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Voxel-by-voxel estimation of liver perfusion using nonlinear least-squares fits of dynamic contrast
enhanced computed tomography or magnetic resonance imaging data to a compartmental model is
a computational expensive process. In this report, a “linear” least-squares method for estimation of
liver perfusion is described. Simulated data and the data from an example case of a patient with
intrahepatic cancer are presented. Compared to the nonlinear method, the new method can improve
computational speed by a factor of �400, which makes it practical for use in clinical
trials. © 2006 American Association of Physicists in Medicine. �DOI: 10.1118/1.2219773�
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INTRODUCTION

Measurement of organ perfusion from dynamic contrast en-
hanced imaging �DCE�, including positron emission tomog-
raphy �PET�,1 computed tomography �CT�,2–4 and magnetic
resonance imaging �MRI�,5,6 is an emerging methodology for
diagnosis and staging of diseases, evaluation of therapy ef-
fectiveness, and prediction of treatment toxicity for cancer
and other diseases. Although semiquantitative indices have
been used previously for estimates of organ perfusion,7,8

quantitative estimates of perfusion are usually based on the
application of compartmental models, with outputs obtained
via the solving of a set of nonlinear equations in a multidi-
mensional space. Modeling and measurement of perfusion in
the liver present additional complexities due to its dual
sources of blood flow, both in terms of data fitting and dura-
tion of data acquisition.6,9–11 Furthermore, it is desirable to
be able to map the distribution of perfusion values through-
out the liver. This requires repeated computations on a voxel-
by-voxel basis.

Thus, calculation of the point-by-point “distribution” of
liver perfusion is a computationally daunting task, often pre-
cluding the use of these potentially useful volumetric data in
clinical trials. In this report, we describe a linear approach to
the model fitting with the goal of increasing the efficiency of
the data analysis. Simulated data and an example case of
liver perfusion of a patient with intrahepatic cancer obtained
from DCE CT scans are presented to illustrate the method.

METHOD AND MATERIALS

Hepatic perfusion is generally estimated using a single
compartmental model with dual input functions for the he-
patic artery and portal vein using DCE PET, CT, or MRI
data.6,9–11 The liver’s dual sources of blood flow also result
in a long and dispersed contrast uptake curve in liver paren-

chyma �e.g., Fig. 1�, in which a bolus of intravenously in-
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jected contrast arrives at the hepatic artery first and
30–40 sec later at the portal vein and liver parenchyma. In
order to adequately cover the rapid onset of the first pass of
the arterial bolus, and the broad peak, and the slow decay of
the portal vein bolus, DCE acquisition has to last at least
90–100 s after an intravenous injection of contrast bolus.
Fitting DCE imaging data to a single compartmental model
for the liver inherently involves the solving of a nonlinear
equation to estimate five free parameters: three representing
transfer constants �or blood flow� of contrast from plasma to
liver parenchyma or from liver tissue back to central vein,
and two denoting time delays of contrast arrival from the
hepatic artery and portal vein to liver parenchyma6,9–11 �see
below�.

Liver perfusion model

Using pharmacokinetics, a change in the contrast concen-
tration of liver parenchyma is given by the differential equa-
tion as follows:

dCl�t�
dt

=
1

�1 − Hct�
�kaCa�t − �a� + kpCp�t − �p�� − k2Cl�t� ,

�1�

where Cl, Ca, and Cp are concentrations of the contrast agent
in the respective liver parenchyma, artery, and portal vein, ka

and kp are the transfer constants of the contrast agent from
respective arterial and portal venous plasma to liver paren-
chyma, k2 is the transfer constant of the contrast agent that
leaves the liver parenchyma back to the central vein, �a and
�p are respective delay times of the arrival of artery bolus
and portal vein bolus to the liver parenchyma, and Hct is the
small vessel hematocrit. A fractional volume of plasma in
blood �1-Hct� is considered in Eq. �1� due to the fact that the
CT or MRI contrast agent is mostly extra-cellular �does not

enter red blood cells� while the concentrations of contrast
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agents in artery and portal vein are determined from blood.
Total hepatic blood flow, F, is a sum of arterial phase and
portal vein phase blood flows,

F = �ka + kp�/E , �2�

where E is the extraction rate and approximately equal to 1,
which implies the fast exchange limit. In Eq. �1�, arterial
phase blood flow and portal vein phase blood flow are al-
lowed to vary independently.

Numerical computation

The solution of the differential equation �1� is given by

Cl�t� =
1

�1 − Hct��0

t

�kaCa�� − �a� + kpCp��

− �p��e−k2�t−��d� . �3�

A nonlinear least-squares fit �NLLS� of Eq. �3� to DCE data
such as those in Fig. 1 can result in unbiased estimates of ka,
kp, and k2. However, estimating liver perfusion voxel-by-
voxel via NLLS in a five-dimensional parameter space �ka,
kp, k2, �a, and �p� is time consuming. Typically, NLLS fitting
of Eq. �3� to DCE data is used to estimate ka, kp, and k2 by
minimizing a mean-squared error and using a simplex
optimizer12 �as was also done here for comparison to the new
method below�.

Solving a linear equation would be much more desirable
and rapid. We first notice that in Eq. �1� the derivative of the
contrast concentration-time function of the liver is linearly
related to ka, kp, and k2 as unknown variables with the con-

FIG. 1. Time courses of the contrast bolus arrival to aorta �diamond�, portal
vein �square�, and liver parenchyma �triangle� after image registration and
data sorting. The peaks of the bolus arrival to portal vein and liver paren-
chyma delay 30-40 s compared to the onset of the bolus arrival to aorta. The
peaks of contrast concentration-time curves in portal vein and liver paren-
chyma are broad. There are several �3 s gaps in the contrast concentration-
time curves for free breathing.
trast concentration-time functions of artery, portal vein, and
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liver parenchyma as known variables. Thus, ka, kp, and k2

could be obtained by solving the linear equation �1�, which
would involve calculation of the derivative of the contrast
concentration-time function of the liver. However, the error
in the computation of the derivative from discrete data is
proportional to �t �time interval of temporal sampling�, and
the noise in data is also amplified in the derivative. We there-
fore also notice that alternatively, if the integral of Eq. �1� is
taken, the linear relationship is still maintained, and we ob-
tain

�1 − Hct�Cl�t� = ka�
0

t

Ca�� − �a�d� + kp�
0

t

Cp�� − �p�d�

− �1 − Hct�k2�
0

t

Cl���d� , �4�

in which the contrast concentration of liver parenchyma is
linearly related to ka, kp, and k2. In Eq. �4�, the error in the
integral computation from the discrete data is now propor-
tional to ��t�2, instead of �t as seen in the derivative ap-
proach. Furthermore, the noise in the integral is reduced due
to the averaging effect of the time integration of the random
noise in each of the three contrast concentration-time func-
tions.

Using matrix notation, a linear least-squares �LLS� solu-
tion of Eq. �4� can be obtained for given �a and �p as

K = �ATA�−1ATY , �5�

where

K = �ka

kp

− �1 − Hct�k2
� is a three-dimensional vector,

Y =�
�1 − Hct�Cl�t1�
. . .

�1 − Hct�Cl�ti�
. . .

�1 − Hct�Cl�tN�
� is an N-dimensional vector,

and

A = 	
�

0

t1

Ca�� − �a�d�,�
0

t1

Cp�� − �p�d�,�
0

t1

Cl���d�

. . .

�
0

ti

Ca�� − �a�d�,�
0

ti

Cp�� − �p�d�,�
0

ti

Cl���d�

. . .

�
0

tN

Ca�� − �a�d�,�
0

tN

Cp�� − �p�d�,�
0

tN

Cl���d�



is an N � 3 matrix,

with N equal to the number of points in the concentration-
time curves. To compute Eq. �5�, first, the 3�3 symmetric

T −1
matrix �A A� in Eq. �5� is decomposed to UDU using sin-
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gular value decomposition,12 where D is a 3�3 diagonal
matrix, U is a unitary matrix, and U−1 is its inverse. Then, K
is obtained by the matrix product UD−1U−1ATY. Given that
delay times of �a and �p are generally less than 10 s, the
computation of each K is repeated while �a and �p in Eq. �5�
are incrementally increased, independently from 0 to 10 s
with a step size of 1 s. The final solution of Eq. �4� is ob-
tained for the ka, kp, k2, �a, and �p that minimize the mean-
squared errors of Eq. �4�. This procedure is performed voxel-
by-voxel to obtain perfusion maps. Practically, the search
ranges for �a and �p can be chosen and adjusted by evalua-
tion of the fitted results from several voxels or regions of
interest. Based upon our experience in DCE CT acquired
from ten patients with intrahepatic cancer prior to, during,
and after radiation therapy, both delay times are typically
0–2 s, and can be up to 6 s �further discussions are given
below�.

All computations were done on a LINUX server �HP Pro-
liant DL740, CPU Intel Xeon 3 GHz� with an in-house pro-
gram in C��.

Simulation

Efficiency, stability, and bias of NLLS and LLS for esti-
mates of perfusion parameters were evaluate by simulated
data. The theoretic Ca�t� and Cp�t� were obtained from the
DCE CT data of a patient with intrahepatic cancer �after
some data smoothing�. The ka, kp, and k2 values were chosen
to be 20, 100, and 450 ml/100 g/min, respectively, which
are typical for normal hepatic perfusion. CL�t� was computed

FIG. 2. Scatterplots of relative standard deviations and relative difference
parameters of ka, kp, and k2.
from Eq. �3�, with �a and �p set to be initially zero. The
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typical contrast-to-noise ratio �CNR� values �defined as the
ratio of the peak contrast concentration to the standard de-
viation of baseline signals� were estimated from DCE CT
data in normal liver parenchyma of patients with intrahepatic
cancer to be 150, 100, and 20 for the aorta, portal vein, and
liver parenchyma, respectively �further detailed information
is provided in the next section�. Thus, Gaussian-distributed
random noise was added to the theoretic functions of Ca�t�
and Cp�t� to obtain CNRs of 150 and 100, respectively. Simi-
larly, the CNR for CL�t� was varied between 10 and 20. The
temporal sampling interval, �t, of the DCE data was 1 s. For
each tested CNR, the perfusion parameters were estimated
5000 times by each of the two methods. For each parameter,
the relative standard deviation and the relative difference be-
tween the mean of the estimated value and the known value
were calculated. The instability of each method was deter-
mined by the relative standard deviation of the estimate, and
the bias was measured by the relative difference of the mean
from the known value. Figure 2 shows that stability for both
LLS and NLLS increases with CNR, and differences in sta-
bility between the two methods are less than 1.5% for all
three parameters. The bias for both LLS and NLLS is smaller
than 2%. The discrepancy between the two methods is toler-
able. However, the computation speed is improved by up to
100 times for LLS, compared to NLLS.

Next, a condition representing abnormal perfusion was
simulated. The ka, kp, and k2 values were chosen to be 30,
50, and 400 ml/100 g/min, respectively, which replicated
the parameters found in the liver parenchyma after it re-

the contrast-to-noise ratio over 5000 simulations for the three perfusion
s vs
ceived radiation. Then, the initial �a and �p values were var-
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ied from 0 to 6 s. Again, Gaussian-distributed random noise
was added to CL�t�, Ca�t�, and Cp�t� to have a CNR of 20,
150, and 100, respectively. The searching ranges for �a and
�p were set to be 0–10 s. Again, for each condition, the
parameters were estimated 5000 times by LLS. Figure 3
shows that for �a, differences between means and true values
are less than 0.25 s and standard deviations are less than 1 s
for all conditions. For �p, differences between mean and true
values are less than 1.5 s; the largest difference occurs at
�p=0, and the difference decreases rapidly with an increase
in �p while standard deviations are less than 2.5 s.

Example case with intrahepatic cancer

To generate data to demonstrate this fitting procedure �un-
der guidance from an internally reviewed and approved pro-
tocol and under informed consent� a patient with intrahepatic
cancer was scanned.13 The DCE CT scan was performed on
a 16-detector multislice scanner �Lightspeed 16, General
Electric, Milwaukee, WI�, with 2 cm aperture, 120 KvP,
100 mA, 1 rotation per second, and 8 images reconstructed
per rotation �2.5 mm slice thickness�. Prior to the DCE scan,
a baseline unenhanced series of 5 s duration was acquired at
controlled exhale using the cine imaging parameters men-
tioned above. During DCE acquisition, multiple breath hold
intervals were used to limit liver position changes and to
cover the time course of contrast uptake in the liver up to
approximately 120 s, as described in detail elsewhere.13 Dur-
ing the first 90-s imaging acquisition, the image volumes
were acquired every second. Subsequently, scanning was re-
peated in three 9 s intervals with 6 s gaps for free breathing

and 3 s acquisition for breath hold. The DCE scan resulted in
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an estimated CT dose index volume �CTDIvol� of 887 mGy.
We reduced the matrix size of the DCE CT images to 256
�256�8 from 512�512�8 by averaging signal intensities
of every four pixels in the axial planes. The contrast concen-
tration of the liver described in Eq. �4� is proportional to the
difference in enhanced CT signal intensities during contrast
uptake and baseline signal intensities in Hounsfield units.
The contrast concentrations in artery and portal vein phases
were determined from CT voxels that represent aorta and
portal vein, respectively. After image registration and data
sorting,13 we obtained the DCE CT data curves such as those
in Fig. 1, in which a time course lasts 120 s and covers the
contrast uptake in artery, portal vein, and liver parenchyma,
and has multiple �3 s gaps for free breathing.

Figure 4 shows fitting results obtained from NLLS and
LLS. The relative difference of residuals of the two fittings
was 0.8%. Relative differences of parameters between two
fittings were 4%, 7.7%, and 7.8% for ka, kp, and k2, respec-
tively. However, LLS fitting improved the computation speed
by approximately 400 times compared to NLLS fitting. Typi-
cally, it takes �30 min for computing liver perfusion in a
single slice by LLS fitting and �200 h by NLLS fitting on a
LINUX server of HP Proliant DL740.

Using voxel-by-voxel fitting, we obtained liver perfusion
�F=Fa+Fv� maps, which are color coded to denote the value
of perfusion in units of ml/100 g/min and spatially overlaid
on the baseline CT images �Fig. 5�. Similarly, artery perfu-
sion and portal vein perfusion are displayed separately in
Fig. 5. In normal liver parenchyma, typical total perfusion,
arterial perfusion, and portal vein perfusion were 128.4, 18.8,

FIG. 3. Three-dimensional scatterplots
of differences and standard deviations
of estimated �a and �p over 5000
simulations.
and 109.5 ml/100 g/min, respectively. The mean transit
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time was 12.7 s. The delay time was 1 s for both �a and �p.
In the center of the tumor �depicted by region of interest 1
in Fig. 5� where the portal vein perfusion is almost zero,
Fa=16.3 ml/100 g/min, Fp=2.4 ml/100 g/min, MTT
=73 s, �a=0 s, and �p=6 s. In another part of the tumor
�region of interest 2�, Fa=44.1 ml/100 g/min, Fp

=15.8 ml/100 g/min, MTT=30.9 s, �a=1 s, and �p=3 s.

SUMMARY

A linear least-squares method for estimates of voxel-by-
voxel liver perfusion using DCE CT data and a single com-
partmental and a dual input model has been described here.
This method converts a nonlinear problem to a linear prob-
lem and reduces the computational time by approximately
100 times compared to nonlinear least-squares fitting, and
the differences of fitted parameters between the two methods
are acceptable, as demonstrated by simulated data and the
DCE CT data from a patient with intrahepatic cancer.

In the single compartmental model, the fast exchange of
the contrast agent between the sinusoid and the space of
Disse is assumed, which is based upon the fact that in the
normal liver the endothelium contains fenestrate of
50–200 nm and has no basement membrane.6 For the small
molecule size of a contrast agent such as Ultravist 370
��700 Da in size� or Gd-DTPA ��470 Da in size�, it is rea-
sonable to assume E�1 in Eq. �2�. In an abnormal condition,
if the exchange rate between the sinusoid and the space of

FIG. 5. Total liver perfusion �left�, arterial perfusion �middle�, and portal
vein perfusion �right� maps �color encoded� obtained by linear least-squares
fittings overlaid on a CT image. Perfusion is color coded and denoted in
ml/100 g/min. The black contour depicts the cancer in which the arterial
perfusion increases and the portal vein perfusion decreases. Two white con-

tours denote two regions of interest in the tumor.
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Disse is reduced but the exchange time �1/rate� is still much
shorter than the mean transit time �1/rate � MTT�, the single
compartment may be still a reasonable assumption. Other-
wise, different models need to be considered.10

The DCE CT data that were used to test the liver perfu-
sion algorithm came from an IRB-approved clinical study, in
which the patients underwent focal hepatic radiation therapy.
For this treatment, significant volumes of their livers re-
ceived radiation doses of 40 Gy or higher. The radiation dose
received by this imaging protocol, which was limited to a
2-cm slab of the liver, was not significant compared to thera-
peutic dose given to the patients. However, the high dose of
the DCE CT may not be adequate for the purpose of diagno-
sis of patients who are not expected to undergo radiation
therapy to the liver. MRI may be an alternative modality to
measure liver perfusion. A CNR of 17 was estimated by us-
ing a 3D gradient echo pulse sequence with TR of 5.2 ms,
TE of 1.8 ms, flip angle of 30°, and voxel size 3�3
�3 mm3 at 1.5 Tesla. Using state-of-art MRI
technologies—3 Tesla and parallel imaging technologies—
fast temporal sampling and high signal-to-noise ratio can be
achieved and are more desirable for estimations of liver per-
fusion parameters.

In summary, this linear least-squares fitting makes voxel-
by-voxel quantitative estimates of liver perfusion using DCE
imaging data and a compartmental model practical for use in
clinical trials. Using these perfusion maps, perfusion changes
during and after therapy can be assessed for treatment re-
sponse and for normal tissue toxicity.
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