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Previous studies have found that mammographic breast density is highly correlated with breast
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo-
grams for estimating breast density by analyzing the correlation between the percent mammo-
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset
of 67 cases having MR imagésoronal 3-D SPGR T1-weighted pre-contjashd corresponding
4-view mammograms was used in this study. Mammographic breast density was estimated by an
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator
(MDEST) developed previously in our laboratory. For the estimation of the percent volume of
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices
containing the breast. Interobserver variation was measured for 3 different readers. It was found that
the correlation between every two of the three readers for segmentation of MR volumetric fibro-
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by an experienced
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91
and 0.89, respectively. The root-mean-squanes) residual ranged from 5.4% to 6.3%. The mean

bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density
may be a useful indicator of changes in fibroglandular tissue volume in the breazZd0®Ameri-
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[. INTRODUCTION lated with parenchymal density patterns but they appeared to

) . - ~ be less sensitive measures of relative risk than the percent
Studies have shown that there is a strong positive correlatiogonse are%252° In current practice, breast density is esti-

between breast parenchymal density imaged on mammy,ie mainly by radiologists’ visual judgment of the fibro-
grams and breast cancer risR The relative risk is estimated %Iandular tissue imaged on mammograms following the

to be about 4 to 6 for women whose mammograms have . Imaging—Reporting and Data SystéBi-RADS)

" 0 |
parenchymal densities over 60% of the breast area, as COMy. ;13031 gacayse of the qualitative and subjective nature
pared to women with less than 5% densities. Other cohort; . . . .
413 e of visual judgment, there are large intraobserver and interob-
studie$™**also found that breast cancer risk in the Categoryserver variations in the estimated breast density. The large
with the most extensive dense tissue was 1.8 to 6 times &S . .. - g
garlablllty may reduce the observed correlation between

high as that in the category with the least extensive dens isk and b density. | I q h
tissue. Mammographic density as the risk indicator is greatepreaSt cancer risk and breast density. It may also reduce the

than almost all other risk factors of breast caricdrAl- sensitivity of studies using mammographic density for moni-
though there is no direct evidence that changes in mammd©ring the effect of risk modifying treatments. We have de-
graphic breast densities will result in changes in breast cart€loped an automated image analysis system, Mammo-
cer risk, the strong correlation between breast density angifaphic Density ESTimatofMDEST), to assist radiologists
breast cancer risk has prompted researchers to use mamniB-estimating breast density on mammograms. A computer-
graphic density for monitoring the effects of intervention asized analysis is expected to increase the reproducibility and
well as for studying breast cancer etiology?’ consistency in the estimation of mammographic density,
A number of researchers have investigated imagéhereby improving the accuracy of the related studies. In our
analysis techniques to estimate breast den3ity;?® The  previous study, we have found that the percent mammo-
common approaches are to analyze the textural pattern or tiggaphic density segmented by MDEST agreed closely with
percentage of mammographic densities relative to the breathat estimated by radiologists’ interactive thresholdihg.
area. It has been found that the texture measures were corre- The high correlation between breast cancer risk and breast
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density indicates that breast cancer risk may be closely reset of 67 patients to study the correlation between the 2-D
lated to the volume of glandular tissue in the breast. Amongrojected percentage of dense area on a mammogram and the
the modalities available for breast imaging at present, magpercentage of dense tissue volume estimated from the 3-D
netic resonancéMR) imaging is likely to be the most accu- MR images.

rate method for volumetric dense tissue estimation because The mammograms consisting of the craniocau@C)
fibroglandular tissue and adipose tissue can be well distinview and the mediolateral obliqueMLO) view of both
guished in MR images when a proper image acquisition techbreasts of the patient were digitized with a LUMISYS 85
nique is used® However, MR imaging is expensive, making laser film scanner at a pixel size of Hnx50um. The

it difficult to use MR imaging as a routine monitoring digitizer has a gray level resolution of 12 bits and a nominal
tool 33 On the other hand, a mammogram is a two-optical density(O.D.) range of O to 4. For density segmen-
dimensional(2-D) projection image of a three-dimensional tation, it is not necessary to use very high-resolution images.
(3-D) object. The area of dense tissue measured on a mariieo reduce processing time, the full resolution mammograms
mogram is not an accurate measure of the volume of fibrowere first smoothed with a 2616 box filter and subsampled
glandular tissue in the breast because no thickness informéy a factor of 16, resulting in 80@mXx800um images for

tion is used. However, mammography is a widely availablethis study.

low cost procedure that may be used for monitoring breast

density change during preventive and interventional treat. Estimation of fibroglandular tissue volume on MR

ment or other studies. Women who participate in screeningmages

will also have mammograms readily available for retrospec-

tive review. Therefore, mammography will most likely be the ages for breast density estimation, we did not attempt to

method of choice for breast density estimation. . o
. ) ) . develop an automated method for this application. Our algo-
In this study, we investigated the correlation between the. : _ )
o - . fithm for segmentation of volumetric fibroglandular tissue on
volumetric fibroglandular tissue in the breast and the pro- : : :
) : MR images used a semi-automatic method. The computer
jected breast dense area on mammograms by analyzing the

L . . . erformed an initial segmentation. A graphical user interface
percent volumetric fibroglandular tissue in MR breast image ;
GUI) was developed to allow a user to review the segmen-

and the percent dense area in corresponding mammogran]s,. : - .
tion of every slice and make modifications if necessary.

Qur purpose in this study IS not to evaluate the usefulness- he method consists of four steps. First, the breast boundary
either MR fibroglandular tissue volume or mammographic : .
. 2 . : was detected automatically on each slice. A deformable

density as an indicator for breast cancer risk, which have 2 .
odel and manual modification were used to correct for in-

been S.tUd'Ed by othgr Investigators. R‘?‘th?“ we used th? Mcorrectly detected boundaries that usually occurred in slices
_breast Images to estimate the volumetric flbroglandula_r tlssuﬁear the chest wall where there were no well-defined breast
e e e I Bouncares. Because ofomogenety of h breast coi e
density changé3-D). These comparisons will provide a bet- sitivity, the S|gnal_ mtensny in the breast region was not uni-
ter understanding of their relationship, and may lead to im_fqrm across the field of view. A background correction tech-
proved methods for utilizing mammo'graphic density as Jique that estimated the low frequency background from the
surrogate marker for breast cancer risk gray Ievgls along thg breast b_oundgry was develloped tg re-
' duce this systematic nonuniformity. Manual interactive
thresholding of the gray level histogram in the breast region
Il. MATERIALS AND METHOD was then used to separate the fibroglandular from the fatty
A. Dataset region. Morphological erosion was used to exclude the skin

| ) wud dolini irast enh dM voxels along the breast boundary. Finally, the volume of fi-
N a préevious study, gadolinium contrast ennance Pbroglandular tissue was calculated by integration over all

dynamlc_ 'maging was employed to characterize mal_|gnan lices containing the breast. A flow chart of our algorithm is
and benign breast lesions. A dataset was collected with IR hown in Fig. 1

approval which included MR images and corresponding
mammograms acquired between detection and before biop%/
for a given patient. In the MR study, several series of images™
were acquired for each patient. Patients were scanned prone A two-step algorithm was developed for the detection of
using a commercial dual phased-array breast coil. The imadsreast boundary on each slice. First, we used a seeded pixel
ing protocol included a series was the coronal 3-D T1-thresholding algorithniSPTA)for the initial assessment of a
weighted pre-contrast seriésoronal sections 2—5 mm thick, breast boundary. Second, a 2-D active contour algorithm fur-
32 slices; 3-D Spoiled Gradient-Recalled Eq®PGR); TE ther refined the boundary. For slices close to the chest wall
=3.3ms; TR=10 ms, Flip=40°, matrix=256x128, FOV  where no clear boundary can be seen, manual modification
=28-32 cm right/left, 14-16 cm superior/inferior, scanwas used to outline an estimated boundary.

time=2 min 38 sec). This 3-D SPGR sequence produces full The SPTA determined the optimal threshold by iteratively
volume coverage of both breasts with contiguous image seg@artitioning the MR image into two parts and using the gra-
tions. The dense parenchyma and fat tissue are well sepdient value along the boundary of the partition as a guide in
rated with this heavily T1-weighted acquisition. We used aoptimizing the threshold. First, the center of gravity was se-

Since it is not our intention to routinely segment MR im-

Breast boundary detection
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\
Breast Boundary Detection
(with manual correction)

L
Background Correction
\

Gray Level Thresholding Fic. 2. An example of the first three processing blocks in FigalOriginal
1 MR slice; (b) automatically-detected breast boundary superimposed on the
image; andc) the background-corrected image.

Go to Next slice

Morphological Erosion
(for exclusion of skin)

Eexer™ WgracEgrao( C) +WpaEpalC), (3
Fibroglandular Tissue where curv, cont, grad, bal, hom denoted curvature, continu-
Volume Over All Slices ity, gradient, balloon force and homogeneity, respectively,
v and each energy term was associated with a weighiThe
Percent Fibroglandular detailed definition for each term can be found in the
Tissue Volume literature®> An example of a MR slice of a breast is shown in

Fig. 2(a), and the segmented boundary is shown in Kig). 2
Fic. 1. The flow-chart for the segmentation of the fibroglandular tissue ONNote that the two breasts of a patient were scanned together
MR images. but each breast was analyzed separately.

) ) ) D. Background correction
lected as the starting pixel on each slice. The gray level of

the starting pixel was used as a threshold to create a binar?/1 To reduce the nonuniformity of the MR signal intensity in
partition of the image in which all pixels greater than the (€ Preast region, a background correction techrifueing

threshold were set to one and all other pixels were set t§'€ Pixel values around the segmented breast region was em-
zero. Second, the gradient value of each pixel on the bound0Yed. For a given pixeli(j) inside the breast region, the
ary of the binary partition was calculated by applying the9r&y value of the background image was estimated as shown
Sobel filter to the original image. The gradient assessmerf Ed- (4):

for this particular binary partition was defined as the average o L R U D 1 1 1 1

gradient magnitude of these boundary pixels. The threshold B(i.j)= a + d—+ a + d_} / a@ + T + d—+ a

value was reduced to zero in a stepwise manner. The parti- oo T T s Mo @)

tion for each threshold value was created and the gradient o
assessment for each partition was calculated as describdg’ereL, R, U andD are the average gray values inside a
above. The partition with the maximum gradient assessmerit€ast background estimation regi@BER) centered at the

was considered to be the initial segmentation result for thd€ft: ight, upper and lower pixels on the breast boundary,

breast, and the boundary of this partition was considered tifSPectively. A BBER was defined as the intersection of a
be the initial breast boundary. 21X%21-pixel box and the breast region. The center pixels for

After the initial segmentation, a deformable contour the 1eft and right boxes were the intersection points between

method was used to further refine the boundary. The move€ Preast boundary and a horizontal line passing through the
the upper and lower center pix-

ment of the boundary pixel was controlled by an energydVen pixel (,j). Similarly,

function which consisted of internal energy and external en€!S for the upper and lower boxes were the intersection points
etween the breast boundary and a vertical line passing

ergy. The internal energy components used in this study we ) i .
dhrough the given pixeli(j). Only the pixels that were

the continuity and curvature of the contour, as well as the' " ™" ; '
homogeneity of the segmented partition. The external energlyithin the intersected area between the<ZIL-pixel box and
he breast region were included in the definition of the BBER

components were the negative of the smoothed image gra . ;
ent magnitude, and a balloon force that exerted pressure at2dd the calculation of the average gray value. The contribu-

normal direction to the contour. The energy function wastions of the average gray levels to the background pixg) (
defined as the following: were inversely weighted by their distances,d,,d,,dq

from the given pixel {,j). An example of the background
corrected image is shown in Fig. 2(c).

N
E= 2, [Einel©) + Eoxer ©)], (1)
E. Segmentation of fibroglandular tissue
whereE;r andEgyerare the internal energy and the external

energy, respectively, as defined in E8) and Eq.(3): We developed a GUI that allowed the user to perform a

combination of manual and automatic operations to segment
Einter=WeunEcurd €©) + WeonEcond ©) + WhomEhom: (2)  the breast boundary and the fibroglandular tissue on the MR
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mri image hackground corrected harder segmentation

Fic. 3. The graphic user interface for
the segmentation of the fibroglandular
tissues on the MR slice. The upper
row shows the original MR slicéeft),
the  background-corrected image
(middle) and the segmented binary im-
age (right). The segmented image re-
sponds to the reader’s adjustment of
- the gray level thresholdower row)in
Windowing real time so that the reader can choose
) the appropriate threshold by inspecting
the segmented image visually. The

Thrashold ' . . ] i i _ _ dark area in the segmented image in-
Thre:shold : E : : 5 5 j : dicates the fibroglandular tissue and
Percentage 3 ; : : : : : : ] the white area indicates the adipose

No. of pixels : : : : : : : : ttl,ssu%. Th(_a Thnerblmedalong g?e bréaabst

[ s | : : : : ‘ : : : oundary is the boundary obtained by

Bmas_t : : : : : ; : : morphological erosion to exclude the
Density 5 ; sl § § ; : _ skin voxels for calculating the fibro-

glandular tissue volume.

images. The first windownot shown)displayed the MR se- F. MR fibroglandular tissue volume
ries and the corresponding mammogram of each breast to
give the user an overview of the breast. The segmentation %f"

the fibroglandular tissue on each MR slice was processed i r tissue was obtained as a summation of these voxels over

the second wm_dow, shown in Fig. 3. The _or|g|nal MR Sllce'aII slices of the breast. The total volume of the breast was
the corresponding background corrected image and the S€8btained as the summation of the voxels enclosed by the

m_et;ted ,bo:??r:y ||mage wetrefstt;]own_ 'g thetﬁppﬁrtpart of t?%reast boundary before morphological erosion. The ratio of
window. € lower part of the window, the histogram of \hese o volumes provided the percent volumetric fibro-
the voxel values in the breast region was shown. The use landular tissue in the breast

performed interactive thresholding on the histogram and th
segmented binary image corresponding to the chosen thresh- M hic densi .
old was displayed in real time in the upper part. If the breast ammographic density segmentation

boundary, which was automatically segmented by the com- We have previously developed an automated method for
puter initially, had to be corrected, the user could go to thesegmentation of the dense fibroglandular area on mammo-
third window and manually move the apices of the polygongrams. The method, referred to as the Mammographic Den-
outlining the boundary. The voxels contributed by the nipplesity ESTimator (MDEST) was described in detall
were excluded. On the slices containing breast skin that haelsewheré? In brief, the breast boundary on the digitized
voxel values similar to those of fibroglandular tissue, a mor-mammogram is tracked. A dynamic-range compression tech-
phological erosion operation was applied to the breashique reduces the gray level range of the breast area. By
boundary to exclude the skin voxels from the calculation ofanalyzing the shape of the gray level histogram, a rule-based
the fibroglandular tissue volume in the slice. The size of theclassifier classifies the breast density into one of four classes.
structuring element could be selected interactively on thdypically, a Class | breast is almost entirely fat; it has a
fourth window and the eroded boundary was displayed insingle narrow peak on the histogram. A Class Il breast con-
stantly for a chosen erosion operation. The user might agaitains scattered fibroglandular densities. Its histogram has two
change the structuring element if the erosion result of thenain peaks, with the smaller peak on the right of the bigger
previous choice was deemed unsatisfactory. Since the erodedie. A Class Il breast is heterogeneously dense. Its histo-
boundary only marked the region within which the fibroglan-gram also has two peaks, but the smaller peak is on the left
dular voxels would be summed and would not be used foof the bigger one. A Class IV breast is extremely dense. Its
the calculation of the breast volume, as described below, ihistogram has mainly a single dominant peak, but the peak is
did not need to be precise as long as it excluded the skiwider compared with the peak in the Class | histogram. A
voxels while not excluding the fibroglandular voxels. second smaller peak sometimes occurs on the left of the

After the fibroglandular tissue was segmented for each
ce, the total number of voxels containing the fibroglandu-
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© 40 o0 S0 © S 40 1 o Fic. 4. A comparison of the percent mammographic
3 o” o ° ; | %00d 00008 o | density obtained from interactive thresholding by an
2 30 °® 5 3 30 o %0 i MQSA-qualified radiologist and that estimated by our
= o° &0 > ‘35 o I automated MDEST computer prograrta) CC view,
8 20 A o 0° o 8 20 e 97 000 3 correlation coefficient 0.90, rms residuat 6.7, mean
e 1 03’ o® = 1 3 go F difference=0.3; (b) MLO view, correlation coefficient
g 10 1 o g 10 - &L =0.89, rms residuai6.1, mean difference0.4.
< ] o < 1 Dashed line: linear regression of the data; solid line:
R ® 0- —— diagonal.

] 10 20 30 40 50 60 0 10 20 30 40 50 60

% Area-CC View (Computer) % Area-MLO View (Computer)

(a) (b)

main peak. Based on the histogram shape, a threshold % volumetric fibroglandular tissue calculated with all avail-
automatically calculated to separate the dense and fatty pixable slices was then compared to that calculated with the
els. The mammographic density was estimated as the peselected starting slice.
centage of fibroglandular tissue area relative to the total We also performed observer experiments to evaluate the
breast area. For MLO view mammograms, the pectorainter-observer variations in the segmentation of fibroglandu-
muscle is detected and excluded from the density area dar tissue using the semi-automatic method. Two MQSA-
breast area calculations. In our previous work, the perforqualified radiologists performed the segmentation of the fib-
mance of MDEST was verified by comparison with manualroglandular tissue on the MR images of the 41 breasts using
segmentation by 5 breast imaging radiologists using a datast#te semi-automatic method implemented with the GUI. A
of 260 mammograms from 65 patients that were differentPh.D. researcher who was trained by these radiologists also
from the cases used in the current study. We found that thperformed the segmentation independently with the GUI.
correlation between the computer-estimated percent dense After verifying the consistency of segmentation by these
area and the average segmentation by the 5 radiologists wabservers, the trained Ph.D. completed the segmentation of
0.94 and 0.91, respectively, for CC and MLO views, with aall MR cases. The correlation between percent volumetric
mean bias of less than 2%. fibroglandular tissue on MR images and percent dense area
MDEST was applied to the mammograms of the 67 pa-on mammograms was then examined for the entire dataset.
tients used in this study. The percent dense area on mammo-
grams was estimated for the CC-view and the MLO-view
mammogram of each breast separately. In addition, an
MQSA-qualified radiologist also segmented the dense aredl. RESULTS
by mteractwe thresholding for each mammogram. T_he COMy Effect of selection of the starting slice
relation between the mammographic density obtained by
manual and automatic segmentation is shown in Figs) 4 Figure 5(a)shows the correlation of the % volumetric
and 4(b)for the CC view and MLO view, respectively. The fibroglandular tissue calculated using all available slices for
correlation coefficients for the CC view and MLO view were the breast with that calculated using the selected starting
0.90 and 0.89, respectively. The mammographic densities eslice by radiologist A for the 41 breasts. The correlation co-
timated by automatic and manual segmentation were congfficient was 0.999. To compare the difference between their
pared with the percent volumetric fibroglandular tissue orresults, the mean difference and the root-mean-souars)
MR images as described below. residual, which is the residual from the linear least-squares-
fitted line, were also calculated. The mean difference was 0.7
and the rms residual was 0.6. The result is similar for radi-
ologist B (not shown), with a correlation coefficient of 0.999,
We performed an experiment to evaluate the variability ofa mean difference of 0.4 and a rms residual of 0.4. The
the estimated % volumetric fibroglandular tissue due to theorrelation between the % volumetric fibroglandular tissue
uncertainty in the determination of the starting slice of thecalculated using the selected starting slice by radiologist A
breast at the chest wall. The starting slice affected the estiwith that calculated using the selected starting slice by radi-
mation of the breast volume that was calculated by integratelogist B was also very high with a correlation coefficient of
ing from the starting slice to the anterior of the breast.0.988, a mean difference of 0.7 and a rms residual of 1.8, as
Twenty-three MR cases from the dataset were randomly seshown in Fig. 5(b). These comparisons indicated that the
lected for this observer experiment. There were a total of 4¥ariability in the selection of the starting slice of the breasts
breasts because some cases had only one breast. For ttid not have a strong influence on the % volumetric fibro-
subset of cases, each radiologist was asked to select the stagtandular tissue. We therefore used all available slices in the
ing slice from the MR images for each breast. The estimatetlR dataset for each breast in the following analyses.

H. Observer experiments

Medical Physics, Vol. 31, No. 4, April 2004
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2 / 2 / Fic. 5. (a) A comparison of the percent fibroglandular
=2 D o0 | . ) ;
© 301 630 tissue volume calculated using the selected starting
% ._g o slice with that calculated using all available slices for
S 20 & 20 1 radiologist A, correlation coefficiert0.999.(b) A com-
@ & parison of the percent fibroglandular tissue volume cal-
E £ culated using the selected starting slice by radiologist B
S 10 1 S 10 . . R . .
3 - with that by radiologist A, correlation coefficient
> >° =0.988, Dashed line: linear regression of the data;
S 0 D U L S solid line: diagonal.

0 10 20 30 40 50 0 10 20 30 40 50

% Volume-Radiologist A (without) % Volume-Radiologist B (with)

(a) (b)

B. Inter-observer variation between radiologists MLO-view mammograms. After verifying that the difference

Figure 6(a)shows the comparison of the percent volumet-IN segmentation between the trained Ph.D. and the radiolo-
ric fibroglandular tissues on MR images segmented by tw@ists was similar to the interobserver variations between the
radiologists for the 41 breasts. The correlation between thBVO experienced radiologists, the trained Ph.D. completed
segmentation results of the two radiologists is 0.99. Théhe segmentation of the entire dataset.

mean difference was found to be 0.3 and the rms residual Figure 7 shows the comparison of the percent volumetric
was 1.6. fibroglandular tissue on MRI and the percent mammographic

density segmented by a radiologist. The percent areas on CC-
and MLO-view mammograms are higher than the percent
trained Ph.D. volume on MR images with a mean difference of 5.7% and

Figure 6(b)shows the comparison of the percent volumet-3-0%; respectively. . _
ric fibroglandular tissues segmented by the trained Ph.D, Figure 8 shows the comparison of the percent volumetric
against that segmented by radiologist A. A similar result wadiProglandular tissue on MRI and the percent mammographic
obtained by comparing the percent volumetric tissue segdensity segmented by MDEST. The percent areas on CC-
mented by the trained Ph.D. and that segmented by radiol@nd MLO-view mammograms segmented by the computer
gist A except that the data points were even closer to th@re higher than the percent volume on MR images with a
diagonal(not shown). The correlation between the result ofmean difference of 5.3% and 2.6%, respectively.
the trained Ph.D. and the results of both radiologists was The correlation coefficients, the mean differences and the
0.99. The corresponding mean differences wer@.8 and rms residuals between the percent volumetric fibroglandular
—0.4, respectively, and the rms residuals were 1.4 and 1.3issue on MR images and percent dense area on mammo-
respectively. grams are compared in Table. I. The correlation between the
percent volume on MR images and percent area on mammo-
grams of the fibroglandular breast tissue is high, ranging
from 0.89 to 0.91. Although it is not expected that the values
of percent volume agree with the values of percent area, their

The percent volumetric fibroglandular tissue on MR im- mean differences range only from 3% to 6% and the rms
ages was compared with the percent dense area on CC- arskidual range from 5.4 to 6.3.

C. Inter-observer variation between radiologists and

D. Correlation between percent volumetric
fibroglandular tissue on MR images and percent
mammographic density

50

40: '’z

14
o
2

IS
I3
L

Fic. 6. A comparison of the segmentation of fibroglan-
dular tissue from MR images between two observers:
30 1 v ° (a) two experienced MQSA-qualified radiologists, cor-

1 relation coefficient0.99. (b) The trained Ph.D. and
20 1 /o Radiologist A, correlation coefficiert0.99. The corre-

1 lation between the trained Ph.D. and Radiologist B is
10 - L also 0.99 but the data points were very close to the
diagonal and is not shown. The % volumetric fibroglan-
dular tissue was calculated using all available slices.
Dashed line: linear regression of the data; solid line:
diagonal.
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IV. DISCUSSION glandular tissue in the breast, it is still not the ideal tool.
Fibrous tissue and glandular tissue are not well separated

Our purpose in this paper was to investigate the relation- h MR i , hni Si h f
ship between the percent dense area on mammogram and {gh current Imaging techniques. Since the amount o

percent fibroglandular tissue volume on MR image Weglandular tissue in the breast is the important factor relating

found a direct correlation between mammographic densit)}o t.)re.ast cancer risk, further studigs are warranted for differ-
and MR volumetric densityFig. 7 and Fig. 8). The correla- gnﬂatmg the glandular and 'the fibrous components of the
tion coefficients between the percent area on a mammograffi'@ged volume. The correlation between the percent glandu-
and the percent volume on MR images are high at 0.89 anf' tissué volume and percent projected dense area on a
0.91. These results are more promising than those found ifi@mmogram will be a more reliable indicator of the useful-
previous studies that attempted to correlate percent den§¥SS of mammographic density analysis.
area on mammograms with MR information. Graheinal > The density on mammograms is a 2-D projected area of
investigated the relationship between percent der(gitg- the fibroglandular tissues. The percent dense area is not ex-
jected dense arean mammogram and two objective MR pected to be equal in value to the percent volume. The mean
parameters of breast tissue, relative water content and meé&#fferences between the percent volume and the percent area
T2 relaxation. Their results with 45 cases showed a positiv€n CC- and MLO-views, as determined by the radiologist’s
correlation between percent density and relative water corinteractive segmentation, are 5.7 and 3.0, respectiielple
tent (Pearson correlation coefficienf.79) and a negative 1), with the percent dense area values being higher. We also
correlation between percent density and mean T2 valu#vestigated the rms residual between the percent volume
(Pearson correlation coefficient-0.61). Another study by and the percent area when the relationship between them was
Leeet al®* analyzed fatty and fibroglandular tissue in differ- assumed to be linear. The rms residual between the percent
ent age groups to compare x-ray mammography with T1volume and the percent area on CC- and MLO-views are 6.3
weighted MR images. Their study with 40 cases indicatecand 5.6, respectivelyTable ), relative to the straight line
that the correlation between the two techniques is 0.63 wheabtained from linear least squares fits to the data. One pos-
the fat content was more than 45%. However, the correlatiosible factor that may contribute to a higher value of percent
coefficient decreased to 0.34 when their analysis includedense area on mammograms than the percent volume value
only dense breasts. on MR images is that the tissue volume imaged by the two
It may be noted that although MR imaging is currently themodalities is somewhat different. The MR images include
most accurate method for estimating the volumetric fibro-more tissue near the chest wall, which is mainly retroglan-
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TaBLE |. Statistic analysis of the relationship between percent fibroglandulaiTasLe 1l. An analysis of the relationship between percent fibroglandular
tissue volume on breast MR images and percent dense area on mammtissue volume X) on breast MR images and percent dense aadn
grams segmented by radiologist and MDEST. mammograms segmented by radiologist using three mathematical models.
m, k, k; andk, are constants determined by least squares curve fitting.

Radiologist Computer (MDEST)
Mathematical model Y =kx?? Y =kx™ Y=k, x"+ky
CCvs MLO vs CCvs MLO vs
MRI MRI MRI MRI CC Least squares FitY=0.82x"° Y=1.03¥% Y=1.02*-0.19
VS rms residual 6.5 6.0 5.6
Correl. coeff. 0.91 0.91 0.91 0.89 MRI  Coefficient of 0.82 0.85 0.87
rms res!dual 6.3 5.6 5.8 54 determination
Mean diff. 5.7 3.0 53 2.6 MLO Least squares FitY=0.73%"% Y=0.96¥% Y=0.90*5°—0.09
Vs rms residual 6.0 55 5.3
MRl  Coefficient of 0.80 0.84 0.85

determination

dular adipose tissue, than a mammogram does, thus reducing
the percentage of fibroglandular tissue volume. The reduc-
tion in the percent volume values, however, is relatively
small, as found in our study evaluating the effects of selectsituation that the percent projected area was negative when
ing starting slices for volume calculatigfig. 5). The main the percent volume was zero would not occur physically.
difference may therefore be attributed to the geometric relaNote that if the model was fitted to the percent area data
tionship between the volume and the projected 2-D areassegmented by MDESTFig. 8), thek, values would become
explained later. positive, indicating that the nonzero, values are likely
Geometrically, we do not expect the relationship betweercaused by segmentation biases.
volume and its projected 2-D area to be linear. In a hypo- Overall, these models demonstrate that there is no simple
thetical situation such that the dense tissue volume is aathematical relationship between the percent volume and
sphere (volume4/3 7r3) enclosed inside a concentric the percent projected area but the values for the exponents
spherical shell of fatty tissue volume, the percent projecte@dppeared to be in a reasonable range. The relationship be-
2-D area (area=mr?) of the inner sphere relative to the tween the percent volumes of two 3-D objects, one within
outer sphere is equal to the percent volume to the power adnother, and their percent projected 2-D area depends on
2/3. The relationship between the percent area and the petheir shapes. For example, the closer the two volumes are to
cent volume is therefore not linear, and the percent area isoncentric cylinders of the same height, the closer the expo-
larger in value than the percent volume for any ratio of radiinent is to unity. The spread of the data points can therefore
between the two spheres. In general, the compressed bredws attributed to the various irregular shapes of the fibroglan-
and the dense tissue are not spherical. To investigate thdular tissue in the breasts, the changes in the shapes of the
empirical relationship between the percent area and the pefatty and fibroglandular tissue due to compression, as well as
cent volume in the nonlinear situation, we applied leasthe uncertainties in the segmentation of both the mammo-
squares fits in several polynomial models to the data pointgrams and the MR images. Although the spread of the data
in Fig. 7. The results are shown in Table Il and Fig. 9. Apoints in the correlation plots is large, one can expect that
comparison of Table | and Table Il indicates that tiie when the mammographic density of a given patient is moni-
=kx?”® model (x=percent fibroglandular tissue volum¥, tored over time, the variations in the projected dense area
=percent mammographic dense areasulted in slightly due to the geometric factors, described above, will actually
larger rms residuals than the linear model. The model be much less than that observed from the scatter plots among
=kx™ with m equal to 0.83 and 0.86, respectively, for CC- a large number of patients. In other words, the uncertainty in
and MLO-views slightly reduced the rms residuals. The besthe estimated percent density from the serial mammograms
fit was obtained from the mod¥l=k;x™+k,. However, the of a given patient should be much less than those shown in
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Fig. 7. The strong correlation observed between the percemf MR images was found to be small with correlation coef-
dense area on mammograms and the percent volumetric fificients of 0.99. The correlation between the percent volume
roglandular tissue on MR images therefore indicates that an MR images and percent area segmented by a radiologist
change in mammographic density can be a useful indicatdior either CC- view or MLO-view is 0.91. The correlation
of a change in percent fibroglandular tissue volume in théetween percent volume and percent area estimated by MD-
breast. EST is 0.91 and 0.89, respectively, for CC and MLO views.
Recently, some researchers attempted to estimate thdammographic density is thus highly correlated with the
thickness of the fibroglandular tissue in local regions of thepercent volumetric fibroglandular tissue in the breast. The
mammograms from the projected densitihis approach is high correlation indicates that changes in mammographic
expected to provide a more accurate estimation of the fibrodensity may be a useful indicator of changes in fibroglandu-
glandular tissue volume if the true thicknesses of the fibrolar tissue volume in the breast. Our computerized image
glandular tissue and fatty tissue can be determined at variowmalysis tool, MDEST, can provide a consistent and repro-
locations of the projected breast region. The volume of thalucible estimation of percent dense area on routine clinical
fibroglandular tissue can then be summed over the pixels imammograms. The automated image analysis tool may im-
the breast region and the percent volume calculated. Howprove the sensitivity of quantifying mammographic density
ever, to obtain accurate measurements, this approach requirglsanges, thereby contributing to the understanding of the re-
the knowledge of the sensitometric curve for the screen-filmationship of mammographic density to breast cancer risk,
mammogram at the imaging facilityor use of a digital de- detection, and prognosis, and the prevention and treatment of
tector with linear responseand other physical parameters breast cancer.
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