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Abstract

The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian

quantile regression methods with complete or censored data when an asymmetric

Laplace likelihood is used. The asymmetric Laplace likelihood has a special place

in the Bayesian quantile regression framework because the usual quantile regression es-

timator can be derived as the maximum likelihood estimator under such a model and

this working likelihood enables highly efficient Markov chain Monte Carlo algorithms

for posterior sampling. However, it seems to be under-recognized that the station-

ary distribution for the resulting posterior does not provide valid posterior inference

directly. We demonstrate that a simple adjustment to the covariance matrix of the

posterior chain leads to asymptotically valid posterior inference. Our simulation re-

sults confirm that the posterior inference, when appropriately adjusted, is an attractive
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alternative to other asymptotic approximations in quantile regression, especially in the

presence of censored data.

Key Words: Bayesian; Censoring; Posterior; Quantile regression

1 Introduction

Quantile regression, first introduced by Koenker and Bassett (1978), has been widely used as

a valuable tool for analyzing the conditional quantile functions of a response variable given

covariates. In contrast to the ordinary least squares regression that focuses on the conditional

mean function, quantile regression provides a more comprehensive analysis on how covariates

may influence different aspects of the conditional distributions of the response. Quantile re-

gression model also enhances the flexibility of parametric regression models by allowing error

heteroscedasticity. Compared to nonparametric regression, quantile regression has a direct

target on a quantile level of interest without modeling the whole conditional distribution,

and avoids the curse of dimensionality by assuming a parametric quantile function.

In recent years, Bayesian quantile regression has attracted attention due to some of

its distinctive properties. For example, Bayesian quantile regression methods make use of

Markov chain Monte Carlo (MCMC) algorithms to sample the parameter values from the

posterior distribution, and the resultant estimator is as efficient as the classical estimator

directly calculated through numerical optimization. In some cases, the MCMC computa-

tion alleviates the computational curse of dimensionality in the optimization of nonconvex

objective functions such as the one used in Powell (1986) for censored quantile regression.

Moreover, uncertainty estimates or interval estimates can be calculated easily from a pos-

terior sequence of MCMC draws. In contrast, the asymptotic variance-covariance of the

conventional quantile estimator involves unknown conditional density functions, which are

often difficult to estimate reliably.

The quantile regression models are most helpful when a parametric likelihood cannot be

specified, and thus a working likelihood is needed for the Bayesian approach to work. Some

researchers considered nonparametric working likelihoods, for example, the Dirichlet process

mixture models in Gelfand and Kottas (2002) and Kottas and Krnjajić (2009), an infinite
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mixture of normals in Reich et al. (2010), and Jeffreys’ substitution likelihood in Dunson

and Taylor (2005). Reich et al. (2011), Reich (2012) and Reich and Smith (2013) proposed

semiparametric models on the entire quantile process. Lancaster and Jun (2010) considered

exponential tilted empirical likelihood, while Otsu (2008) and Yang and He (2012) considered

empirical likelihood. Arguably the most popular choice of the working likelihood is the

asymmetric Laplace (AL) distribution. A Bayesian approach based on the AL likelihood was

formally discussed in Yu and Moyeed (2001) for linear quantile regression. In recent years,

the AL likelihood has been adopted for Bayesian quantile regression in different contexts

and applications; for instance, quantile regression with random effects (Geraci and Bottai,

2007; Yuan and Yin, 2009; Geraci and Bottai, 2013; Yue and Rue, 2011; Luo et al., 2014;

Wang, 2012), variable selection for quantile regression (Li et al., 2010a; Alhamzawi et al.,

2012; Alhamzawi and Yu, 2013, 2012), spatial quantile regression (Lum and Gelfand, 2012),

quantile regression for count data with application to environmental epidemiology (Lee and

Neocleous, 2010), nonparametric and semiparametric quantile regression models (Chen and

Yu, 2009; Thompson et al., 2010; Hu et al., 2013; Waldmann et al., 2013; Zhu et al., 2013;

Hu et al., 2014), quantile regression with fixed censoring (Yu and Stander, 2007; Kozumi and

Kobayashi, 2011; Kobayashi and Kozumi, 2012; Yue and Hong, 2014; Alhamazawi and Yu,

2014; Zhao and Lian, 2014), and binary quantile regression (Benoit and Poel, 2012; Benoit

et al., 2013; Miguéis et al., 2013).

Whatever is chosen as the working likelihood, it is generally not the true data generating

likelihood. Therefore, the validity of the posterior inference based on the working likelihood

does not follow automatically from the Bayes formula. Yang and He (2012) established the

asymptotic validity of the posterior inference based on the empirical likelihood. However, the

general validity of the posterior inference is questionable. We wish to emphasize here that a

direct use of the posterior interval based on a misspecified likelihood can be misleading.

In this article, we focus on Bayesian quantile regression using the asymmetric Laplace

working likelihood, as this is widely used in the literature. As we pointed out earlier, the

posterior from this working likelihood is not the conditional distribution of the parameter

given the data so the credible intervals obtained from the posterior do not generally have
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the right Bayesian confidence level. Furthermore, we show that the posterior based on the

misspeficied AL likelihood does not approximate the sampling distribution of the parameter

estimates even as the sample size increases, but asymptotically valid posterior inference

can be achieved with a simple adjustment. We present posterior variance adjustments in

two cases, quantile regression for complete data and for data with fixed censoring. The

adjustments enable effective and valid posterior inference without requiring the estimation of

the unknown conditional density functions as in the frequentist inference methods, and they

are shown through simulation to have advantages over other inference methods, especially

for the cases of fixed censoring.

The rest of the paper is organized as follows. In Section 2, we review AL-based Bayesian

quantile regression methods including the recent development in computation. In Section 3,

we discuss the asymptotic properties of the posterior from the AL-based Bayesian quantile

regression, and present adjustments on the posterior variance for complete data and for data

with fixed censoring. To assess the finite sample performance, we evaluate the interval esti-

mates from the posterior with and without adjustments, and compare them with the usual

large sample approximations under the frequentist approach through simulation studies and

the analysis of a women’s labor force data in Section 4. While the example on the women’s

labor force data is not meant to be comprehensive in any way, the alarming difference in the

interval estimates between the AL-based Bayesian quantle regression with and without ad-

justments shows that we must remain vigilant in the interpretation of any posterior obtained

from a working likelihood. We hope that this paper plays a positive role in the promotion of

Bayesian inference for quantile regression in a wide variety of applications. Some concluding

remarks are given in Section 5. The technical details to support the asymptotic validity of

the adjusted posterior inference are provided in the Appendix.

2 Bayesian quantile regression with AL likelihood

2.1 Basic Setup

Suppose that Y is the continuous response variable of interest and X is the p-dimensional

vector of covariates with the first element equal to one. At a given quantile level τ ∈ (0, 1),
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we consider the following linear quantile regression model

Qτ (Y | X = x) = x>β(τ), (2.1)

where Qτ (Y | X = x) denotes the τth conditional quantile of Y given X = x, and β(τ) is

the quantile coefficient vector.

Based on a random sample D = {(yi,xi), i = 1, . . . , n} of (Y,X), the unknown parameters

β(τ) can be estimated by β̂(τ), which minimizes

Rn(β,D) =
n∑
i=1

ρτ (yi − x>i β), (2.2)

where ρτ (µ) = µ{τ − I(τ < 0)} is the quantile loss function given in Koenker and Bassett

(1978). In the rest of the paper, we omit the τ in various expressions such as β(τ) for the

sake of simplicity.

To incorporate quantile regression models into a Bayesian framework, we consider the

asymmetric Laplace working likelihood

L(β;D) =
τn(1− τ)n

σn
exp

{
−
∑n

i=1 ρτ (yi − x>i β)

σ

}
,

where σ is a fixed scale parameter. With a prior specified as p0(β) on β, the posterior of β

can be formally written as

pn(β | D) ∝ p0(β) exp
{
−
∑n

i=1 ρτ (yi − x>i β)

σ

}
. (2.3)

Any reasonable choice of the prior, including the flat prior, leads to a proper posterior

under some mild conditions; see Yu and Moyeed (2001), Tsionas (2003) and Choi and Hobert

(2013). For any fixed prior, the asymptotic properties of the posterior are independent of the

prior choices, even though the computational algorithms may have to adapt to the choice of

the prior.

The priors can also be used to enable a Lasso-type regularization in quantile regression

from a Bayesian perspective. As proposed in Koenker (2004) and Li and Zhu (2008), the

Lasso regularized quantile regression is given by

min
β

n∑
i=1

ρτ
(
yi − x>i β

)
+ λ

p∑
j=1

|βj|,
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where βj is the jth element of β. To accommodate the penalty term λ
∑p

j=1 |βj|, Li et al.

(2010b) proposed a Laplace prior p0(β | λ) = (τλ/2)p exp{−τλ
∑p

j=1 |βj|}, and suggested a

Gibbs sampling algorithm. Alhamzawi et al. (2012) further extended it to Bayesian adaptive

Lasso quantile regression.

2.2 Computation and properties

It is natural to use Markov chain Monte Carlo (MCMC) methods for posterior sampling.

The posterior of β(τ) is in general intractable, but sampling can be simplified by using a

mixture representation of the AL distribution.

Consider the working model

yi = x>i β(τ) + εi, i = 1, . . . , n, (2.4)

where εi are independent random variables following the AL distribution AL(0, τ, σ) with

density

f(εi) =
τ(1− τ)

σ
exp

{
− ρτ (εi)

σ

}
.

Here σ can either be fixed or considered as part of the parameter to be assigned a prior

distribution. By Kotz et al. (2001), εi can be represented by a scale mixture of normals,

εi = σ(θ1vi + θ2zi
√
vi), (2.5)

where θ1 = (1 − 2τ)/{τ(1 − τ)}, θ22 = 2/{τ(1 − τ)}, zi ∼ N(0, 1), vi follows the standard

exponential distribution, and zi and vi are independent.

By using the representation (2.5) and assuming a proper Gaussian-Inverse Gamma prior

on (β(τ), σ), Kozumi and Kobayashi (2011) proposed a three-variable Gibbs sampling algo-

rithm. More specifically, Model (2.4) can be rewritten as

yi = x>i β(τ) + σ(θ1vi + θ2zi
√
vi), i = 1, . . . , n.

With a normal prior on β(τ), the full conditional density of β(τ) given y = (y1, . . . , yn)T

and v = (vi, . . . , vn)T is normal, and the conditional density of vi is a generalized inverse

Gaussian distribution. Consequently, a Gibbs sampler based on standard distributions can
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be applied. If σ is assigned a prior as inverse Gamma that is independent of β(τ), then

the conditional distribution of σ given the other quantities remains in the family of inverse

Gamma, as detailed in Kozumi and Kobayashi (2011). Khare and Hobert (2012) showed

that the Markov chain underlying this three-variable Gibbs sampling algorithm converges at

a geometric rate.

If an improper prior on (β(τ), σ) is used, Choi and Hobert (2013) used the same mix-

ture representation (2.5) to propose a data augmentation algorithm, and showed that the

Markov chains associated with the algorithms are geometrically ergodic. In addition, Choi

and Hobert (2013) showed that when the prior on (β(τ), σ) takes the form p0(β(τ), σ2) ∝
(σ2)−(a+1)/2 on σ2 > 0, where a is a hyper-parameter, the posterior is proper if and only if (i)

a > −n+ p+ 1, (ii) the design matrix is of full column rank, and (iii) y is not in the column

space of the design matrix. Currently, there are two R (R Core Team, 2014) packages, brq

(Alhamzawi, 2012), and bayesQR (Benoit et al., 2014), that utilize efficient Gibbs sampling

algorithms for Bayesian quantile regression.

Even though a prior distribution on σ can be used in Bayesian computation, we find

through our empirical studies that fixing σ at a pre-estimated value often makes the MCMC

algorithm more efficient. As we shall show in the following section, the proposed adjustments

to the posterior variance make the results asymptotically invariant to the choice of any fixed

σ. For a specific choice of σ to reflect the scale of the conditional distributions, we refer to

Remark 1 in Section 3.1.

3 Posterior variance adjustment

Based on the AL working likelihood, the posterior mean and variance of β(τ) can be com-

puted directly from the MCMC chains. Based on empirical evidence, Yu and Moyeed (2001)

argued that the use of the AL likelihood is satisfactory for quantile regression, even when

the likelihood is misspecified. Sriram et al. (2013) established sufficient conditions for the

posterior consistency of model parameters in Bayesian quantile regression with the AL like-

lihood. However, the posterior consistency results do not imply that the interval estimates

constructed from the posterior are automatically valid. It is tempting to construct interval
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estimates, whether they are called credible intervals or confidence intervals, from the quan-

tiles of the posterior or by normal approximations using the variance-covariance matrix of

the posterior sequence, as reported in Yu and Moyeed (2001), Li et al. (2010a), Alhamzawi

et al. (2012), Yue and Hong (2014) and Lum and Gelfand (2012), among others. Here we

argue that the posterior variance-covariance must be adjusted for the interval estimates to be

asymptotically valid. We will present the proposed adjustments for linear quantile regression

with complete data in Section 3.1 and with fixed censored data in Section 3.2. The basic

idea of asymptotically valid posterior inference goes back to Chernozhukov and Hong (2003)

and Yang and He (2012), but the specific results presented in this section are new.

3.1 Quantile regression with complete data

Consider the linear quantile regression model (2.1) with the true parameter β(τ) = β0.

Under the conditions that guarantee the asymptotic normality of the conventional quantile

regression estimator β̂(τ) that minimizes (2.2), we show in the Appendix that for ||β−β0|| =
O(n−1/2), the posterior density (assuming any fixed σ) is

pn(β | D) ∝ p0(β) exp
{
− n{β − β̂(τ)}>D1{β − β̂(τ)}+ op(1)

2σ

}
, (3.1)

where D1 = limn→∞n
−1∑n

i=1 fYi(x
>
i β0 | xi)xix

>
i with fYi(· | x) as the conditional density

of the response Yi given covariates x. The above expansion suggests that for large n and

p0(β) ∝ 1, pn(β|D) is approximately a normal density with mean β̃ = β̂(τ) and variance-

covariance σD−11 /n. Let Σ̂(σ) denote the posterior variance-covariance matrix with nΣ̂(σ) ≈
σD−11 . On the other hand, it is known (see for instance Koenker 2005, Chapter 3) that the

asymptotic variance of n1/2β̂(τ) is τ(1− τ)D−11 D0D
−1
1 , where D0 = limn→∞ n

−1∑n
i=1 xix

>
i .

This explains why the posterior variance is not the right approximation to the sampling

variance of β̂(τ).

The good news is that we can use a simple adjustment to Σ̂(σ) to obtain asymptotically

valid posterior inference,

Σ̂adj =
nτ(1− τ)

σ2
Σ̂(σ)D̂0Σ̂(σ),

where D̂0 = n−1
∑n

i=1 xix
>
i provides a consistent estimate of D0. A posterior interval can be
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constructed based on a normal approximation using Σ̂adj.

Remark 1. The unadjusted posterior variance Σ̂(σ) depends, in a rather complicated way,

on the specification of σ, the scale parameter in the asymmetric Laplace distribution. How-

ever, the adjusted posterior variance, Σ̂adj, is asymptotically invariant in the value of σ. In

practice, to adjust for the scale of the data, we recommend fixing σ at n−1Rn(β̂(0.5),D),

which is the maximum likelihood estimator of σ under the asymmetric Laplace working like-

lihood at the median.

The proposed adjustment not only applies to the posterior with the prior p0(β) ∝ 1, but

also applies to other proper priors. For asymptotic analysis about a more general class of

priors, including sample-size-dependent priors, we refer to Yang and He (2012).

3.2 Quantile regression with fixed censoring

Quantile regression is especially appealing for censored data, because many of the quan-

tiles are identifiable under censoring when the conditional mean is not identifiable without

additional (and often not verifiable) model assumptions. In this subsection, we discuss an

important application of quantile regression when the response variable is subject to fixed

censoring due to, for example, top or bottom coding.

Suppose that T is a latent continuous response variable of interest. Due to left cen-

soring we only observe Y = max(T,C) and the censoring indicator δ = I(T > C), where

C is a known censoring point. Without loss of generality, we assume C = 0. Let D =

{(yi,xi, δi), i = 1, . . . , n} be a random sample of (Y,X, δ). We consider the following linear

quantile regression model,

Qτ (T | X = x) = x>β(τ). (3.2)

Various estimation methods have been developed for censored quantile regression, includ-

ing Portnoy (2003), Ying et al. (1995), Peng and Huang (2008), and Wang and Wang (2009)

for random censoring, Lin et al. (2012) for double censoring, and Powell (1986) and Tang

et al. (2012) for fixed censoring. In this paper, we focus on the estimator of Powell (1986).

Since Y = max(T, 0), by the equivariance property of quantiles to monotone transfor-

mations, model (3.2) implies that the τth conditional quantile of the observed response Y
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is Qτ (Y | X = x) = max(x>β(τ), 0). Motivated by this, Powell (1986) proposed to estimate

β(τ) by β̂(τ), the minimizer of the following objective function

Rn(β,D) =
n∑
i=1

ρτ
{
yi −max(x>i β, 0)

}
. (3.3)

As pointed out in Womersley (1986) and Buchinsky and Hahn (1998), the objective function

(3.3) is highly non-convex in β, and the optimization is computationally challenging. Par-

ticularly, the existing computing methods become unstable when heavy censoring is present.

More details related to the computational issues can be referred to Buchinsky (1994), Fitzen-

berger (1997), and Chernozhukov and Hong (2002), and Portnoy (2010).

Yu and Stander (2007) proposed a Bayesian Tobit quantile regression model, which em-

ploys the AL likelihood based on the objective function in (3.3),

L(β;D) =
τn(1− τ)n

σn
exp

{
−
∑n

i=1 ρτ{yi −max(x>i β, 0)
}

σ

}
.

The resultant posterior can be written as

pn(β | D) ∝ p0(β) exp
{
−
∑n

i=1 ρτ{yi −max(x>i β, 0)
}

σ

}
. (3.4)

This is a direct extension of the AL working likelihood discussed in Section 3.1. Because

the optimization of (3.3) is far more difficult than the quantile regression problem without

censoring, the Bayesian computation for the censored quantile regression is attractive from

the computational perspective. A Gibbs algorithm was described in Yu and Stander (2007)

with σ = 1 and p0(β) ∝ 1.

Assume the censored quantile regression model (3.2) with the true parameter β(τ) = β0.

Under the assumptions of Powell (1986), for any β such that ||β− β0|| = O(n−1/2) we have

the following quadratic expansion,

pn(β | D) ∝ p0(β) exp
{
− n{β − β̂(τ)}>D1{β − β̂(τ)}+ op(1)

2σ

}
, (3.5)

where D1 = limn→∞
1

n

n∑
i=1

fT (x>i β0 | xi)xix>i I(x>i β0 > 0),
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and fT (·|xi) denotes the conditional density of the latent response T given covariates xi; see

the verification of this result in the Appendix.

The expansion (3.5) suggests that for large n and p0(β) ∝ 1, the posterior is approxi-

mately normal with mean β̃ = β̂(τ), and variance σD−11 /n, which is different from the asymp-

totic variance of β̂(τ), i.e., τ(1−τ)D−11 D0D
−1
1 /n, whereD0 = limn→∞n

−1∑n
i=1 xix

>
i I(x>i β0 >

0). Therefore, an interval estimate directly from the posterior is not asymptotically valid,

and a simple adjustment based on the posterior variance Σ̂(σ) is needed,

Σ̂adj =
nτ(1− τ)

σ2
Σ̂(σ)D̂0Σ̂(σ),where D̂0 = n−1

n∑
i=1

xix
>
i I(x>i β̂0 > 0).

Similarly as in Section 3.1, the adjusted posterior variance Σ̂adj is asymptotically invariant

with respect to the value of the scale parameter σ, and it can be used to construct an

asymptotically valid interval estimate for β(τ) using normal approximations.

4 Numerical studies

We carry out two simulation studies to assess the finite sample performance of the proposed

posterior variance adjustments, one for complete data and the other for fixed censored data.

Each simulation study uses 1000 Monte Carlo replications, and the Bayesian methods use

MCMC chains of length 20,000 with a burn-in of 4000.

4.1 Simulation for complete data

In this study, we focus on two sample sizes n = 200 and 500. Three data generating models

are specified below.

Case 1: yi = 2x1i + 2x2i + ei, where x1i and x2i are independent standard normal

variables, and ei ∼ t3, Student’s t-distribution with 3 degrees of freedom, is independent

of (x1i, x2i);

Case 2: yi = 2/3 + 4x1i + 4x2i + (1 + 0.6x2i1)ei, where x1i and x2i are independent

standard normal variables, and ei ∼ N(0, 1) is independent of (x1i, x2i);
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Case 3: yi = a(ui) + b1(ui)xi1 + b2(ui)xi2, where ui ∼ Unif(0, 1) is independent of

(x1i, x2i), a(u) = 0.5 + Φ−1(u), b1(u) = 2 + u2, b2(u) = 2, xi1 ∼ χ2
2/2 and xi2 ∼

N(0, 1) are independent, where χ2
2 denotes the chi-square distribution with 2 degrees

of freedom.

Case 1 represents a homoscedastic error model, and Cases 2 and 3 represent het-

eroscedastic error models. In both Cases 1 and 3, the conditional quantile function of Y

takes the formQτ (Y |x1, x2) = a(τ)+b1(τ)x1+b2(τ)x2 for any τ ∈ (0, 1), where a(τ) = F−1t3 (τ)

and b1(τ) = b2(τ) = 2 in Case 1. In Case 2, the linear conditional quantile function

Qτ (Y |x1, x2) holds only at τ = 0.5 with a(0.5) = 2/3 and b1(0.5) = b2(0.5) = 4.

Based on normal approximations, we construct confidence intervals for a(τ), b1(τ), b2(τ)

using the unadjusted posterior variance for the Bayesian quantile regression with the AL like-

lihood, and using the proposed adjustments to the posterior variance. For comparison, we

include two forms of confidence intervals from the conventional quantile regression obtained,

respectively, by using the default rank score method and by the Wald method based on the

asymptotic approximation to the variance-covariance matrix for models with heteroscedastic

errors in the R package quantreg (Koenker, 2015). Table 1 summarizes the coverage proba-

bilities and the average lengths of confidence intervals of the competing methods in Cases

1-3 at τ = 0.5, and Table 2 summarizes the results at two tail quantiles in Case 1 (τ = 0.1)

and Case 3 (τ = 0.9). The standard error of the coverage probabilities with a nominal level

90% is one percent. The results confirm that the Bayesian intervals from the AL likelihood, if

unadjusted, have poor coverage, which is mainly due to the misspecification of the likelihood.

In contrast, the intervals with the proposed variance adjustments have coverage close to the

nominal level 90% in all the scenarios considered. Although the two non-Bayesian methods

also produce asymptotically valid interval estimates, their performances are less stable, even

at n = 500, due to the difficulty in approximating the variance-covariance matrices of the

quantile estimates.

4.2 Simulation for data with fixed censoring

For censored quantile regression, we consider the following two data generating models,
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Case 4: Ti = 2.5 + 5xi + {1 + (xi− 0.5)2}ei, i = 1, . . . , n, where ei ∼ t3 is independent

of xi ∼ N(0, 1);

Case 5: Ti = 0.2 + 3xi1 − 2xi2 + (0.5 + 0.5xi1 + xi2)ei, i = 1, . . . , n, where xi1 ∼ χ2
1

and xi2 ∼ Bernoulli(0.5) are independent, and ei ∼ N(0, 1) is independent of (xi1, xi2).

Due to censoring, we observe yi = max(Ti, 0) instead of Ti, and in both cases, we have

the censoring proportions around 30%. In Case 4, the conditional quantile of T given x is

a(τ) + b(τ)x only at τ = 0.5 with a(0.5) = 2.5 and b(0.5) = 5 and is nonlinear in x at the

other quantiles. In Case 5, the conditional quantiles are a(τ) + b1(τ)x1 + b2(τ)x2 for all

τ ∈ (0, 1) with a(τ) = 0.2 + 0.5Φ−1(τ), b1(τ) = 3 + 0.5Φ−1(τ), and b2(τ) = −2 + Φ−1(τ). We

present results for τ = 0.5 in Case 4 at two sample sizes n = 200, 500, but for τ = 0.25 and

0.5 with n = 500 in Case 5.

The posterior intervals from the AL working likelihood are constructed, and their perfor-

mances are compared with the bootstrap-based confidence intervals (based on 100 bootstrap

replications) for the Powell’s estimator. The simulation results are given in Tables 3 and 4.

Clearly the interval estimates from the Bayesian method based on Powell’s objective func-

tion, referred to as BP, have poor coverage probabilities, but the proposed posterior variance

adjustment leads to respectable performance. The frequentist intervals from Powell (denoted

as POWELL in the tables) have undercoverage even with the bootstrap method. Part of

the issues with POWELL is that we might not find the right solution through optimization

for every bootstrapped data set. Our empirical work shows that the Bayesian quantile re-

gression method with the proposed posterior variance adjustment is attractive for inference

when Powell’s estimator is used for censored data.

4.3 Analysis of a women’s labor force data

We demonstrate the effect of the proposed posterior variance adjustment on a women’s

labor force participation data, which was analyzed in Mroz (1987) and Yu and Stander

(2007). We aim to investigate the relationship between women’s working hours, annual

nonwife household income (i.e. the household income excluding the wife’s labor income),

and education. The observed outcome variable Yhrs is the wife’s hours of work outside home
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in 1975, and the two covariates are xinc (nonwife household income with units $1000) and xedu

(wife’s educational attainment in years). The data set contains a total of 753 observations,

among which 325 (43%) have zero work hours and thus are treated as left censored to fit a

linear quantile model. The sample means of xinc and xedu are 20.43 and 12.29, respectively.

For easier interpretation, we center both covariates at zero by subtracting their means before

carrying out the data analysis.

We consider the following linear quantile regression model:

Qτ (Thrs | xinc, xedu) = a(τ) + b1(τ)xinc + b2(τ)xedu,

where Thrs is women’s latent total working hours with Yhrs = max(Thrs, 0) with left censoring.

We focus on quantiles τ = 0.5, 0.75 and 0.9.

The goodness-of-fit test in Wang (2008) suggests that the linear quantile functions are

appropriate at the selected quantile levels. We used the Bayesian estimates based on the AL

likelihood with fixed σ and find that the unadjusted posterior intervals depend significantly

on the value of σ; see Figure 1. In fact, when σ = 1 as used in Yu and Stander (2007), the

95% intervals on the quantile coefficients are remarkably narrow, but they cannot be taken

seriously. With the proposed posterior variance adjustments, the intervals are rather stable

across different values of σ. Figure 2 shows the interval estimates of b2(τ) from the Bayesian

methods with a pre-estimated σ = 429, that is, log σ = 6.06, as suggested in Remark 1. The

results show that education is not statistically significant at τ = 0.9. In this example, the

Bayesian intervals after variance adjustments are not far from the frequentist intervals from

bootstrapping Powell’s estimate.

5 Discussion

The specification of the asymmetric Laplace working likelihood relies on the value of the

scale parameter σ. In this paper, we consider a fixed σ for easier computation, instead of

involving it in the Markov chain Monte Carlo iteration, because the estimation and inference

of σ itself is not of interest in a quantile regression model. It is shown in the paper that

the posterior inference with a fixed σ without any variance adjustment can be misleading.

14

This article is protected by copyright. All rights reserved.



However, when the proposed adjustment is used, the posterior inference is asymptotically

independent of the choice of σ. In finite samples, a reasonably chosen σ that adapts to the

scale of the residuals could help the mixing property of the Markov chain Monte Carlo chain.

The Bayesian quantile regression methods are especially useful when the quantile loss

function is non-convex as in the case of censored data. The basic idea of posterior variance

adjustments can be attributed to the work of Chernozhukov and Hong (2003), but we feel

that the need for adjustments is not widely appreciated yet. We hope that this article helps

promote the appropriate use of posterior inference in quantile regression.

When multiple quantiles are of interest, the proposed adjustment to posterior variances

can be extended to the Bayesian quantile regression with an asymmetric Laplace likelihood

employing a combined objective function over multiple quantiles, such as the objective func-

tion in the composite quantile regression of Zou and Yuan (2008). The proposed adjustment

can also be extended to Bayesian quantile regression with longitudinal data or random cen-

sored data. Future research is needed in those directions.

6 Appendix

We provide the proofs for the quadratic expansions in (3.1) and (3.5). With these expansions,

the validity of the posterior inference with the proposed variance correction can be shown

by following Theorem 4 of Chernozhukov and Hong (2003).

6.1 Proof for (3.1)

The following assumptions are made.

A1. The conditional distribution FYi(·|xi) is absolutely continuous with continuous densities

fYi(·|xi) uniformly bounded away from 0 and ∞ at the points Qτ (Y |xi) = x>i β0, for

i = 1, . . . , n.

A2. There exist positive definite matrices D0 and D1 such that

limn→∞n
−1

n∑
i=1

xx>i = D0, limn→∞n
−1

n∑
i=1

fYi(x
>
i β0|xi)xix>i = D1.

In addition, maxi=1,...,nn
−1/2||xi|| → 0.
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Define δ = n1/2(β − β0), and

Zn(δ) =
n∑
i=1

{
ρτ (yi − x>i β)− ρτ (yi − x>i β0)

}
,

Following Knight (1998), we have

Zn(δ) = Z1n(δ) + Z2n(δ),

where Z1n(δ) = −n−1/2
n∑
i=1

x>i δφτ (yi − x>i β0),

and Z2n(δ) =
n∑
i=1

Z2ni(δ) with Z2ni(δ) =

∫ νni

0

(1{yi−x>i β0≤s} − 1{yi−x>i β0≤0})ds,

and νni = n−1/2x>i δ. For ||β−β0|| = O(n−1/2), from the Bahadur representation in Chapter

4.3 of Koenker (2005), i.e.,

n1/2(β̂(τ)− β0) = D−11 n−1/2
n∑
i=1

xiφτ (yi − x>i β0) +O
(
n−1/4(log log n)3/4

)
,

we have Z1n(δ) = −n1/2(β̂(τ)− β0)
>D1δ + op(1).

For Z2n(δ), following the proof of Theorem 4.1 in Koenker (2005), we first have

E(Z2n(δ)|x) = (2n)−1
n∑
i=1

fYi(x
>
i β0|xi)δ>xix

>
i δ + op(1) =

1

2
δ>D1δ + op(1).

Because

var(Z2ni(δ)|xi) ≤ E
{
Z2ni(δ)2

}
≤ max

1≤i≤n

{
Z2ni(δ)

}
E
{
|Z2ni(δ)|

}
≤ max

1≤i≤n
{vni}E

{
Z2ni(δ)

}
,

we have

var(Z2n(δ)|x) ≤ n−1/2 max
1≤i≤n

{
|xiδ|}E(Z2n(δ)|x)→ 0

with ||δ|| = O(1) under condition A2. Therefore, we have

Z2n(δ) =
1

2
δ>D1δ + op(1),
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and consequently,

Zn(δ) = −n1/2
{
β̂(τ)− β0

}>
D1δ +

1

2
δ>D1δ + op(1)

=
n

2
(β − β̂(τ))>D1(β − β̂(τ)) + Cn + op(1),

where Cn = −n
2
(β̂(τ) − β0)

>D1(β̂(τ) − β0). Because of
∑n

i=1 ρτ (yi − x>i β) = Zn(δ) +∑n
i=1 ρτ (yi − x>i β0), we have proved (3.1).

6.2 Proof for (3.5)

Define δ = n1/2(β − β0), ui = yi −max{x>i β0, 0}, vni = max(x>i β, 0)−max(x>i β0, 0), and

Zn(δ) =
n∑
i=1

{
ρτ (yi −max{x>i β, 0})− ρτ (yi −max{x>i β0, 0})

}
=

n∑
i=1

{
ρτ (ui − vni)− ρτ (ui)

}
.

Following Knight (1998), we have Zn(δ) = Z1n(δ) + Z2n(δ), where

Z1n(δ) = −
n∑
i=1

vniφτ (ui), and Z2n(δ) =
n∑
i=1

∫ vni

0

[
I(ui ≤ s)− I(ui ≤ 0)

]
ds.

By the definition of vni, we have

Z1n(δ) = −n−1/2
{ n∑
i=1

x>i δφτ (ui)I(x>i β > 0,x>i β0 > 0)

−
n∑
i=1

x>i βφτ (ui)I(x>i β > 0,x>i β0 ≤ 0) +
n∑
i=1

x>i β0φτ (ui)I(x>i β ≤ 0,x>i β0 > 0)
}
.

With bounded xi, and ||β − β0|| = O(n−1/2), we have

||n−1/2
n∑
i=1

x>i δφτ (ui)
[
I(x>i β > 0,x>i β0 > 0)− I(x>i β0 > 0)

]
||

≤ ||n−1/2
n∑
i=1

x>i δφτ (ui)I(x>i β ≤ 0,x>i β0 > 0)||.
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Because of Assumption R.2. in Powell (1986), E
[
I(x>i β ≤ 0,x>i β0 > 0)

]
can be controlled

by O(||β − β0||). Noting that E
(
φτ (yi − x>i β0)I(x>i β0 > 0)

)
= 0, we have

||n−1/2
n∑
i=1

x>i δφτ (ui)I(x>i β ≤ 0,x>i β0 > 0)|| = op(1),

which leads to

−n−1/2
n∑
i=1

x>i δφτ (ui)I(x>i β > 0,x>i β0 > 0) = −n−1/2
n∑
i=1

x>i δφτ (ui)I(x>i β0 > 0) + op(1).

The last two terms in Z1n(δ) can be shown of order op(1) noting that when x>i β and x>i β0

take different signs, their magnitudes are both controlled by ||n−1/2x>i δ||.
Therefore, we have

Z1n(δ) = −n−1/2
n∑
i=1

x>i δφτ (ui)I(x>i β0 > 0) + op(1).

From (3.5) in Powell (1986),

Z1n(δ) = n1/2(β − β̂(τ))>D1δ + op(1). (6.1)

In addition, we can partition Z2n(δ) as

Z2n(δ) =
n∑
i=1

I(x>i β > 0,x>i β0 > 0)

∫ n−1/2x>i δ

0

[
I(ui ≤ s)− I(ui ≤ 0)

]
ds

+
n∑
i=1

I(x>i β > 0,x>i β0 ≤ 0)

∫ x>i β

0

[
I(ui ≤ s)− I(ui ≤ 0)

]
ds

+
n∑
i=1

I(x>i β ≤ 0,x>i β0 > 0)

∫ −x>i β0

0

[
I(ui ≤ s)− I(ui ≤ 0)

]
ds.

Following the same steps as in Section 6.1, we have

E
{ n∑

i=1

I(x>i β > 0,x>i β0 > 0)

∫ n−1/2x>i δ

0

[
I(ui ≤ s)− I(ui ≤ 0)

]
ds
}

=
1

2n

n∑
i=1

{
I(x>i β > 0,x>i β0 > 0)fYi(ui|xi)δ>xix

>
i δ
}

+ op(1)

=
1

2n

n∑
i=1

{
I(x>i β0 > 0)fYi(ui|xi)δ>xix

>
i δ
}

+ op(1).
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Note that under the Assumption R.2 in Powell (1986), E
[
I(x>i β > 0,x>i β ≤ 0)

]
and

E
[
I(x>i β > 0,x>i β ≤ 0)

]
can both be controlled by O(||β − β0||), and the expectations

of the last two terms in Z2n(δ) are of op(1) order. Using similar arguments as in Section 6.1,

we can show that

var(Z2n(δ)|xi) ≤ max
i=1,...,n

{vni}E{Z2n(δ)|x} → 0.

Therefore, we have

Z2n(δ) =
1

2
δ>D1δ + op(1),

which together with (6.1) proves the quadratic expansion in (3.5).

Acknowledgement

The authors are grateful for two anonymous referees whose comments on our earlier draft of

the paper helped us improve presentation.

References

Alhamazawi, R. and Yu, K. (2014), “Bayesian Tobit quantile regression us-

ing g-prior distribution with ridge parameter,” J. Statist. Comput. Simulation,

DOI:10.1080/00949655.2014.945449.

Alhamzawi, R. (2012), Brq: Bayesian analysis of quantile regression models, R package

version 1.0.

Alhamzawi, R. and Yu, K. (2012), “Bayesian Lasso-mixed quantile regression,” J. Statist.

Comput. Simulation, 84, 868–880.

— (2013), “Conjugate priors and variable selection for Bayesian quantile regression,” Com-

putational Statistics & Data Analysis, 64, 209–219.

Alhamzawi, R., Yu, K., and Benoit, D. F. (2012), “Bayesian adaptive Lasso quantile regres-

sion,” Statistical Modeling, 12, 279–297.

Benoit, D. F., Al-Hamzawi, R., Yu, K., and Van den Poel, D. (2014), bayesQR: Bayesian

quantile regression, R package version 2.2.

19

This article is protected by copyright. All rights reserved.



Benoit, D. F., Alhamzawi, R., and Yu, K. (2013), “Bayesian Lasso Binary Quantile Regres-

sion,” Comput. Stat., 28, 2861–2873.

Benoit, D. F. and Poel, D. V. D. (2012), “Binary quantile regression: a Bayesian approach

based on the asymmtric Laplace distribution,” J. Appl. Econom., 27, 1174–1188.

Buchinsky, M. (1994), “Changes in the U.S. wage structure 1963-1987: application of quantile

regression,” Econometrica, 62, 405–458.

Buchinsky, M. and Hahn, J. (1998), “An alternative estimator for the censored quantile

regression model,” Econometrica, 66, 653–672.

Chen, C. and Yu, K. (2009), “Automatic Bayesian quantile regression curve fitting,” Stat.

Comput., 19, 271–281.

Chernozhukov, V. and Hong, H. (2002), “Three-Step censored quantile regression and ex-

tramarital affairs,” J. Am. Statist. Assoc., 97, 872–882.

— (2003), “An MCMC approach to classical estimation,” J. Econometrics, 114, 293–346.

Choi, H. M. and Hobert, J. P. (2013), “Analysis of MCMC algorithms for Bayesian linear

regression with Laplace errors,” J. Multivar. Anal., 117, 32–40.

Dunson, T. and Taylor, J. (2005), “Approximate Bayesian inference for quantiles,” J. Non-

parametr. Statist., 17, 385–400.

Fitzenberger, B. (1997), “Computational aspects of censored quantile regression,” in Dodge

Y, Hayward (eds) Proceedings of the 3rd international conference on statistical data anal-

ysis based on the L1-norm and related methods, CA: IMS, pp. 171–186.

Gelfand, A. E. and Kottas, A. (2002), “A computational approach for full nonparametric

Bayesian inference under Dirichlet process mixture models,” J. Comput. Graph. Statist.,

11, 289–305.

20

This article is protected by copyright. All rights reserved.



Geraci, M. and Bottai, M. (2007), “Quantile regression for longitudinal data using the asym-

metric Laplace distribution,” Biostatistics, 8, 140–154.

— (2013), “Linear quantile mixed models,” Stat Comput, DOI 10.1007/s11222-013-9381-9.

Hu, Y., Gramacy, R., and Lian, H. (2013), “Bayesian quantile regression for single-index

models,” Stat. Comput., 23, 437–454.

Hu, Y., Zhao, K., and Lian, H. (2014), “Bayesian quantile regression for partially linear

additive models,” Stat. Comput.

Khare, K. and Hobert, J. P. (2012), “Geometric ergodicity of the Gibbs sampler for Bayesian

quantile regression,” J. Multivar. Anal., 112, 108–116.

Knight, K. (1998), “Limiting distribution for L1 regressopm estimators under general con-

ditions,” Ann. Statist., 26, 755–770.

Kobayashi, G. and Kozumi, H. (2012), “Bayesian analysis of quantile regression for censored

dynamic panel data,” Comput. Stat., 27, 359–380.

Koenker, R. (2004), “Quantile regression for longitudinal data,” J. Multivar. Anal., 91, 74–

89.

— (2005), Quantile regression, New York: Cambridge University Press.

— (2015), quantreg: Quantile Regression, R package version 5.11.

Koenker, R. and Bassett, G. (1978), “Regression quantiles,” Econometrica, 46, 33–50.
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Table 1: Empirical coverage probabilities (ECP) and empirical mean lengths (EML) of

different confidence intervals with nominal level 90% in Cases 1-3 at τ = 0.5 with n =

200, 500. The standard errors for EML are no more than 0.005 in all entries.
100×ECP EML

Case n Method a(τ) b1(τ) b2(τ) a(τ) b1(τ) b2(τ)

1 n = 200 BALadj 90 91 93 0.33 0.33 0.33
BAL 86 88 89 0.29 0.29 0.29
RQrank 87 89 90 0.31 0.31 0.31
RQnid 92 90 90 0.34 0.32 0.32

n = 500 BALadj 91 90 93 0.20 0.21 0.21
BAL 86 86 89 0.18 0.18 0.18
RQrank 89 89 90 0.20 0.20 0.20
RQnid 91 89 92 0.21 0.20 0.20

2 n = 200 BALadj 90 91 92 0.41 0.66 0.42
BAL 86 77 87 0.34 0.44 0.35
RQrank 89 90 89 0.39 0.64 0.40
RQnid 91 70 90 0.42 0.40 0.40

n = 500 BALadj 92 90 93 0.26 0.42 0.26
BAL 87 75 88 0.22 0.28 0.22
RQrank 91 90 91 0.25 0.41 0.25
RQnid 92 68 90 0.26 0.25 0.25

3 n = 200 BALadj 90 88 90 0.55 0.58 0.39
BAL 81 73 82 0.43 0.37 0.30
RQrank 87 87 89 0.51 0.55 0.38
RQnid 89 88 88 0.54 0.57 0.38

n = 500 BALadj 92 90 92 0.34 0.37 0.25
BAL 84 72 82 0.27 0.23 0.19
RQrank 90 91 89 0.32 0.35 0.24
RQnid 93 91 90 0.34 0.36 0.24

ECP, empirical coverage probability; EML, empirical mean length; BALadj and BAL, the

Bayesian quantile regression based on asymmetric Laplace likelihood, with and without

posterior variance adjustment, respectively; RQrank, the interval estimates based on rank

score test in quantile regression; RQnid, the Wald-type interval estimates in quantile re-

gression based on the asymptotic approximation to the variance-covariance matrix under

heteroscedastic errors.
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Table 2: Empirical coverage probabilities and empirical mean lengths of different confidence

intervals with nominal level 90% in Cases 1 and 3 at tail quantiles (τ = 0.1 or 0.9) with

n = 200 and 500. The standard errors for EML range from 0.004 to 0.008 in this table.
100×ECP EML

Case τ n Method a(τ) b1(τ) b2(τ) a(τ) b1(τ) b2(τ)

1 0.1 200 BALadj 91 92 92 0.76 0.71 0.73
BAL 83 85 84 0.55 0.54 0.54
RQrank 88 89 88 0.70 0.66 0.66
RQnid 95 89 90 0.90 0.72 0.72

500 BALadj 92 89 90 0.45 0.44 0.44
BAL 83 81 83 0.34 0.34 0.34
RQrank 90 88 89 0.43 0.42 0.41
RQnid 93 89 88 0.48 0.43 0.43

3 0.9 200 BALadj 93 89 93 0.76 0.74 0.55
BAL 90 82 91 0.66 0.55 0.47
RQrank 87 87 89 0.69 0.70 0.50
RQnid 88 83 86 0.73 0.66 0.49

500 BALadj 91 88 92 0.46 0.46 0.33
BAL 88 80 90 0.41 0.35 0.29
RQrank 88 88 90 0.43 0.44 0.31
RQnid 90 85 89 0.45 0.44 0.31

The notations follow Table 1.
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Table 3: Empirical coverage probabilities and empirical mean lengths for confidence intervals

with nominal level 90% for Case 4 at τ = 0.5. The standard errors for EML are in the

range of 0.004 to 0.008 in this table.
100×ECP EML 100×ECP EML

Method a(τ) b(τ) a(τ) b(τ) a(τ) b(τ) a(τ) b(τ)

n = 200 n = 500

BPadj 91 90 0.71 1.16 90 91 0.44 0.72
BP 86 78 0.56 0.78 84 76 0.35 0.49
POWELL 85 87 0.59 1.04 84 85 0.36 0.63

ECP, empirical coverage probability; EML, empirical mean length; BPadj and BP, the

Bayesian quantile regression method using Powell’s objective function with and without pos-

terior variance adjustment, respectively; POWELL, the bootstrap-based interval estimates

of Powell (1986).

Table 4: Empirical coverage probabilities and empirical mean lengths for confidence intervals

with nominal level 90% for Case 5. For τ = 0.25, the standard errors for EML are around

0.005 with a(τ) and b1(τ), and are around 0.015 with b2(τ); for τ = 0.5, they are around

0.003 with a(τ) and b1(τ), and are around 0.01 with b2(τ).
100×ECP EML

τ Method a(τ) b1(τ) b2(τ) a(τ) b1(τ) b2(τ)

0.25 BPadj 90 86 88 0.35 0.47 1.64
BP 80 58 59 0.25 0.22 0.80
POWELL 89 86 86 0.34 0.45 1.37

0.5 BPadj 90 89 89 0.31 0.40 1.07
BP 78 61 66 0.21 0.19 0.58
POWELL 90 89 83 0.31 0.39 0.87

The notations follow Table 3.
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Figure 1: 95% confidence intervals for the coefficients of xedu at τ = 0.5 as σ varies in BP,

the Bayesian quantile regression method using Powell’s objective function. The dashed lines

correspond to the 95% confidence intervals from BPadj with posterior variance adjustment;

the solid lines correspond to the 95% confidence intervals from BP without posterior variance

adjustment.
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Figure 2: The coefficient estimates and 95% confidence intervals of xedu at τ = 0.5, 0.75, 0.9.

The black circles and solid lines represent the point estimates and the interval estimates from

Powell (1986); the blue triangles and dashed lines represent the estimates from the Bayesian

method with posterior adjustment.
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