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ABSTRACT 

Rationale, aims and objectives: Interventions with multivalued treatments are common in 

medical and health research; examples include comparing the efficacy of competing 

interventions, and contrasting various doses of a drug. In recent years there has been growing 

interest in the development of methods that estimate multivalued treatment effects using 

observational data. This paper extends a previously described analytic framework for evaluating 

binary treatments to studies involving multivalued treatments utilizing a machine learning 

algorithm called optimal discriminant analysis (ODA).  

Method: We describe the differences between regression-based treatment effect estimators and 

effects estimated using the ODA framework. We then present an empirical example using data 

from an intervention including three study groups to compare corresponding effects.  

Results: The regression-based estimators produced statistically significant mean differences 

between the two intervention groups, and between one of the treatment groups and controls. In 

contrast, ODA was unable to discriminate between distributions of any of the three study groups.  

Conclusions: ODA offers an appealing alternative to conventional regression-based models for 

estimating effects in multivalued treatment studies because of its insensitivity to skewed data and 

use of accuracy measures applicable to all prognostic analyses. If these analytic approaches 

produce consistent treatment effect P values, this bolsters confidence in the validity of the 

results. If the approaches produce conflicting treatment effect P values, as they do in our 

empirical example, the investigator should consider the ODA-derived estimates to be most 
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robust, given that ODA uses permutation P values that require no distributional assumptions and 

are thus, always valid.  
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INTRODUCTION 

Interventions with multivalued treatments -- those including more than two discrete conditions 

(e.g., comparing the efficacy of competing drugs or interventions) or multiple levels of one 

treatment (e.g., various doses of a particular drug) -- are common in medical and health research. 

In experimental studies of multivalued treatments, outcomes may be analyzed by simply 

regressing the outcome on a set of indicator variables representing each treatment, followed by 

contrasts between treatments to estimate treatment effects. This analytic approach is sufficient to 

provide unbiased treatment effect estimates when subjects are randomized. However, when 

analyzing observational data, investigators estimate treatment effects by applying causal-

inferential methods to control for threats to validity [1]. Selection bias is a particularly prominent 

threat to validity when evaluating health management programs, because individuals with high 

levels of health care utilization or costs are likely to be assigned to a particular treatment. Given 

their high outlier status at baseline, these individuals’ outcomes naturally regress to the mean on 

their follow-up measurement, giving the false impression of a treatment effect [2,3]. 

 In recent years, there has been a growing interest in the development of multivalued 

treatment effect estimators using observational data. The seminal work of Imbens [4] and 

Lechner [5] gave rise to this flourishing area by extending Rosenbaum and Rubin’s [6] 

propensity score framework for binary treatments to multivalued treatments. Subsequently, 

several methods designed for binary treatments -- including regression, matching, weighting, and 

stratification -- have been reformulated to accommodate multivalued treatments (see for 

example, [7,8,9,10,11]).  
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 Unlike randomized studies in which treatment groups are inherently comparable on both 

observed and unobserved pre-intervention characteristics, observational studies of multivalued 

treatments can only endeavor to generate treatment groups that are comparable on observed 

characteristics, and must assume that any unmeasured variables will not bias the results [12]. 

Thus, in evaluating a health management program with multivalued treatments, the investigator 

would ensure that all treatment groups were comparable on pre-intervention levels of health care 

utilization and cost, but must assume, for example, that unmeasured motivation to change health 

behaviors will not confound the outcomes [13,14]. Accordingly, an essential condition for 

assuming the validity of treatment effects in multivalued treatment studies is that all treatment 

groups are comparable on their observed pre-intervention characteristics [15,16]. 

 Recently, a novel machine-learning approach was introduced for both assessing covariate 

balance on observed pre-intervention characteristics [17], and estimating treatment effects [18] in 

studies with binary treatments. This methodology employs an algorithm called optimal 

discriminant analysis (ODA) [19,20] to determine if, and to what degree, treatment groups can 

be distinguished based on the distributions of the covariates [17], and then subsequently on the 

outcomes [18].  

 In this paper we extend this machine-learning framework from the studies of binary 

treatments to those involving multivalued treatments. By framing the treatment-outcome 

relationship as a classification problem (i.e., how accurately does the outcome variable classify 

individuals as being in their actual treatment group), ODA offers several benefits over the 

This article is protected by copyright. All rights reserved.



conventional statistical methods typically employed to assess both covariate balance and 

treatment effects in multivalued treatment studies. These include the ability to handle an outcome 

variable measured using any metric (from categorical to continuous), insensitivity to skewed data 

or outliers, and the use of accuracy measures that can be widely applied to all classification 

analyses. ODA also offers the unique ability to ascertain if individuals are likely to be 

responding to the treatment level as assigned (or self-selected) based on optimized (maximum-

accuracy) cut-points on the outcome variable. Moreover, ODA accepts analytic weights, thereby 

allowing the evaluation of observational studies using any algorithm that produces weights for 

covariate adjustment [17,18]. Finally, ODA provides the capability to use cross-validation in 

assessing the generalizability of the model to individuals outside of the original study sample, or 

to identify solutions that cross-generalize with maximum accuracy when applied across multiple 

samples [20]. 

 To illustrate the ODA-multivalued treatment framework, and compare it to other 

commonly-used methods, the paper is organized as follows. In the Methods section we provide a 

brief introduction to ODA as it is operationalized in the context of multivalued treatments, and 

describe the data source and analytic framework employed in the current study. The Results 

section reports and compares the results from the ODA-multivalued treatment framework to 

several other widely-used methods. The Discussion section describes the specific advantages of 

the ODA-multivalued treatment framework for assessing covariate balance and evaluating 

This article is protected by copyright. All rights reserved.



treatment effects compared with alternative methods, and discusses how machine-learning can be 

applied more broadly within the causal inferential framework. 

METHODS 

A brief introduction to optimal discriminant analysis for analyzing multivalued treatments 

ODA is a machine learning algorithm that was introduced over 25 years ago to offer an 

alternative analytic approach to conventional statistical methods commonly used in research 

[21]. Its appeal lies in its simplicity, flexibility, and accuracy as compared to conventional 

methods [20,22,23]. 

An ODA model for multivalued treatments first orders the outcome variable from low to 

high. It then seeks a specific combination of cutpoint(s) and direction with respect to the ordered 

outcome data [19,20,21]. In order to identify potential model cutpoints, the ODA algorithm 

begins by finding every point along the outcome continuum in which two successive values 

belong to individuals from different treatment categories (e.g. the previous value belongs to a 

subject in treatment category 3 whereas the next value belongs to a subject in treatment category 

1). For a treatment variable with T categories, an ODA model would generate a total of T – 1 

cutpoints. For a multivalued treatment with T = 3 treatment categories (dummy-coded as 1, 2, 3), 

for example, the ODA model will have T = 3 – 1 = 2 cutpoints. The value of each cutpoint is 

computed as the mean of the successive outcome values: cutpoint = (previous value + current 

value) / 2. 
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Directionality defines how cutpoints are used to classify individual observations. A 

unidirectional “confirmatory” approach is used when the investigator hypothesizes the order of 

the treatment categories with respect to the value of the outcome. For example one might 

hypothesize that observations in treatment category 3 have the lowest values, observations in 

treatment category 2 have the highest values, and observations in treatment category 1 have 

values that fall between those of the other class categories. A non-directional “exploratory” 

approach is used when the investigator has no hypothesis about the order of the treatment 

categories with respect to the value of the outcome, and the alternative hypothesis tested is that at 

least two of the categories can be discriminated on the basis of observations’ values on the 

outcome variable. For a directional hypothesis, only the specified ordering of the treatment 

categories is evaluated, and for a non-directional hypothesis all possible orderings are evaluated. 

 For the outcome continuum, ODA assesses how well the confirmatory model—consisting 

of T - 1 cutpoints (that are identified by ODA as described below) in combination with the 

researcher-specified direction (or “ordering”), or how well the exploratory model—consisting of 

T - 1 cutpoints identified by ODA for every possible ordering of the class categories, correctly 

predicts that individuals within a given range of the outcome are in a particular treatment. 

[19,20] 

 ODA relies on three measures of accuracy to identify the optimal (maximum-accuracy) 

model – that is, the exact combination of cutpoint(s) and direction that produces the most 

accurate predictions possible for the sample. In the multivalued treatment case, sensitivity or true 
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positive rate [24] is the proportion of actual subjects in a given treatment level that are correctly 

predicted by the ODA model to be in that level -- that is, those who have a value on the outcome 

that lies within the range specified by the T - 1 cutpoints identified by the ODA algorithm 

[19,20]. The second measure of accuracy combines the sensitivity estimates for each treatment 

and is called the effect strength for sensitivity or ESS [19,20]. ESS is a chance-corrected (0 = the 

level of accuracy expected by chance) and a maximum-corrected (100 = perfect prediction) 

index of predictive accuracy. The formula for computing ESS in a multivalued treatment study 

(multi-category) is: 

     ESS = [(Mean Percent Accuracy in Classification – T*)] / (1 – T*) x 100%  (1),  

where  

     Mean Percent Accuracy in Classification = ∑𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑡 / T     (2) 

where t is the treatment level in the set of treatments = {0,1,…,T} and T* is the inverse of T.   

 The ODA algorithm explicitly determines the ESS associated with every possible 

solution under the alternative hypothesis for the sample. The maximally-accurate (“optimal”) 

model is that which has the cutpoint(s) and direction with the highest associated value of ESS. 

Based on simulation research, ESS values <25% conventionally indicate a relatively weak, 

<50% indicate a moderate, 50-75% indicate a relatively strong, and >75% indicate a strong 

effect [19,20]. 

 ODA also computes P-values to assess the statistical reliability (or “significance”) of the 

maximally-accurate ODA model. P-values are estimated using Monte Carlo permutation 
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experiments. In multivalued treatment models, this involves repeatedly shuffling subjects’ 

treatment assignment at random, holding their outcome value fixed at its true value. In each 

permuted dataset the ESS is recorded, and the permutation P-value represents the proportion of 

all permuted datasets in which the ESS is higher than the ESS of the maximally-accurate ODA 

model [19,20,21]. 

 Finally, ODA can be implemented using cross-validation to assess the generalizability of 

the model, using methods including k-fold cross-validation, bootstrapping, and leave-one-out 

jackknife cross-validation [20,25,26]. This typically entails first estimating a model using a 

training sample and calculating the accuracy measures, followed by applying the same model to 

one or more hold-out (test) samples and then recalculating the accuracy measures. If the 

accuracy measures remain consistent with those of the original model obtained using the training 

sample, then the model is considered generalizable. This may be important, for example, if the 

goal of the analysis is to assist health researchers with the identification of new candidates for 

participation in an ongoing intervention, or initiate the intervention in other settings. Cross-

validation is less important if the goal is only to estimate treatment effects of the existing set of 

interventions [17,27,28]. 

Data 

The data for our empirical example come from a disease management program designed for 

patients with congestive heart failure and implemented in a large health plan located in the 

western United States. Individuals with the condition were contacted and invited to enroll in the 
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program. Those agreeing to participate received one of the following interventions: (1) periodic 

telephone calls from a nurse to discuss self-management behaviors, or (2) remote tele-monitoring 

(RTM), which entailed daily electronic transmission of the participant’s disease-related 

symptoms to a database followed by a call from the nurse if symptoms appeared to indicate the 

onset of an acute exacerbation. Assignment to either intervention arm was conducted by the 

program nurse and based largely on a subjective assessment of the patient’s psycho-social needs, 

past levels of health care utilization, and the patient’s preferred level of contact. The primary 

goal of the intervention was to reduce avoidable hospitalizations [28]. Patients with congestive 

heart failure, but not participating in the program, received their usual medical care and served as 

controls in this study (see [29], and [30] for a more comprehensive description).  

The retrospectively collected data consist of observations for 1,359 program participants 

who completed a full 12 months of the intervention, and 6,612 non-participants who were health-

plan members during the same period but were not exposed to the intervention. The sample was 

divided according to treatment assignment: (a) 6,612 non-participants, (b) 654 participants in the 

telephonic intervention, and (c) 705 participants in the RTM intervention. Each individual in the 

dataset has 12 months of pre-intervention data and 12 months of intervention-period data. Pre-

intervention characteristics of participants in the three study arms include patient demographic 

characteristics (age and gender), the Charlson comorbidity index and associated comorbidities 

[31], and key measures of health care utilization (prescription filled, office visits, emergency 

This article is protected by copyright. All rights reserved.



department visits, hospital admissions and hospital days). The primary outcome for all analyses 

used in this paper is the number of all-cause hospitalizations in the intervention year. 

Analytic approach 

For the purpose of this empirical example, we repeat the regression-based analyses conducted in 

Linden et al [30] that used five common methods to estimate multivalued treatment effects. 

These estimation methods fall into three general categories: (1) estimators based on a model for 

the outcome variable using conventional regression adjustment (RA); (2) estimators based on a 

model for the treatment assignment, using inverse probability of treatment weighting (IPTW) 

[32,33] and marginal mean weighting through stratification (MMWS) [29,34]; and (3) ‘doubly-

robust’ estimators that model both the treatment assignment and outcome variable within the 

same framework, using an augmented IPTW approach (A-IPTW) [35,36,37] and IPTW 

combined with RA (IPTW-RA) [10,38,39]. 

 The RA approach was implemented by regressing the outcome -- the number of all-cause 

hospitalizations in the intervention year – on the set of pre-intervention covariates (described 

above) separately for each treatment level, after which the predicted outcomes for each subject 

and treatment level were computed using data only from the individuals receiving the relevant 

treatment level. The average of those predicted values estimates the potential outcome means, 

and were then contrasted (Bonferroni corrected) to estimate average treatment effects between all 

treatment levels [30].  
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 The IPTW approach was implemented by first estimating the generalized propensity 

score (GPS) [4] using multinomial logistic regression. The levels of treatment (untreated, nurse 

calls, RTM) served as the outcome, and were regressed on all pre-intervention covariates. Next, 

the IPT weight was derived by taking the inverse of the propensity score that corresponded with 

that individual’s true treatment assignment. The IPTW was then used as a probability weight 

within the outcomes model -- which was estimated by regressing the outcome on the treatment 

indicator variable. The average of those predicted values estimates the potential outcome means, 

and were then contrasted (Bonferroni corrected) to estimate average treatment effects [30]. 

 The MMWS approach was implemented as follows: First, the GPS was estimated as 

described for the IPTW. Next, each GPS was stratified into five equal sized quantile categories, 

separately for each of the estimated probabilities. The marginal mean weights were computed 

based on the formula by Hong [34]. The MMWS was then used as a probability weight within 

the outcomes model -- which was estimated by regressing the outcome on the treatment indicator 

variable (which included the three levels of treatment). The Bonferroni corrected contrasts of 

these weighted averages provide the treatment effect estimates [30]. 

 The A-IPTW and IPTW-RA approaches belong to a class of estimators that model both 

the probability of treatment and the outcome simultaneously, within the same framework, 

providing asymptotically unbiased estimates when only one of the two models is correctly 

specified. These estimators are called ‘doubly robust’ because they provide the investigator two 

opportunities to derive consistent treatment effects [33,36]. The A-IPTW model was 
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operationalized in a three-step process: First, the parameters of the GPS model were estimated 

and the IPT weights computed as described previously. Next, separate regression models of the 

outcome were estimated for each treatment level, and the treatment-specific predicted outcomes 

for each individual were obtained. Next, unconditional means were estimated using the estimated 

GPS from the first step, as well as the estimated conditional mean functions. The Bonferroni 

corrected contrasts of these weighted averages provide the treatment effect estimates [30]. 

 The IPTW-RA model was also operationalized in a three-step process: First, the GPS was 

estimated, and the IPT weights were computed for each level of treatment. Next, using the 

estimated IPTW, the outcome models were fitted by a weighted regression for each treatment 

level, and treatment-specific predicted outcomes for each individual were obtained using the 

estimated coefficients from this weighted regression. Finally, the means of the treatment-specific 

predicted outcomes were computed. The Bonferroni corrected contrasts between these averages 

provide the estimates of the treatment effects [30]. 

Stata 14.1 (StataCorp, College Station, TX, USA) was used to conduct all regression-

based statistical analyses: (1) Naïve treatment effect estimates were derived by regressing the 

outcome on indicator variables representing the levels of treatment. (2) The RA estimator was 

implemented using the teffects ra command. (3) The IPTW estimator with adjusted weights was 

implemented using the teffects ipw command. (4) MMWS estimates were derived by dividing the 

sample equally into five strata based on the estimated GPS, computing the MMWS weights by 

implementing a user-written command for Stata mmws [40], and then by regressing the outcome 

This article is protected by copyright. All rights reserved.



on indicator variables representing the treatment levels, with the MMWS weights used as 

sampling weights and applying robust standard errors [29]. (5) The A-IPTW estimator was 

implemented using the teffects aipw command and, (6) The IPTW-RA estimator was 

implemented using the teffects ipwra command. Additionally, pairwise contrasts (treatment 

effects) were estimated between all treatment levels, and across all estimators studied, using 

Stata’s pwcompare command. pwcompare performs Wald tests using linear combinations of 

marginal linear predictions and uses the delta method to estimate the variance. P values were 

then Bonferroni adjusted to account for multiple comparisons. Covariate balance was calculated 

by implementing the user-written command for Stata covbal [41]. 

 The ODA framework was operationalized as follows: First, in order to be consistent with 

the conventional approaches, the parameters of the GPS model were estimated and the IPT 

weights computed as described previously. Next an IPT-weighted ODA model was obtained in 

which the outcome was specified as the attribute and the multivalued treatments were specified 

as the class variable without assuming a priori directionality. Finally, post hoc contrasts between 

treatment level effects were obtained by conducting all possible (Bonferroni corrected) pair-wise 

comparisons. Exact P values were estimated using 25,000 Monte Carlo experiments [20]. All 

ODA analyses were performed using UniODA Software [19]. 

 The effectiveness of the GPS-based weighting approach in reducing bias across the three 

treatment conditions was examined by assessing covariate balance using conventional and ODA-

based approaches: the conventional method compares the standardized difference in means [42], 
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and ODA assesses the aforementioned measures of accuracy – sensitivity and ESS [19,20,24]. 

The expectation is that well-matched cohorts across treatments will have standardized 

differences close to zero, and poor (i.e., low) measures of accuracy [17]. Analyses were 

performed on the unweighted population (naïve estimate) and on the GPS weighted sample 

(adjusted), in order to assess the degree to which weighting reduced confounding and altered the 

treatment effect estimates. 

RESULTS 

Assessment of Covariate Balance  

Tables of covariate balance using standardized differences are replicated from Linden et al [30] 

and are presented in Tables 1 and 2, for before and after weighting, respectively. As shown in 

Table 1, many of the standardized differences are substantially greater than zero and nine of the 

69 standardized differences are greater than the 0.25 cutoff recommended by Rubin [43]. In 

general, the participants in the RTM intervention arm were older and had a higher prevalence of 

comorbidities than the other two groups. However, all groups were comparable on key measures 

of health care utilization. Table 2 presents the same pre-intervention characteristics of the study 

participants after IPT weighting. As shown, all standardized differences are much closer to zero, 

and no value is greater than 0.25 [30].  In other words, IPT weighting achieved covariate balance 

and reduced confounding.   

 Tables 3 and 4 present covariate balance testing using ODA, before and after weighting, 

respectively. As shown in Table 3, there are several covariates identified as being imbalanced, 
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based on permuted P values <0.05, and most of them concur with those imbalanced covariates 

identified using standardized differences (Table 1). However, ODA did identify imbalances in 

four of the 5 utilization and cost measures (the exception was office visits). As seen, the 

statistically significant imbalances in these utilization and cost variables are driven by moderate 

to high sensitivity in the RTM group, with much lower sensitivity in the other two treatment 

groups. In other words, ODA was able to predict assignment to the RTM group rather well, 

while it was not able to discriminate very well between individuals in the control or nursing call 

groups. For such a pattern of results, pairwise comparisons used to disentangle statistically 

significant multivalued treatment omnibus effects generally show that the treatment having 

higher model sensitivity is significantly different with respect to the outcome variable compared 

to the treatments with lower model sensitivity -- and also that the latter treatments do not differ 

significantly with respect to the outcome variable. This general pattern was observed across all 

covariates, where ODA was able to accurately predict assignment of one the treatment arms, and 

less accurately in the other two arms. As a consequence, ESS for the omnibus model (which is 

reported as a measure of “clinical” importance for which higher percentage values represent 

better classification accuracy and ability to discriminate between groups) is very weak across 

covariates.  

 Table 4 presents the same pre-intervention characteristics of the study participants after 

IPT weighting. The results here are consistent with those of the standardized differences (Table 

2). We found consistently weak ESS values throughout, and all permuted P values > 0.05. These 
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results indicate that covariate balance was achieved across all pre-intervention observed 

covariates. 

Assessment of Treatment Effect  

Table 5 provides pairwise treatment effect estimates between all treatment arms, by estimator 

[30]. Here, treatment effects represent the difference between groups in all-cause hospital 

admissions. In the naïve model (unadjusted for confounding or bias), both intervention arms 

(calls and RTM) had significantly higher rates of hospital admission than the control arm (P < 

0.001 and P = 0.001 for calls versus controls, and RTM versus controls, respectively), but no 

statistically significant difference between the intervention arms themselves. All of the 

regression adjusted methods trended toward similar results. Irrespective of adjustment method, 

the arm receiving nursing calls had statistically higher hospital admissions than controls, the 

RTM arm was not statistically different than controls, and the RTM arm had statistically fewer 

admissions than the arm receiving nursing calls [30]. 

 Table 6 summarizes findings of between-treatment omnibus comparisons of all-cause 

hospitalizations in the intervention period by treatment level, both unadjusted (naïve) and IPT 

weighted, using ODA as the analytic tool. Summary values represent the cutoff point on the 

outcome for each treatment level, and is presented together with the sensitivity of the cutpoint for 

each treatment level. As shown for the naïve estimate, the ODA model predicted that an 

individual was in the control group if they had ≤ 0.5 hospitalizations in the intervention period 

(because number of hospitalizations is an integer-based count, here “< 0.05 hospitalizations” 
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indicates a count of zero hospitalizations), a participant in the nursing call intervention if they 

had more than 0.5 and less than 4.5 (i.e., between one and four) hospitalizations, and in the RTM 

intervention if they had greater than 4.5 (i.e., five or more) hospitalizations. The ODA model 

correctly classified 81% of controls, 29% of participants receiving nursing calls, and 1.6% of 

participants on RTM. Classification performance was weak (ESS = 5.73%) but statistically 

significant (P < 0.0001) overall. Post hoc tests indicated that both RTM and calls had statistically 

higher hospitalizations than controls, but were not significantly different from each other. 

However, after controlling for confounding via IPT weighting, ODA reported a miniscule 

clinical effect (ESS = 0.06%) that was not statistically significant (P < 0.860). In other words, 

after controlling for confounding, ODA found no treatment effect between any of the treatment 

conditions.  

 

DISCUSSION 

Our results demonstrate that ODA can be combined with GPS-based weighting to provide an 

alternate strategy to regression-based methods for estimating treatment effects in evaluations of 

multivalued treatments. And while we used IPTW for multivalued treatments in this particular 

example, the ODA algorithm can be extended to any design where weights are used for covariate 

adjustment (see for example [29,30,44,45,46,47]).  

 As our results illustrate, conventional regression-based models and ODA analyses do not 

always produce consistent results. This is supported by other studies comparing the two methods 
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that have also obtained strongly divergent findings in a wide variety of real-world data and 

research designs [19,20]. Thus, a good rule of thumb for investigators is to perform the program 

evaluation using both conventional and ODA frameworks, and then compare the resulting 

treatment effect estimates. 

If both methods provide consistent results (vis-à-vis statistical significance), then the 

investigator should be confident that, at the very least, the estimate is insensitive to distributional 

assumptions required for the validity of P values estimated using a regression-based model, and 

also more likely to be a reflection of the true statistical significance of the treatment effect 

estimate. However, if the approaches result in conflicting statistical conclusions (as occurred in 

our empirical example), the investigator should consider the ODA-based P values to be most 

robust, given that ODA uses permutation P values that require no distributional assumptions and 

are therefore always valid [19,20,21]. 

 Of course, in any specific application it is possible that statistical assumptions underlying 

the validity of effect estimates made by conventional linear methods (that are designed to 

compare differences in central tendencies) are satisfied for the sample. In the present study 

statistically significant mean differences were found between treatments, but ODA (that is 

designed to assess distributional overlap between the different groups) failed to find a 

statistically significant difference between the distributions of individual scores within each of 

the multiple groups. If the opposite pattern of results was found (i.e., that there were no 

significant mean differences (regression), but significant distributional differences (ODA)), this 
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would indicate that although means do not differ between groups, observations in the different 

groups can be successfully discriminated on the basis of their individual scores. The remaining 

potential patterns (i.e., that both mean and distributional differences exist, or that neither mean 

nor distributional differences exist) are unambiguous in terms of their interpretation. 

 ODA is an appealing alternative statistical framework in program evaluation because it 

holds several advantages over conventional methods for assessing covariate balance, outcomes, 

or both, in observational studies. First, the ODA algorithm, with its associated measure of 

normed classification performance (ESS) and non-parametric permutation tests, can be 

universally applied to any variable type and number of study groups, and is not affected by 

skewed data or outliers – a concern that may arise in the context of meeting assumptions 

underlying the validity of the estimated P-value using conventional statistics alone. 

 Second, within the proposed treatment effects framework, ODA can also help explain (a) 

how individuals self-select in observational studies (by identifying group membership based on 

the cut-point on any given covariate) [LY2; LY5], and (b) how individuals are likely to respond 

to various levels of the intervention (by identifying where individuals scores are relative to the 

cutpoint on the outcome) [48]. In the multivalued treatment context, such detail can allow 

administrators to fine-tune the enrollment criteria to target and assign individuals who will most 

likely benefit from various levels of the intervention, while concomitantly allowing 

administrators to improve their estimates of which individuals actually benefit from the various 

levels of the intervention [49]. 
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 Finally, ODA can be implemented using cross-validation to assess the generalizability of 

the model to new candidates for participation in the existing intervention, or to initiate the 

intervention in other settings [20]. Cross-validation is less important if the goal is only to 

estimate treatment effects of the intervention [27,49]. 

 While this paper specifically focused on creating a framework in which machine learning 

and weighting approaches can be combined to improve causal inference in the evaluation of 

multivalued treatments, there are several additional ways in which machine learning techniques 

can be applied in causal inferential work. For example, Linden and Yarnold [49] use 

classification tree analysis (CTA) to characterize the nature of individuals who choose to 

participate in observational studies. Athey & Imbens [50] modify the conventional classification 

and regression trees (CART) approach to estimate heterogeneous causal effects in such studies. 

CTA has also been proposed as an approach to identify potential instrumental variables (IV) that 

may provide an unbiased estimate of the causal effect of intervention on the outcome [17]. An IV 

is a variable that is correlated with the intervention, but not correlated with unobserved 

confounders of the outcome [51]. Similarly, CTA can be used to identify causal mediation 

effects. A mediator is an intermediate variable that lies on the casual pathway between treatment 

and outcome [52]. As indicated by these examples, the application of machine-learning 

techniques to improve causal inference in observational studies is open to much further 

exploration. Particular emphasis should be placed on determining the most appropriate algorithm 

for a given problem -- or a generalization to all algorithms, extension to outcomes with censored 
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data [20,53], and the development of specific sensitivity analyses for these applications [54] to 

ensure that the resulting models remain robust to changes in assumptions and inputs 

 In summary, this paper demonstrates that ODA can be combined with GPS-based 

weighting to provide an alternate strategy to regression-based methods for estimating treatment 

effects in evaluations of multivalued treatments. In the present data, the results of this framework 

were inconsistent with those derived using the conventional approaches. However, given that 

ODA uses permutation P values that require no distributional assumptions and are always valid, 

ODA-derived P value estimates should be considered most robust. ODA provides additional 

information (e.g., class category sensitivities, ESS, cross-generalizability) than is currently 

included in conventional approaches. More broadly, health researchers should consider the many 

potential uses of machine learning algorithms to improve causal inference in observational 

studies. 
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Table 1: Unadjusted baseline (prior 12 months) characteristics of program participants and non-participants in a multivalued treatment 
study (From [30]) 
 
        Absolute Standardized Differences 
Variables Control Calls RTM Calls vs Controls RTM vs Controls RTM vs Calls 
N 6612 654 705       
Female  2976 (45.0%) 308 (47.1%) 343 (48.7%) 0.042 0.073 0.031 
Age, mean (SD) 62.96 (15.77) 66.17 (14.55) 72.31 (12.42) 0.212 0.659 0.454 
Charlson index score , mean (SD) 2.64 (2.52) 3.28 (2.57) 3.67 (2.63) 0.250 0.399 0.150 
Diabetes (non-comp) 1723 (26.1%) 244 (37.3%) 281 (39.9%) 0.244 0.297 0.052 
Diabetes  (comp) 697 (10.5%) 122 (18.7%) 130 (18.4%) 0.231 0.226 0.006 
Acute MI 782 (11.8%) 112 (17.1%) 162 (23.0%) 0.151 0.297 0.147 
Chronic Pulmonary  1468 (22.2%) 177 (27.1%) 251 (35.6%) 0.113 0.299 0.185 
Liver (mild)  396 (6.0%) 35 (5.4%) 32 (4.5%) 0.028 0.065 0.038 
Liver (Mod/Severe) 48 (0.7%) 3 (0.5%) 5 (0.7%) 0.035 0.002 0.033 
Cancer 784 (11.9%) 80 (12.2%) 97 (13.8%) 0.012 0.057 0.045 
Cancer - metastatic 140 (2.1%) 11 (1.7%) 10 (1.4%) 0.032 0.053 0.021 
Rheumatoid 228 (3.4%) 30 (4.6%) 26 (3.7%) 0.058 0.013 0.045 
Cerebrovascular 952 (14.4%) 107 (16.4%) 132 (18.7%) 0.054 0.117 0.062 
Peripheral vascular 874 (13.2%) 115 (17.6%) 150 (21.3%) 0.121 0.214 0.093 
Renal 1083 (16.4%) 160 (24.5%) 214 (30.4%) 0.202 0.335 0.132 
Dementia 164 (2.5%) 10 (1.5%) 8 (1.1%) 0.068 0.101 0.034 
Hemi or Paraplegia 130 (2.0%) 10 (1.5%) 11 (1.6%) 0.033 0.031 0.003 
Peptic ulcer 105 (1.6%) 12 (1.8%) 13 (1.8%) 0.019 0.020 0.001 
Prescriptions, mean (SD) 41.10 (37.42) 49.37 (38.90) 55.32 (37.18) 0.217 0.381 0.156 
Office visits, mean (SD) 0.42 (0.93) 0.47 (0.83) 0.44 (0.84) 0.056 0.014 0.044 
ED visits, mean (SD) 0.49 (1.30) 0.51 (1.04) 0.44 (0.95) 0.017 0.046 0.072 
Hospitalizations, mean (SD) 0.64 (1.15) 0.74 (1.07) 0.64 (1.04) 0.088 0.006 0.099 
Hospital days, mean (SD) 3.66 (11.61) 3.74 (8.60) 3.21 (16.09) 0.008 0.032 0.041 
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Note: All variables are reported as N (%) unless otherwise noted. RTM is remote telemonitoring.  
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Table 2: Weighted baseline (prior 12 months) characteristics of program participants and non-participants in a multivalued treatment 
study (From [30]) 
 
        Absolute Standardized Differences 
Variables Control Calls RTM Calls vs Controls RTM vs Controls RTM vs Calls 
N 6612 654 705       
Female  1227 (45.5) 1227 (45.9) 1182 (45.5) 0.007 0.001 0.008 
Age, mean (SD) 64.11 (15.85) 64.50 (15.05) 65.72 (13.89) 0.026 0.109 0.086 
Charlson index score , mean (SD) 2.79 (2.59) 2.83 (2.43) 2.90 (2.51) 0.014 0.044 0.029 
Diabetes (non-comp) 764 (28.3%) 792 (29.6%) 757 (29.1%) 0.028 0.018 0.010 
Diabetes  (comp) 323 (12.0%) 332 (12.4%) 343 (13.2%) 0.013 0.037 0.021 
Acute MI 359 (13.3%) 368 (13.8%) 352 (13.6%) 0.014 0.008 0.006 
Chronic Pulmonary  642 (23.8%) 638 (23.9%) 634 (24.4%) 0.001 0.014 0.013 
Liver (mild)  157 (5.8%) 164 (6.1%) 147 (5.7%) 0.013 0.007 0.021 
Liver (Mod/Severe) 19 (0.7%) 18 (0.7%) 22 (0.8%) 0.002 0.016 0.020 
Cancer 325 (12.1%) 302 (11.3%) 312 (12.0%) 0.024 0.001 0.022 
Cancer - metastatic 54 (2.0%) 52 (1.9%) 50 (1.9%) 0.006 0.007 0.002 
Rheumatoid 95 (3.5%) 92 (3.4%) 96 (3.7%) 0.006 0.008 0.013 
Cerebrovascular 405 (15.0%) 426 (15.9%) 444 (17.1%) 0.024 0.056 0.031 
Peripheral vascular 388 (14.4%) 408 (15.3%) 396 (15.2%) 0.025 0.024 0.001 
Renal 495 (18.4%) 493 (18.4%) 513 (19.7%) 0.002 0.035 0.031 
Dementia 62 (2.3%) 70 (2.6%) 87 (3.3%) 0.022 0.063 0.046 
Hemi or Paraplegia 51 (1.9%) 56 (2.1%) 81 (3.1%) 0.014 0.078 0.068 
Peptic ulcer 44 (1.6%) 42 (1.6%) 47 (1.8%) 0.007 0.013 0.019 
Prescriptions, mean (SD) 43.24 (39.07) 43.92 (36.00) 46.22 (35.14) 0.019 0.082 0.062 
Office visits, mean (SD) 0.43 (0.92) 0.44 (0.82) 0.44 (0.84) 0.015 0.012 0.003 
ED visits, mean (SD) 0.49 (1.26) 0.50 (1.07) 0.47 (0.98) 0.015 0.014 0.033 
Hospitalizations, mean (SD) 0.65 (1.15) 0.67 (1.02) 0.65 (1.07) 0.018 0.000 0.019 
Hospital days, mean (SD) 3.64 (11.20) 3.47 (8.63) 3.50 (18.13) 0.017 0.009 0.002 
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Note: All variables are reported as N (%) unless otherwise noted. RTM is remote telemonitoring   
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Table 3: Unadjusted baseline (prior 12 months) characteristics of program participants and non-participants in a multivalued treatment 
study using ODA 
 

            Bonferroni Adjusted P-values 

Variables Control Calls RTM ESS (%) P-value Calls vs Controls RTM vs Controls RTM vs Calls 

N 6612 654 705         
Female = 0 (83.70) = 1 (17.95) = 1 (17.95) 1.65 0.058 -- -- -- 
Age ≤ 59.5 (42.45) > 59.5 & ≤ 64.5 (21.56) > 64.5 (70.35) 17.18 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Charlson index score ≤ 1.5 (41.62) > 1.5 & ≤ 3.5 (33.94) > 3.5 (45.53) 10.55 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Diabetes (non-comp) = 0 (85.43) = 1 (23.35) = 1 (23.35) 8.78 < 0.0001 -- -- -- 
Diabetes  (comp) = 0 (84.24) = 1 (26.55) = 1 (26.55) 10.79 < 0.0001 -- -- -- 
Acute MI = 0 (84.31) = 1 (25.95) = 1 (25.95) 10.26 < 0.0001 -- -- -- 
Chronic Pulmonary  = 0 (84.67) = 1 (22.57) = 1 (22.57) 7.25 < 0.0001 -- -- -- 
Liver (mild)  = 0 (17.21) = 1 (85.53) = 0 (17.21) 2.74 0.185 -- -- -- 
Liver (Mod/Severe) = 0 (8.22) = 1 (94.64) = 0 (8.22) 2.78 0.757 -- -- -- 
Cancer = 0 (83.14) = 1 (18.42) = 0 (83.14) 1.56 0.305 -- -- -- 
Cancer - metastatic = 1 (86.96) = 0 (17.13) = 0 (17.13) 4.09 0.252 -- -- -- 
Rheumatoid = 0 (83.05) = 1 (19.72) = 1 (19.72) 2.77 0.306 -- -- -- 
Cerebrovascular = 0 (83.48) = 1 (20.07) = 1 (20.07) 3.55 0.003 -- -- -- 
Peripheral vascular = 0 (83.99) = 1 (23.27) = 1 (23.27) 7.25 < 0.001 -- -- -- 
Renal = 0 (84.88) = 1 (25.67) = 1 (25.67) 10.55 < 0.001 -- -- -- 
Dementia = 1 (90.11) = 0 (17.22) = 0 (17.22) 7.33 0.009 -- -- -- 
Hemi or Paraplegia = 1 (86.09) = 0 (17.11) = 0 (17.11) 3.20 0.412 -- -- -- 
Peptic ulcer = 0 (82.99) = 1 (19.23) = 1 (19.23) 2.22 0.693 -- -- -- 
Prescriptions ≤ 17.5 (32.03) > 17.5 & ≤ 21.5 (5.05) > 21.5 (84.26) 10.67 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Office visits ≤ 0.5 (72.78) > 0.5 & ≤ 3.5 (31.04) > 3.5 ( 1.13) 2.48 0.093 0.032 1.000 0.309 
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ED visits > 2.5 (4.25) > 0.5 & ≤ 2.5 (29.20) ≤ 0.5 (73.62) 3.54 0.009 0.095 1.000 0.061 
Hospitalizations > 5.5 (0.67) > 0.5 & ≤ 5.5 (43.88) ≤ 0.5 ( 62.84) 3.69 0.012 0.005 1.000 0.015 
Hospital days > 28.5 (2.51) > 0.5 & ≤ 28.5 (42.20) ≤ 0.5 (62.84) 3.77 0.026 0.011 0.770 0.050 

 
Note: Values represent cut-points on the covariate, and values in parentheses represent sensitivity. For binary covariates (e.g. female), the model is specified with 
the covariate as the class and treatment level as the attribute. Thus, pairwise comparisons are not relevant and noted as “--“. Comp is complicated, MI is 
myocardial infarction, mod is moderate, ED is emergency department, ESS is effect strength for sensitivity. 
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Table 4: Weighted baseline (prior 12 months) characteristics of program participants and non-participants in a multivalued treatment 
study using ODA 
 
            Bonferroni Adjusted P-values 

Variables Control Calls RTM ESS (%) P-value Calls vs Controls RTM vs Controls RTM vs Calls 

N 6612 654 705         
Female = 1 (67.5) = 1 (67.5) = 0 (32.7) 0.19 1.000 -- -- -- 
Age ≤ 20.5 (0.5) > 20.5 & ≤ 64.5 (58.8) > 64.5 (50.0) 4.61 0.074 0.178 0.080 0.215 
Charlson index score > 15.5 (0.1) > 0.5 & ≤ 15.5 (89.9) ≤ 0.5 (12.2) 1.08 0.501 1.000 1.000 1.000 
Diabetes (non-comp) = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Diabetes  (comp) = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Acute MI = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Chronic Pulmonary  = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Liver (mild)  = 1 ( 68.6) = 1 ( 68.6) = 0 (32.7) 1.24 1.000 -- -- -- 
Liver (Mod/Severe) = 0 (67.4) = 0 (67.4) = 1 (67.4) 4.41 1.000 -- -- -- 

Cancer = 0 (100) = 0 (100) = 0 (100) 0.00 1.000 -- -- -- 

Cancer - metastatic = 1 (34.9) = 0 (66.2) = 0 (66.2) 1.08 1.000 -- -- -- 
Rheumatoid = 0 (67.4) = 0 (67.4) = 1 (33.9) 1.35 1.000 -- -- -- 
Cerebrovascular = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Peripheral vascular = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Renal = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Dementia = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Hemi or Paraplegia = 1 (100) = 1 (100) = 1 (100) 0.00 1.000 -- -- -- 
Peptic ulcer = 1 (68.7) = 0 (33.6) = 1 (68.7) 2.32 1.000 -- -- -- 
Prescriptions > 186 (0.6) ≤ 57.5 (70.9) > 57.5 & ≤ 186 (33.0) 2.30 0.744 0.821 0.513 1.000 
Office visits > 6.5 (0.2) ≤ 2.5 (96.9) > 2.5 & ≤ 6.5 (4.2) 0.65 0.350 0.448 0.801 1.000 
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ED visits > 8.5 (0.2) ≤ 4.5 (99.1) > 4.5 & ≤ 8.5 (1.6) 0.44 0.465 1.000 0.546 1.000 
Hospitalizations > 6.5 (0.4) ≤ 3.5 (97.9) > 3.5 & ≤ 6.5 (4.0) 1.13 0.163 0.284 0.230 0.510 
Hospital days > 91.5 & ≤ 109.5 ( 0.1) ≤ 91.5 (100) > 109.5 (0.5) 0.29 0.693 0.516 1.000 1.000 
 
Note: Values represent cut-points on the covariate, and values in parentheses represent sensitivity. For binary covariates (e.g. female), the model is specified with 
the covariate as the class and treatment level as the attribute. Thus, pairwise comparisons are not relevant and noted as “--“. Comp is complicated, MI is 
myocardial infarction, mod is moderate, ED is emergency department, ESS is effect strength for sensitivity. 
 
Table 5: Contrasts (Bonferroni adjusted) between treatment levels on all-cause hospitalizations during the intervention period, by 
regression-based causal estimator (From [30]) 
 
Estimator Contrast SE z  P>|z|  [95% Conf. Interval] 
Naive 

      Calls vs Control 0.215 0.037 5.87 <0.001 0.127 0.303 
RTM vs Control 0.128 0.035 3.63 0.001 0.044 0.213 

RTM vs Calls -0.087 0.049 -1.78 0.223 -0.203 0.030 
Regression adjustment 

      Calls vs Control 0.179 0.046 3.93 <0.001 0.070 0.288 
RTM vs Control 0.023 0.039 0.59 1.000 -0.070 0.115 

RTM vs Calls -0.156 0.058 -2.69 0.021 -0.295 -0.017 
MMWS 

      Calls vs Control 0.193 0.052 3.68 0.001 0.067 0.319 
RTM vs Control 0.013 0.037 0.36 1.000 -0.075 0.102 

RTM vs Calls -0.180 0.062 -2.88 0.012 -0.329 -0.030 
IPTW 

      Calls vs Control 0.180 0.043 4.16 <0.001 0.077 0.284 
RTM vs Control 0.029 0.039 0.74 1.000 -0.064 0.122 

RTM vs Calls -0.152 0.057 -2.68 0.022 -0.287 -0.016 
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A-IPTW 
      Calls vs Control 0.179 0.045 4.01 <0.001 0.072 0.285 

RTM vs Control 0.015 0.035 0.44 1.000 -0.069 0.100 
RTM vs Calls -0.163 0.055 -2.97 0.009 -0.294 -0.032 

IPTW-RA 
      Calls vs Control 0.180 0.045 4.03 <0.001 0.073 0.286 

RTM vs Control 0.014 0.033 0.43 1.000 -0.065 0.094 
RTM vs Calls -0.165 0.054 -3.09 0.006 -0.293 -0.037 

 
Note: MMWS is marginal mean weighting through stratification, IPTW is inverse probability of treatment weighting, A-IPTW is augmented inverse probability 
of treatment weighting, and IPTW-RA is inverse probability of treatment weighting with regression adjustment, RTM is remote telemonitoring.  
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Table 6: Contrasts (Bonferroni adjusted) between treatment levels on all-cause hospitalizations during the intervention period, using 
ODA 
 
            Bonferroni Adjusted P-Values 
Model Control Calls RTM ESS (%) P-value Calls vs Controls RTM vs Controls RTM vs Calls 
N 6612 654 705           
Naïve ODA ≤ 0.5 (81.00) > 0.5 & ≤ 4.5 (28.90) > 4.5 (1.56) 5.73 < 0.0001 < 0.0001 < 0.0001 0.122 
Weighted ODA > 7.5 (0.15) ≤ 6.5 (99.82) > 6.5 & ≤ 7.5 (0.14) 0.06 0.860 1.000 0.786 1.000 
 
Note: Values represent cut-points on the covariate, and values in parentheses represent sensitivity. ESS is effect strength for sensitivity. 
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