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Purpose: To improve object depth-localization for diffuse optical tomography (DOT) in a circular-
array outward-imaging geometry that is subjected to strong sensitivity variation with respect to imag-
ing depth.
Methods: The authors introduce an alternative DOT image reconstruction approach that optimizes
the data-model fit based on the paired measurements corresponding to two pairs of source-detector
that share either the source or the detector, in comparison to the conventional method that opti-
mizes the data-model fit based on the unpaired measurements corresponding to individual pairs of
source-detector. This alternative approach, namely, geometric-sensitivity-difference (GSD) method,
effectively reduces the variation of the reconstruction sensitivity with respect to imaging depth. The
DOT image reconstruction based on GSD-scheme applied to same-source source-detector pairs is
demonstrated using simulated and experimental continuous-wave measurements in a circular-array
outward-imaging geometry, of which the native sensitivity varies strongly with respect to the depth.
The outcomes of GSD-based image reconstruction are compared to those of two other methods: one
is the conventional baseline method that utilizes the native sensitivity but does not involve depth-
compensating scheme; and the other is a reference-compensation approach that employs active and
depth-adapted compensation scheme to counteract the dependence of the reconstruction sensitivity
with respect to imaging depth.
Results: The GSD method generally outperforms the other two methods in localizing the depth of
single object, resolving two objects that are azimuthally separated, and estimating the optical property
of single object or azimuthally separated dual objects. The GSD method, however, demands more
computations due to an increase of the element size of the resulted sensitivity matrix and more matrix
multiplications.
Conclusions: The GSD method improves the depth localization in the circular-array outward-
imaging geometry, by taking advantage of the paired measurements of two source-sharing
source-detector-pairs to passively and effectively homogenize the sensitivity of the reconstruc-
tion with respect to imaging depth. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4771957]
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I. INTRODUCTION

Diffuse optical tomography (DOT) is inherently prone to spa-
tially dependent sensitivity,1–4 due to scattering-dominated
photon propagation in biological tissue.5 The spatial de-
pendence of DOT sensitivity is also specific to the geom-
etry of the interface between the medium and the array
of optodes. The optode-array of DOT usually has one- or
two-dimensional symmetry2, 6–9 that gives rise to a sensitivity
distribution that is mostly uniform along the direction of the
symmetry except at locations close to the optodes. For exam-
ple, the spatial sensitivity of a circular array8, 9 that has evenly
distributed optodes along the circumference is azimuthally
invariant, and the spatial sensitivity of a near-planar array
whereupon the optodes are orderly distributed3, 7 changes in-
significantly over the lateral dimension of the array. However,

at the directions orthogonal to the symmetry of the optode
configuration, specifically along the depth into the medium,
the spatial sensitivity varies, generally, with a pronounced
peak in the proximity of the medium-array interface, as ex-
emplified by the thinner solid curve in Fig. 1(a) (detailed de-
scription of Fig. 1 is referred to Sec. II.A). Such variation of
the sensitivity causes depth-dependent reconstruction of the
contrast and resolution. More severely, it may cause objects
of different depths to be recovered at approximately the same
depth, the position at which the radial profile of the sensitivity
peaks.1–3, 7, 8 The depth-dependence of the sensitivity is thus a
common issue to be negotiated in many DOT applications,
including those to brain,7, 10 to breast using planar remission
geometry,1 and to prostate via endorectal probing for either
sagittal3 or axial9 imaging, etc. Among these DOT applica-
tions, the endorectal axial-imaging geometry is subjected to
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FIG. 1. Illustration of conventional DOT image reconstruction approaches
that utilize the measurements of individual source-detector-pairs. The thinner
solid curve represents the native sensitivity profile, the thicker solid curve
represents the modified sensitivity profile, and the dashed curve indicates
the regularization or compensation with respect to imaging depth. The boxes
pointed by framed arrows represent the signal responses to an object at po-
sition 1 and 2, respectively. (a) The signal responses to an object located at
different depths are different due to the spatial variations of the native sen-
sitivity. (b) Spatially varying regularization factors suppresses the stronger
intensity of the natural sensitivity during the sensitivity matrix inversion to
even the recovery of the object contrast with respect to imaging depth. (c)
Spatially varying weighting magnifies the weak sensitivity in deeper regions
and to even the recovery of the object contrast with respect to imaging depth.

arguably the strongest variation of the sensitivity with respect
to imaging depth, due to the rapid reduction of photon flu-
ence versus the source-detector distance when compared with
the geometries involving a planar interface or a curved inter-
face that encloses the medium.11 As will be shown, localiz-
ing the depth of an object of interest in such circular-array
outward-imaging geometry is challenging.

Robust localization of an object in the depth direction
along which the sensitivity varies significantly has to rely
upon establishing a reconstruction scheme in which the up-

dating of the medium optical properties is insensitive to the
imaging depth. Methods demonstrated to suppress the sensi-
tivity of reconstruction to the imaging depth can be coarsely
classified into two categories. The first category, as concep-
tually illustrated in Fig. 1(b), applies stronger regularization
to regions with higher native sensitivity to damp the response
of the reconstruction to the same amount of the update to the
optical properties. For a circular-array inward-imaging geom-
etry of which the spatial sensitivity tends to be azimuthally
uniform but decreases toward the center of the imaging ge-
ometry, Pogue et al. applied a radially varying regulariza-
tion parameter that had a greater magnitude near the sources
but smaller magnitude in the interior of the geometry.8 This
method, called spatially variant regularization (SVR), notice-
ably improved the reconstruction, as the artifacts near the op-
tode array were suppressed and the contrast and resolution
across the image were equalized. However, artifacts could
appear at the center of the circular image, and the param-
eters determining the radial variation of the regularization
were required to be optimized for a particular imaging ge-
ometry and a specific object size. It is also noted that the
spatial sensitivity of the circular-array inward-imaging geom-
etry utilized by Pogue et al.8 decreases only mildly versus
the depth from the medium-boundary, when compared to that
of the circular-array outward-imaging geometry to be investi-
gated in this study. The second category of methods, as con-
ceptually illustrated in Fig. 1(c), implements a spatially re-
solved weighting scheme to the native depth-dependent sen-
sitivity in the iteration process. For a near-planar geometry
of which the variation of the spatial sensitivity with respect
to depth was stronger than that of the inward-imaging ge-
ometries of Ref. 8, Culver et al. employed spatially varied
contrast-to-noise-ratio weighting to the reconstruction, after
the data were corrected for optode mispositioning, to improve
both the point-spread-function and the object-localization in
depth.10 For geometries that were similar to the near-planar
one in Ref. 10, Niu et al.,2 Huang and Zhu,1 and Zhao et al.4

embedded depth-dependent weighting matrices in the itera-
tive process to counterbalance the depth-variations of the re-
spective native spatial sensitivities. The methods1, 2, 4 of the
second category effectively elevated the response of the ob-
jective functions to the same amount of the update to the opti-
cal properties in deeper depths; however, the spatially varied
weighting to the sensitivity profiles, such as that introduced
by the depth-compensation-algorithm (DCA),2 naturally has
to be optimized case-by-case.

These previously demonstrated methods, all making the re-
construction less sensitive to the object depth, may be differ-
ent in terms of how the native sensitivity profile was compen-
sated or counteracted. As in some the actions were imposed
indirectly by the regularization but in others were applied di-
rectly to the sensitivity function; however, all these methods
were similar, in terms of fitting the calculated data to the in-
dividual measurements taken by individual source-detector-
pairs. This study introduces an alternative method of opti-
mizing the data-model fit, which is to fit the calculated data
to the paired measurements taken by two source-detector-
pairs that share either the source or the detector. An intuitive
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explanation of this method is that, although the sensitivity of
one pair of source-detector with respect to an object could
vary significantly over the depth of the object, the relative re-
sponse between two pairs of source-detector that share one
optode could vary substantially less over the depth with re-
spect to the same object, and hypothetically the image recon-
struction based on this relative or paired response could be
more robust in localizing the object than that based on the re-
sponse of individual pairs of source-detector. The relative re-
sponse between two optode-sharing source-detector-pairs to
a given medium heterogeneity is related to the positioning
(i.e., geometric) difference of the heterogeneity with respect
to the two source-detector-pairs, therefore, the reconstruc-
tion scheme that takes advantage of such relative or paired
response is called a geometric-sensitivity-difference (GSD)
based reconstruction. The objective of this study is to demon-
strate that the GSD method effectively evens the reconstruc-
tion updating sensitivity with respect to imaging depth and
consequently improves DOT depth-localization. The GSD
differs from previously investigated depth-compensation re-
construction method in that it does not involve depth-adapted
or to-be-optimized parameters in order to reduce the varia-
tion of the reconstruction sensitivity with respect to imaging
depth.

The rest of the paper is arranged as follows. Section II
presents the analytical formations of GSD method as it
applies to DOT image reconstruction in the context of
Levenberg–Marquardt (LM) minimization,12 using paired
continuous-wave (CW) measurements from source-sharing
source-detector-pairs. Section III outlines the circular-array
axial outward-imaging geometry to be studied, of which the
native sensitivity with respect to imaging depth varies signif-
icantly more than those of planar or circular-array inward-
imaging geometries of previous studies. Section III also de-
scribes two reconstruction approaches against which the GSD
method will be evaluated: one is a conventional or baseline
method that applies a spatially invariant regulation in the LM
minimization;13 and the other is a reference-compensation
approach which is similar in methodology to the DCA
method but is more robust than the original DCA method
for the circular-array outward-imaging geometry of this study.
Section IV details simulation and experimental methods used
for evaluating the three reconstruction methods. The simu-
lation and experimental results in Sec. V demonstrate that
the GSD method generally outperforms the baseline and
reference-compensation methods, in terms of localizing the
depth of single object, resolving two azimuthally separated
objects, and estimating the optical property of single object
or azimuthally separated dual objects in the circular-array
outward-imaging geometry. As all three methods involve a
step-specific regularization scheme in the iterations, the same
step-specific regularization factor optimal to the reference-
compensation method is applied to the baseline reconstruc-
tion and the GSD based reconstruction. A step-specific regu-
larization factor optimal to the baseline method for the studied
geometry was found difficult to determine, because the base-
line method performs very poorly in the studied geometry, as
to impair the evaluation of the outcomes at different choices

of the step-specific regularization factors. The step-specific
regularization factor optimal to the reference-compensation
method is not necessarily optimal to the GSD method. An out-
performance of the GSD method over the baseline method is
unsurprising at all, because the effective sensitivity profile of
the former method is much more uniform with respect to the
imaging depth than that of the latter method. The outperfor-
mance of the GSD method over the reference-compensation
method shall relate to the pairing measurements by the for-
mer method versus the unpaired measurements by the latter
method. Section VI discusses how the GSD operation may be
implemented to Tikhonov minimization and the general-least-
square (GLS) minimization.13

II. THE GEOMETRIC-SENSITIVITY-DIFFERENCE
METHOD

The model of frequency-domain (FD) photon propaga-
tion in turbid media by using a diffusion approximation to
the Boltzmann transport equation results in the following
Helmholtz type equation:

−∇ · [D(
⇀

r )∇�(
⇀

r, ω)] + μa(
⇀

r )�(
⇀

r, ω) = q0(
⇀

r, ω), (1)

where �(�r, ω) is the photon fluence rate at a position
⇀

r , D
= 1/[3(μa + μ ′

s)] is the diffusion coefficient, μa is the ab-
sorption coefficient, μ ′

s is the scattering coefficient, ω is the
angular modulation frequency, and q0(�r, ω) is the source term.
A Robin-type condition applies to the medium-applicator in-
terface

⇀

r 0 as

�(
⇀

r 0, ω) + 2D(
⇀

r 0)An̂0 · ∇�(
⇀

r 0, ω) = 0, (2)

where n̂0 is the unit outward-pointing vector normal to the
interface and A is a coefficient determined by the reflective
index mismatch across the boundary. By a phasor notation,
�(

⇀

r, ω) = Iejθ , where I and θ are the magnitude and phase
of the photofluence rate, respectively, �(

⇀

r, ω) can be imple-
mented in logarithm as14

log[�(
⇀

r, ω)] = log(I ) + jθ (3)

to yield a better scaled inverse problem for the
reconstructions.15 An alternative form of Eq. (3), �(

⇀

r, ω)
= {log(I ), θ}, will be used for the following analytics.

II.A. Image reconstruction based on the
measurements taken by individual
source-detector-pairs

We use 〈Si, Dj〉 to denote a source-detector pair consist-
ing of a source i and a detector j on the medium boundary,
and {〈Si, Dj〉} to indicate the ensemble of all pairs of source-
detector. The conventional objective function of the DOT in-
verse problem is thereby13

‖χ‖2 = ‖[�{〈Si ,Dj 〉}]m − [�{〈Si ,Dj 〉}(μ)]c‖2, (4)

where μ specifies μa and D, the subscripts m and c represent,
respectively, the “measurement” and the “calculation,” and χ

is the data-model misfit. The objective function in Eq. (4) is
iteratively minimized by updating the calculated photon flu-
ence rate using the following form, which ignores the higher
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order terms (order ≥2) in Taylor series expansion around the
μ values of the previous iteration:

[�(μn)]c ≈ [�(μn−1)]c + Jδμn, (5)

where the subscripts n and n − 1 are the iteration numbers,
and δ is the difference between the referred value at current
and the previous iterations as δμn = μn − μn−1. The J in
Eq. (5) is the Jacobian, or called the sensitivity matrix, which
is the first order derivative of the measurement quantities with
respect to the optical properties.

Rearranging Eq. (4) using Eq. (5) gives

χn = �m − �c(μn) ≈ �m − �c(μn−1) − Jδμn

= χn−1 − Jδμn. (6)

The reconstruction process, which is to iteratively compute
the change of the objective function with respect to the change
of the optical property until the change of the former reaches
a predetermined stopping criterion, is equivalent to solving

∂(χ )2

∂μ
= ∂(�m−�c)2

∂μ
= − 2

(
∂�c

∂μ

)
χ= − 2 · J T χ = 0.

(7)

Substituting Eq. (6) to Eq. (7) at the nth iteration gives

J T · (χn−1 − J · δμn) = 0. (8a)

Therefore, the update of the optical properties at the nth iter-
ation is

δμn = (J T J )−1J T χn−1. (8b)

To facilitate a better conditioning of the inversion of JTJ in
Eq. (8b), a Levenberg–Marquardt scheme implements a diag-
onal regularization factor λ in the form of

δμn = (J T J + λI )−1J T χn−1. (8c)

The λ value is typically step-wisely adjusted,13 i.e., the λ

value at each step of iteration is reduced with respect to that
in the immediate previous step (an empirical damping factor
of 1.78 is used in this work).

We denote N as the total number of the spatial elements
for which the updating of the optical properties is performed,

“NoS” as the number of source channels, and “NoD” as the
number of detector channels. Then the complete Jacobian ma-
trix, of FD measurements, amounts to the form of

J[NoD∗NoS∗2]×[N∗2]

=

⎡
⎢⎢⎢⎣

[
∂ log(I )

∂μa

]
[NoD∗NoS]×N

[
∂ log(I )

∂D

]
[NoD∗NoS]×N[

∂θ

∂μa

]
[NoD∗NoS]×N

[
∂θ

∂D

]
[NoD∗NoS]×N

⎤
⎥⎥⎥⎦ ,

(9a)

wherein each of the four blocks of the right-hand-side has
(NoD*NoS) rows and N columns. In the following analytics,
however, we will consider only the upper-left block of the Ja-
cobian of Eq. (9a) for compactness. The upper-left block of
the Jacobian may conform to the simplest case of recovering
the absorption coefficients by using intensity information as
could be rendered by CW measurements. However, the ana-
lytical formulations of the GSD method discussed for the CW
case can be straightforwardly extended to recovering both ab-
sorption and scattering properties, which is not impractical by
using only CW measurements,16–18 or to recovering both ab-
sorption and scattering properties by using FD measurements
that include phase information. The extensions involve either
doubling the numbers of columns or doubling the numbers of
both columns and rows.

In the remaining analytics, as we will consider J

= [∂ log(I )/∂μa][NoD∗NoS]×N, log(I) is to be replaced by ψ ,
and μa by μ, for clarity. The remaining analytics will also
specify that NoS = 8 and NoD = 8, to conform to the geom-
etry (Fig. 3) involved later in the simulation and experimental
studies. With these customizations, the Jacobian matrix be-
comes

J♦ =
[

∂ψ

∂μ♦

]
64×N

= [ J 1 J 2 ...... J N ] , (9b)

where J♦and μ♦, ♦ = {1: N}, are, respectively, the sub-matrix
of J and the μ associated with the “♦th” spatial element. J♦

has a matrix dimension of 64 × 1, and is shown explicitly as

J♦ = [
J

♦
〈S1,D1〉 ...... J

♦
〈S1,D8〉J

♦
〈S2,D1〉 ...... J

♦
〈S2,D8〉 ............ J

♦
〈S8,D1〉 ...... J

♦
〈S8,D8〉

]T
, (10a)

where

J
♦
〈Si ,Dj 〉 = ∂�〈Si ,Dj 〉

∂μ♦ i = {1, 2, ...... 8} ; j = {1, 2, ...... 8} ; ♦ = {1 : N} (10b)

is the sensitivity of the measurement by the source-detector-
pair 〈Si, Dj〉 with respect to the “♦th” spatial element.

The DOT measurement corresponding to an individual
source-detector-pair is conceptually illustrated in Fig. 1.
Figure 1(a) shows the measurement by the pair of source-

detector 〈Si, Dj〉 in response to a single object with a positive
absorption contrast over the background at varied depths (ei-
ther depth 1 or 2). The thinner solid curve within the medium
indicates the hypothetical depth-dependence of the measure-
ment sensitivity, i.e., J

♦
〈Si ,Dj 〉 of Eq. (10b) evaluated for all ♦

Medical Physics, Vol. 40, No. 1, January 2013



013101-5 G. Xu and D. Piao: GSD reconstruction for improved object depth-localization in DOT 013101-5

elements located along the specific depth direction. The solid
boxes at the right edge and pointed by the framed arrows
represent the change of the measurements between without
the object and with the object at the two depths. The sig-
nal change corresponding to the object at depth 1 would be
greater than that corresponding to the identical object at depth
2, owing to the variation of the measurement sensitivity with
respect to depth. Figure 1(b) illustrates the effect of apply-
ing a series of regularization factors that decreases in strength
along the depth (dashed curve), such as the one achieved by
SVR approach.8 The outcome of this depth-adapted “regular-
ization” is equivalent to suppressing the change of the data-
model misfit with respect to the same amount of update to
the optical property at regions of higher measurement sensi-
tivity. The regularization results in an overall reconstruction
response (the thicker solid curve) that varies less with respect
to the depth. On the other hand, Fig. 1(c) illustrates the effect
of applying a sensitivity-weighting matrix that increases in
strength along the depth (dashed curve), as is reported by the
DCA approach.2 The outcome of this “weighting” approach
is to elevate the change of the data-model misfit with respect
to the same amount of update to the optical property in re-
gions with less measurement sensitivity, which also results in
an overall reconstruction response (the thicker solid curve) of
varying less upon the depth.

II.B. Image reconstruction based on paired
measurements taken by source-sharing
source-detector-pairs

Figure 2 conceptually illustrates the measurements taken
by two source-detector-pairs that share the source. The solid
curve and the dashed curve represent hypothetical depth-
sensitivities of the measurements by 〈Si, Dj〉 and 〈Si, Dj+k〉,
respectively, and k is the difference between the serial num-
bers of the detectors in the two source-detector-pairs. These
sensitivity values are J

♦
〈Si ,Dj 〉 and J

♦
〈Si ,Dj+k〉, respectively, eval-

uated for the same set of ♦ elements located along the specific
depth direction. The solid boxes at the right edge and pointed
by the framed arrows represent the change of the respective
measurements by 〈Si, Dj〉 and 〈Si, Dj+k〉 without and with the
object at the two depths. The signal change corresponding to
either 〈Si, Dj〉 and 〈Si, Dj+k〉 for the object at depth 1 would
be greater than that at depth 2 for the sensitivities varying
with respect to depth as shown; however, the relative sensi-
tivity between 〈Si, Dj〉 and 〈Si, Dj+k〉 for the same object at
different depths varies much less than the individual sensitiv-
ity of 〈Si, Dj〉 or 〈Si, Dj+k〉 does. For the special case of the
detector Dj and Dj+k being symmetric to the source Si, and an
object located at a position symmetric to the detector Dj and
Dj+k, the relative sensitivity between 〈Si, Dj〉 and 〈Si, Dj+k〉
will be the same with respect to the depth of the object, re-
gardless of the depth-variation of the individual sensitivities
of 〈Si, Dj〉 or 〈Si, Dj+k〉, for the object in an otherwise ho-
mogenous medium. These hypothetical analyses suggest that
the objective function using the paired measurements taken
by source-sharing source-detector-pairs could be insensitive
to the depth of the object to be recovered, when comparing to

FIG. 2. Illustration of DOT image reconstruction approaches that utilizes
the paired measurements from two source-sharing source-detector-pairs. The
solid curve represents the native sensitivity profile of 〈Si, Dj〉, the dashed
curve represents the native sensitivity profile of 〈Si, Dj+k〉. The framed
dual-ended arrows indicate the difference between the sensitivity of the two
source-detector-pairs. The framed arrows indicate the difference between the
signal responses measured between the two source-detector-pairs. (a) The
signal responses by either of the two same-source source-detector pairs 〈Si,
Dj〉 and 〈Si, Dj+k〉 to an object located at different depths are different; (b) The
relative differences between the signal responses of 〈Si, Dj〉 and 〈Si, Dj+k〉
to the same object at different depths are different, yet the difference be-
tween the sensitivity profiles of the two source-detector-pairs are less depth-
dependent.

the objective function using the unpaired measurements taken
by individual source-detector-pairs.

We analyze the forward-pairing between two source-
sharing source-detector pairs, i.e., 〈Si, Dj〉 and 〈Si, Dm〉 with j
< m. The relative sensitivity of the measurements by 〈Si, Dj〉
and 〈Si, Dm〉 with respect to the ♦th element is

∂[�〈Si ,Dj 〉 − �〈Si ,Dm〉]
∂μ♦ = ∂�〈Si ,Dj 〉

∂μ♦ − ∂�〈Si ,Dm〉
∂μ♦

= J
♦
〈Si ,Dj 〉 − J

♦
〈Si ,Dm〉 = J̃

♦
〈Si ,Dj ,Dm〉.

(11a)

The complete forward-pairing with respect to 〈S1, D1〉 com-
poses J̃

♦
〈Si ,Dj ,Dm〉 with i = 1, j = 1, m = {2:8}, which has the
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following explicit form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃
♦
〈S1,D1,D2〉

J̃
♦
〈S1,D1,D3〉

J̃
♦
〈S1,D1,D4〉

J̃
♦
〈S1,D1,D5〉

J̃
♦
〈S1,D1,D6〉

J̃
♦
〈S1,D1,D7〉

J̃
♦
〈S1,D1,D8〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

1 0 0 −1 0 0 0 0

1 0 0 0 −1 0 0 0

1 0 0 0 0 −1 0 0

1 0 0 0 0 0 −1 0

1 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
♦
〈S1,D1〉

J
♦
〈S1,D2〉

J
♦
〈S1,D3〉

J
♦
〈S1,D4〉

J
♦
〈S1,D5〉

J
♦
〈S1,D6〉

J
♦
〈S1,D7〉

J
♦
〈S1,D8〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11b)

Equation (11b) can be simplified to the form of[
J̃

♦
{〈S1,D1,D2:8}

]
7×1 = [

Diff♦〈S1,D1,D2:8〉
]

7×8

× [
J

♦
〈S1,D1〉 J

♦
〈S1,D2〉 ...... J

♦
〈S1,D8〉

]T
,

(11c)

where the [Diff] matrix performing the forward-pairing dif-
ferentiation of the native sensitivity values is called the GSD
operation matrix. The [Diff] matrix of Eq. (11c) that is as-
sociated with 〈S1, D1〉 has a dimension of 7 × 8, whereas
similar complete forward-pairing GSD operations to 〈S1, Dj〉,
j = {2:7}, will generate respective [Diff] matrix that has a di-
mension of (8 − j) × 8, as explicitly listed in Table I. Note
that none of the empty blocks in Table I contribute to the dif-
ferentiation (i.e., they are the “zero” elements in the [Diff]
matrix). Each set of the blocks in Table I associated with the
same starting source-detector-pair 〈S1, Dj〉, j = {1:7}, in the
forward-pairing GSD operation, can be expressed in a general

form of[
J̃

♦
{〈S1,Dj ,D(j+1):8}

]
(8−j )×1

= [
Diff♦〈S1,Dj ,D(j+1):8〉

]
(8−j )×8

× [
J

♦
〈S1,D1〉 J

♦
〈S1,D2〉 ...... J

♦
〈S1,D8〉

]T
∣∣∣
j={1:7}

. (12a)

The complete set of the blocks in Table I represents the
forward-pairing GSD operation on all source-detector-pairs
that share the source 1. The complete forward-pairing GSD
operation on all source-detector-pairs that share each of the
other seven sources will have a structure identical to the one
shown in Table I, with only a change in the source channel.
Therefore, the complete set of forward-pairing GSD opera-
tions to all source-detector-pairs that share the source Si,
i = {1:8}, can be represented by J̃

♦
{〈Si ,Dj ,Dm〉}, or simplified

as J̃
♦
{Si } of the following:[
J̃

♦
{Si }

]
28×1 = [

Diff♦
{Si }

]
28×8

× [
J

♦
〈Si ,D1〉 J

♦
〈Si ,D2〉 ...... J

♦
〈Si ,D8〉

]T
∣∣∣
i={1:8}

.

(12b)

The complete [J̃♦
{Si }]28×1 for i = {1:8} are presented in

Table II, of which each block along the diagonal is identi-
cal to Table I in terms of the structure except a change to the
source number i. Table II follows the matrix form of

[J̃♦]224×1 = [Diff♦]224×64[J♦]64×1. (12c)

It is worthy to present the counterparts to Eqs. (12a)–(12c)
for general NoS and NoD:

[
J̃

♦
{〈S1,Dj ,D(j+1):NoD}

]
(NoD−j )×1 = [

Diff♦〈S1,Dj ,D(j+1):NoD〉
]

(NoD−j )×NoD

[
J

♦
〈S1,D1〉 J

♦
〈S1,D2〉 ...... J

♦
〈S1,DNoD〉

]T
∣∣∣
j={1:(NoD−1)}

, (13a)

[
J̃

♦
{Si }

]
[(NoD−1)∗NoD/2]×1 = [

Diff♦{Si }
]

[(NoD−1)∗NoD/2]×NoD

[
J

♦
〈Si ,D1〉 J

♦
〈Si ,D2〉 ...... J

♦
〈Si ,DNoD〉

]T
∣∣∣
i={1:NoS}

, (13b)

[J̃♦][(NoD−1)∗NoD/2∗NoS]×1 = [Diff♦][(NoD−1)∗NoD/2∗NoS]×[NoD∗NoS][J
♦][NoD∗NoS]×1. (13c)

By applying Eqs. (12c) or (13c) to all N spatial elements,
a matrix transformation to the native sensitivity J by a com-
plete and nonredundant forward-pairing GSD-operator [Diff]
follows as

J̃ = [Diff]J, (14)

where the dimension of J̃ is [(NoD − 1)*NoD/2*NoS] × 1
× N, that of [Diff] is [(NoD − 1)*NoD/2* NoS] ×
[NoS*NoD] × N, and that of J is [NoS*NoD] × 1 × N. It
is noticed that the matrix multiplication in Eq. (14) is per-
formed for the first two dimensions of the three matrices.

The third dimension N indicates that the matrix multiplica-
tion described by Eq. (13) is repeated for each of the N ele-
ments. Therefore, the native Jacobian matrix is presented in
the form of [NoS*NoD] × 1 × N rather than its original form
of [NoS*NoD] × N.

By using the GSD-operation of Eq. (14), the objective
function for reconstruction changes from the one of Eq. (4)
to

‖χ̃‖2 = ∥∥[�̃]m−[�̃]c
∥∥2 = ‖[Diff ] [�]m −[Diff ] [�]c‖2

= [�m − �c]T [Diff ]T [Diff ][�m − �c]. (15)
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TABLE I. Illustration of the iterative assembly of the geometric-difference of the sensitivities associated with source-detector channels sharing the source
channel 1. Note: the blank cells are zeros. The bold italic characters indicate the sign flipping. The bold numbers will cancel the bold italic numbers during the
column summation, leaving only the rows highlighted in green.

Forward-paring with respect to For the ♦th element J〈S1,D1〉 J〈S1,D2〉 J〈S1,D3〉 J〈S1,D4〉 J〈S1,D5〉 J〈S1,D6〉 J〈S1,D7〉 J〈S1,D8〉

〈S1, D1〉 7 rows J̃〈S1,D1,D2〉 1 −1
J̃〈S1,D1,D3〉 1 −1
J̃〈S1,D1,D4〉 1 −1
J̃〈S1,D1,D5〉 1 −1
J̃〈S1,D1,D6〉 1→ (−1) −1→(1)
J̃〈S1,D1,D7〉 1→(−1) −1→(1)
J̃〈S1,D1,D8〉 1→(−1) −1→(1)

〈S1, D2〉 6 rows J̃〈S1,D2,D3〉 1 −1
J̃〈S1,D2,D4〉 1 −1
J̃〈S1,D2,D5〉 1 −1
J̃〈S1,D2,D6〉 1 −1
J̃〈S1,D2,D7〉 1→(−1) −1→(1)
J̃〈S1,D2,D8〉 1→(−1) −1→(1)

〈S1, D3〉 5 rows J̃〈S1,D3,D4〉 1 −1
J̃〈S1,D3,D5〉 1 −1
J̃〈S1,D3,D6〉 1 −1
J̃〈S1,D3,D7〉 1 −1
J̃〈S1,D3,D8〉 1→(−1) −1→(1)

〈S1, D4〉 4 rows J̃〈S1,D4,D5〉 1 −1
J̃〈S1,D4,D6〉 1 −1
J̃〈S1,D4,D7〉 1 −1
J̃〈S1,D4,D8〉 1 −1

〈S1, D5〉 3 rows J̃〈S1,D5,D6〉 1 −1
J̃〈S1,D5,D7〉 1 −1
J̃〈S1,D5,D8〉 1 −1

〈S1, D6〉 2 rows J̃〈S1,D6,D7〉 1 −1
J̃〈S1,D6,D8〉 1 −1

〈S1, D7〉 1 row J̃〈S1,D7,D8〉 1 −1

Both �̃ and χ̃ are now column vectors that have
[NoS*NoD*(NoD − 1)/2] rows. Accordingly, Eq. (8b) trans-
forms to

δμn = (J̃ T J̃ )−1 × J̃ T × χ̃n−1

= (J T [Diff]T [Diff]J )−1 × J T [Diff]T × [Diff]χn−1

(16a)

and Eq. (8c) transforms to

δμn = (J̃ T J̃ + λI )−1 × J̃ T × χ̃n−1. (16b)

III. GEOMETRY AND METHODS
OF RECONSTRUCTION INVOLVED

III.A. The geometry studied and the
depth-dependence of the native sensitivity

In this study we use a circular-array outward-imaging
geometry as is shown in Fig. 3. This imaging geometry has
an inner radius of 10 mm and an outer radius of 50 mm,
with eight sources and eight detectors evenly interspersed
along the inner boundary. Note that the outer boundary
of the reconstruction domain is not a physical bound-
ary as is the inner boundary. However, the depth of the

TABLE II. Assembly of all source-detector pairs. Parameters in Table I are repeated for the J{〈Si ,Dj 〉} and J{〈Si ,Dj ,Dj+k 〉}. Note: blank cells are zeros.

For the ♦th element J{〈S1,Dj 〉} J{〈S2,Dj 〉} J{〈S3,Dj 〉} J{〈S4,Dj 〉} J{〈S5,Dj 〉} J{〈S6,Dj 〉} J{〈S7,Dj 〉} J{〈S8,Dj 〉}

J̃{S1}
∣∣
28×1 Table I

J̃{S2}
∣∣
28×1 Table I

J̃{S3}
∣∣
28×1 Table I

J̃{S4}
∣∣
28×1 Table I

J̃{S5}
∣∣
28×1 Table I

J̃{S6}
∣∣
28×1 Table I

J̃{S7}
∣∣
28×1 Table I

J̃{S8}
∣∣
28×1 Table I
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FIG. 3. Imaging geometry. (a) Photograph of the 20 mm diameter outward-
imaging DOT applicator; (b) side-view; and (c) axial front view of the source-
detector layout.

reconstruction domain warrants that treating the outer bound-
ary as a physical one has minimal interference to the photon
fluence rate in the useful imaging region proximal to the inner
boundary. For this circular outward-imaging array what we
concerned was reconstructing objects in the plane of the op-
tode array as occurring to axial endorectal imaging; therefore,
the introduced GSD method is evaluated primarily in a two-
dimensional geometry. Nonetheless, an example of applying
GSD method to a simple three-dimensional geometry is also
presented. The two-dimensional annular imaging domain
applying to the geometry of Fig. 3 was discretized to a finite
element mesh including 7708 evenly distributed nodes and
15 040 elements. The display of the sensitivity distributions,
the forward, and inverse computations were realized based on
NIRFAST.14

The potential of GSD method in alleviating the sensitivity
variation with respect to the imaging depth may be graph-

ically appreciated by comparing the difference between the
sensitivity profiles of two neighboring source-sharing source-
detector-pairs as those shown in Fig. 4. Figures 4(a) and 4(b)
display the native sensitivity distributions corresponding to
〈S1, D2〉 and 〈S1, D3〉, respectively. Plotted in Figs. 4(c)–
4(f) are the sensitivity values along the four radial directions
within the overlapping area of the two sensitivity profiles. The
two radial sensitivity profiles in all four directions within their
common decaying-region are nearly parallel to each other in
terms of the slopes of depth-degradation. The relatively even
change of the two radial profiles over the decaying-region
manifests that differentiating the two radial profiles will not
produce a peak as prominent as presented by the individual ra-
dial profile. Note that at one place over the entire depth range
the two radial profiles cross each other as shown in Figs. 4(d)–
4(f), indicating that the differentiation of the two radial pro-
files could encounter a sign change across a specific radial po-
sition. This sign change, however, is to be accompanied by the
differentiation of the measurements by the two correspond-
ing source-detector pairs when applying the GSD method, so
the resulted product in Eq. (16) between the sensitivity and the
measurement terms is likely to remain positive. Therefore, the
crossing pattern that could occur in the GSD implementation
does not necessarily cause the reversing of the contrast to be
recovered, as will be demonstrated in Secs. IV–VI. Since the
same principles apply to source-detector-pairs that share the
detector, the remaining demonstrations are limited to source-
detector-pairs that share the source.

III.B. Choice of methods to which the GSD method
is compared

It is straightforward to evaluate the outcome of GSD-based
DOT image reconstruction to that of a baseline method of
DOT reconstruction that uses the native sensitivity profiles

FIG. 4. The difference between the sensitivity profiles of two source-sharing source-detector-pairs in the imaging geometry corresponding to Fig. 3. (a) and (b)
are the two-dimensional sensitivity profiles between two source-sharing source-detector-pairs. (c)–(f) include the sensitivity profiles along the marked directions
for both source-detector-pairs. The two radial sensitivity profiles in all four directions within their common decaying-region are shown nearly parallel to each
other in terms of the depth-degradation.
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but does not involve a depth-compensating scheme. On the
other hand, it becomes imperative to compare the outcome of
GSD method with that of methods including SVR or DCA
that involves active compensation of the depth variation of
the update function. Niu et al.19 have suggested that SVR
method is not as robust as DCA method is in improving
the image quality for deep objects in a planar-geometry. It
is, therefore, anticipated that the SVR method would be less
effective than the DCA method in dealing with the stud-
ied circular-array outward-imaging geometry of which the
variation of the sensitivity with respect to imaging depth is
much stronger than that of a planar geometry. The DCA
method in Ref. 2 modifies the sensitivity matrix by a weight-
ing scheme of JR = Mγ J to achieve an update function of the
following:

δμ = [[JR]T JR + λI ]−1[JR]T χ. (17)

The weighting implemented in JR is M = {diag[MSV(Jl),
MSV(Jl−1),. . . , MSV(J2), MSV(J1)]}, where MSV(Jl) stands
for the maximum singular value of the sensitivity terms in
Jl, the subscripts {1, 2, . . . , l} denote the subgroups of J
in an artificially stratified layer l over the depth, and γ is a
power factor. In Eq. (17) there are two parameters to opti-
mize, the total number of layers l and the power factor γ . We
have tested this DCA method for the studied circular-array
outward-imaging geometry in Appendix A, and concluded
that the variation of the sensitivity with respect to the imag-
ing depth of the studied geometry appears to be too strong
for the DCA method to effectively compensate to the extent
as having been demonstrated for the planar-geometry.2 We
hereby implement a reference-compensation method, which
can be viewed as an enhanced DCA method, against which
the GSD method will be evaluated. The update equation of
this reference-compensation method is identical to Eq. (17)
except that JR = MSVRJ, where MSVR is a sensitivity com-
pensation matrix that is exponentially regulated according to
the radial depth of the spatial element, and is a square ma-
trix that has all nonzero terms (totaling N) located along its
diagonal. For the studied circular-array outward-imaging ge-
ometry with an inner radius of 10 mm the diagonal elements
of MSVR are calculated for each of the N spatial elements with
respect to their distance (ρ) from the center of the geometry

as

MSVR(i, j )

=
{

500 exp(ρi−10)/(R−10) if(i = j, i.e., diagonal element)

0 else
,

(18)

where i and j are the row and column indices of the MSVR

matrix, respectively.

III.C. The effective sensitivity distributions and the
optimization of the regularization parameters

The effective sensitivity distribution over the entire imag-
ing domain can be evaluated by summing the sensitivity terms
corresponding to the same spatial element ♦ and associ-
ated with all source-detector-pairs, i.e.,

∑
[J♦

{〈Si ,Dj 〉}] for the

baseline method [Fig. 5(a)],
∑

[J♦
R{〈Si ,Dj 〉}] for the reference-

compensation method [Fig. 5(b)], and
∑

[J̃♦
{〈Si ,Dj ,Dm〉}] for the

GSD method [Fig. 5(c)]. The effective sensitivity distribu-
tion shown in Fig. 5(c) may appear rotationally asymmetric;
however, the appearing asymmetry does not impair the actual
rotational symmetry of the effective sensitivity. This can be
illustrated by the following analysis that involves a slight re-
arrangement of the terms of GSD sensitivity matrix. Taking
the sensitivity terms in Table I, for example, if the signs of
all J̃{〈Si ,Dj ,Dm〉} terms that satisfy m − j > 4 are reversed, the
rows containing paired blocks with bold italic numbers such
as “1” and “−1” will incur a sign change to the paired blocks,
denoted by “1 → (−1)” and “−1 → (1)”, i.e., the reversing
of the order of J〈Si ,Dj 〉} and J〈Si ,Dm〉} in J̃{〈Si ,Dj ,Dm〉}. Then if
we perform a column-wise summation of all terms of Table I,
those individual sensitivity terms of each column correspond-
ing to the blocks containing bold numbers will cancel with
the blocks containing bold Italic numbers. The uncancelled
terms will contribute as the total effective sensitivity distribu-
tion imposed by S1:∑

[J̃♦
{〈Si ,Dj ,Dm〉}]

∣∣∣
i=1

= J̃〈S1,D1,D5〉 + J̃〈S1,D2,D6〉

+ J̃〈S1,D3,D7〉 + J̃〈S1,D4,D8〉. (19a)

FIG. 5. Effective sensitivity [∂log(I)/∂μa] distributions evaluated for the entire imaging domain. (Unit: dB/mm−1) (a) The one corresponding to J of the baseline
method and Eq. (6). (b) The one corresponding to JR of the reference compensation method and Eq. (17). (c) The one corresponding to J̃ of the GSD method
and Eq. (12). (d) The one corresponding to rearranged J̃ of the GSD method and Table III. The radial profiles of the effective sensitivity distributions of (a),
(b), and (d) are plotted together in (e).The effective sensitivity of the baseline method varies greatly with respect to the depth and peaks at an approximate depth
of 4 mm. The reference-compensation method elevates the effective sensitivity in the entire depth and shifts the apparent peak of it to an approximate depth of
10 mm, a much greater depth than that of baseline method. The effective sensitivity by the GSD method varies negligibly with respect to the depth and is
negligibly small in strength comparing to the other two methods.
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TABLE III. Rearranged GSD matrix resulting in the effective sensitive profile of the one shown in Fig. 5(d). Bold italic numbers indicate the sign flippings.

Forward-paring with respect to For the ♦-th element J〈S1,D1〉 J〈S1,D2〉 J〈S1,D3〉 J〈S1,D4〉 J〈S1,D5〉 J〈S1,D6〉 J〈S1,D7〉 J〈S1,D8〉

〈S1〉 4 rows J̃〈S1,D1,D5〉 1 −1
J̃〈S1,D2,D6〉 1 −1
J̃〈S1,D3,D7〉 1 −1
J̃〈S1,D4,D8〉 1 −1

〈S2〉 4 rows −J̃〈S2,D1,D5〉 1→(−1) −1→(1)
J̃〈S2,D2,D6〉 1 −1
J̃〈S2,D3,D7〉 1 −1
J̃〈S2,D4,D8〉 1 −1

〈S3〉 4 rows −J̃〈S3,D1,D5〉 1→(−1) −1→(1)
−J̃〈S3,D2,D6〉 1→(−1) −1→(1)
J̃〈S3,D3,D7〉 1 −1
J̃〈S3,D4,D8〉 1 −1

〈S4〉 4 rows −J̃〈S4,D1,D5〉 1→(−1) −1→(1)
−J̃〈S4,D2,D6〉 1→(−1) −1→(1)
−J̃〈S4,D3,D7〉 1→(−1) −1→(1)
J̃〈S4,D4,D8〉 1 −1

〈S5〉 4 rows −J̃〈S5,D1,D5〉 1→(−1) −1→(1)
−J̃〈S5,D2,D6〉 1→(−1) −1→(1)
−J̃〈S5,D3,D7〉 1→(−1) −1→(1)
−J̃〈S5,D4,D8〉 1→(−1) −1→(1)

〈S6〉 4 rows J̃〈S6,D1,D5〉 1 −1
−J̃〈S6,D2,D6〉 1→(−1) −1→(1)
−J̃〈S6,D3,D7〉 1→(−1) −1→(1)
−J̃〈S6,D4,D8〉 1→(−1) −1→(1)

〈S7〉 4 rows J̃〈S7,D1,D5〉 1 −1
J̃〈S7,D2,D6〉 1 −1

−J̃〈S7,D3,D7〉 1→(−1) −1→(1)
−J̃〈S7,D4,D8〉 1→(−1) −1→(1)

〈S8〉 4 rows J̃〈S8,D1,D5〉 1 −1
J̃〈S8,D2,D6〉 1 −1
J̃〈S8,D3,D7〉 1 −1

−J̃〈S8,D4,D8〉 1→(−1) −1→(1)

Repeating the forward-paring GSD operation for all sources,
and reversing the signs of every associated J̃{〈Si ,Dj ,Dm〉} terms
that satisfy m − j > 4 as exemplified in Table I, the resulted
complete effective sensitivity distribution becomes∑

[J̃♦
{〈Si ,Dj ,Dm〉}]

∣∣∣
i=1:8

= J̃{〈Si ,D1,D5〉} + J̃{〈Si ,D2,D6〉} + J̃{〈Si ,D3,D7〉} + J̃{〈Si ,D4,D8〉}
∣∣
i=1:8

= [J{〈Si ,D1〉} − J{〈Si ,D5〉}] + [J{〈Si ,D2〉} − J{〈Si ,D6〉}]

+ [J{〈Si ,D3〉} − J{〈Si ,D7〉}] + [J{〈Si ,D4〉} − J{〈Si ,D8〉}]
∣∣
i=1:8 .

(19b)

Note that the sensitivity terms related to the detectors 1
to 4 are positive in the summation in Eq. (19b), whereas
those related to detectors 5 to 8 are negative. Equation
(19b) can effectively explain the asymmetry appeared in
Fig. 5(c): (1) stronger sensitivity from 8 o’clock position
counterclockwise to 4 o’clock position corresponds to the
positive terms related to detectors 1 to 4; and (2) the weaker
sensitivity from 2 o’clock position counterclockwise to
10 o’clock position corresponds to the negative terms re-
lated to detectors 5 to 8. It should be noted that, all the sign-

reversing or pair-flipping operations needed for reaching Eq.
(19b) are linear. Therefore, the sign-reversing or pair-flipping
of the sensitivity terms, and the corresponding measurement
terms, does not alter the native rotational symmetry of the re-
construction. We thereby could further rearrange the sensitiv-
ity terms in Eq. (19b), by following the bolded sign-reversals
detailed in Table III, to generate what is appearing to be a ro-
tationally symmetric effective sensitivity distribution as that
shown in Fig. 5(d). It should be clarified that these afore-
mentioned rearranging operations to J̃ are presented only to
demonstrate that the GSD operation does not alter the origi-
nal symmetry of the measurement sensitivity, which for this
studied geometry is a rotational-symmetry. The actual J̃ im-
plemented to the simulations and experiments of Secs. IV–VI
take the form of that specified by Eq. (13). Figure 5(e)
then compares the effective distribution profiles of the native
sensitivity J, the reference-compensating applied sensitiv-
ity JR, and the rearranged GSD-operated sensitivityJ̃ , along
the marked depth direction. It can be appreciated that the
effective sensitivity profile of GSD method is nearly depth-
invariant and insignificant comparing to the other two meth-
ods, whereas the effective sensitivity profile of the reference-
compensation method peaks at a significantly increased depth

Medical Physics, Vol. 40, No. 1, January 2013



013101-11 G. Xu and D. Piao: GSD reconstruction for improved object depth-localization in DOT 013101-11

FIG. 6. Simulation results for single-object cases [unit used for columns (a)–(d): 10−3 mm−1, unit used for column (e): mm−1]. Column (a) set values; column
(b) reconstruction based on the baseline method; column (c) reconstruction based on the reference-compensation method; column (d) reconstruction based on
the GSD method; column (e) contour plots along the dotted lines marked in columns (b)–(d). The shaded areas in column (d) indicate the object locations
corresponding to those marked in column (a). The “err”s in subfigures of columns (b)–(d) represent the standard deviation of the reconstruction errors averaged
by the number of components in the objective function. Columns (c) and (d) show better depth-localization than (b). Column (d) has the best overall estimation
of domain optical properties, albeit there are artifacts appearing in the case of 10 mm object-depth.

and is significantly stronger when comparing to that of the
baseline method.

The strategy to step-wisely adjust the regularization fac-
tor λ of Eq. (17) for the reference-compensation method is
detailed in Appendix B. The tests have shown that an ini-
tial value of λ = 100 and a step-wise damping rate of 1.78
are optimal for the reference-compensation method. The reg-
ularization factors λ of Eq. (8c) for the baseline method
should have been optimized individually; however, as the
baseline method performs very poorly in the studied geom-
etry as to impair the evaluation of the outcomes at differ-
ent choices of the factor λ, the step-wise adjusting of the λ

for the reference-compensation method is applied directly to
the baseline method. In all reconstructions the iteration stops
when the change of the projection error between consecutive
steps is less than 2%.

IV. SIMULATION AND EXPERIMENTAL METHODS

IV.A. Simulation setup

The optical heterogeneities employed for the simulation
study were either a single cube that has a 7.5 mm side-length
and μa = 0.0115 mm−1 (five times of contrast over the back-
ground) or two such identical cubes separated azimuthally by
90o. The cubic-shaped objects were preferred for the fabrica-
tion handiness in the following experimental studies, on the
other hand, a cube or sphere of 7.5 mm size may be insignifi-
cantly different to the experimental DOT system as its spatial
resolution was low, of the order of 5 millimeters. The array-
facing-edges of the cubic objects were placed 0, 5, and 10
mm away from the optical array, as shown in the column (a)
of Figs. 6 and 8–10. Gaussian noise of 1% was added to this

set and all other sets of forward computation unless otherwise
specified. The reconstructions based on the baseline method,
the reference-compensation method, and the GSD method are
presented side-by-side in the respective sections.

IV.B. Experimental system and the actual number
of optodes

A DOT system rendering CW measurements21 was used
to experimentally test the GSD method. The system to obtain
the CW measurements contained a 4 mW wavelength-swept
light source (Superlum BS-840-02) with a sweeping range of
838–853 nm. The light was coupled to a 500 mm focal-length
spectrometer (SpectroPro 500i, Princeton Instrument) with a
grating of 1200 grooves/mm. The spectral-sweeping of the
light was transformed to a spatial scanning of the light beam
at the exit port of the spectrometer for sequential coupling
to the 8 source-fiber channels of the circular-array outward-
imaging DOT applicator of 20 mm in diameter. The light re-
emitting from the medium and reaching the 8 detector-fiber
channels was acquired by a CCD mounted on another spec-
trometer (PIXIS 512 and SpectroPro 2300i, Princeton Instru-
ment). The wavelength-sweeping was synchronized with the
CCD exposure, at a data acquisition rate of 0.5 frame/s for the
axial-imaging optical applicator to be placed in 1% intralipid
solution (μa = 0.0023 mm−1 and μs

′ = 1 mm−1). The de-
tails of the method for calibrating the raw data can be found
in Ref. 21.

The 20 mm applicator photographed in Fig. 3(a) was de-
signed to house 8 source and 8 detector channels; however,
one of the source channels suffered from missalignment of
the micro-optical components and consequently very low
coupling efficiency [marked in Fig. 3(c)] comparing to the
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rest 7 source channels. The measurements corresponding to
this low-efficiency source channel had to be discarded. Ac-
cordingly, the simulated or experimental measurements were
conducted on 7 source channels and 8 detector channels.
The cubic-shaped object inclusions used for the experimental
measurements were identical in sizes to those for simulations.
However, the inclusions were made from black plastic ma-
terials of which the absorption contrast over the background
was considerably higher than that in the simulation. The use
of stronger-contrast object was found necessary to generate
measureable signal change from the low power level (4 mW)
of the light source, especially when the targets were deep.

IV.C. A simulation of applying the GSD method
to a simple three-dimensional geometry

A simple three-dimensional planar reflectance geometry
shown in Fig. 11 is used to exemplify the application of GSD
method beyond the two-dimensional geometry of the afore-
mentioned simulation and experimental studies. This exam-
ple is conducted by simulation only, and involved the GSD
method with respect to only the baseline method. The imag-
ing geometry contains 18 sources and 18 detectors orderly
arranged to the side of the medium, and the cubic imaging
domain was discretized to 6466 nodes and 33 591 elements.
The optical properties of the background were μa = 0.0023
mm−1 and μs

′ = 1 mm−1, and a spherical inclusion of 5 mm in
radius with μa = 0.006 mm−1 and μs

′ = 1.1 mm−1 was located
at a center depth of 10–30 mm, at a step size of 5 mm. The
reconstruction algorithms and other parameters were identical
to those used in the simulations in Sec. IV.A and IV.B.

V. RESULTS

V.A. Simulation for single-object cases

The simulation results of resolving single object by using
the three reconstruction methods are shown in Figs. 6(b)–6(e)

FIG. 7. Recovered object volume vs object depth. The curves represent the
area covered by FWHM of the curves in column (e) in Fig. 6. Although all
three methods show decreased area-within-the-FWHM profile as the depth
increases, the change is the least by the GSD method, and the most by the
baseline method.

along with the standard deviations of the reconstruction er-
rors averaged by the number of components in the objective
functions. The values and radial positions of the maximum re-
covered absorption coefficients in the object regions, as well
as the mismatch between the set and reconstructed absorption
distribution, are listed, respectively, for each simulation set in
Table IV. It is observable in Figs. 6(b)–6(d) that the contours
of the object are overestimated more in the azimuthal direc-
tion than in the radial direction. We thereby also included in
Fig. 7 the areas covered by the full width at half maximum
(FWHM) of the peak optical property of the recovered objects
by the three methods.

By the baseline method the objects at three different depths
are recovered at the same depth close to the optical array.
By both the reference-compensation and GSD methods the
objects are recovered at approximately the true depths, and
it is appreciable that the azimuthal FWHM and the volume
of the object resolved by the GSD method are closer to the
set values than those by the reference-compensation method.
The object optical properties were underestimated at greater
depths by all three methods; however, the underestimation
was the least by the GSD method. It is observed that arti-
facts do appear in GSD group at the 10 mm case. This is

TABLE IV. Simulation and experimental results for the reconstruction of single object. “Comp” stands for “reference-compensation.

Object-edge-depth and other relevant parameters Set Base Comp GSD

0 mm Maximum μa (mm−1) 0.0115 0.0088 0.0071 0.013
Radial position of maximum μa (mm) 3.0 5.0 3.0
Azimuthal FWHM (mm) 7.5 9.7 11.3 7.0
Averaged absorption map mismatch (mm−1) 0 1.89 × 10−5 1.87 × 10−5 1.80 × 10−5

5 mm Maximum μa (mm−1) 0.0115 0.0039 0.0039 0.0059
Radial position of maximum μa (mm) 5.0 8.0 8.0
Azimuthal FWHM (mm) 7.5 20.0 19.6 14.4
Averaged absorption map mismatch (mm−1) 0 1.81 × 10−5 1.74 × 10−5 1.72 × 10−5

10 mm Maximum μa (mm−1) 0.0115 0.0028 0.0027 0.0044
Radial position of maximum μa (mm) 5.0 11.0 12.0
Azimuthal FWHM (mm) 7.5 26.6 32.9 19.7
Averaged absorption map mismatch (mm−1) 0 1.87 × 10−5 1.81 × 10−5 1.69 × 10−5
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FIG. 8. Simulation results for dual-object cases [unit used for columns (a)–(d): 10−3 mm−1]. Column (a) set values; column (b) reconstruction based on the
baseline method; column (c) reconstruction based on the reference-compensation method; column (d) reconstruction based on the GSD method; column (e)
normalized contour plots along the dotted loops marked in columns (b)–(d). The shaded areas in column (e) indicate the object locations corresponding to those
marked in column (a). Note that although the widths of the object remain constant for all three depth, the radial expansion represented by the shaded areas in
column (d) decreases with respect to imaging depth. The dotted circles in column (d) indicate the object locations corresponding to those marked in column (a).
The “err”s in subfigures of columns (b)–(d) represent the standard deviation of the reconstruction errors averaged by the number of components in the objective
function. Column (d) has the best overall resolution of the two objects and the most accurate estimation of domain optical properties.

not unexpected, because as the native measurement sensitiv-
ity diminishes significantly with respect to the depth, the ef-
fectiveness of GSD at that depth is also going to be mitigated.
Nonetheless, the object recovery by the GSD method is of
better quality than by the other two methods, as analyzed in
Table IV and Fig. 7. The area-within-the-FWHM decreases as
the depth increases, suggesting degradation of the reconstruc-
tion quality, by all three methods, yet the degradation in the
GSD method is the least. In the rest of studies results simi-
lar to Table IV and Fig. 7 were observed and not separately
presented.

V.B. Simulation for two-target cases

The objects as aforementioned were two identical cubes
with a 7.5 mm side-length and were azimuthally separated by
90o, as illustrated in Fig. 8(a). The imaging results are given
in Figs. 8(b)–8(e). The μa values along the azimuthal con-
tours across the recovered objects are displayed in column (e)
of Fig. 8. By the baseline method the objects at three different
depths were recovered at almost the same depth close to the
optical array, and the two objects at the 10 mm depth were not
distinguished. By both the reference-compensation and GSD
methods the objects were recovered at the set positions, but
the contour plots of Fig. 8(e) show that the GSD method out-
performs the other one in terms of the object size, the distin-
guishing of the two objects, and the estimations of the object
optical properties. These profiles also suggest the outperfor-
mance of the GSD method over the other two methods.

V.C. Experimental results for single-object cases

The experimental results for single-object cases are given
in Figs. 9(b)–9(d). It is observable that the array-facing edges
of the targets were recovered by all three methods, however,
unlike in the simulations the object body could not be resolved
because no light should have propagated through it. Despite
of that, the outcomes by the three methods were different.
For the 0 and 5 mm cases, the array-facing edge of the ob-
ject was identified by the baseline method and the reference-
compensation method at positions more proximal to the set
positions, but not as sharp as by the GSD method. For 10 mm
cases, artifacts were noticeable in all three methods, but the
distortion to the object by the localized artifacts was the least
in the GSD method.

V.D. Experimental results for two-object cases

The reconstruction results given in Figs. 10(b)–10(e) are
similar to those in Fig. 8, except that for the 10 mm case the
baseline method was able to resolve the two targets, but the
depth was not recovered correctly. The GSD method slightly
outperforms the other two methods in terms of resolving the
location, dimension, and the optical properties of the two az-
imuthally separated targets.

V.E. Simulation results of the simple
three-dimensional imaging geometry

Figure 11(c) displays the images reconstructed by using
the baseline and the GSD approaches. By the baseline method
the objects at different depths were recovered at depths closer
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FIG. 9. Experimental results for single-object cases [unit used for columns (a)–(d): 10−3 mm−1, unit used for column (e): mm−1]. Column (a) set values;
column (b) reconstruction based on the baseline method; column (c) reconstruction based on the reference-compensation method; column (d) reconstruction
based on the GSD method; column (e) contour plots along the dotted lines marked in columns (b)–(d). The shaded areas in column (e) indicate the object
locations corresponding to those marked in column (a). The “err”s in subfigures of columns (b)–(d) represent the standard deviation of the reconstruction errors
averaged by the number of components in the objective function. Artifacts appeared for the object at 10 mm-depth by all three methods. Column (d) has the best
overall estimation of object location and domain optical properties.

to the optical array than the true values. At the depth of 30
mm, the object was overwhelmed by the artifacts appearing
close to the optical array when recovered by using the base-
line method, in comparison, the depths and sizes of the ob-
ject recovered by the GSD method were closer to the true
values.

VI. DISCUSSION

The layered DCA (Ref. 2) method was not directly im-
plemented to the comparisons in this study, as a set of tri-
als detailed in Appendix A indicated that the layered DCA
method in its original form as in Ref. 2 was ineffective in

FIG. 10. Experimental results for dual-object cases [unit used for columns (a)–(d): 10−3 mm−1]. Column (a) set values; column (b) reconstruction based on the
baseline; column (c) reconstruction based on the reference-compensation method; column (d) reconstruction based on the GSD method; column (e) normalized
contour plots along the dotted loops marked in columns (b)–(d). The shaded areas in column (e) indicate the object locations corresponding to those marked in
column (a). Note that although the widths of the object remain constant for all three depths, the radial expansion represented by the shaded areas in column (d)
decreases with respect to imaging depth. The gold circles in column (d) indicate the object locations corresponding to those marked in column (a). The “err”s
in subfigures of columns (b)–(d) represent the standard deviation of the reconstruction errors averaged by the number of components in the objective function.
Column (d) has the best overall resolution of the two objects and the most accurate estimation of domain optical properties with minimal level of artifacts.
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FIG. 11. Simulation results on recovering a single object in a planar reflectance imaging geometry. (a) 3D view of the simulating volume; (b) geometry of the
optical array; (c) results of reconstruction based on the baseline and GSD methods. The objects are better resolved by GSD method.

the studied circular-array outward-imaging geometry. We ar-
gue that more robust suppression of the significant sensitiv-
ity decay of the studied geometry by using DCA method is
feasible, should the resolution of the depth-layers be made
comparable to or even finer than the radial resolution of the
finite elements. We thus developed a piece-wise8 DCA-based
reference-compensation method as detailed in Appendix B,
and since this enhanced DCA method better balances between
object localization and artifact suppression it is adopted as the
reference-compensation method to facilitate the evaluation of
GSD method.

The reference-compensation method localized the objects
but generally underestimated the optical contrasts and overes-
timated the azimuthal FWHM of the objects, resulting in an
ambiguous differentiation of two azimuthally separated ob-
jects. As to the baseline method that reconstructs using the
native sensitivity distribution, it failed to resolve two objects
at 10 mm depth with 5 folds of absorption contrast over the
background [Fig. 8, row 3, column (b)]. However, in the cor-
responding experiment [Fig. 10, row 3, column (b)], the two
black plastic objects placed at 10 mm depth were resolved by
the baseline method. The better resolution of the two objects
in the experiment than in the simulation was indeed the result
of stronger signal change in the experiment than in the simu-
lation due to the use of black materials for the objects in the
experiments. The averaged errors of the reconstruction by the
reference-compensation and baseline methods were nearly an
order greater than those achieved by the GSD method. It is
also observable that lesser artifacts arouse in the two target
cases (Fig. 8 and Fig. 10) than in one target cases (Fig. 6
and Fig. 9) by the GSD-method. This may also have been re-
lated to the stronger signal change occurring to more source-
detector pairs by two targets than that by one target, but it fa-
vorably indicates that the GSD method is robust in recovering
multiple objects. It is also cautiously observed that the deeper
the object is located, the less accurate the optical contrast is
recovered, even for the GSD method. This implies that the ef-
fectiveness of how GSD performs, in terms of passive sensi-
tivity compensation, diminishes as the measurement sensitiv-
ity deteriorates. More enhancement to the recovery of deeply
embedded target by the GSD method is feasible, should the
source power or signal to noise ratio become stronger.

One limitation of the experimental study regarding recov-
ering two-objects is that the two objects were placed az-
imuthally at the same imaging depth, as the optode array was

primarily designed for transrectal prostate cancer imaging,
where the malignant tissues could be multifocal and usually
occurring close to the optode array. Moreover, for the endo-
scopic imaging geometry in Fig. 3, because of the dimen-
sions of the object tested, placing two objects of the shown
sizes along the same radial direction, and not stacking them
against each other for them to be reasonably resolved by the
reconstruction, would need to place most of the distal ob-
ject in a region beyond what could be measured by the ex-
perimental system, regardless of how the sensitivity variation
would be managed. Using objects much smaller than those
implemented should facilitate testing the GSD operations to
radially separated objects in the shown geometry; however,
the experimental system at the given low level of the source
power would be much less sensitive to the smaller objects and
the resulted poor signal-to-noise ratio would likely make any
comparisons inconclusive.

The GSD method reduces the depth-variance of the re-
sulted sensitivity at a cost of increasing the number of rows of
the sensitivity matrix by (NOD-1)/2 folds, for source-sharing
GSD operation. The increase of the number of rows of the
sensitivity matrix, however, does not degrade the rank of the
matrix to be inverted, since J̃ T J̃ has a N × N dimension
as JTJ does. The increase in the computation time, approxi-
mately 40% in this study, is solely caused by the [Diff] op-
eration in Eq. (14) and the corresponding multiplication of
matrices of more elements. A sensitivity distribution that is
more depth-invariant than the GSD sensitivity distribution in-
vestigated in this study could be achievable by hierarchical
pairing of the GSD-resulted sensitivity profiles, but the cost
in computation and complexity would likely outweigh the
benefits.

It is noted that the linear conversion from the J to J̃ retains
the full dynamic range of the measurements as is {max(�) −
min(�)}. The differentiated objective function in Eq. (15) can
also be considered belonging to the scheme involving a surro-
gate objective function,22 as is demonstrated by Xu et al.23 for
DOT image reconstruction using a spectral derivative method.
The spectral derivative method is based on the assumption
that the boundary modeling errors are multiplicative to sys-
tem measurements in normal scale24 and can be modeled as
additive in logarithm. The GSD method is similar to the spec-
tral derivative methods in partially and passively cancelling
out the modeling or system errors measured by two optode-
sharing source-detector-pairs.
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This study implemented the GSD operation in the LM
scheme. It is known that the LM scheme is a special case of
the Tikhonov regularization method, and the Tikhonov regu-
larization itself is a special case of a generalized-least-square
GLS approach.13, 25 Because the operation on the J by GSD
method is linear, we expect that the GSD method is extend-
able to the Tikhonov and GLS minimization schemes. The
GSD-operated update function in a Tikhonov minimization
would become

δμ = (J̃ T J̃ + λI )−1 × [J̃ T χ̃ − λ(μ − μ0)] (20)

and the GSD-operated update function in a GLS minimization
would become

δμ = [J̃ T Wχ̃ J̃ + Wμ−μ0 ]−1

× [J̃ T Wχ̃ χ̃ − Wμ−μ0 (μ − μ0)], (21)

where Wχ̃ is the inverse of the covariance of the GSD-
operated objective function χ̃ and Wμ−μ0 is the inverse of the
covariance of the optical properties.

The effectiveness of the GSD method is apparently related
to the extent of the spatial variations of the measurement sen-
sitivity. The more uniform the native measurement sensitivity
is with respect to the imaging depth, the less improvement the
GSD method could impose to the object localization in the
depth. On the other hand, the effectiveness of the GSD oper-
ation can be evaluated from Eq. (13) that it depends upon the
geometric symmetry or antisymmetry of all source-detector-
pairs. The circular-array imaging geometry as the one shown
in Fig. 3 renders the geometric symmetry of 〈Si, Dj〉 versus
〈Si, D9−j〉 for i = {1, 5}, j = {1:8}; and the geometric antisym-
metry of the pairing of [〈Si, Dj〉 − 〈Si, D9−j〉] versus the pair-
ing of [〈S10−i, Dj〉 − 〈S10−i, D9−j〉] for i = {2:4}; j = {1:4}.
These symmetries indicate that the spatial variation of the sen-
sitivity of measurements introduced by an individual source-
detector-pair 〈Si, Dj〉 may be cancelled or partially com-
pensated by other source-detector-pair. The circular-imaging
geometry with evenly interspersed source and detector ren-
ders complete rotational symmetry in either directions of
the circumference; therefore, it would be the geometry for
which the application of the GSD operation would be the
most effective. The simple three-dimensional geometry sim-
ulated in Secs. IV.D and IV.E has a lateral symmetry with
respect to the two middle-sectioning planes, but the symme-
try is not complete for all source-detector-pairs. Therefore,
the GSD method to this geometry is not as effective as is
to the circular-array outward-imaging geometry. The simu-
lations performed on the simple three-dimensional geome-
try, nonetheless, demonstrate that GSD operation is generally
applicable, and as such we anticipate that DOT reconstruc-
tions that relies upon more complex data, such as frequency
domain, time domain, multispectral, or fluorescence mea-
surements, may become the future subjects for implementing
GSD-operation, should the correct localization of an object
depth without a spatial prior become a concern.

VII. CONCLUSION

This study demonstrated an alternative DOT image recon-
struction approach that optimizes the data-model fit based on
the paired measurements corresponding to two source-sharing
source-detector-pairs, in comparison to the conventional DOT
image reconstruction approach that optimizes the data-model
fit based on the measurements corresponding to individual
source-detector-pairs. This alternative method, conceptually
called the GSD method, effectively and passively suppresses
the spatial variance of the detection sensitivity with respect
to imaging depth by taking advantage of the relative changes
of the measurements between two optode-sharing source-
detector-pairs. It is demonstrated that this GSD approach im-
proves the object depth-localization for DOT in a circular-
array outward-imaging geometry that is subjected to strong
variation of the native measurement sensitivity with respect to
the imaging depth. This GSD operation pairs the native sen-
sitivity profiles corresponding to two source-sharing source-
detector-pairs and effectively evens the responses of the up-
dating function with respect to the imaging depth. Simulated
and experimental studies based on CW measurements are
used to evaluate the image reconstructions based on the GSD-
method versus that on two other methods: one is the base-
line method using the native sensitivity that does not involve
a depth-compensating scheme, and the other is a reference-
compensation approach that involves active depth-dependent
compensating scheme. The GSD method is shown generally
outperforming the other two methods in terms of localizing
the depth of single object, resolving two azimuthally sepa-
rated objects, as well as estimating the optical property of
single object or azimuthally separated dual objects. The GSD
method, however, is more computationally demanding due to
increasing of the matrix elements as well as involving more
matrix multiplications, and the effectiveness of it is associ-
ated with the symmetry of the optode-array.
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APPENDIX A: LAYERED DCA METHOD APPLIED
TO THE CIRCULAR-ARRAY OUTWARD-IMAGING
GEOMETRY

This section tests the DCA method in the form originally
presented in Ref. 2 to the studied circular-array outward-
imaging geometry. The DCA method actually introduces a
compensation matrix similar to the weight matrix in the GLS
method.13 The structure of the compensation matrix M is rep-
resented using the notations consistent with this study as

M = {diag[MSV(Jl), MSV(Jl−1), . . . ,

MSV(J2), MSV(J1)]}γ , (A1)

where MSV stands for the maximum singular values, Jl is the
sensitivity terms in the layer l, and γ is an exponential fac-
tor to be empirically optimized for a specific geometry. The
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FIG. 12. Investigation on the performance of DCA method in the circular-
array outward-imaging geometry (units 10−3 mm−1). The object contour and
location are marked by blue dotted lines. Simulation setup in Sec. III.B for
single object was used. (a)–(c) Simulation results produced with regular-
ization factor value of 50, 100, and 200, respectively. The DCA method in
its original form as in Ref. 2 was ineffective in the studied circular-array
outward-imaging geometry.

gradient-based iterative solver as that shown in Ref. 2 is im-
plemented in the inverse problem by using the compensation
sensitivity matrix MJ. Note that M is a square matrix and can
be categorized to the GLS method.

FIG. 13. Performance of the reference compensation method with varied
regularization factors (units 10−3 mm−1). The object contour and location
are marked by dotted lines. When the object was close to the probe surface,
reconstruction results are not significantly affected by the regularization fac-
tor. At deeper locations, either more artifacts appear or the object contrast is
more severely underestimated in the column of λ = 50. The columns of λ =
100 and λ = 200 are only slightly different; however, the target size seems to
be slightly overestimated by λ = 200 than by λ = 100. The arrows indicate
the overestimations of the optical properties of the medium region between
the object and the applicator.

Three parameters were tested. The first parameter was the
thickness of the layer that was chosen to be 2, 3, and 5 mm,
receptively, based on the 1 mm radial resolution of the mesh
in this simulation and the 5 mm step of changing the object
depth in Sec. IV. The second parameter was the exponential
factor. Niu et al.2 tested that γ = 1.6 was optimal for the pla-
nar reflectance imaging geometry specific to their study. In
the circular-array outward imaging geometry of this study a
series of γ values between 0 and 10 were tested, yet only the
reconstruction results produced with γ values of {0.8, 1.6,
3.2, 7} were presented in this section. The γ values were cho-
sen greater than those used in Ref. 2, which was found nec-
essary to counteract the more severe decay of the sensitivity
with respect to imaging depth. The third parameter was the
regularization factor λ that is critical to the convergence of
the inverse problem, and the λ values of {50,100, 200} were
tested.

The test simulation shown in Fig. 12 is conducted for sin-
gle cubic object identical to the one in Fig. 6 and its proximal-
edge located at a depth of 10 mm. The objects in all cases were
recovered at depths much closer to the probe surface than the
true values, indicating the inadequacy of the DCA method in
the tested or the originally presented form for the studied ge-
ometry. Implementing the DCA method in a piece-wise expo-
nential weighting scheme is found to produce better results,
as shown in Appendix B and Sec. V.

APPENDIX B: DETERMINATION OF THE INITIAL
REGULARIZATION VALUE USED FOR STEP-WISE
ADJUSTMENT

Because of the poor depth-localization of the baseline
reconstruction in the studied geometry, the λ value to be
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step-wisely adjusted13 was actually determined based on the
reference compensation methods of Eq. (17), and the same
stepwise-adjusting of the λ value was applied to the base-
line method. A wide range of λ values were examined, for
the single object case identical to that in Sec.IV.A, and those
shown in Fig. 13 were the results of using three representative
λ values of {50, 100, 200}. It is clear that in the column of λ

= 50 either there are more artifacts or the object contrast is
more severely underestimated. The columns of λ = 100 and
λ = 200 are not significantly different; however, λ = 200
slightly overestimates the target size than λ = 100 does; there-
fore, a λ value of 100 is chosen.
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