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The purpose of this study was to investigate the feasibility of a simple deformable phantom as a QA
tool for testing and validation of deformable image registration algorithms. A diagnostic thoracic
imaging phantom with a deformable foam insert was used in this study. Small plastic markers were
distributed through the foam to create a lattice with a measurable deformation as the ground truth
data for all comparisons. The foam was compressed in the superior-inferior direction using a
one-dimensional drive stage pushing a flat “diaphragm” to create deformations similar to those
from inhale and exhale states. Images were acquired at different compressions of the foam and the
location of every marker was manually identified on each image volume to establish a known
deformation field with a known accuracy. The markers were removed digitally from corresponding
images prior to registration. Different image registration algorithms were tested using this method.
Repeat measurement of marker positions showed an accuracy of better than 1 mm in identification
of the reference marks. Testing the method on several image registration algorithms showed that the
system is capable of evaluating errors quantitatively. This phantom is able to quantitatively assess
the accuracy of deformable image registration, using a measure of accuracy that is independent of
the signals that drive the deformation parameters. © 2007 American Association of Physicists in
Medicine.
�DOI: 10.1118/1.2739812�
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I. INTRODUCTION

Image registration has become an essential part of many
stages in the radiation therapy process due to the increase in
use of daily imaging for setup adjustment and availability of
new scans for replanning during the course of treatment.
Therefore, it is important to evaluate and validate the accu-
racy of image registration algorithms.1 This need becomes
even more pressing with the emerging inclusion of local de-
formation in the degrees of freedom that image registration
algorithms use to account for shape changes due to such
factors as breathing, weight gain/loss, and tumor shrinkage
over a treatment course.2–4 Most often, image registration
results are evaluated qualitatively using a variety of visual
techniques such as split screen displays.5–7 Previous studies
have also evaluated the accuracy of different algorithms for
specific body sites, based on anatomical landmarks such as
vessel and bronchial bifurcations that were delineated by
experts.8–11 However, precision in identifying these land-
marks is greatly dependent on image resolution, slice thick-
ness, and the user. Brock et al. reported the average precision
in selecting the location of these landmarks to be better than
1 mm, based on repeat measurements done by one individual
once a week over a four week period.8 They also showed a
maximum standard deviation of 4.7 mm for one bifurcation
in the superior/inferior direction. Using anatomical land-

marks for evaluation of image registration results also

2785 Med. Phys. 34 „7…, July 2007 0094-2405/2007/34„7…/
has the disadvantage that those with enough contrast to be
accurately identifiable are likely to contribute significantly to
the goodness-of-fit metrics used for alignment and, thus,
have an impact on the registration results. Therefore, evalu-
ation of accuracy at these positions could be biased and not
necessarily representative of other locations in the volume.

Other studies investigated methods which include simu-
lating known deformations in a given set of images to be
compared with what is achieved based on the image regis-
tration algorithm. These studies range in complexity from
simulation of simple deformations applied to the image
through random motion of different points, to more complex
biomechanical models that simulate physical tissue deforma-
tions using finite-element methods.12–17 However, simulated
images do not have all the noise and other imaging artifacts
of real images, which may impact the true alignment accu-
racy.

In this study we investigate the feasibility of a simple tool
for validation of image registration algorithms. We use a de-
formable phantom, embedded with small but easily identifi-
able reference marks, to calculate the true deformation as the
baseline for comparison of all image registration results. We
then remove these markers from the images prior to registra-
tion to eliminate their possible impact on alignment. The
transformation map from the image registration is then ap-
plied to the reference marks and their estimated location is
compared to the true location of the markers at the deformed

state to quantitatively evaluate accuracy.

27852785/4/$23.00 © 2007 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.2739812
http://dx.doi.org/10.1118/1.2739812
http://dx.doi.org/10.1118/1.2739812


2786 Kashani et al.: Phantom for assessment of deformable alignment 2786
II. METHODS AND MATERIALS

A. Data collection

We previously described a deformable phantom for use in
imaging studies which consists of a diagnostic thoracic phan-
tom as the outer shell, with a deformable foam insert that
was compressed using a one-dimensional drive stage to
simulate different breathing states.18,19 In this study, the foam
insert was modified by placing 48 small �2.5 mm diam� plas-
tic markers at different locations in the foam �Fig. 1�. The
phantom was then imaged at 1 cm �inhale� and 4 cm �ex-
hale� compressions of the foam insert, using a commercial
CT scanner �HighSpeed, General Electric, Milwaukee, WI�.
Axial images were acquired with 1 mm slice thickness and
separation.

B. Data processing

For each image set, the position of the center of each
marker was manually measured by locating the central slice
�longitudinal position� and then finding the center of the
marker on that slice �axial position�. This introduces an un-
certainty in the measurement of the longitudinal position that
is limited by the slice thickness of 1 mm.

In order to evaluate the accuracy of the manual measure-
ment of marker location in the axial plane, a random set of
ten markers were chosen and the measurement of their posi-
tion was repeated three times by a single observer. The stan-
dard deviation in the measurements for each marker was cal-
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culated and averaged over all markers as a measure of
uncertainty in our estimate of the true motion and deforma-
tion.

Once the position of the markers was identified on both
image sets, the markers were digitally removed from the im-
ages prior to image registration. The voxel values in the
marker locations were replaced by intensity values of neigh-
boring voxels outside of the markers. Next, Gaussian
smoothing with a kernel width of 20 voxels was applied to
the intensities of the voxels in the marker locations. This
would eliminate the possible impact of reference marks on
the registration outcome. Figure 2 shows an original axial
image on the left and the image without the markers on the
right.

C. Image registration

Image registration was performed on the modified images
without the markers, using different in-house algorithms
such as rigid and affine transforms as well as thin-plate
splines and B-splines.9 One set of images �1 cm compression
or inhale� was chosen as the reference in all cases and for
each algorithm several combinations of the relevant param-
eters �resolution, knot spacing, the number of control points�
were tested to get visually acceptable results. Once the reg-
istration was done, the resulting transform was applied to the
position of the reference marks in the reference image set to
estimate their location in the other image set. This estimate

FIG. 1. Volumetric views of the surface of the deform-
able lung insert, the solid tumor-simulating spheres, and
the plastic markers, are shown at 1 cm compression of
the foam �inhale�. Z: superior/inferior, Y: anterior/
posterior, X: right/left directions.

FIG. 2. Axial view of a plane with four markers before
�left� and after �right� removal of the markers from the
image.
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was then compared to the actual position of the markers and
the accuracy of the image registration was evaluated.

To determine if, in the case of the alignment methods
tested, a bias would be introduced by the markers in the
image, a second set of alignments was performed on the
unedited image volumes.

III. RESULTS

A. Reference point selection accuracy

The accuracy of manual reference mark identification,
which was determined by repeat measurements of the loca-
tion of ten randomly chosen reference marks by a single
observer, was found to be better than 0.2 mm ��� in all di-
rections. The maximum standard deviation of any single
measured point location was 0.3, 0.4, and 0.6 mm in right/
left �RL�, anterior/posterior �AP�, and superior/inferior �SI�
directions. It should be noted that this error applies to iden-
tification of reference marks on each of the two image sets.
Therefore, the overall accuracy in the measurement of the
true motion of the reference marks is 0.4, 0.5, and 0.8 mm in
RL, AP, and SI directions.

B. Image registration

The results for the average and standard deviation as well
as maximum differences between the manually measured lo-
cations of the reference markers and those locations pre-
dicted by different alignment algorithms are shown in Table
I. The average 3D distance between the markers’ estimated
and actual locations was also calculated �Fig. 3�. Comparison
of image registration on datasets with and without the mark-
ers �with the markers removed� showed no significant differ-

TABLE I. Error in estimation of marker position based on example alignment
results from different image registration algorithms.

RLa

�cm�
APb

�cm�
SIc

�cm�
3-D distance

�cm�

Affine Average −0.01 0.00 0.05 0.38
Stdevd 0.04 0.04 0.44 0.22
Maxe −0.12 −0.13 0.90 0.90

B-splines Average −0.02 −0.01 0.05 0.18
Stdevd 0.08 0.06 0.22 0.16
Maxe −0.42 0.19 0.67 0.81

Thin-plate splines Average −0.07 −0.15 −0.14 0.37
Stdevd 0.12 0.19 0.28 0.19
Maxe −0.56 −0.58 −0.74 0.75

aRL: right/left.
bAP: anterior/posterior.
cSI: superior/inferior.
dStdev: standard deviation.
eMax: maximum.
ence in the results of the image registration accuracy.
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IV. DISCUSSION

In this study we demonstrated a simple QA tool for vali-
dation of image registration algorithms. This method, unlike
most others currently used, does not rely on sample patient
data, selection of anatomical landmarks, or simulation of de-
formations on image sets. Instead it applies a known defor-
mation to a simple geometry and quantitatively evaluates the
outcome of the registration by comparing the measured and
estimated location of a series of points with a known accu-
racy. Using reference marks distributed in the phantom, the
accuracy can be calculated in all locations, which is not pos-
sible with patient data with a limited number of landmarks
that can be identified. The ability to remove the reference
marks prior to registration can eliminate any bias in the mea-
surement of accuracy at these points that can drive the reg-
istration and, therefore, are likely to be more accurately reg-
istered. Although in this study the size of the reference marks
that we used was small enough that no significant difference
was observed, it is still possible that variations in the amount
of local signal and deformation may lead to bias and, thus, it
is advised that image editing for marker removal be main-
tained for future studies.

This method can complement the qualitative assessment
of image registration results achieved through visualization
techniques. It can quantify the errors that are observed in the
matched images as well as identify errors in regions where
no mismatch was detected by the observer, or to validate the
observer’s perception of the magnitude of mismatch.

It should be noted that this study does not attempt to
compare different image registration algorithms, and the data
presented here for accuracy should not be interpreted as a
measure of superiority of one algorithm over the other. In
order to compare different image registration algorithms, a

FIG. 3. The 3D distance between the real marker position and the estimated
position based on B-spline transformation, shown as a function of the lon-
gitudinal position of the marker relative to the diaphragm. It can be seen that
the error in the registration decreases in regions farther away from the dia-
phragm with less deformation.
comprehensive study is necessary to characterize each algo-
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rithm individually first. Although this is a possible area of
investigation using this phantom, it was not done for this
study.
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