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Purpose: To develop a pharmacokinetic modelfree framework to analyze the dynamic contrast en-
hanced magnetic resonance imaging (DCE-MRI) data for assessment of response of brain metastases
to radiation therapy.
Methods: Twenty patients with 45 analyzable brain metastases had MRI scans prior to whole brain
radiation therapy (WBRT) and at the end of the 2-week therapy. The volumetric DCE images covering
the whole brain were acquired on a 3T scanner with approximately 5 s temporal resolution and a total
scan time of about 3 min. DCE curves from all voxels of the 45 brain metastases were normalized and
then temporally aligned. A DCE matrix that is constructed from the aligned DCE curves of all voxels
of the 45 lesions obtained prior to WBRT is processed by principal component analysis to generate
the principal components (PCs). Then, the projection coefficient maps prior to and at the end of
WBRT are created for each lesion. Next, a pattern recognition technique, based upon fuzzy-c-means
clustering, is used to delineate the tumor subvolumes relating to the value of the significant projection
coefficients. The relationship between changes in different tumor subvolumes and treatment response
was evaluated to differentiate responsive from stable and progressive tumors. Performance of the PC-
defined tumor subvolume was also evaluated by receiver operating characteristic (ROC) analysis in
prediction of nonresponsive lesions and compared with physiological-defined tumor subvolumes.
Results: The projection coefficient maps of the first three PCs contain almost all response-related in-
formation in DCE curves of brain metastases. The first projection coefficient, related to the area under
DCE curves, is the major component to determine response while the third one has a complimentary
role. In ROC analysis, the area under curve of 0.88 ± 0.05 and 0.86 ± 0.06 were achieved for the
PC-defined and physiological-defined tumor subvolume in response assessment.
Conclusions: The PC-defined subvolume of a brain metastasis could predict tumor response to
therapy similar to the physiological-defined one, while the former is determined more rapidly
for clinical decision-making support. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4842556]
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1. INTRODUCTION

Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI, see Table I) is a noninvasive imaging tool
extensively used in oncology for diagnosis and therapy
assessment,1 and also as an imaging biomarker for develop-
ment of antiangiogenic drugs.2 The DCE-MRI technique is
based upon rapid acquisition of a series of T1-weighted im-
ages from a tissue of interest before, during, and after intra-
venous bolus injection of a gadolinium-based contrast agent
(CA).3 As the CA perfuses into the tissue under investiga-
tion, T1 values of the tissue water decrease to an extent which
depends upon the CA concentration. Hence, the characteris-
tic signal intensity time course, relating to the CA concen-

tration, in a region of interest or a voxel of the tissue can
be subsequently analyzed by a pharmacokinetic (PK) model.
By fitting the DCE-MRI data to a PK model, a set of volu-
metric maps of physiological parameters can be obtained, for
example, tissue perfusion, microvascular permeability, and
extravascular extracellular volume.4 Longitudinal changes in
maps of the physiological parameters of a tissue of interest
from pre- to post-treatment could aid in for assessment and
prediction of treatment response and outcome as well as for
drug development.5, 6

The physiological parameter maps derived from the PK
models, although useful and meaningful for diagnosis and
therapy assessment, involve in a series of uncertainties.7 Fore-
most, the DCE-MRI data often cannot be fitted to a selected

011708-1 Med. Phys. 41 (1), January 2014 © 2014 Am. Assoc. Phys. Med. 011708-10094-2405/2014/41(1)/011708/12/$30.00

http://dx.doi.org/10.1118/1.4842556
http://dx.doi.org/10.1118/1.4842556
http://dx.doi.org/10.1118/1.4842556
http://dx.doi.org/10.1118/1.4842556
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4842556&domain=pdf&date_stamp=2013-12-19


011708-2 Farjam et al.: DCE-MRI defined subvolume of a brain metastatic lesion 011708-2

TABLE I. Frequently used abbreviation.

Abbreviation Description

2W Week 2
AIF Arterial Input Function
AUC Area Under Curve
cPC Projection Coefficient
cPDF Pooled Histogram
DCE-MRI Dynamic Contrast Enhanced Magnetic Resonance Imaging
FCM Fuzzy-C-Means Clustering
GTV Gross Tumor Volume
H Histogram: Interchangeably used with Probability Density

Function
P Progressive
PCA Principle Component Analysis
PDF Probability Density Function: interchangeably used with

Histogram
PK Pharmacokinetic
Pre-RT Prior to Radiation Therapy
R Responsive lesions
rCBV Regional Cerebral Blood Volume
ROC Receiver Operating Characteristic
ROI Region of Interest
S Stable lesions
SV Sub-volume
WBRT Whole Brain Radiation Therapy

PK model perfectly, and hence may be a source of errors
affecting the accuracy of the physiological parameters. In ad-
dition, the “physiological parameters” derived from the PK
models may not accurately reflect the underlying physiology,
due to oversimplification in the models and lack of physiolog-
ical validation of the models. For example, interpretation of
Ktrans derived from the Toft model depends upon flow limited,
permeability limited, or mixed. Also, computing the physio-
logical parameters by fitting the DCE-MRI data into the PK
models is a time consuming process, which is inadequate for
real-time decision making support in adaptive radiation ther-
apy, especially to handle the number of patients and the clin-
ical workload. Hence, a modelfree approach to analyze the
DCE-MRI data, e.g., the methods based on factor analysis,8, 9

independent component analysis (ICA),10 and principal com-
ponent analysis (PCA),11–14 could potentially facilitate the de-
velopment of the real-time decision-making supportive tools
in diagnosis and therapy assessment. PCA has shown the
potential to be a very robust and fast technique in analyz-
ing the DCE-MRI data,11–16 and especially in prostate12–14

and breast15, 16 cancer. Eyal et al.12 applied PCA to dynamic
intensity-scaled (IS) and enhancement-scaled (ES) datasets to
develop and evaluate a method for image processing of the
dynamic contrast enhanced MRI of the prostate cancer. They
found that the first IS-eigenvector captured the major part of
the signal variance, and the next two IS-eigenvectors captured
the signal changes due to the tissue contrast-enhancement;
whereas the remaining eigenvectors captured noise fluctua-
tions. When they were applying the approach to distinguish
benign lesions from malignant prostate cancers, the high val-
ues of 2nd and 3rd eigenvectors were able to differentiate

the two.13 Although the model-based approach achieved the
similar results, the PCA-based methods were fast and robust
for analyzing the DCE data. Furthermore, the PCA-based ap-
proach has been applied to the DCE images of breast cancer,
in which the 2nd and 3rd eigenvectors were found to be in-
dicators of the wash-in and wash-out of the contrast agent.15

However, although these works have shown promising results
for diagnostic purposes, to the best of our knowledge, no stan-
dard approach has been proposed so far to incorporate PCA
into an automatic supportive tool for decision-making in ther-
apy assessment.

A previous study17 has shown that an early change in the
subvolume of a brain metastatic tumor with high-rCBV and
high-Ktrans is a better predictor for postradiation therapy re-
sponse than a tumor volumetric change and a change in the
mean tumor rCBV observed in the same time interval. In
this previous work, the physiological imaging-defined tumor
subvolume, as a response-predictor, is determined through a
two-step process: (1) deriving the physiological parameters
by fitting the DCE MRI data to a PK model and (2) delin-
eating the subvolume by analysis of the physiological pa-
rameters in the tumor using a fuzzy-c-means (FCM)-based
technique. Hence, in this work our main goal is to develop a
general framework to derive a response-predictor from DCE-
MRI data without using the PK modeling and to have a semi-
automated or fully automated tool for response assessment
and therapy guidance in radiation therapy of brain metastases,
the most common form of intracranial tumors exceeding the
number of primary brain tumors by at least ten times and oc-
curring in approximately 25% of all patients with cancers.18

In our proposed approach, we transfer the DCE curves into
an N-dimensional feature space using principal component
analysis, then, identify the most response-related features us-
ing a FCM-based technique similar to what is proposed in
Ref. 17, and finally combine the features to define the tumor
subvolumes. We evaluate whether our modelfree approach
could provide a similar or even better metric, in defining the
subvolume of a tumor compared to the subvolume defined by
the physiological parameters obtained from the PK model.

2. MATERIALS AND METHOD

2.A. Patients

Twenty patients (11 women and 9 men, ages 41–76 yr),
diagnosed with brain metastases and enrolled in an institu-
tional review board (IRB)-approved prospective MRI study
and previously described in Ref. 17, were also included in
this study (Table II). The histology consisted of melanoma
(11), nonsmall cell lung cancer (6), renal cell carcinoma (1),
breast cancer (1), and head & neck squamous cell carcinoma
(1). All patients received standard WBRT with a total dose of
30 Gy in 10 fractions (13 patients) or 37.5 Gy in 15 fractions
(7 patients). If a patient had less than three brain metastatic
lesions, all lesions were included. If a patient had more than
three lesions, only the three largest lesions were included. If
a patient had more than three lesions larger than 1 cm3, up to
three lesions greater than 1 cm3 were also included. As a total,
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TABLE II. Patient characteristics information.

Total accumulated Concurrent drug No. of Volume
Pt. #. G/Age (Y) Histology dose/Fx (Gy) treatment lesions range (cm3)

1 Female/54 Breast Cancer 37.5/2.5 None 3 4.23–11.78
2 Male/63 Renal Cell Carcinoma 30/3 Bortezomib 2 13.23–14.67
3 Male/41 Melanoma 37.5/2.5 Bortezomib 3 0.15–1.24
4 Female/60 NSC Lung Cancer 37.5/2.5 None 1 0.52
5 Female/52 Melanoma 37.5/2.5 Bortezomib 1 2.74
6 Female/45 Melanoma 30/3 Bortezomib 1 2.07
7 Male/49 Melanoma 30/3 Bortezomib 2 0.17–4.09
8 Female/51 NSC Lung Cancer 30/3 Bortezomib 3 0.50–4.55
9 Male/61 Melanoma 37.5/2.5 Bortezomib 4 6.64–17.67
10 Male/52 NSC Lung Cancer 30/3 None 1 0.479
11 Female/55 Melanoma 30/3 Bortezomib 2 0.42–0.54
12 Male/76 Melanoma 30/3 Bortezomib 1 0.68
13 Female/46 Melanoma 30/3 Bortezomib 6 1.25–1.95
14 Female/57 Melanoma 30/3 Bortezomib 2 0.94–1.58
15 Female/64 NSC Lung Cancer 37.5/2.5 None 1 0.108
16 Male/60 Melanoma 30/3 Bortezomib 3 0.18–1.31
17 Female/74 Melanoma 30/3 Bortezomib 4 0.69–5.81
18 Male/43 Head & Neck SCC 30/3 None 1 0.60
19 Male/58 NSC Lung Cancer 30/3 None 3 2.38–10.69
20 Female/66 NSC Lung Cancer 37.5/2.5 None 1 0.95

Abbreviation: Pt. #. = patient number; G = Gender; Y = year; NSC Lung Cancer = non-small cell Lung Cancer; and
Head & Neck SCC = Head and Neck squamous cell carcinoma.

45 lesions with a median volume of 1.65 cm3 and a range of
0.1–17.6 cm3 were analyzed.

2.B. Imaging acquisition

All patients had MRI scans on a Philips 3T scanner prior
to radiation therapy (Pre-RT), 2 weeks after the start of RT
(2W), and 1 month after the completion of treatment (1M
Post-RT). MRI scans included pre and post-Gd-DTPA vol-
umetric T1 weighted images, multislice 2D T2 weighted im-
ages, and volumetric DCE T1 weighted images. The 3D vol-
umetric DCE-images were acquired during bolus injection of
a standard dose (0.1 mmol/kg) of Gd-DTPA with an injection
rate of 2 cc/s. The DCE-images were acquired in the sagit-
tal plane with an image matrix of 128 × 128 × 80, a field-
of-view of 240 × 240 × 160 (mm), a voxel size of 2 × 2
× 2 (mm3), a flip angle(α) of 200, and TE/TR of 1.04/5.14 ms
and a temporal resolution of 4-6 s. Using an in-house software
package, both anatomical and DCE-MR images were coregis-
tered and resampled to have a voxel size of 0.9375 × 0.9375
× 3 (mm3). Each lesion of interest was manually contoured
by a physician on the post-Gd T1 weighed images obtained
preRT, 2W and 1M post-RT.

2.C. Pharmacokinetic modelfree framework

Our proposed PK modelfree framework consists of
two phases: development phase and usage phase. In the
development phase, a sample of the DCE data from brain
metastases is processed and analyzed to develop the model
and the predictive metric. In the usage phase, we determine if

the predictive metric could be extracted rapidly from the DCE
data of a new patient scan.

2.D. Development phase

A flowchart of the development phase, shown in Fig. 1, in-
cludes preprocessing, modeling of DCE curves of a sample of
brain metastases (including PCA and feature classification) to
obtain a single metric, and evaluating the metric for response
assessment. Each step is described in Subsections 2.D.1–2.F
in detail.

2.D.1. Preprocessing

2.D.1.a. DCE curves normalization. The dynamic curve
at each voxel represents the temporal changes in signal in-
tensity after the contrast injection. We calculate the signal
intensity change �S from pre (baseline) to postcontrast as
following:19

�S(t) ≡ S(t) − S0

S0
, (1)

where S(t) and S0 represent signal intensities of a DCE curve
at times t and 0 (the time of contrast injection), respectively.
Note that �S(t)/S0 is proportional to �R1 · T10, the change in
relaxation rate caused by the contrast agent weighted by the
initial spin-lattice relaxation time, as long as TR · R1 is much
smaller than one. To account for the individual hemodynamic
response to contrast, we normalize �S at each voxel using the
peak of the arterial input function, AIFmax, obtained during the
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FIG. 1. The flowchart of our proposed PK model free approach based upon tumor DCE data for supporting decision-making of assessment of therapy response.
cPC: Projection coefficient map; cPDF: Pooled histogram corresponding to a cPC.

same scan as

�SN (t) = �S(t) .
1

AIFmax
. (2)

An arterial input function can be determined from a region of
interest (ROI) in a large artery (e.g., carotid artery for our ap-
plication) manually, semiautomatically, or automatically. In
the current work, a region of interest containing brain and
neck is initially contoured. Then, DCE curves within the con-
tour are averaged to determine the peak enhancement, Tmax,
in the tissue. Assuming that the arterial input function reaches
the enhancement peak prior to tissue, the first 20 voxels with
the maximum enhancement in �S(Tmax − �t), one time frame
before Tmax, within the contour are thresholded, and then the
corresponding DCE curves are averaged to be considered as
an arterial input function.

2.D.1.b. DCE curve reconstruction. The DCE curves in
each scan may not be acquired with the exactly same tempo-
ral resolutions and time durations. Hence, we standardize the
DCE curves in such a way that all curves have the same tem-
poral resolution and length. We use the spline curve-fitting
method20 to reconstruct each DCE curve, and then resample
them to have a temporal resolution of 4 s and a total length of
120 s, respectively.

2.D.1.c. DCE curve alignment. The DCE curves from
voxels within the tumor volumes of all patients need to be
temporally aligned for further processing. We use the arterial

input function (AIF) obtained from each patient scan to align
the DCE curves of voxels in the tumor volumes. First, we fit
the Gamma variate function21 to each AIF as follows:

g =
{

(t − t0)α exp−β(t−t0) t ≥ t0

0 t < 0

AIF = g (t) + λ

t∫
0

g(t − t ′)dt ′. (3)

All AIFs are then aligned at t0 that is resigned to be time 0.
Using the resultant time shifts, the DCE curves from each
scan are adjusted accordingly. This makes all DCE curves
aligned based on the start of enhancement in the arterial input
function.

2.D.2. Projection coefficient map from
Karhumen-Loeve expansion of DCE curves

Our primary goal is to extract response-predictive features
rapidly and directly from the DCE curves. Hence, we ex-
pand the DCE curves using a set of basis functions, by which
the coefficients of the projection vectors for each DCE curve
are a unique representation in a new space. First, in the de-
velopment stage, using DCE data from a sample of brain
metastases (e.g., pretherapy DCE data), we construct matrix
C (N × T) in which each row represents a DCE curve from
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FIG. 2. (a) An example of the pre-RT a1 histogram of a brain metastasis with a tumor volume of 17.6 cm3. (b) The pooled PDF (light gray) of the pre-RT
a1 (cPDF1) from all the lesions and the three probability membership functions determined by FCM clustering. The cPDF1 is partitioned into three classes:
representing low (dotted-dashed black), intermediate (dashed black), and high (solid black) a1 classes. a1: coefficient projection of the DCE curves on the 1st
principal component.

one voxel in the tumors. N is the total number of voxels in all
tumors and T is the number of time points in each curve. Next,
we apply PCA to C to obtain a complete set of a total of T or-
thonormal principal components (PCi). Then, we perform the
Karhumen-Loeve transformation of each DCE curve, �SN, in
each voxel of the tumor to

�SN =
∑T

i=1
aiPCi → �SN ≡ (a1, a2 . . . , aT ), (4)

where ai is the projection coefficient (cPC) corresponding
to the ith principal component. Hence, each DCE curve in
a tumor volume is represented uniquely by {αi} in a T-
dimensional coefficient space. However, Eq. (4) can be trun-
cated at the first M principal components which contain 99%
of energy of the original DCE curves. We will show that M
is noticeably smaller than T. Decomposing DCE curves of a
new tumor to the first M PCs is much faster than fitting them
to a PK model.

2.D.3. Projection coefficient defined tumor
subvolumes

2.D.3.a. Probability density function of a projection co-
efficient in a tumor. Each PC depicts a feature of the tumor
DCE curve. Each voxel in a tumor has a unique projection co-
efficient on each PC. For each PC, the projection coefficients
of the voxels in a tumor, which can be presented as a volu-
metric map of a lesion, have a distinct role in predicting the
treatment response and outcome. The distribution of the pro-
jection coefficients in a large tumor is heterogeneous, similar
to the physiological parameters. Hence, similar to what has
been done previously for the physiological parameters,17 we
analyze the distribution patterns of a projection coefficient,
ai, in the lesions, and subsequent changes during treatment.
A probability density function (PDF) or histogram of ai of a
lesion is generated using a nonparametric PDF estimator. The
PDF consists of 150 evenly spaced points to cover the range
of ai for all the lesions of interest. A value of the PDF at a
point x, H(ai = x), of a lesion is calculated as

H (ai = x) ≡ ni : x − ε ≤ ai < x + ε, (5)

where ni is the number of voxels within |ai-x| < ε, and ε

is a smooth factor of H and set as ε = σ
4 , where σ denotes

a standard deviation of the ai distribution in the tumor. For
each lesion, PDFs are calculated for scans at baseline [e.g.,
pretherapy as HPre(x)] and after starting therapy [e.g., at week-
2 during therapy as H2W(x)]. After HPre(x) is normalized to
have an area under the PDF curve equal to one (∫H (x) dx

= 1), the HPre(x)s of all the lesions are summed to gener-
ate a pooled PDF (cPDF), in which each lesion has an equal
contribution regardless of its size. Figure 2 shows an ex-
ample of a typical a1 PDF for a lesion with a volume of
17.6 cm3 at pretherapy and the pretherapy a1 pooled PDF,
respectively.

2.D.3.b. Probabilistic membership functions of projection
coefficients. Previous studies have suggested that the rCBV
(or Ktrans) distribution in a brain tumor is abnormal compared
to normal cerebral tissue, as elevated rCBV in a subvolume
of the tumor and low rCBV in another one.22–24 A renormal-
ization of tumor vasculature, such as decreasing the elevated
rCBV and increasing the low one, could be an indicator of a
tumor response to treatment.25 The DCE-derived physiolog-
ical parameters (e.g., rCBV and Ktrans) and projection coef-
ficients, (a1, a2. . . , aT), are two representations of the DCE
curves. Therefore, it is reasonable to assume that ai in the
brain metastases could also distribute abnormally in contrast
to normal tissue, and changes during treatment could predict
tumor response to therapy. Hence, similar to what has been
done for rCBV previously,17 we classify the pooled distribu-
tion of Hpre(ai) to three classes as high, intermediate, and low
ai classes using FCM clustering analysis by minimizing the
objective function Jm:

Jm =
∑N

i=1

∑C

j=1
Pj (ai)

m ‖ai − c2
j ‖, 1 ≤ m < ∞, (6)

where cj is a prototype vector of the jth class, Pj(ai) is a prob-
abilistic membership of a ai value belonging to the jth class,
and m is a fuzzy exponent and chosen as 2. The probabilis-
tic membership function, Pj(ai), describes that a voxel having
a projection coefficient ai has a probability P belonging to a
class j, which is a new representation of a ai value of a tumor
voxel (mathematically transfers the data from the ai space into
a new space).

2.D.3.c. Projection coefficient defined tumor subvolume.
Our primary interest is to test if a change in a subvolume of
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the tumor defined by high, intermediate, or low ai values is
related to tumor treatment response. We define a subvolume
(SV) of a tumor with low, intermediate, or high ai using the

probabilistic membership function Pj(ai), and calculate a per-
centage change in the SV from pretherapy to after starting
treatment (e.g., 2 weeks) as follows:

�̂SVPre→2W,j (ai) = GTV2W · ∫
Pj (ai) .H2W(ai)dai − GTVPre · ∫

Pj (ai).HPre(ai)dai

GTVPre · ∫
Pj (ai).HPre(ai)dai

· 100

j ∈ {low, intermediate, or high} , (7)

where GTV denotes the gross tumor volume. We will test
whether a change in each of the first M cPC defined tumor
subvolumes during RT is associated with post-RT tumor re-
sponse in a group of patients, which will be described in
Sec. 2.F.

2.D.3.d. Tumor subvolume defined by combined projec-
tion coefficients. The overall aim of developing a prediction
model for a clinical decision support system is to find a com-
bination of factors that accurately anticipate an individual pa-
tient’s outcome.26 Hence, we would like to test if combining
different cPCs could improve prediction for tumor response
compared to using one cPC. To do so, first a joint histogram

of (a1, a2. . . , aM) of a lesion is computed, e.g., H(a1 = x1,
a2 = x2, . . . , aM = xM). Then, a joint probability function,
P({ai}, {β i}), is defined as follows:

P ({ai} , {βi}) = Pj (a1) + ∑M
i=2 βiPj (ai)

1 + ∑M
i=2 βi

, β1 = 1, (8)

where β i is the weighting factor of each coefficient and j ∈
{low, intermediate, or high}. Applying the joint probability
function to Eq. (7), a percentage change in a subvolume of a
tumor defined by {ai} classes from pretherapy to after starting
treatment [e.g., 2 weeks (2W)] is given by

�̂SVPre→2W ({ai} , {βi})

= GTV2W · ∫ ∫
. . .

∫
P ({ai} , {βi}) H2W (a1a2 . . . aM ) da1 . . . daM − GTVPre · ∫ ∫

. . .
∫

P ({ai} , {βi}) HPre (a1a2 . . . aM ) da1 . . . daM

GTVPre · ∫ ∫
. . .

∫
P ({ai} , {βi}) HPre (a1a2 . . . aM ) da1da2 . . . daM

· 100.

(9)

The weighting factor {β i} is selected based upon the best pre-
diction of response from a developmental dataset and is evalu-
ated by an independent dataset. We will demonstrate the prin-
cipal in Sec. 3.C.

2.E. Usage phase

For a new patient scan, first, we perform preprocessing of
the DCE curves and then compute the projection coefficient
maps of the first M or selected principal components. Next,
we compute the histograms or a joint histogram of the se-
lected coefficients within the tumor. Then, using the proba-
bility membership function obtained in the development step,
we calculate the cPC-defined tumor subvolumes by Eqs. (8)
or (9). Finally, a change of the subvolume from pretherapy to
during or post-therapy is determined (Fig. 3).

2.F. Evaluation

2.F.1. Endpoint

A percentage change in the gross tumor volume (GTV)
from pre to post-RT was used as an endpoint for response

assessment. Several patients did not have 3 or 6 months post-
treatment imaging followups. For the patients in whom 3 and
6 months post-RT images were available, there were good
correlations in the GTV changes between 1 and 3 months
post-RT and between 3 and 6 months post-RT. Also, previous
studies indicate that brain metastases exhibit little pseudore-
sponse and pseudoprogression one month after RT.27 There-
fore, we used a percentage change in the GTV from pre-RT
to 1 month post-RT, �̂GTVPre→1MPost−RT, as a measure of tu-
mor response to therapy. From pre-RT to 1M post-RT, 16 tu-
mors had a decrease in the GTV at least 25%, defined as re-
sponsive, 11 tumors had an increase at least 25%, defined as
progressive, and the remaining 18 were defined as stable. We
noticed that there were heterogeneous responses of multiple
lesions from a single patient. Thus, each lesion was consid-
ered independently.

2.F.2. Parameter selection and evaluation

First, we ranked the priority of the candidate pa-
rameters and subvolumes by testing if the changes in
�̂SVPre−RT→2W,i (ai) significantly differentiated responsive
tumors from combined stable and progressive ones using
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FIG. 3. A flowchart of the procedure required for a new patient scan.

Mann-Whitney U Test. Considering M principal components
and two independent subvolumes (only two of the three are
independent) for each component, a p-value < (0.05/2M)
with Bonferroni correction was considered as a significant
cutoff to select the parameters. The conventional metrics,
such as a percentage change in the GTV from pre-RT to 2W
(�̂GTVPre→2W) and a change in the mean rCBV values of
a tumor from pre-RT to 2W (�̂μPre→2W(rCBV)), were not
considered as the candidate parameters in our model, and
thus not used for multiple comparison justification. Next,
we performed univariate analysis to evaluate sensitivity and
specificity of the selected significant metrics identified in
the previous test for predicting responsive tumors using
Receiver Operating Characteristic analysis (software pack-
age ROCKIT).28 Also, we compared these newly developed
metrics with the conventional metrics including a percent-
age change in the GTV from pre-RT to 2W, �̂GTVPre→2W,
and a change in the mean rCBV values of a tumor from
pre-RT to 2W, �̂μPre→2W(rCBV), for predicting post-
treatment response. The significant difference of the area un-
der ROC curves (AUC) between the metrics was compared
by t-test, for which the standard error and the difference be-
tween the two AUCs were calculated by the method proposed
by DeLong et al.29 To create the tumor subvolume defined by
combining more than one cPC, we used the maximum AUC
to determine the {β i}.

3. RESULTS

3.A. Principal components

PCA revealed that the first three PCs comprised more than
99.99% of the energy of the DCE curves of brain metas-

tases, of which the first component contributed approximately
99.8%, while the second and third components had 0.08% and
0.02% contributions, respectively (see Fig. 4). The first com-
ponent (the predominant component) is highly related to the
area under each DCE curve with the cross correlation coeffi-
cient of 0.99. Figure 5 shows the heterogeneous distributions
of the first three cPC maps of a brain metastasis, indicating
that an average cPC in the tumor would not be sensitive to
a heterogeneous change. Therefore, the analysis described in
Sec. 2 was applied to the histograms of the first three cPCs in
a tumor to determine the subvolume of the tumor with a given
class.

FIG. 4. An example of a typical AIFmax-normalized DCE curve of a voxel
in a brain metastatic lesion and the first three principle components (PCs) re-
sulted after applying PCA to the DCE-matrix. The coefficient map achieved
by projecting the DCE curve onto the first component (the predominant com-
ponent) is related to the area under the DCE curve (see the text for more
details).
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FIG. 5. Distribution patterns and histograms of the first three projection coefficient maps for a responsive brain metastasis (from patient #19) overlaid on
T1-weighted images at pre-RT and week 2 after start of whole brain radiation therapy.

3.B. Association of the cPC-defined tumor
subvolumes with response

Associations of the changes in the first three cPC-defined
brain metastases subvolumes with high, intermediate, or low
coefficients from pre-RT to 2W with the tumor response to
treatment are given in Table III. Since we only compare
the first three components, a p-value < 0.01 was consid-
ered as significance to select the candidate parameters. Me-
dian changes of −63.7 (range:-95.5 to 123), −13 (range: −98
to 198.4), and 44 (range: −42 to 444.3) were observed in
the subvolume of the tumor with high-a1 (the most domi-
nant component) from pre-RT to 2W for the responsive, sta-
ble, and progressive lesions, respectively. We found that for
the responsive group, a percentage decrease in the high-a1

subvolumes of the tumors from pre-RT to 2W differed sig-
nificantly from the group combining progressive and stable
tumors (p < 0.0017), Table III. We observed a similar but
weaker trend for the high-a2 subvolume (p < 0.07). Further-
more, a percentage decrease in the low-a3 subvolume of the
tumor was associated with tumor response (p < 0.01). A per-
centage decrease in the subvolumes defined by combining the
high-a1 and low-a3 classes from pre-RT to 2W revealed that

adding a3 improved the statistical significance for differenti-
ating the responsive tumor from the group of stable and pro-
gressive lesions compared to either coefficient alone but a2

did not add discriminatory information. As a postanalysis, the
comparisons between other lesion groups are also given in
Table III.

For comparison, the results of the rCBV-Ktrans analysis that
were reported previously17 and other conventional metrics are
included in Table III. In summary, we found that the per-
centage decrease in the high-rCBV subvolumes of the brain
metastases from pre-RT to 2W of the responsive group dif-
fered significantly from the progressive group (p < 0.0072)
and from a group combining progressive and stable tumors
(p < 0.0057), but not from the stable group (p = 0.033)
(Table III). The percentage decrease in the brain metastases
subvolumes defined by both the high rCBV and high Ktrans

classes from pre-RT to 2W differentiated the three groups
with improved statistical significances, compared to using ei-
ther variable alone. Specifically, the responsive group signif-
icantly differed from the progressive group (p = 0.0012) and
from the group combining the progressive and stable tumors
(p = 0.0015). In this case, median changes of −47.8
(range: −88.5 to 213.84), −2 (range: −90 to 959.42), and
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TABLE III. Differences between responsive, stable and progressive brain metastases using cPC defined tumor subvolume, physiological defined tumor subvol-
ume and conventional metrics

Group of lesions

Analysis Post Analysis

R vs. {S & P} R vs. S S vs. P R vs. P

Metric p-value

Projection
Coefficient
Defined
Tumor
Subvolumes

�̂SVPre→2W,j (a1) j = low 0.5937 0.8766 0.7024 0.3878
j = intermediate 0.0773 0.2477 0.3339 0.0457

j = high 0.0017∗∗ 0.0199∗ 0.1321 0.0015∗∗

�̂SVPre→2W,j (a2) j = low 0.4843 0.7431 0.7702 0.3359
j = intermediate 0.5774 0.8766 0.2002 0.1596

j = high 0.0661 0.3979 0.0561 0.0096∗∗

�̂SVPre→2W,j (a3) j = low 0.0094∗∗ 0.0068∗∗ 0.2002 0.1323
j = intermediate 0.4133 0.7693 0.2909 0.2083

j = high 0.8403 0.1522 0.0143 0.1088
�̂SVPre→2W,high,low (a1, a3, 0.3)^ 0.0005 0.0018 0.3568 0.0053

Physiological
Defined
Tumor
Subvolumes

�̂SVPre→2W,high (rCBV ) 0.0057∗∗ 0.0338∗ 0.3568 0.0072∗∗

�̂SVPre→2W,high

(
ktrans

)
0.4992 0.6663 0.0162∗ 0.0406∗

�̂SVPre→2W,high,high

(
rCBV, ktrans , 0.6

)
0.0015∗∗ 0.0199∗ 0.0687 0.0012∗∗

Conventional
Metrics

�̂μPre→2W (rCBV ) 0.0066∗∗ 0.0049∗∗ 0.2336 0.1088
�̂μPre→2W

(
ktrans

)
0.8775 0.5233 0.1704 0.5704

�̂GT VPre→2W 0.0124∗ 0.1086 0.0653 0.0039∗∗

Abbreviations: GTV = gross tumor volume; R = responders; S = stables; P = Progressive; cPC = projection Coefficient; ^ The optimum value of β3 is 0.3, see the results
of the ROC analysis.∗: P<0.05;∗∗: P<0.01. The candidate subvolume for each principle component is highlighted.

46 (range: −22 to 254.5) were observed in the subvol-
ume of the tumor with high-rCBV and Ktrans from pre-RT
to 2W for the responsive, stable, and progressive lesions,
respectively. The statistical analysis regarding the conven-
tional metrics, such as changes in the mean of the tumor
rCBV and Ktrans and the GTV from pre-RT to 2W are also
given in Table III. These data show that both physiological-
defined and cPC-defined subvolumes of a brain metastasis
achieve a similar level of statistical significance in differen-
tiation of responsive, stable, and progressive brain metastatic
lesions.

3.C. Predictive values of the cPC-defined
tumor subvolumes

We explored the predictive value of the decrease in the
subvolumes of the brain metastases defined by the cPCs
from pre-RT to 2W for predicting responsive tumors post-
RT, and compared their performance with the decrease in
subvolumes of the tumors defined by the high rCBV and
high Ktrans and two conventional metrics. The ROC anal-
ysis showed that the AUCs were 0.83 ± 0.06(±SEM),
0.77 ± 0.07, 0.80 ± 0.07, 0.70 ± 0.08, 0.67 ± 0.08, and
0.56 ± 0.09 for �̂SVPre→2W,high (a1), �̂SVPre→2W,low (a3),
�̂SVPre→2W,high (rCBV), �̂μPre→2W(rCBV), �̂GTVPre→2W,
and �̂SVPre→2W,high(K trans), respectively (Fig. 6), indicating
the high-a1 defined subvolume of the tumor had the best per-
formance among the tested variables for predicting respon-
sive tumor. The subvolumes defined by the high-a1 and low-a3

classes with the weighting factor = 0.3, determined by empir-

ical evaluation of the AUCs (right panel of Fig. 6), resulted in
the largest AUC, 0.88 ± 0.05. The subvolumes defined by the
high-rCBV and high-Ktrans classes with the weighting factor
= 0.6 resulted in the AUC of 0.86 ± 0.06.

The statistical analysis of the pairwise ROC curves re-
vealed that �̂SVPre→2W,high,high (α1, α3, 0.3) was a predictor
slightly but not significantly better than �̂SVPre→2W,high (a1),
and �̂SVPre→2W,high,high

(
rCBV, ktrans, 0.6

)
(p = 0.1 and

p = 0.4, respectively). However, it was a predictor sig-
nificantly better than �̂μPre→2W(rCBV) and �̂GTVPre→2W

(p = 0.0463 and p = 0.02), respectively. Finally, the predictive
value of �̂μPre→2W(rCBV) was slightly but not significantly
better than �̂GTVPre→2W (p < 0.4).

3.D. Probability membership function maps

Examples of maps of the first coefficient maps and the
corresponding histograms, and the probability functions be-
longing to the classes of high-rCBV and high-Ktrans and the
classes of high-a1 and low-a3, of a responsive lesion pre-RT
and at 2W are shown in Figs. 5 and 7, respectively. For this
lesion, the voxel probability functions belonging to the high
rCBV-Ktrans class decreased about 47% from pre-RT to 2W. A
similar pattern was also observed for the probability functions
belonging to the class of high-a1 and low-a3.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a general framework based
on PCA and a pattern recognition technique for directly

Medical Physics, Vol. 41, No. 1, January 2014



011708-10 Farjam et al.: DCE-MRI defined subvolume of a brain metastatic lesion 011708-10

FIG. 6. (a) ROC curves of the metrics listed in Table III for predicting responsive tumors; (b) AUC vs β3 in Eq. (9). FPR: False Positive Rate TPR: True Positive
Rate; AUC: Area Under Curve.

delineating the response-driven subvolume of brain metas-
tases from the DCE-MRI data. We compared the predic-
tive values of the PC-defined tumor subvolume with the
physiological-parameter-defined one [based upon regional
cerebral volume (rCBV) and Ktrans] in the patients treated
with whole brain radiation therapy. We found that the
two approaches could predict the tumor response to ther-
apy similarly while the PC-defined subvolume can be de-
lineated more rapidly, which is required for supporting
clinic decision making. In overall, our findings indicate
that the projection coefficient maps from the first three
PCs may contain almost all response-related information
of the DCE curves. Our further investigation revealed that
the first coefficient that is related to the area under the

DCE curve is the main factor to determine the response
(AUC = 0.83), while the third component could have com-
plimentary information (AUC = 0.88). Our approach had the
potential to be an effective tool for supporting real-time deci-
sion making.

Our proposed approach to analyze the DCE-MRI data
has several advantages compared with the other model-free
techniques which are based on factor analysis,8, 9 ICA,10

or extracting characteristic features, such as time to peak
or maximum enhancement, from the DCE curves.30 Fore-
most, for each tumor type or body site, a set of PCs used
in calculation of the coefficient maps can be achieved of-
fline and are available before a new patient is scanned. Also,
we address the heterogeneous distributions of the principal

T
1
 (

P
re

-R
T

)
T

1
 (

W
e

e
k

 2
)

P
high,high

(rCBV,K
trans

) P
high,low

(a
1
,a

3

)

   1

    0

  1

     0

FIG. 7. Top row: Pre-RT T1 weighted image (left), probability function map of the class with the high-rCBV and high Ktrans pre-RT (middle) and probability
function map of the class with the high-a1 and low-a3 pre-RT (right). Bottom row: the similar images at 2W. This lesion is responsive. The images are from
patient #19 in Table III.
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component coefficients within a tumor by using fuzzy clus-
tering analysis to determine the probability membership func-
tions of classes that the principal component coefficients be-
long to. Again, this relationship is established offline. Hence,
for a new patient scan, computations for the DCE curves
only involve in preprocessing the DCE curves, projecting
them onto a couple of predetermined principal components,
calculating the histograms of the two projection coefficients
in the tumor, and computing the metric given in Eq. (9).
Computing a couple of principal component coefficients is
a much faster process than fitting PK modeling. Our model
can be updated when the new patients’ data are accumu-
lated, including PCs, the probability membership functions,
and the predictive statistics given in Fig. 6(a). Also, realign-
ing and reconstructing all DCE curves from all tumors in
the DCE-matrix to determine the PCs has the potential to
overcome the interscan variation in the DCE time series.
In addition, the set of projection coefficients obtained for
each curve is a complete representation of the curve in an
N-dimensional feature space wherein the data reduction is
performed with the best approximation and without notice-
able concerns regarding the information loss. As shown, al-
most all response-related information is derived from the
first three components. However, for the approaches based
on feature extraction, there is no guarantee that the com-
puted features incorporate all relevant information for therapy
assessment.

One very important note regarding the proposed method-
ology is that it is critical to use the arterial input function to
normalize the DCE curves. Our investigations showed the en-
hancement peak of AIF is not linearly correlated with the en-
hancement peaks of the DCE curves of other tissues, such as
normal white matter, gray matter, and even veins, indicating
intrapatient variation on the peak enhancement. Also, the en-
hancement peak of AIF manifests great interpatient variation.
It is worthwhile to point out that the projection coefficients
(e.g., also first three components) and subsequent delineated
subvolume determined by our approach have great tolerances
on the temporal resolution and total acquisition time of the
DCE curves, while the image acquisition parameters may
affect the accuracy of the physiological parameters derived
from the PK models.31 Hence, we may be able to estimate
the projection coefficient maps of a tumor accurately using a
lower temporal resolution, by which a high spatial resolution
can be achieved to delineate the tumor heterogeneity. How-
ever, it is worthwhile to mention that due to the temporal res-
olution variation in the data, we had to use a spline-fitting to
standardize the DCE curves in the DCE matrix. But, any ma-
nipulation of the original datasets may introduce errors and
bias, and may affect the final results. Hence, an optimized and
standardized protocol in terms of spatial and temporal resolu-
tion could decrease the errors in the dataset and improve the
statistical power of the evaluation of response. Also, using a
standard acquisition protocol could avoid the additional pre-
processing of the data in the PK model-free approach, which
is important using response assessment during the course of
radiation therapy for adaptation treatment guidance. In the
adaptation treatment setting, it requires to develop fully auto-

mated, fast, and robust algorithms to compute the quantitative
response metric. Further development of such an algorithm
and comparing its performance with the PK-model based met-
ric are ongoing. In addition, in our calculation, we neglected
T10 in normalization of the DCE data. We recognize that T10

can vary within the tumor volume. However, the influence of
T10 on identifying a robust biomarker for therapy assessment
needs to be further verified.

In summary, in this paper, we proposed a general frame-
work for directly analyzing the DCE-MRI data to delineate
the response-driven subvolume of a brain metastatic tumor.
However, this approach needs to be further validated using an
independent and larger dataset. Also, it could be extended and
recalibrated to other tumor types, e.g., glioblastoma, for early
assessment of tumor response to therapy.
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