Quantization of setup uncertainties in 3-D dose calculations
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Random setup errors can lead to erroneous prediction of the dose distribution calculated for a
patient using a static computed tomograpiyT) model. Multiple recomputations of the dose
distribution covering the range of expected patient positions provides a way to estimate a course of
treatment. However, due to the statistical nature of the setup uncertainties, many courses of treat-
ment must be simulated to calculate a distribution of average dose values delivered to a patient.
Thus, direct simulation methods can be time consuming and may be impractical for routine clinical
treatment planning applications. Methods have been proposed to efficiently calculate the distribu-
tion of average dose values via a convolution of the dose distribdtialculated on a static CT
model)with a probability distribution functiorigenerally Gaussiarthat describes the nature of the
uncertainty. In this paper, we extend the convolution-based calculation to calculate the standard
deviation of potential outcomesy(X,y,z) about the distribution of average dose values, and we
characterize the statistical significance of this quantity using the central limit theorem. For an
example treatment plan based on a treatment protocol in use at our institution, we found that there
is a 68% probability that the actual dose delivered to any pEiytz)will be within 3% of the
average dose value at that point. The standard deviation also yields confidence limits on the dose
distribution, and these may be used to evaluate treatment plan stabilitf99® American Asso-
ciation of Physicists in MedicindS0094-2405(99)02411-6]
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[. INTRODUCTION due to breathing into 3-D dose calculatidhin the present

o - . work, we generalize this method to incorporate uncertainties
Uncertainties arising from dalily setup errors and organ moy, e o daily setup errors into 3-D dose calculations for ra-
Hiotherapy. In doing this, we quantitatively describe potential

a treatment plan and the actual dose distribution delivered tQ.c.. .o\ ~oc petween convolution-based predictions of the

a patient. Two primary approaches exist to account for thesSose distribution and the actual dose delivered in a finite-

uncertainties. The traditional approach measures or eStimat'ﬁ%ctioned course of treatment. We confirm the validity of

the e?<tent of setup gnpertalnty and organ motion and add&ur approach via comparisons to direct simulations for treat-
margins around a clinical target volum{€TV) to form a

lanning t t vol PTV). The d ) lculated ment of tumors in the liver. Also, we retrospectively analyze
planning target vo umé ) ne dose IS calculated ON & y,q offects of these uncertainties on the treatment plan and
static patient model and prescribed to the PTV, with the in

: ! ""dose prescriptions based on a treatment protocol for liver
tent that the actual dose delivered to the CTV will be equiva- P b P

) ) . N

lent to the predicted dose distribution. This margin expansior(1jlsease used at the University of Michigi

approach does not account for the differences between the

predicted dose distribution and the actual delivered dose didl- METHODS AND MATERIALS

tribution for normal tissues near the CTV. The second ap- The basic algorithm for convolving setup uncertainties

proach includes margins for errors and incorporates the urwith a static dose distribution has been described

certainties directly into the dose calculations, thereby givingpreviously!~ The convolution method assumes rigid body

a more complete and accurate prediction of the deliverednotion, no change in the patient external contour, and no

dose distribution to both the target volume and normal tis-organ deformation. In the present study, we consider random

sues. translational setup uncertainties along the anterior—posterior
Methods based on a convolution of the static dose distri{AP), left—right(LR), and superior—inferio(Sl) axes.

bution with a function(generally Gaussiangpresenting the Based on a retrospective analysis of our patient setup by

distribution of random uncertainties from setup and orgarScheweet al.!° we assume that the translations along these

motion have been proposed for sites in the peivisin a  primary axes are independent and that the nature of the ran-

previous paper, we described a convolution-based method tdom translational setup uncertainties can be characterized by

incorporate uncertainties from intratreatment organ motiorGaussian probability distribution functions, as shown in Fig.
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Fic. 1. Measured distribution of setup errors in the LR and Sl directions and Gaussian model otidtéine) for treatments to sites in the abdomen.

1 for treatment to sites in the abdomen. In this figure, thecomes about the mean dose distributiodowever, direct

origin of coordinates corresponds to the nominal position osimulations can be time consuming and often impractical for

the patient assuming no systematic effice., the static pa- regular treatment planning applications.

tient position at treatment planningrhe mean setup uncer- Hence, we extended the convolution-based method to al-

tainty is assumed to be zero for all three axes, and we usddw for an efficient computation of the standard deviatigf

the standard deviations in translation from Schewe’s studyf the average expected dose distributidnOur method for

(o,r=7.4 mm,opp=4.9 MM, og=5.3 mm). calculatingop and the statistical significance of this quantity
The distribution of average dose valug2éx,y,z), includ- is given below.

ing random translational setup uncertainties calculated using The general expression for the standard deviafien

a convolution-based method, is computed using (E. _
_ o soxy.2)=| | [ | (oox' .y 2)-Dixy.2) 1
D(x,y,2)=fffDo(x y'z')
1/2
XN(x'—x,y'—y,z —z) dx'dy’dz, (1) XN(X'=x,y"—y,z' —z) dx'dy’dZ’
wherea(x,y,z) is the mean dose to any poixly,zincluding 2)
uncertaintiesDy(x’,y’,z’) is the static dose to a point,  Equation(2) can be expanded and expressed as

y’,z"; N is the normalized probability distribution function
describing setup uncertainties in 3-D along the LR, AP, and op(X,y,2)=
S| axes, respectivelyN=N,(x"=X)Ny(y'—y)N,(2' —2);

[ fose

and N, (x' —x)=e~ ' ~0%20% 5 27 i the normal distri- XN(X'=x,y' —y,z' —2) dx'dy'dZ'
bution with standard deviatiom, about a poink, similar for — 112
y andz. —(D%(x,y,2)) Q)

In theory, the integration is carried out over all space . . -
(o), but for a practical implementation, we cut off the in- Equation(3) gives the standard deviation that would result
tegra,tion at+ 30 in each direction and ren’ormalize. As noted from an entire treatment delivered in a single fraction with a

H H 1 _ r__ ’r__
by Leond and Killoran® the distribution of average dose SEWUP uncertainty characterized BY(x’ —x.y’—y,z'~2).

values calculated using E¢l) represents the dose distribu- Real treatments are .de.Iivered O\MrmL_JItipIe fraction; , and
tion received by the patient given an infinite number of smallS° the standard deviation for a fractionated plan is smaller

fractions. However, a real course of treatment is delivered@ oo by 1/M. For a fractionated plan, the probability
with a finite number of fractions. that the absolute difference between a real treatment consist-

Leong proposed characterizing the potential differencd"d Of M fractionsDy andD(x,y,2) at any pointx,y,zwill
between a real finite fractioned treatment and the distributio® €SS thaWD(X’%"Z)/N can be expressed using the cen-
of average dose valu@ by the standard deviatiom, of the &l limit theorent® as
average dose distribution. Killoran proposed using a Monte — kop(X,Y,2)

Carlo-based direct simulation method to account for the ﬁprob| [Dm(x,y,2) = D(x,y,z)|<T

nite nature of treatment deliverfa course of treatment is

simulated multiple times, allowing for the computation of the :LJK e 12 4t (4)
mean dose distribution as well as a range of possible out- N
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for this study. We treated the PTV using a right lateral beam
__4LASO (RL), a posterior—anterior beaffA), and a wedged pair of
obligue beamsRAIO, LASO). The 95% isodose surface
completely covered the PTVhormalized to 100% at iso-
center). Based on the dose to the normal lifgdraracterized

by the effective volume/,' the fractional volume of an
organ that if uniformly irradiated would result in the same
complication probability as the nonuniform irradiated sce-
nario), treatment delivery was planned for 58 fractions at 1.5
gray/fraction delivered twice daily.

We compared the distribution of average dose values cal-
culated using Eq.1) to the statiqinitial treatment plahdose
distribution. Also, we calculated dose volume histograms
(DVHs) and the effective volum¥ . for the convolved and
static treatment plans to determine the gross effects of the
setup uncertainties on the treatment plan, as per a liver dose
escalation protocdl-® Next, we calculated the standard de-
viation of the convolved dose distributi¢ (x,y,z)] using
Eqg. (3) and evaluated the result using E¢) to determine
the range of potential outcomes in dose about the average
dose values.

Fic. 2. Treatment planning geometry.

The integral on the right-hand side of E@) ~0.68 fork
=1, 0.95 fork=2, and 0.98 fok=3.

We performed Monte Carlo-based direct
simulation$®*#~using the treatment planning system at the

University of Michigan(UMPLAN, University of Michigan, The results of our convolution-based calculations were

Ann Arbor, M) to confirm the validity of our convolution- also compared to the direct simulations, in the manner de-
based approach to calcula®(x,y,z) and op(X,y,2). OUr  geriped above. We calculated upper and lower bounds on the
procedure is described below. dose distribution via calculation ob +20p/YM and D
(1) Randomly sample the setup orientation for each fraction— 205 /M, respectively(95% confidence limits). We then
in 3-D from the normal distributions shown in Fig. 1. developed an interpretation of these bounds for the dose dis-
(The distribution was sampled over3c and properly tribution and potential applications in the reevaluation of
renormalized.) treatment plans using DVHs andy calculations.
(2) Recalculate the dose distribution for each fraction in the
new geometry using the beam weigtitaonitor units)
from the original configuratiori.e., for a slightly mis-  |||. RESULTS

aligned patient, treatment would proceed under original . ,
plan assumptions, but with slightly altered patient geom- Figure 3(a)shows the RL and PA beam orientation on a
etry). single axial CT slice. Figure 3(lshows a dose difference

(3) Combine the dose distribution from each fraction on adiSPlay, in which the original planningstatic)dose distribu-
common grid to form one possible realization of the tion is subtracted from the distribution of average dose val-
course of treatment. ues O—Dy). Dose to the CTV predicted using a static

(4) Repeat procedure to calculate many possible realizationf@odel is approximately the same as the distribution of aver-
of outcome. age dose values that includes uncertainties, indicating that

(5) Average all realizations to determine distribution of av-the margins for the PTV are sufficient. Differences up to
erage dose values. +8% of the isocenter dose are observed in regions outside

(6) Calculate the distribution of standard deviation valuesth® CTV, resulting in a decrease A for the normal liver
about the average dose valydgect simulation includes Sufficient to consider a change in the prescription dose as-
effects of fractionation in the calculation of standard de-Signed for this treatment plan to maintain a fixed level of
viation). toxicity.**®

(7) Compare the dose distribution and standard deviation AS discussed above, for comparison to the convolution-
distribution to the outcome of the convolution calcula- Pased calculations, we performed multiple direct simulations
tions. for the treatment plan shown in Fig. &8 fractions per

course of treatment at 1.5 gray/fractjorTen courses of

The treatment planning geometry used for our simulationgreatment were computed, then averaged and compared to

is shown in Fig. 2. In this problem, the gross tumor volumethe distribution of average dose valuBscalculated using

(GTV) is located in the anterior—inferior portion of the liver. the convolution method of Eq1). A dose difference display

We expanded the PTV from the CTV by an amount equal tqnot shown)demonstrated negligible differences0.5%)in

the standard deviation of the setup uncertainties in the LRthe regions of interestnormal liver, target volumes with

AP, and Sl directiongi.e., LR expansion of 7.4 mn¥ o g, differences observed near the surface of the patient due to

AP expansion of 4.9 mn¥ oap, S| expansion of 5.3 mm artifacts in the convolution calculation arising from discon-

=0g). Organ motion due to breathing was not consideredinuities of the dose distribution at the patient surface. The
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Wb, MDD,

Fic. 3. (a) Single axial slice showing RL and AP beam orientatid),dose
difference displayD —D,. The CTV contour is indicated in white. Light
gray areas indicate regions whede>D,, dark gray areas indicate regions
whereD <D (+8%).

DVHs for the target and organs at risk were indistinguishable
between the average of the direct simulation calculations and
the convolution-based calculation, with calculations dif-
fering by less than 0.2%.

Hi1-2% W 2-3%

FiG. 5. op /M for treatment geometry given in Fig. 2 on an axial, coronal,
and oblique CT reconstructiofbeam numbers indicated

On average, the dose distribution calculated via multiple
direct simulations and convolution-based methfgs. (1)]
agree(<0.5% differences), but the dose distribution from
any single simulation of a course of treatm@&ng could de-
viate from that averaggEq. (1)]. This is shown in Fig. 4 on
a single CT slice for the treatment planning geometry in Fig.
2. For this treatment plan, we observed potential differences
between direct simulation®8 fractions)andD up to 2% in
regions outside the CTV.

Results from calculations ofp(X,y,z)/\M for M =58
fractions are shown in Fig. 5 for axial, coronal, and oblique
CT reconstructiongin a plane containing beams oblique
beams 3 and 4). The spatial distribution @f,/\'M com-
puted via Eq.(3) agrees with calculations made via direct
simulations(not shown,<0.2% differences).

M D>, IV. DISCUSSION

) . . : . For the example shown, the PTV margins about the CTV
Fic. 4. Dose difference display between two direct simulations of a course - . L
of treatment consisting of 56 fractio®y and the distribution of average Were suff|C|entIy Iarge that a I'.ea|IStIC dose calculation mCIUd'_
dose values calculated via convolutibn Differences up tat2% are ob-  INg random setup uncertainties demonstrated that the static
served. dose calculation correctly predicted the dose to the CTV.
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FiG. 7. Cumulative DVH of the normal liver fob andD =2 (o /M) for
10 and 40 fractions.

We have proposed a method to calculate the range of
potential outcomes in a real treatment abbyk,y,z) using
a convolution-based calculation. Using the central limit theo-
rem, this distribution of possible outcomes can be character-
ized by op(x,y,2)/M [where the standard deviation
op(x,y,z) is defined in Eq.(3), andM is the number of
fractions in a course of treatment]. Calculationlfx,y,z)
+20p(x,y,2)/M can provide population-based confidence
limits on our dose distributiofin particular for dose to sen-
sitive structuresiand should be considered when assigning
W 3% W 3-5% [] 5-8% the pr_escription dose. o
While the upper and lower bounds on the dose distribu-
Fic. 6. o, /M for 10 (a), 20 (b), and 40 fraction&) on a single axial CT  tion represent true 95% confidence limimsed on the cen-
slice. tral limit theorem), the upper bound assumes that all points
in the distribution receive a dose greater than the average
dose, while the lower bound assumes that all points receive a
dose smaller than the average dose. These bounds may not
However, random setup uncertainties during fractionated rabe physically realizable because of conservation of energy
diotherapy led to erroneous predictions of the doses to nordelivered dose)ife., if some points in the dose distribution
mal tissues. As seen in Fig. 3, the maximum differenceseceive a higher than average dose, then other points will
between the preplanned and average dose calculation incluteceive a lower than average dps&hus, the upper and
ing predicted daily variations are in normal tissue regiondower bounds are true on a voxel-by-voxel basis but do not
corresponding to the beam edges. This result agrees witfenerally represent the physidabalizable)upper and lower
clinical observations made by Michalsét all® Though the  bounds on the total dose distribution. Hence, the spatial dis-
example shown is specific to a particular treatment planningribution of op(x,y,z)/YM should be considered when
geometry, it is clear that including the effects of randomevaluating the upper and lower bounds on the average dose
setup uncertainties in the dose calculations can lead tdistributionD(X,Y,z).
changes in the prescription dose for protocols based on the Asthe number of fractions in the treatment plan increases,
predicted dose distribution to normal tissues. the range of potential outcomes about the average outcome
The distribution of average dose value$x,y,z) can be  will decrease. This is shown in Fig. 6, where the distribution
calculated via direct simulations of the treatment, or wherof op(X,y,2)/\/M is compared foM = 10, 20, and 40 frac-
appropriate, via a convolution-based calculation applied tdions using the planning geometry described in Fig. 2. This is
the static dose distributidrEq. (1)]. In both cased)(x,y,2) also seen in Fig. 7, which shows cumulative DVHs of the
represents the dose to pointy,zthat would be delivered to normal liver based on calculations Bf and D =20 /M
an average patient given a very largefinite) number of  for 10 and 40 fractions. Clearly, as the number of fractions
fractions. The dose delivered in a finite-fractioned treatmenincreasesD become a better prediction of the actual dose
can differ fromD for even a relatively large number of frac- delivered to the patient.
tions. As noted earlier, the convolution calculation does not
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W1-2%

M 2-3%

FiG. 8. ap /\/M for treatment plan 1a) consisting of four beams and treat-
ment plan 2(b) consisting of three beams.
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