of the ele-
ments used in FCM clustering vector xi. In contrast, the
k-means clustering utilized in our preliminary study made
use of only the difference in voxel values between the post-
and precontrast volumes as the class feature.23 After k-means
clustering, any holes that might exist in the volume were
filled using morphological filtering to obtain an initial seg-
mented volume.

II.D. Level set segmentation

The initial segmentation was refined by the 3D LS
method on the most enhanced postcontrast VOI. The LS
method is a deformable model, which can capture object
shape or surface by numerically solving a well-designed par-
tial differential equation �PDE�. It has several advantages
over its predecessor, the explicit active contour model. For
example, the LS method provides a flexible mechanism al-
lowing topological change in target objects including object
splitting and merging. If a connected object is split into mul-
tiple components by morphological opening in the previous
step, the components that are determined to be parts of the
same object can be reconnected during LS iteration. It can be
extended easily from 2D to 3D or even higher dimensions.
The LS numerical technique for evolving curves in 2D im-
ages or surfaces in 3D volumes has been used in various
applications of image processing, computer graphics, and
computational geometry.35–37 We have previously utilized the
LS method for the segmentation of breast masses on
mammograms.22 In this paper, we extended our implementa-
tion of the 2D LS segmentation on mammograms to 3D on
breast MRI scans. We also employed the FCM clustering
result as an additional external force to regulate the LS evo-
lution. The use of the FCM clustering result to guide the LS
was originally proposed by Suri et al.,36 although our imple-
mentation is different.

The LS formulation in this study is common to that in the
literature.22,35–37 Let ��= ��� /�x ,�� /�y ,�� /�z� be the gra-

dient of the distance function and V� = ��x /�t ,�y /�t ,�z /�t� the
velocity field that guides the surface evolution. The success

of the LS segmentation is subject to appropriate design of V� .
In analogy to the explicit active contour model, we may in-
corporate internal forces to guarantee the smoothness of the
surface and external forces to attract the zero LS to a desired
mass surface. The mean curvature �=−���� / ����� is a
popular term35 to constrain the surface evolution and the
edge information G� =�I�x ,y ,z� of the original volume
I�x ,y ,z� has been used to construct external force in our 2D
mass segmentation on mammograms. For 3D MR scans, we
included a new external force u2�x ,y ,z�, the FCM member-
ship function which quantitatively defines the likelihood that
a voxel at �x ,y ,z� belongs to a mass. Note that u2 is derived
based on the voxel intensity of the most enhanced VOI and

the voxelwise standard deviation in the spatial-
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pharmacokinetic VOI, and hence includes the dynamic en-
hancement information. The LS PDE for breast mass seg-
mentation is formulated as

��

�t
+ ��V� 0� − b� + �u2����� + G� � � = 0, �4�

where �V� 0�=1 /1+ �G� � and b=2�V� 0�. The free parameter �
regulates the external force u2. As � increases, dynamic en-
hancement will have a stronger impact on the LS evolution.
We chose �=0.5 experimentally for the segmentation task in
this study. The intuitive idea behind Eq. �4� is that the LS
should move fast on a flat surface, while it should evolve
slowly as it approaches object edges. Because boundaries of
breast masses may be vague, segmentation leak is a chal-
lenge for breast mass segmentation. We used the homogene-
ity constraint to reduce segmentation leak.22 During evolu-
tion of the 3D zero LS surface, outer border voxels were
examined and added to the existing mass region only if high
homogeneity of mass gray level can be maintained.

Our preliminary LS implementation did not use the exter-
nal force u2 and was initialized by k-means clustering. The
LS method described above included the external force u2

and was initialized by FCM clustering. In the following dis-
cussion, when the two methods are compared, the former
method is referred to as LS�k means� and the latter as LS-
�FCM�. For simplicity, the latter method is also referred to
only as LS, since it is the main focus of this study.

II.E. Performance measure

The mass volumes extracted by FCM-based initial seg-
mentation, LS�FCM�, and LS�k means� were compared to
the reference standard, i.e., the radiologist’s manual segmen-
tation. Pearson’s correlation coefficient was used to measure
the correlation between the computer segmentation and the
reference standard. Paired Student’s t test was used to evalu-
ate the significance of the differences between the extracted

(a)

(b)

(c)

(d)

FIG. 5. Mass segmentation on a breast DCE-MR scan. �a� Original postcon-
trast VOI containing a prechemotherapy breast mass at the time of maxi-
mum enhancement �the sixth time point in Fig. 4�a��. �b� Initial segmenta-
tion by the FCM clustering using the information from the VOI at maximum
enhancement and the spatial-pharmacokinetic VOI �Fig. 4�b�� and the mor-
phological filters. �c� Automated refinement by the LS method. �d� Manual
segmentation by the radiologist.
volumes. An alpha level of 0.05 was defined as the signifi-
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cance criterion. To study the intraobserver variability, vol-
umes obtained from the radiologist’s manual segmentation in
two different reading sessions were compared using Pear-
son’s correlation coefficient and paired Student’s t test.

Physicians commonly compare mass sizes in pre- and
postchemotherapy images to monitor cancer response to neo-
adjuvant chemotherapy. For example, in a previous study at
our institution, a 70% decrease in volume was defined as
pathological partial response and 70% increase in volume as
pathological progressive response.24 Since the change in
mass volume is an important indication of chemotherapy re-
sponse, we evaluated the difference between the change of
mass volume estimated from computer segmentation and ra-
diologist’s manual segmentation. We defined the percentage
volume reduction �PVR� as follows:

PVR = �1 −
Vpostchemo

Vprechemo
	 � 100% , �5�

where Vpostchemo and Vprechemo denote the volumes of the same
mass before and after chemotherapy, respectively. Pearson’s
correlation coefficient was used to measure the correlation
between the computer estimation and the reference standard.
Paired Student’s t test was used to evaluate the statistical
significance of the difference in PVRs estimated by the radi-
ologist and the computer.

We also compared the computer segmentation results with
the radiologist’s manual segmentation in terms of volume
overlap ratios. Let VC and VR denote the mass volumes esti-
mated by computer and by the radiologist, respectively. Sev-
eral definitions have been used and discussed in the literature
for measuring how well two objects overlap. In this study,
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FIG. 6. Log-log scatter plot of pre- and postchemotherapy breast mass vol-
umes estimated by the same radiologist in two reading sessions separated by
over 1 year.
we used two volume overlap ratios defined as
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VOR1 =
�VC � VR�

�VR�
�6�

and

VOR2 =
�VC � VR�
�VC � VR�

, �7�

which respectively represent the fraction of the radiologist’s
volume that overlaps with the computer’s volume and the
overlap relative to the union of the two volumes. The mini-
mum value of VOR1 and VOR2 is zero when VC does not
overlap with VR. The maximum value of VOR1 and VOR2 is
1 when VC completely coincides with VR. We computed
VOR1 and VOR2 for the FCM-based initial segmentation,
LS�FCM�, and LS�k means�. Paired Student’s t test was used
to evaluate whether the LS refinement improved the FCM-
based initial segmentation when the radiologist’s manual
segmentation was used as the reference standard. Likewise,
paired Student’s t test was used to compare the overlap be-
tween the radiologist’s manual segmentation and LS�FCM�
to that between the radiologist’s manual segmentation and
LS�k means�.

III. RESULTS

III.A. Segmentation

Figure 5�a� shows the slices of a postcontrast VOI that
contained a prechemotherapy breast mass at the time point of
maximum enhancement, which was automatically segmented
using the FCM clustering and morphological filtering as
shown in Fig. 5�b�. The LS refinement of FCM clustering
and manual segmentation by the radiologist are shown in
Figs. 5�c� and 5�d�, respectively. The refinement by the LS
method resulted in computer-estimated mass boundaries that
were closer to radiologist-estimated boundaries. The mass in
this example became slightly oversegmented after the LS
refinement if the manual segmentation is used as reference
standard. The mass boundaries generated by computer seg-

TABLE I. Intraobserver variability of manual volum
sessions separated by over 1 year for the prechemoth

Prechemo. �mean�s.d.

Session 1 volume 19.1�30.5
Session 2 volume 21.5�34.0
p value 0.310
Correlation coefficient 0.946

TABLE II. Volumes �cm3� of breast masses before an
volume reduction estimated using the initial FCM se

Segmentation method Prechemo. �mean�

Initial segmentation �FCM� 16.6�26.3
LS�FCM� 19.3�28.5
LS�k means� 18.9�28.8
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mentation were less polygonal than those drawn by the radi-
ologist, indicating that computer segmentation had the poten-
tial to include more boundary details of breast masses.

III.B. Intraobserver variability

Figure 6 shows the log-log scatter plot of pre- and
postchemotherapy breast mass volumes estimated by the
same radiologist in two reading sessions separated by over 1
year. The difference between the volumes segmented in the
two reading sessions was analyzed using the paired t test and
the correlation coefficient �Table I�. For the pre- and
postchemotherapy mass sets, the p values were 0.310 and
0.824, respectively, and the correlation coefficients were
0.946 and 0.991, respectively, indicating that the tumor vol-
umes segmented in the two reading sessions were highly
correlated and their difference did not demonstrate statistical
significance. Thus, in the following analysis of segmentation
performance of the computer algorithm, we only discussed
the results using the radiologist’s first reading as the refer-
ence. The results using the second reading as reference were
similar and not shown to avoid redundancy.

III.C. Volume of breast masses

Table II summarizes volumes of breast masses before and
after chemotherapy and the PVRs estimated by the FCM-
based initial segmentation, LS�FCM�, and LS�k means�. The
radiologist’s manual segmentation is shown in Table I.

Figure 7�a� shows the log-log scatter plot of the volumes
of prechemotherapy masses by the FCM-based initial seg-
mentation and by the radiologist’s segmentation �solid
circles� and the log-log scatter plot of the volumes of the
same masses by LS�FCM� and by the radiologist’s segmen-
tation �empty circles�. The log scale is used to show the data
points in the small volume range more clearly. The 25 empty
circles are distributed close to the dotted line which repre-
sents the ideal trend line. Table III summarizes the statistical
tests for mass volumes estimated by computer segmentation

mentation by the same radiologist in two reading
and postchemotherapy masses.

Postchemo. �mean�s.d.� PVR �mean�s.d.�

10.1�26.7 57.8�51.3
9.8�25.7 60.2�44.0

0.824 0.912
0.991 0.836

r neoadjuvant chemotherapy and the percentages of
tation, LS�FCM�, and LS�k means�.

Postchemo. �mean�s.d.� PVR �mean�s.d.�

4.5�9.0 70.4�35.1
8.8�22.7 55.5�43.0
7.7�20.2 62.7�41.6
e seg
erapy

�

d afte
gmen

s.d.�
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relative to the radiologist’s manual segmentation as the ref-
erence standard. The Pearson product-moment correlation
coefficient between the mass volumes estimated by the
FCM-based initial segmentation and radiologist segmenta-
tion was 0.993, and the paired t test achieved a p value of
0.028. This indicates that for prechemotherapy breast
masses, the volume extracted by the FCM method was
highly correlated with that by the radiologist. However, the
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FIG. 7. Breast mass volumes. �a� Log-log scatter plot of volume of prechem
plot of volume of postchemotherapy masses segmented by computer and the
chemotherapy estimated by the FCM-based initial computer segmentation, t

TABLE III. Statistical comparison of the pre- and postchemotherapy breast
LS�k means� relative to the radiologist’s first manual segmentation as refere

Segmentation method

Prechemo.

t-test p value Correl. coeff.

Initial segmentation �FCM� 0.028 0.993
LS�FCM� 0.918 0.981
LS�k means� 0.873 0.978
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two extracted volumes were significantly different on the av-
erage, with the FCM method underestimating the mass vol-
ume relative to the radiologist-extracted reference standard.
The corresponding correlation coefficient and p value for the
mass volumes estimated by LS�FCM� were 0.981 and 0.918,
respectively. This indicated that the volume extracted by the
LS method was also highly correlated with that by the radi-
ologist. Although the initial segmentation volume based on
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the FCM clustering was significantly different from that ex-
tracted by the radiologist, the volume based on the LS�FCM�
method did not show a significant difference compared to the
radiologist-extracted volume. The corresponding correlation
coefficient and p value for the mass volumes estimated by
LS�k means� were 0.978 and 0.873, respectively.

Figure 7�b� shows the log-log scatter plot of the volumes
of the same set of breast masses as in Fig. 7�a� but after
chemotherapy. As in Fig. 7�a�, the solid and empty circles
represent FCM-based initial segmentation and LS�FCM�, re-
spectively. The correlation coefficient and p value for the
mass volumes estimated by the FCM-based initial segmenta-
tion were 0.912 and 0.153, respectively, while those for the
mass volumes estimated by the LS�FCM� were 0.994 and
0.185, respectively �Table III�. The results indicate that, for
this data set, the difference in the average mass volumes
estimated by the radiologist and the computer did not reach
statistical significance for postchemotherapy masses, and the
LS segmentation slightly improved the FCM-based initial
segmentation. The corresponding correlation coefficient and
p value for the mass volumes estimated by LS�k means�
were 0.994 and 0.095, respectively. Thus, for post chemo-
therapy masses, the mass volume extracted by LS�k means�
was also highly correlated with that extracted by the radiolo-
gist. The average volumes were different, however, although
the difference did not reach statistical significance. As can be
seen from Tables I and II, all three computer methods under-
estimated the average volumes, but LS�FCM� had the small-
est underestimation.

One purpose of measuring the volume of breast masses in
both pre- and postchemotherapy DCE-MR scans was to
evaluate the change in the mass volume. Figure 7�c� illus-
trates the PVRs of 25 breast masses in our data set based on
the FCM-based initial segmentation �black bar�, the LS re-
finement of FCM clustering �light-gray bar�, and the radiolo-
gist segmentation �dark-gray bar�. Table III shows that the
correlation coefficient of the PVRs estimated by the radiolo-
gist and the FCM-based initial segmentation was 0.774,
which was improved to 0.876 after the FCM segmentation
was refined by the LS. Paired t test for the difference be-
tween the FCM-based initial segmentation and the radiolo-
gist segmentation achieved a p value of 0.066, while that
between LS�FCM� and the radiologist segmentation
achieved a p value of 0.641, indicating that the difference in

TABLE IV. Average overlap ratios of computer autom
segmentation. The statistical significance of the diff
LS�FCM� was evaluated by the paired t test. Likew
LS�FCM� and LS�k means� was evaluated by the pa

Segmentation method Pr

Initial segmentation �FCM� 0.7
LS�FCM� 0.8
LS�k means� 0.7
p value between LS�FCM� and FCM 4.
p value between LS�FCM� and LS�k means� 3.
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the mean PVRs estimated by LS�FCM� and by the radiolo-
gist’s manual segmentation did not reach statistical signifi-
cance for this data set. The difference in the PVRs estimated
by LS�k means� and by the radiologist’s manual segmenta-
tion did not reach statistical significance either �p=0.418�,
but LS�k means� had a lower correlation with the radiolo-
gist’s PVR �r=0.816� compared to LS�FCM�.

III.D. Volume overlap ratios

Figures 8�a�–8�d� show the histograms of the volume
overlap ratios obtained from the FCM-based initial segmen-
tation and LS refinement of the FCM using the radiologist’s
manual segmentation as reference. Table IV summarizes the
mean and standard deviation of the volume overlap ratios for
the pre- and postchemotheraphy mass sets. The overlap ra-
tios of postchemotheraphy lesions are consistently smaller
than those of prechemotherapy lesions. After the LS refine-
ment of the FCM, all prechemotherapy masses had VOR1

over 0.5, while four postchemotherapy masses had VOR1

under 0.5. Only 2 prechemotherapy masses had VOR2 under
0.5, while 13 postchemotherapy masses had VOR2 under 0.5.

The overlap ratio from the initial segmentation was com-
pared to that from the final segmentation using the paired t
test. The results �Table IV� indicate that the LS method im-
proved the FCM-based initial segmentation significantly for
both pre- and postchemotherapy masses in terms of either
VOR1 or VOR2. LS�FCM� performed significantly better
than LS�k means� in terms of VOR1 for both pre- and
postchemotherapy masses. When VOR2 was used as the
overlap criterion, LS�FCM� was significantly better than
LS�k means� for postchemotherapy masses, but the differ-
ence for prechemotherapy masses did not reach statistical
significance.

IV. DISCUSSION

Accurate prediction of response to chemotherapy by using
the noninvasive DCE-MR technique would have high clini-
cal relevance. If DCE-MR is used to assess mass response to
treatment, cancer size before and after chemotherapy in the
MR volume will likely be one of the important measures of
change. Manual slice-by-slice segmentation by a radiologist
to estimate the tumor volume is both time consuming and

egmentation relative to the radiologist’s first manual
e between FCM-based initial segmentation and the
he statistical significance of the difference between
test.
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subject to inter- and intraobserver variabilities. In this study,
we designed a new automated segmentation method to delin-
eate breast masses on DCE-MR scans.

Our results indicate that the proposed method may have
the potential to assist physicians in the assessment of volume
changes. Both the FCM-based initial segmentation volume
and the LS refinement of the FCM segmentation volume had
a high correlation with the manually extracted volume. The
FCM-based initial segmentation consistently underestimated
the mass volume compared to manual segmentation. The re-
finement by LS segmentation reduced this underestimation.
In addition, LS refinement significantly improved the volume
overlap between the computer segmentation and manual seg-
mentation.

A comparison of the segmentation results of pre- and
postchemotherapy masses indicated that our automated seg-
mentation method performed worse for the latter. The aver-
age mass volume difference between the LS and manual
methods was larger for postchemotherapy masses �Table II�.
In addition, the volume overlaps were smaller for
postchemotherapy masses �Table IV�. One possible reason is
that breast masses after chemotherapy are topologically more
complicated and often have a fragmented appearance.

In a preliminary study, we analyzed segmentation results
in ten pre- and postchemotherapy DCE-MR images contain-
ing breast masses.23 Our previous results demonstrated the
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feasibility of using the LS method for the segmentation of
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breast masses on DCE-MR images. In the current study, we
further developed the segmentation technique by introducing
a new energy term that incorporated the spatial-
pharmacokinetic information of DCE-MR scans and applied
the new technique to an enlarged data set. Important differ-
ences between the current and the preliminary studies, in
addition to the difference of the segmentation technique and
data set size, included the volume change assessment �PVR�
and the intraobserver variability estimation. In a comparison
of our previous technique to the current technique using the
entire data set of 25 pre- and postchemotherapy scans, the
results indicated that the current technique achieved higher
overlap ratios on average than the previous technique for
both the pre- and postchemotherapy scans.

One advantage of using breast DCE-MR scans for mass
detection, diagnosis, and staging is that they provide both
mass morphology �3D spatial structure� and mass pharmaco-
kinetics �1D temporal intensity enhancement curve� informa-
tion. The method developed in this study takes advantage of
both morphology and pharmacokinetics of a breast mass for
segmentation using FCM clustering and the LS method. The
FCM clustering was designed to group voxels in a VOI in
terms of their pharmacokinetic properties.17 It results in a 3D
membership function that can effectively identify voxels that
are likely to belong to the malignant mass. The FCM clus-
tering output may contain multiple objects with jagged
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tering results. The LS method then refines the FCM-based
initial segmentation by incorporating 3D mass intensity,
mass spatial constraints, and its FCM membership function.
The mass intensity constraint helps the zero LS evolve to the
desired mass surface, the spatial constraints helps the zero
LS maintain its smoothness, and the FCM membership func-
tion helps improve segmentation accuracy. Because the
boundaries may be indistinct for many breast masses in
DCE-MR scans, the zero LS may evolve into background
tissue structure. We designed a method to reduce segmenta-
tion leak by adapting a region growing technique that uses a
homogeneity constraint to decide whether to add a voxel to
the existing mass region.

DCE-MR scans include 4D information, i.e., three spatial
dimensions and one temporal dimension. It is thus plausible
to model a 4D LS method for mass segmentation. Because
the mass shape in spatial domain remains mostly the same
for all MR time points within the 4D scan, this study applied
the 3D LS method to the postcontrast VOI that was estimated
to contain the most enhanced mass. Implementing the LS
method in 3D was computationally more efficient than in
4D. The temporal information of DCE-MR scans was ex-
ploited partially by FCM-based clustering, where the phar-
macokinetic curves were summarized by the voxelwise stan-
dard deviation of enhancement over time. Further
investigation is warranted to explore other methods that
could effectively and efficiently exploit the 4D information.

Manual segmentation may introduce inter- and intraob-
server variabilities.38 To evaluate intraobserver variability,
the same radiologist was asked to segment each mass on
each slice of the VOI twice, in two reading sessions sepa-
rated by more than 1 year. Statistical comparison �Table I�
shows that the intraobserver variability in this study did not
reach statistical significance. Further investigation might
compare computer segmentation to manual segmentation by
multiple radiologists �interobserver variability� for breast
mass volume estimation on DCE-MR scans.

Performance analysis of computer segmentation algo-
rithms in medical imaging is difficult because an objective
ground truth may not exist in most applications. In this in-
vestigation, we used an expert radiologist’s manual segmen-
tation as the reference standard. As discussed above, to in-
vestigate whether the computer segmentation performance in
this study may be generalized to a population of readers, it
would be necessary to compare the computer segmentation
to those from a group of experts and test if the computer
segmentation may be acceptable as a substitute for the ex-
perts. Some previous studies estimated the probability that
each voxel belongs to the lesion of interest based on the
expert readings using methods such as p-map �Ref. 38� or
STAPLE.39 When multireader data are available, it would be
of interest to use these probabilistic methods to evaluate the
computer segmentation. Other areas that warrant further in-
vestigations include comparison with other segmentation
methods, experiments with larger data sets, assessment of
segmentation stability with respect to VOI selection, and de-

sign of a user-friendly interface to reduce operator time.
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V. CONCLUSION

The segmentation method developed in this study may
have potential to assist physicians in the assessment of vol-
ume changes and may serve as an initial step in computer-
ized image analysis methods for predicting breast cancer re-
sponse to neoadjuvant chemotherapy. Our automated mass
segmentation method achieved a promising performance for
prechemotherapy volumes as measured by the overlap be-
tween the automated and manual segmentations. The seg-
mentation performance on postchemotherapy volumes was
lower likely due to the smaller size or the fragmented appear-
ance of the masses after chemotherapy. The percentage vol-
ume reduction estimated from automated segmentation was
in good agreement with that from radiologist’s manual seg-
mentation. Further work is underway to improve the segmen-
tation performance, especially for the postchemotherapy
DCE-MR scans, and to validate the system performance on a
larger data set.
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