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Previous studies have found that mammographic breast density is highly correlated with breast
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo-
grams for estimating breast density by analyzing the correlation between the percent mammo-
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset
of 67 cases having MR images~coronal 3-D SPGR T1-weighted pre-contrast! and corresponding
4-view mammograms was used in this study. Mammographic breast density was estimated by an
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator
~MDEST! developed previously in our laboratory. For the estimation of the percent volume of
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices
containing the breast. Interobserver variation was measured for 3 different readers. It was found that
the correlation between every two of the three readers for segmentation of MR volumetric fibro-
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by an experienced
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91
and 0.89, respectively. The root-mean-square~rms! residual ranged from 5.4% to 6.3%. The mean
bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density
may be a useful indicator of changes in fibroglandular tissue volume in the breast. ©2004 Ameri-
can Association of Physicists in Medicine.@DOI: 10.1118/1.1668512#
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I. INTRODUCTION

Studies have shown that there is a strong positive correla
between breast parenchymal density imaged on mam
grams and breast cancer risk.1–3 The relative risk is estimated
to be about 4 to 6 for women whose mammograms h
parenchymal densities over 60% of the breast area, as c
pared to women with less than 5% densities. Other coh
studies4–13 also found that breast cancer risk in the categ
with the most extensive dense tissue was 1.8 to 6 time
high as that in the category with the least extensive de
tissue. Mammographic density as the risk indicator is gre
than almost all other risk factors of breast cancer.2,14 Al-
though there is no direct evidence that changes in mam
graphic breast densities will result in changes in breast c
cer risk, the strong correlation between breast density
breast cancer risk has prompted researchers to use mam
graphic density for monitoring the effects of intervention
well as for studying breast cancer etiology.14–17

A number of researchers have investigated ima
analysis techniques to estimate breast density.15,18–28 The
common approaches are to analyze the textural pattern o
percentage of mammographic densities relative to the br
area. It has been found that the texture measures were c
933 Med. Phys. 31 „4…, April 2004 0094-2405Õ2004Õ31„4
n
o-

e
m-
rt
y
as
se
er

o-
n-
d
o-

e

he
st
re-

lated with parenchymal density patterns but they appeare
be less sensitive measures of relative risk than the per
dense area.1,25,29 In current practice, breast density is es
mated mainly by radiologists’ visual judgment of the fibr
glandular tissue imaged on mammograms following
Breast Imaging—Reporting and Data System~BI-RADS!
lexicon.30,31 Because of the qualitative and subjective natu
of visual judgment, there are large intraobserver and inter
server variations in the estimated breast density. The la
variability may reduce the observed correlation betwe
breast cancer risk and breast density. It may also reduce
sensitivity of studies using mammographic density for mo
toring the effect of risk modifying treatments. We have d
veloped an automated image analysis system, Mam
graphic Density ESTimator~MDEST!, to assist radiologists
in estimating breast density on mammograms. A compu
ized analysis is expected to increase the reproducibility
consistency in the estimation of mammographic dens
thereby improving the accuracy of the related studies. In
previous study, we have found that the percent mamm
graphic density segmented by MDEST agreed closely w
that estimated by radiologists’ interactive thresholding.32

The high correlation between breast cancer risk and br
933…Õ933Õ10Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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934 Wei et al. : Correlation of density between mammography and MR images 934
density indicates that breast cancer risk may be closely
lated to the volume of glandular tissue in the breast. Amo
the modalities available for breast imaging at present, m
netic resonance~MR! imaging is likely to be the most accu
rate method for volumetric dense tissue estimation beca
fibroglandular tissue and adipose tissue can be well dis
guished in MR images when a proper image acquisition te
nique is used.33 However, MR imaging is expensive, makin
it difficult to use MR imaging as a routine monitorin
tool.33,34 On the other hand, a mammogram is a tw
dimensional~2-D! projection image of a three-dimension
~3-D! object. The area of dense tissue measured on a m
mogram is not an accurate measure of the volume of fib
glandular tissue in the breast because no thickness info
tion is used. However, mammography is a widely availa
low cost procedure that may be used for monitoring bre
density change during preventive and interventional tre
ment or other studies. Women who participate in screen
will also have mammograms readily available for retrosp
tive review. Therefore, mammography will most likely be t
method of choice for breast density estimation.

In this study, we investigated the correlation between
volumetric fibroglandular tissue in the breast and the p
jected breast dense area on mammograms by analyzing
percent volumetric fibroglandular tissue in MR breast ima
and the percent dense area in corresponding mammogr
Our purpose in this study is not to evaluate the usefulnes
either MR fibroglandular tissue volume or mammograp
density as an indicator for breast cancer risk, which h
been studied by other investigators. Rather, we used the
breast images to estimate the volumetric fibroglandular tis
in the breast and explored the reason that a change in m
mographic density~2-D! can be used as an indicator of brea
density change~3-D!. These comparisons will provide a be
ter understanding of their relationship, and may lead to
proved methods for utilizing mammographic density as
surrogate marker for breast cancer risk.

II. MATERIALS AND METHOD

A. Dataset

In a previous study, gadolinium contrast enhanced M
dynamic imaging was employed to characterize malign
and benign breast lesions. A dataset was collected with
approval which included MR images and correspond
mammograms acquired between detection and before bi
for a given patient. In the MR study, several series of ima
were acquired for each patient. Patients were scanned p
using a commercial dual phased-array breast coil. The im
ing protocol included a series was the coronal 3-D T
weighted pre-contrast series~coronal sections 2–5 mm thick
32 slices; 3-D Spoiled Gradient-Recalled Echo~SPGR!; TE
53.3 ms; TR510 ms, Flip540°, matrix52563128, FOV
528– 32 cm right/left, 14–16 cm superior/inferior, sc
time52 min 38 sec!. This 3-D SPGR sequence produces
volume coverage of both breasts with contiguous image
tions. The dense parenchyma and fat tissue are well s
rated with this heavily T1-weighted acquisition. We used
Medical Physics, Vol. 31, No. 4, April 2004
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set of 67 patients to study the correlation between the
projected percentage of dense area on a mammogram an
percentage of dense tissue volume estimated from the
MR images.

The mammograms consisting of the craniocaudal~CC!
view and the mediolateral oblique~MLO! view of both
breasts of the patient were digitized with a LUMISYS 8
laser film scanner at a pixel size of 50mm350mm. The
digitizer has a gray level resolution of 12 bits and a nomi
optical density~O.D.! range of 0 to 4. For density segmen
tation, it is not necessary to use very high-resolution imag
To reduce processing time, the full resolution mammogra
were first smoothed with a 16316 box filter and subsample
by a factor of 16, resulting in 800mm3800mm images for
this study.

B. Estimation of fibroglandular tissue volume on MR
images

Since it is not our intention to routinely segment MR im
ages for breast density estimation, we did not attempt
develop an automated method for this application. Our al
rithm for segmentation of volumetric fibroglandular tissue
MR images used a semi-automatic method. The comp
performed an initial segmentation. A graphical user interfa
~GUI! was developed to allow a user to review the segm
tation of every slice and make modifications if necessa
The method consists of four steps. First, the breast boun
was detected automatically on each slice. A deforma
model and manual modification were used to correct for
correctly detected boundaries that usually occurred in sl
near the chest wall where there were no well-defined bre
boundaries. Because of inhomogeneity of the breast coil s
sitivity, the signal intensity in the breast region was not u
form across the field of view. A background correction tec
nique that estimated the low frequency background from
gray levels along the breast boundary was developed to
duce this systematic nonuniformity. Manual interacti
thresholding of the gray level histogram in the breast reg
was then used to separate the fibroglandular from the f
region. Morphological erosion was used to exclude the s
voxels along the breast boundary. Finally, the volume of
broglandular tissue was calculated by integration over
slices containing the breast. A flow chart of our algorithm
shown in Fig. 1.

C. Breast boundary detection

A two-step algorithm was developed for the detection
breast boundary on each slice. First, we used a seeded
thresholding algorithm~SPTA! for the initial assessment of
breast boundary. Second, a 2-D active contour algorithm
ther refined the boundary. For slices close to the chest w
where no clear boundary can be seen, manual modifica
was used to outline an estimated boundary.

The SPTA determined the optimal threshold by iterative
partitioning the MR image into two parts and using the g
dient value along the boundary of the partition as a guide
optimizing the threshold. First, the center of gravity was
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935 Wei et al. : Correlation of density between mammography and MR images 935
lected as the starting pixel on each slice. The gray leve
the starting pixel was used as a threshold to create a bi
partition of the image in which all pixels greater than t
threshold were set to one and all other pixels were se
zero. Second, the gradient value of each pixel on the bou
ary of the binary partition was calculated by applying t
Sobel filter to the original image. The gradient assessm
for this particular binary partition was defined as the aver
gradient magnitude of these boundary pixels. The thresh
value was reduced to zero in a stepwise manner. The p
tion for each threshold value was created and the grad
assessment for each partition was calculated as desc
above. The partition with the maximum gradient assessm
was considered to be the initial segmentation result for
breast, and the boundary of this partition was considere
be the initial breast boundary.

After the initial segmentation, a deformable conto
method was used to further refine the boundary. The mo
ment of the boundary pixel was controlled by an ene
function which consisted of internal energy and external
ergy. The internal energy components used in this study w
the continuity and curvature of the contour, as well as
homogeneity of the segmented partition. The external ene
components were the negative of the smoothed image g
ent magnitude, and a balloon force that exerted pressure
normal direction to the contour. The energy function w
defined as the following:

E5 (
c51

N

@Einter~c!1Eexert~c!#, ~1!

whereEinter andEexertare the internal energy and the extern
energy, respectively, as defined in Eq.~2! and Eq.~3!:

Einter5wcurvEcurv~c!1wcontEcont~c!1whomEhom, ~2!

FIG. 1. The flow-chart for the segmentation of the fibroglandular tissue
MR images.
Medical Physics, Vol. 31, No. 4, April 2004
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Eexert5wgradEgrad~c!1wbalEbal~c!, ~3!

where curv, cont, grad, bal, hom denoted curvature, cont
ity, gradient, balloon force and homogeneity, respective
and each energy term was associated with a weight,w. The
detailed definition for each term can be found in t
literature.35 An example of a MR slice of a breast is shown
Fig. 2~a!, and the segmented boundary is shown in Fig. 2~b!.
Note that the two breasts of a patient were scanned toge
but each breast was analyzed separately.

D. Background correction

To reduce the nonuniformity of the MR signal intensity
the breast region, a background correction technique36 using
the pixel values around the segmented breast region was
ployed. For a given pixel (i , j ) inside the breast region, th
gray value of the background image was estimated as sh
in Eq. ~4!:

B~ i , j !5F L

dl
1

R

dr
1

U

du
1

D

dd
G Y F 1

dl
1

1

dr
1

1

du
1

1

dd
G ,

~4!

whereL, R, U and D are the average gray values inside
breast background estimation region~BBER! centered at the
left, right, upper and lower pixels on the breast bounda
respectively. A BBER was defined as the intersection o
21321-pixel box and the breast region. The center pixels
the left and right boxes were the intersection points betw
the breast boundary and a horizontal line passing through
given pixel (i , j ). Similarly, the upper and lower center pix
els for the upper and lower boxes were the intersection po
between the breast boundary and a vertical line pas
through the given pixel (i , j ). Only the pixels that were
within the intersected area between the 21321-pixel box and
the breast region were included in the definition of the BBE
and the calculation of the average gray value. The contri
tions of the average gray levels to the background pixel (i , j )
were inversely weighted by their distancesdl ,dr ,du ,dd

from the given pixel (i , j ). An example of the background
corrected image is shown in Fig. 2~c!.

E. Segmentation of fibroglandular tissue

We developed a GUI that allowed the user to perform
combination of manual and automatic operations to segm
the breast boundary and the fibroglandular tissue on the

n

FIG. 2. An example of the first three processing blocks in Fig. 1.~a! Original
MR slice; ~b! automatically-detected breast boundary superimposed on
image; and~c! the background-corrected image.
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FIG. 3. The graphic user interface fo
the segmentation of the fibroglandula
tissues on the MR slice. The uppe
row shows the original MR slice~left!,
the background-corrected imag
~middle!and the segmented binary im
age ~right!. The segmented image re
sponds to the reader’s adjustment
the gray level threshold~lower row! in
real time so that the reader can choo
the appropriate threshold by inspectin
the segmented image visually. Th
dark area in the segmented image i
dicates the fibroglandular tissue an
the white area indicates the adipos
tissue. The inner line along the brea
boundary is the boundary obtained b
morphological erosion to exclude th
skin voxels for calculating the fibro-
glandular tissue volume.
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images. The first window~not shown!displayed the MR se-
ries and the corresponding mammogram of each breas
give the user an overview of the breast. The segmentatio
the fibroglandular tissue on each MR slice was processe
the second window, shown in Fig. 3. The original MR slic
the corresponding background corrected image and the
mented binary image were shown in the upper part of
window. At the lower part of the window, the histogram
the voxel values in the breast region was shown. The u
performed interactive thresholding on the histogram and
segmented binary image corresponding to the chosen thr
old was displayed in real time in the upper part. If the bre
boundary, which was automatically segmented by the co
puter initially, had to be corrected, the user could go to
third window and manually move the apices of the polyg
outlining the boundary. The voxels contributed by the nip
were excluded. On the slices containing breast skin that
voxel values similar to those of fibroglandular tissue, a m
phological erosion operation was applied to the bre
boundary to exclude the skin voxels from the calculation
the fibroglandular tissue volume in the slice. The size of
structuring element could be selected interactively on
fourth window and the eroded boundary was displayed
stantly for a chosen erosion operation. The user might ag
change the structuring element if the erosion result of
previous choice was deemed unsatisfactory. Since the er
boundary only marked the region within which the fibrogla
dular voxels would be summed and would not be used
the calculation of the breast volume, as described below
did not need to be precise as long as it excluded the
voxels while not excluding the fibroglandular voxels.
Medical Physics, Vol. 31, No. 4, April 2004
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F. MR fibroglandular tissue volume

After the fibroglandular tissue was segmented for ea
slice, the total number of voxels containing the fibrogland
lar tissue was obtained as a summation of these voxels
all slices of the breast. The total volume of the breast w
obtained as the summation of the voxels enclosed by
breast boundary before morphological erosion. The ratio
these two volumes provided the percent volumetric fib
glandular tissue in the breast.

G. Mammographic density segmentation

We have previously developed an automated method
segmentation of the dense fibroglandular area on mam
grams. The method, referred to as the Mammographic D
sity ESTimator ~MDEST! was described in detai
elsewhere.32 In brief, the breast boundary on the digitize
mammogram is tracked. A dynamic-range compression te
nique reduces the gray level range of the breast area.
analyzing the shape of the gray level histogram, a rule-ba
classifier classifies the breast density into one of four clas
Typically, a Class I breast is almost entirely fat; it has
single narrow peak on the histogram. A Class II breast c
tains scattered fibroglandular densities. Its histogram has
main peaks, with the smaller peak on the right of the big
one. A Class III breast is heterogeneously dense. Its hi
gram also has two peaks, but the smaller peak is on the
of the bigger one. A Class IV breast is extremely dense.
histogram has mainly a single dominant peak, but the pea
wider compared with the peak in the Class I histogram
second smaller peak sometimes occurs on the left of
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FIG. 4. A comparison of the percent mammograph
density obtained from interactive thresholding by a
MQSA-qualified radiologist and that estimated by o
automated MDEST computer program.~a! CC view,
correlation coefficient50.90, rms residual56.7, mean
difference50.3; ~b! MLO view, correlation coefficient
50.89, rms residual56.1, mean difference50.4.
Dashed line: linear regression of the data; solid lin
diagonal.
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main peak. Based on the histogram shape, a thresho
automatically calculated to separate the dense and fatty
els. The mammographic density was estimated as the
centage of fibroglandular tissue area relative to the t
breast area. For MLO view mammograms, the pecto
muscle is detected and excluded from the density area
breast area calculations. In our previous work, the per
mance of MDEST was verified by comparison with manu
segmentation by 5 breast imaging radiologists using a dat
of 260 mammograms from 65 patients that were differ
from the cases used in the current study. We found that
correlation between the computer-estimated percent d
area and the average segmentation by the 5 radiologists
0.94 and 0.91, respectively, for CC and MLO views, with
mean bias of less than 2%.

MDEST was applied to the mammograms of the 67
tients used in this study. The percent dense area on mam
grams was estimated for the CC-view and the MLO-vi
mammogram of each breast separately. In addition,
MQSA-qualified radiologist also segmented the dense a
by interactive thresholding for each mammogram. The c
relation between the mammographic density obtained
manual and automatic segmentation is shown in Figs.~a!
and 4~b!for the CC view and MLO view, respectively. Th
correlation coefficients for the CC view and MLO view we
0.90 and 0.89, respectively. The mammographic densities
timated by automatic and manual segmentation were c
pared with the percent volumetric fibroglandular tissue
MR images as described below.

H. Observer experiments

We performed an experiment to evaluate the variability
the estimated % volumetric fibroglandular tissue due to
uncertainty in the determination of the starting slice of t
breast at the chest wall. The starting slice affected the e
mation of the breast volume that was calculated by integ
ing from the starting slice to the anterior of the brea
Twenty-three MR cases from the dataset were randomly
lected for this observer experiment. There were a total of
breasts because some cases had only one breast. Fo
subset of cases, each radiologist was asked to select the
ing slice from the MR images for each breast. The estima
Medical Physics, Vol. 31, No. 4, April 2004
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% volumetric fibroglandular tissue calculated with all ava
able slices was then compared to that calculated with
selected starting slice.

We also performed observer experiments to evaluate
inter-observer variations in the segmentation of fibroglan
lar tissue using the semi-automatic method. Two MQS
qualified radiologists performed the segmentation of the
roglandular tissue on the MR images of the 41 breasts u
the semi-automatic method implemented with the GUI.
Ph.D. researcher who was trained by these radiologists
performed the segmentation independently with the GUI.

After verifying the consistency of segmentation by the
observers, the trained Ph.D. completed the segmentatio
all MR cases. The correlation between percent volume
fibroglandular tissue on MR images and percent dense
on mammograms was then examined for the entire data

III. RESULTS

A. Effect of selection of the starting slice

Figure 5~a!shows the correlation of the % volumetr
fibroglandular tissue calculated using all available slices
the breast with that calculated using the selected star
slice by radiologist A for the 41 breasts. The correlation c
efficient was 0.999. To compare the difference between t
results, the mean difference and the root-mean-square~rms!
residual, which is the residual from the linear least-squar
fitted line, were also calculated. The mean difference was
and the rms residual was 0.6. The result is similar for ra
ologist B~not shown!, with a correlation coefficient of 0.99
a mean difference of 0.4 and a rms residual of 0.4. T
correlation between the % volumetric fibroglandular tiss
calculated using the selected starting slice by radiologis
with that calculated using the selected starting slice by ra
ologist B was also very high with a correlation coefficient
0.988, a mean difference of 0.7 and a rms residual of 1.8
shown in Fig. 5~b!. These comparisons indicated that
variability in the selection of the starting slice of the brea
did not have a strong influence on the % volumetric fib
glandular tissue. We therefore used all available slices in
MR dataset for each breast in the following analyses.
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FIG. 5. ~a! A comparison of the percent fibroglandula
tissue volume calculated using the selected start
slice with that calculated using all available slices f
radiologist A, correlation coefficient50.999.~b! A com-
parison of the percent fibroglandular tissue volume c
culated using the selected starting slice by radiologis
with that by radiologist A, correlation coefficien
50.988, Dashed line: linear regression of the da
solid line: diagonal.
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B. Inter-observer variation between radiologists

Figure 6~a!shows the comparison of the percent volum
ric fibroglandular tissues on MR images segmented by
radiologists for the 41 breasts. The correlation between
segmentation results of the two radiologists is 0.99. T
mean difference was found to be 0.3 and the rms resid
was 1.6.

C. Inter-observer variation between radiologists and
trained Ph.D.

Figure 6~b!shows the comparison of the percent volum
ric fibroglandular tissues segmented by the trained Ph
against that segmented by radiologist A. A similar result w
obtained by comparing the percent volumetric tissue s
mented by the trained Ph.D. and that segmented by rad
gist A except that the data points were even closer to
diagonal~not shown!. The correlation between the result
the trained Ph.D. and the results of both radiologists w
0.99. The corresponding mean differences were20.8 and
20.4, respectively, and the rms residuals were 1.4 and
respectively.

D. Correlation between percent volumetric
fibroglandular tissue on MR images and percent
mammographic density

The percent volumetric fibroglandular tissue on MR im
ages was compared with the percent dense area on CC
Medical Physics, Vol. 31, No. 4, April 2004
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MLO-view mammograms. After verifying that the differenc
in segmentation between the trained Ph.D. and the radi
gists was similar to the interobserver variations between
two experienced radiologists, the trained Ph.D. comple
the segmentation of the entire dataset.

Figure 7 shows the comparison of the percent volume
fibroglandular tissue on MRI and the percent mammograp
density segmented by a radiologist. The percent areas on
and MLO-view mammograms are higher than the perc
volume on MR images with a mean difference of 5.7% a
3.0%, respectively.

Figure 8 shows the comparison of the percent volume
fibroglandular tissue on MRI and the percent mammograp
density segmented by MDEST. The percent areas on
and MLO-view mammograms segmented by the compu
are higher than the percent volume on MR images with
mean difference of 5.3% and 2.6%, respectively.

The correlation coefficients, the mean differences and
rms residuals between the percent volumetric fibrogland
tissue on MR images and percent dense area on mam
grams are compared in Table. I. The correlation between
percent volume on MR images and percent area on mam
grams of the fibroglandular breast tissue is high, rang
from 0.89 to 0.91. Although it is not expected that the valu
of percent volume agree with the values of percent area, t
mean differences range only from 3% to 6% and the r
residual range from 5.4 to 6.3.
n-
rs:
r-

is
he
n-
es.
e:
FIG. 6. A comparison of the segmentation of fibrogla
dular tissue from MR images between two observe
~a! two experienced MQSA-qualified radiologists, co
relation coefficient50.99. ~b! The trained Ph.D. and
Radiologist A, correlation coefficient50.99. The corre-
lation between the trained Ph.D. and Radiologist B
also 0.99 but the data points were very close to t
diagonal and is not shown. The % volumetric fibrogla
dular tissue was calculated using all available slic
Dashed line: linear regression of the data; solid lin
diagonal.
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FIG. 7. A comparison of the percent fibroglandular ti
sue volume on MR images and the percent dense a
on mammograms segmented by an experienced radi
gist. ~a! CC view, correlation coefficient50.91; ~b!
MLO view, correlation coefficient50.91. Dashed line:
linear regression of the data; solid line: diagonal.
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IV. DISCUSSION

Our purpose in this paper was to investigate the relati
ship between the percent dense area on mammogram an
percent fibroglandular tissue volume on MR image. W
found a direct correlation between mammographic den
and MR volumetric density~Fig. 7 and Fig. 8!. The correla
tion coefficients between the percent area on a mammog
and the percent volume on MR images are high at 0.89
0.91. These results are more promising than those foun
previous studies that attempted to correlate percent d
area on mammograms with MR information. Grahamet al.33

investigated the relationship between percent density~pro-
jected dense area!on mammogram and two objective M
parameters of breast tissue, relative water content and m
T2 relaxation. Their results with 45 cases showed a posi
correlation between percent density and relative water c
tent ~Pearson correlation coefficient50.79) and a negative
correlation between percent density and mean T2 va
~Pearson correlation coefficient520.61). Another study by
Leeet al.34 analyzed fatty and fibroglandular tissue in diffe
ent age groups to compare x-ray mammography with
weighted MR images. Their study with 40 cases indica
that the correlation between the two techniques is 0.63 w
the fat content was more than 45%. However, the correla
coefficient decreased to 0.34 when their analysis inclu
only dense breasts.

It may be noted that although MR imaging is currently t
most accurate method for estimating the volumetric fib
Medical Physics, Vol. 31, No. 4, April 2004
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glandular tissue in the breast, it is still not the ideal to
Fibrous tissue and glandular tissue are not well separ
with current MR imaging techniques. Since the amount
glandular tissue in the breast is the important factor relat
to breast cancer risk, further studies are warranted for dif
entiating the glandular and the fibrous components of
imaged volume. The correlation between the percent glan
lar tissue volume and percent projected dense area o
mammogram will be a more reliable indicator of the usef
ness of mammographic density analysis.

The density on mammograms is a 2-D projected area
the fibroglandular tissues. The percent dense area is no
pected to be equal in value to the percent volume. The m
differences between the percent volume and the percent
on CC- and MLO-views, as determined by the radiologis
interactive segmentation, are 5.7 and 3.0, respectively~Table
I!, with the percent dense area values being higher. We
investigated the rms residual between the percent volu
and the percent area when the relationship between them
assumed to be linear. The rms residual between the per
volume and the percent area on CC- and MLO-views are
and 5.6, respectively~Table I!, relative to the straight line
obtained from linear least squares fits to the data. One p
sible factor that may contribute to a higher value of perc
dense area on mammograms than the percent volume v
on MR images is that the tissue volume imaged by the t
modalities is somewhat different. The MR images inclu
more tissue near the chest wall, which is mainly retrogla
R
nted

-

FIG. 8. A comparison of the percent volume on M
images and the percent area on mammogram segme
by our automated MDEST computer program.~a! CC
view, correlation coefficient50.91; ~b! MLO view, cor-
relation coefficient50.89. Dashed line: linear regres
sion of the data; solid line: diagonal.
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dular adipose tissue, than a mammogram does, thus redu
the percentage of fibroglandular tissue volume. The red
tion in the percent volume values, however, is relativ
small, as found in our study evaluating the effects of sele
ing starting slices for volume calculation~Fig. 5!. The main
difference may therefore be attributed to the geometric r
tionship between the volume and the projected 2-D a
explained later.

Geometrically, we do not expect the relationship betwe
volume and its projected 2-D area to be linear. In a hy
thetical situation such that the dense tissue volume i
sphere (volume54/3 pr3) enclosed inside a concentr
spherical shell of fatty tissue volume, the percent projec
2-D area (area5pr2) of the inner sphere relative to th
outer sphere is equal to the percent volume to the powe
2/3. The relationship between the percent area and the
cent volume is therefore not linear, and the percent are
larger in value than the percent volume for any ratio of ra
between the two spheres. In general, the compressed b
and the dense tissue are not spherical. To investigate
empirical relationship between the percent area and the
cent volume in the nonlinear situation, we applied le
squares fits in several polynomial models to the data po
in Fig. 7. The results are shown in Table II and Fig. 9.
comparison of Table I and Table II indicates that theY
5kx2/3 model (x5percent fibroglandular tissue volume,Y
5percent mammographic dense area! resulted in slightly
larger rms residuals than the linear model. The modeY
5kxm with m equal to 0.83 and 0.86, respectively, for C
and MLO-views slightly reduced the rms residuals. The b
fit was obtained from the modelY5k1xm1k2 . However, the

TABLE I. Statistic analysis of the relationship between percent fibrogland
tissue volume on breast MR images and percent dense area on ma
grams segmented by radiologist and MDEST.

Radiologist Computer (MDEST)

CC vs
MRI

MLO vs
MRI

CC vs
MRI

MLO vs
MRI

Correl. coeff. 0.91 0.91 0.91 0.89
rms residual 6.3 5.6 5.8 5.4
Mean diff. 5.7 3.0 5.3 2.6
Medical Physics, Vol. 31, No. 4, April 2004
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situation that the percent projected area was negative w
the percent volume was zero would not occur physica
Note that if the model was fitted to the percent area d
segmented by MDEST~Fig. 8!, thek2 values would become
positive, indicating that the nonzerok2 values are likely
caused by segmentation biases.

Overall, these models demonstrate that there is no sim
mathematical relationship between the percent volume
the percent projected area but the values for the expon
appeared to be in a reasonable range. The relationship
tween the percent volumes of two 3-D objects, one with
another, and their percent projected 2-D area depends
their shapes. For example, the closer the two volumes ar
concentric cylinders of the same height, the closer the ex
nent is to unity. The spread of the data points can there
be attributed to the various irregular shapes of the fibrogl
dular tissue in the breasts, the changes in the shapes o
fatty and fibroglandular tissue due to compression, as we
the uncertainties in the segmentation of both the mamm
grams and the MR images. Although the spread of the d
points in the correlation plots is large, one can expect t
when the mammographic density of a given patient is mo
tored over time, the variations in the projected dense a
due to the geometric factors, described above, will actu
be much less than that observed from the scatter plots am
a large number of patients. In other words, the uncertaint
the estimated percent density from the serial mammogr
of a given patient should be much less than those show

TABLE II. An analysis of the relationship between percent fibroglandu
tissue volume (x) on breast MR images and percent dense area (Y) on
mammograms segmented by radiologist using three mathematical mo
m, k, k1 andk2 are constants determined by least squares curve fitting

Mathematical model Y5kx2/3 Y5kxm Y5k1xm1k2

CC
vs

MRI

Least squares FitY50.82x2/3 Y51.03x0.83 Y51.02x0.4820.19
rms residual 6.5 6.0 5.6

Coefficient of
determination

0.82 0.85 0.87

MLO
vs

MRI

Least squares FitY50.73x2/3 Y50.96x0.86 Y50.90x0.6020.09
rms residual 6.0 5.5 5.3

Coefficient of
determination

0.80 0.84 0.85

r
o-
e
y a
FIG. 9. Nonlinear fitting of the relationship between th
percent volume and the percent area segmented b
radiologist with the least squares method.~a! CC view,
~b! MLO view. Dashed line:y5kx2/3; dashed–dotted–
dotted line:y5kxm; solid line: y5k1xm1k2 . The fit-
ted parameters of the models,m, k, k1 and k2 , are
shown in Table II.
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Fig. 7. The strong correlation observed between the per
dense area on mammograms and the percent volumetric
roglandular tissue on MR images therefore indicates th
change in mammographic density can be a useful indic
of a change in percent fibroglandular tissue volume in
breast.

Recently, some researchers attempted to estimate
thickness of the fibroglandular tissue in local regions of
mammograms from the projected density.37 This approach is
expected to provide a more accurate estimation of the fib
glandular tissue volume if the true thicknesses of the fib
glandular tissue and fatty tissue can be determined at var
locations of the projected breast region. The volume of
fibroglandular tissue can then be summed over the pixel
the breast region and the percent volume calculated. H
ever, to obtain accurate measurements, this approach req
the knowledge of the sensitometric curve for the screen-
mammogram at the imaging facility~or use of a digital de-
tector with linear response!and other physical paramete
such as the scatter fraction, the beam quality and beam h
ening, in addition to the compressed breast thickness and
breast shape profile at the periphery. Some of the requ
ments may be circumvented by using a look-up table pre
termined with a phantom calibration. Other factors may ha
to be approximated or ignored, or require further correctio
by imaging each mammogram with a calibration phant
placed adjacent to the breast. This method is still being
veloped and the accuracy of estimating the thickness of
local fibroglandular tissue from a mammogram is yet to
determined. To our knowledge, no study to date has dem
strated that fibroglandular tissue volume estimated fr
mammograms has a higher correlation with the percent v
metric fibroglandular tissue volume estimated from MR i
ages or other volumetric methods than we found in our c
rent study. Furthermore, even if the local fibroglandu
tissue thickness on mammograms can be measured in a
ratory or in an academic center using elaborate calibra
schemes, it is doubtful that these methods can be trans
into routine clinical measurement in mammography clini
Its use may then be limited to controlled clinical trials. A
estimation of the percent dense area projected on mam
grams is likely a more practical approach for breast den
assessment. The high correlation between the percent d
area and the percent fibroglandular tissue volume on
images as demonstrated in the current study further supp
the validity of this approach.

V. CONCLUSION

In this study, we investigated the correlation between
percent mammographic dense area and the percent volu
ric fibroglandular tissue as measured on MR images. A se
automatic method was developed for segmentation of
MR images and a fully automated computerized meth
MDEST, was used to segment the mammograms. The
formance of MDEST on the set of mammograms used in
study was verified with an experienced radiologist’s man
segmentation. The inter-observer variability in segmenta
Medical Physics, Vol. 31, No. 4, April 2004
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of MR images was found to be small with correlation coe
ficients of 0.99. The correlation between the percent volu
on MR images and percent area segmented by a radiolo
for either CC- view or MLO-view is 0.91. The correlatio
between percent volume and percent area estimated by
EST is 0.91 and 0.89, respectively, for CC and MLO view
Mammographic density is thus highly correlated with t
percent volumetric fibroglandular tissue in the breast. T
high correlation indicates that changes in mammograp
density may be a useful indicator of changes in fibroglan
lar tissue volume in the breast. Our computerized ima
analysis tool, MDEST, can provide a consistent and rep
ducible estimation of percent dense area on routine clin
mammograms. The automated image analysis tool may
prove the sensitivity of quantifying mammographic dens
changes, thereby contributing to the understanding of the
lationship of mammographic density to breast cancer r
detection, and prognosis, and the prevention and treatme
breast cancer.
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