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ABSTRACT 

Rationale, aims and objectives: Program evaluations often utilize various matching approaches to 

emulate the randomization process for group assignment in experimental studies. Typically, the 

matching strategy is implemented and then covariate balance is assessed before estimating 

treatment effects. This paper introduces a novel analytic framework utilizing a machine learning 

algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and 

estimating treatment effects, once the matching strategy has been implemented. This framework 

holds several key advantages over the conventional approach: application to any variable metric 

and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures 

applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby 

extending the methodology to any study design where weights are used for covariate adjustment 

or more precise (differential) outcome measurement. 

Method: One-to-one matching on the propensity score was used as the matching strategy. 

Covariate balance was assessed using standardized difference in means (conventional approach) 

and measures of classification accuracy (ODA). Treatment effects were estimated using ordinary 

least squares regression and ODA.  

Results: Using empirical data, ODA produced results highly consistent with those obtained via 

the conventional methodology for assessing covariate balance and estimating treatment effects.  

Conclusions: When ODA is combined with matching techniques within a treatment effects 

framework, the results are consistent with conventional approaches. However, given that it 
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provides additional dimensions and robustness to the analysis versus what can currently be 

achieved using conventional approaches, ODA offers an appealing alternative.   
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INTRODUCTION 

In experimental studies with two arms (treatment and control), outcomes may be analyzed by 

simply regressing the outcome on a treatment group indicator variable in order to estimate 

treatment effects. This minimal design is sufficient to provide unbiased treatment effect 

estimates when subjects are randomized. However, when analyzing non-randomized 

observational data, investigators estimate treatment effects by applying causal-inferential 

methods to control for threats to validity [1]. When evaluating health management programs, 

selection bias is a particularly prominent threat to validity because individuals with high levels of 

health care utilization or costs are specifically targeted for enrollment. Given their high outlier 

status at baseline, these individuals’ outcomes are naturally likely to regress to the mean on their 

follow-up measurement, giving the false impression of a treatment effect [2,3]. 

 In observational studies, investigators typically choose from a wide variety of matching 

approaches in an attempt to emulate the randomization process for group assignment using 

observational data [4]. However, unlike most experimental studies in which study groups are 

inherently comparable on both observed and unobserved pre-intervention characteristics, 

matching studies can only endeavor to generate study groups that are comparable on observed 

characteristics and must assume that any unmeasured variables will not bias the results [5]. Thus, 

in evaluating a health management program using a matching approach, the investigator would 

ensure that study groups were comparable on pre-intervention levels of health care utilization 

and cost, but must assume, for example, that unmeasured motivation to change health behaviors 

will not confound the outcomes [6,7]. Accordingly, an essential condition for assuming the 
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validity of treatment effects in matching studies is that the study groups are comparable on their 

observed pre-intervention characteristics [8,9]. 

 Recently, Linden & Yarnold [10] introduced a novel machine-learning approach for 

assessing comparability between study groups in matching studies. This methodology employs 

an algorithm called optimal discriminant analysis (ODA) to determine if, and to what degree, 

study groups can be distinguished based on the distributions of the covariates [11,12]. Matching 

is considered successful if the ODA algorithm fails to identify characteristics that discriminate 

between the groups.  

 In this paper we extend this machine-learning approach to program evaluations that use 

matching as the basis for ensuring comparability between study groups. By framing the 

treatment-outcome relationship as a classification problem (i.e., how accurately does the 

outcome variable classify individuals as being in the treatment or control group) ODA offers 

several benefits over the conventional statistical methods typically employed in matching 

studies. These include the ability to handle an outcome variable measured using any metric (from 

categorical to continuous) and multiple treatment groups, insensitivity to skewed data or outliers, 

and the use of accuracy measures that can be widely applied to all classification analyses. ODA 

also offers the unique ability to ascertain if individuals are likely to be responding to the 

treatment as assigned (or self-selected) based on optimized (maximum-accuracy) cut-points on 

the outcome variable. Moreover, ODA accepts analytic weights, thereby allowing the evaluation 

of observational studies using any matching algorithm that produces weights for covariate 

adjustment [10]. Finally, ODA provides the capability to use cross-validation in assessing the 
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generalizability of the model to other individuals outside of the original study sample, or to 

identify solutions that cross-generalize with maximum accuracy when applied across multiple 

samples [12]. 

 To illustrate the ODA-matching framework, and compare it to the conventional method, 

the paper is organized as follows. In the Methods section we provide a brief introduction to 

ODA, and describe the data source and analytic framework employed in the current study. The 

Results section reports and compares the results of the conventional approach and ODA-

matching framework. The Discussion section describes the specific advantages of ODA-

matching framework for assessing covariate balance and evaluating treatment effects compared 

with the conventional approach, and discusses how machine-learning can be applied more 

broadly within the causal inferential framework.  

METHODS 

A brief introduction to optimal discriminant analysis 

ODA is a machine learning algorithm that was introduced over 25 years ago to offer an 

alternative analytic approach to conventional statistical methods commonly used in research 

[13]. Its appeal lies in its simplicity, flexibility, and accuracy as compared to conventional 

methods [12,14,15]. 

 To briefly describe how an ODA model is obtained, assume we have a continuous 

outcome (attribute) and a binary treatment (class) variable. First, we order the outcome variable 

from low to high. Next, we find all the points along the continuum of the outcome in which the 
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next value belongs to an individual from the alternate class than that of the previous value (e.g. 

the next value belongs to a treated subject whereas the previous value belongs to a control). The 

cutpoint thus represents the mean value of the outcome at this point: cutpoint = (previous value + 

current value) / 2. Directionality defines how cutpoints are used to classify individual 

observations. The two directions are “less than” (controls have lower values on the outcome than 

treated subjects), and “greater than” (controls have higher values on the outcome than treated 

subjects). For an exploratory “two-tailed” hypothesis (controls and treated subjects have different 

values on the outcome), both directions are evaluated by the ODA algorithm. For a confirmatory 

“one-tailed” hypothesis (controls have lower values), only the appropriate direction (less than) is 

evaluated. For each cutpoint along the continuum of the outcome, ODA assesses how well the 

model—that is, the combination of cutpoint and direction—correctly predicts (in the current 

example) that controls have values of the outcome less than or equal to the cutpoint, and treated 

subjects have values of the outcome greater than the cutpoint [12,13]. 

 ODA relies on three measures of accuracy to identify the optimal (maximum-accuracy) 

model – that is, the exact combination of cutpoint and direction that produces the most accurate 

predictions possible for the sample. Sensitivity or true positive rate is the proportion of actual 

treated subjects that are correctly predicted by the ODA model -- that is, those who have a value 

on the outcome that lies above the cutpoint. Specificity or true negative rate is the proportion of 

actual control subjects that are correctly predicted by the ODA model – that is, those who have a 

value on the outcome that lies at or below the cutpoint [16]. The third measure of accuracy 

combines these two metrics and is called the effect strength for sensitivity or ESS [11,12]. ESS is 
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a chance-corrected (0 = the level of accuracy expected by chance) and a maximum-corrected 

(100 = perfect prediction) index of predictive accuracy. The formula for computing ESS for a 

binary (two-category) case classification result is: 

     ESS = [(Mean Percent Accuracy in Classification –50)]/ 50 x 100%   (1),  

where  

     Mean Percent Accuracy in Classification = (sensitivity + specificity)/2 x 100   (2).   

 The ODA algorithm iterates through each successive cutpoint and calculates ESS. The 

maximally-accurate model is that which has the cutpoint and direction with the highest 

associated value of ESS. Based on simulation research, ESS values <25% conventionally 

indicate a relatively weak, <50% indicate a moderate, 50-75% indicate a relatively strong, and 

>75% indicate a strong effect [11,12]. 

 ODA also computes P-values to assess the statistical reliability (or “significance”) of the 

maximally-accurate ODA model. P-values are estimated using Monte Carlo permutation 

experiments. For example, in models with a binary treatment, this involves repeatedly shuffling 

subjects’ treatment assignment at random, holding their outcome value fixed at its true value. In 

each permuted dataset the ESS is recorded, and the permutation P-value represents the 

proportion of all permuted datasets in which the ESS is higher than the ESS of the maximally-

accurate ODA model [11,12,13]. 

 Finally, ODA can be implemented using cross-validation to assess the generalizability of 

the model, using methods such as k-fold cross-validation, bootstrapping, and leave-one-out 

jackknife cross-validation [18,17,12]. This typically entails first estimating a model using a 
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training sample and calculating the accuracy measures, followed by applying the same model to 

one or more hold-out (test) samples and then recalculating the accuracy measures. If the 

accuracy measures remain consistent with those of the original model using the entire sample, 

then the model is considered generalizable. This may be important, for example, if the goal of 

the analysis is to assist health researchers identify new candidates for participation in an ongoing 

intervention, or initiate the intervention in other settings. Cross-validation is less important if the 

goal is only to estimate treatment effects of the existing intervention [10,19,20]. 

Data 

Our empirical example uses data from a prior evaluation of a primary care-based medical home 

pilot program that invited patients to enroll if they had a chronic illness or were predicted to have 

high costs in the following year. The goal of the program was to lower healthcare costs for 

program participants by providing intensified primary care (see [21] for a more comprehensive 

description). The retrospectively collected data consist of observations for 374 program 

participants and 1,628 non-participants. Eleven pre-intervention characteristics were available; 

these included demographic variables (age and gender), health services utilization in year prior to 

enrollment (primary care visits, other outpatient visits, laboratory tests, radiology tests, 

prescriptions filled, hospitalizations, emergency department visits, and home-health visits) and 

total medical costs (the amount paid for all those health services utilized in the prior year). 

Analytic approach 

Matching studies involve a sequential process in which the chosen matching strategy is 

implemented, covariate balance is assessed (i.e., comparability between study groups on pre-

This article is protected by copyright. All rights reserved.



intervention characteristics), and then treatment effects are estimated [4,8,9]. This approach 

serves to emulate an experimental study by decoupling the design phase (matching on pre-

intervention characteristics without consideration of the outcome as would be the case in a 

prospective study) from the analysis [22]. 

 While any matching algorithm could be employed within our proposed machine-learning 

framework, for the purpose of this empirical example, a one-to-one, propensity score based 

matching approach was used, as implemented in Linden [21]. The propensity score is defined as 

the probability of assignment to the treatment group given the observed characteristics [23]. To 

be consistent with prior research we estimated the propensity score via the conventional 

approach of using logistic regression to predict program participation status using the eleven pre-

intervention covariates described above, all entered as main effects. It has been demonstrated 

that in large samples, when treatment and control groups have similar distributions of the 

propensity score, they generally have similar distributions of the underlying covariates used to 

create the propensity score. This means that observed baseline covariates can be considered 

independent of treatment assignment (as if they were randomized), and therefore will not bias the 

treatment effects [23]. To achieve this similar distribution of the propensity score, an optimal 

matching algorithm [24] was used to match pairs (one participant to one non-participating 

control) on the estimated propensity score, resulting in 276 matched pairs [21]. 

 Next, the effectiveness of the matching approach in reducing bias was examined by 

assessing covariate balance, comparing the conventional method to ODA: the conventional 

method compares the standardized difference in means [25], and ODA utilizes the 
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aforementioned measures of accuracy – sensitivity, specificity, and ESS [11,12,16]. The 

expectation is that a well-matched cohort will have standardized differences close to zero, and 

poor (i.e., low) measures of accuracy [10]. 

The outcome analysis was performed by regressing health care costs in the program year 

on the treatment variable using ordinary least squares regression (OLS) with robust standard 

errors [26,27], and an exploratory ODA model was obtained in which health care costs was used 

as the attribute and treatment as the class variable, without specifying a priori directionality (i.e., 

hypothesizing a positive or negative difference over time). Exact P values were estimated using 

25,000 Monte Carlo experiments [12]. 

Both analyses were performed on the unmatched population (naïve estimate) and on the 

matched sample (adjusted), in order to assess the degree to which matching reduced confounding 

and altered the treatment effect estimates.   

Stata 14.1 (StataCorp., College Station, TX, USA) was used to conduct all conventional 

statistical analyses (i.e. covariate balance and outcome analyses using OLS regression), and 

ODA analyses were performed using UniODA Software [11]. 

RESULTS 

Tables of covariate balance, before and after matching, are replicated from Linden [21] 

and Linden & Yarnold [10] and are presented in Tables 1-4. Both conventional and ODA 

methods found that matching generated comparable study groups based on the observed pre-

intervention characteristics. In the former, standardized differences close to zero and P-values > 
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0.05 (Table 2). In the latter, we found consistently weak ESS values with permuted P values > 

0.05 except for prescriptions filled (P < 0.027, Table 4). 

 Table 5 presents program year costs (outcome) for participants and non-participants, both 

unadjusted and after one-to-one matching, using conventional OLS regression. As shown, the 

naïve treatment effect estimate (not controlling for confounding) is $4,038 (95% CI: 2,922, 

5,154). In other words, while the treatment group is estimated to have statistically significantly 

higher (P < 0.0001) health care costs in the program year than the unmatched pool of non-

participants, the regression model fails to explain the vast majority of the variance in health care 

costs between the two groups (97.59% remains unexplained). However, after controlling for 

confounding via matching, the subset of treated subjects was estimated to have program year 

costs that was, on average, $1,501 lower than that of the control group – but that was statistically 

indistinguishable from the control group (P < 0.193; 95% CI: -3,762, 760). 

 Table 6 presents program year costs (outcome) for participants and non-participants, both 

unadjusted and after one-to-one matching, using ODA as the analytic tool. Summary values 

represent the cutoff point on the outcome, sensitivity is presented for participants, and specificity 

is presented for non-participants. The ESS is reported as a measure of “clinical” importance (for 

which higher percentage values represent better classification accuracy and ability to 

discriminate between groups), and permuted P-values are reported as a measure of statistical 

significance. As shown for the naïve estimate, the ODA model predicted that an individual was a 

participant in the study if their program year cost was lower than $2,773 and a non-participant if 

their program year cost was equal to or greater than $2,773. The ODA model correctly classified 
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85.03% of participants and 71.74% of non-participants according to their cost. Classification 

performance was relatively strong (ESS = 56.77%) and statistically significant (P < 0.0001). 

However, after controlling for confounding via matching, ODA reported only a relatively weak 

clinical effect (ESS = 10.87%) that was not statistically significant (P < 0.076).  

 Taken as a whole, the statistical analysis findings obtained using ODA (Table 6) are 

almost perfectly consistent with findings obtained using OLS regression (Table 5), whether not-

adjusting or adjusting for confounding and selection bias. For both frameworks, the naïve 

estimate indicates that the treatment group had statistically higher costs in the intervention period 

compared to the non-treated group (P < 0.0001, for both regression and ODA), while the 

adjusted estimate indicates that the treatment group had non-statistically lower costs in the 

intervention period compared to the non-treated group (P = 0.193 and P = 0.076, for regression 

and ODA, respectively). 

DISCUSSION 

Our results demonstrate that ODA can be combined with a matching approach as a strategy that 

is equally effective as conventional methods to improve causal inference in program evaluations. 

And while we used one-to-one matching in this particular example, the ODA algorithm can be 

extended to any matching design where weights are used for covariate adjustment (see for 

example [28,29,30,31,32,33]). It is important to note that conventional and ODA analyses may 

not always produce consistent results. Prior studies comparing the two methods have obtained 

strongly divergent findings in a wide variety of real-world data and research designs [11,12]. A 
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good rule of thumb would be to perform the program evaluation using both conventional and 

ODA frameworks, and then compare the resulting treatment effect estimates. If both methods 

provide consistent results, then the investigator should be confident that, at the very least, the 

estimate is insensitive to distributional assumptions required for the OLS model, and also more 

likely to be a reflection of the true treatment effect estimate. However, if the approaches result in 

conflicting treatment effect estimates, the investigator should consider the ODA derived estimate 

to be more robust, given that ODA uses permutation P values that require no distributional 

assumptions and are always valid. 

 ODA is an appealing alternative framework in program evaluation because it holds 

several advantages over conventional methods for assessing covariate balance, outcomes, or 

both, in observational studies. First, the ODA algorithm, with its associated measure of 

classification performance (ESS) and non-parametric permutation tests, can be universally 

applied to any variable type and number of study groups (e.g., various treatment conditions or 

various doses of a particular treatment), and is not affected by skewed data or outliers – a 

concern that may arise in the context of meeting assumptions underlying the validity of the 

estimated P-value using conventional statistics alone (for example, as is evident in the current 

data by the large standard errors for the treatment effect estimates presented in Table 5). 

 Second, within the proposed treatment effects framework, ODA can also help explain (a) 

how individuals self-select in observational studies (by identifying group membership based on 

the cut-point on any given covariate) [10], and (b) how individuals are likely to respond to the 

intervention (by identifying where individuals are relative to the cutpoint on the outcome) [34]. 
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Such detail can allow administrators to fine-tune the enrollment criteria to target those 

individuals who will most likely benefit from the program [20], while concomitantly allowing 

administrators to improve their estimates of which individuals actually benefit from the program. 

 Finally, ODA can be implemented using cross-validation to assess the generalizability of 

the model to new candidates for participation in the existing intervention, or to initiate the 

intervention in other settings. Cross-validation is less important if the goal is only to estimate 

treatment effects of the intervention [19,20]. 

 While this paper specifically focused on creating a framework in which machine learning 

and matching approaches can be combined to improve causal inference in program evaluation, 

there are several additional ways in which machine learning techniques can be applied in causal 

inferential work. For example, Linden and Yarnold [20] use classification tree analysis (CTA) to 

characterize the nature of individuals who choose to participate in observational studies, while 

Athey & Imbens [35] modify the conventional classification and regression trees (CART) 

approach to estimate heterogeneous causal effects in such studies. CTA has also been proposed 

as an approach to identify potential instrumental variables (IV) that may provide an unbiased 

estimate of the causal effect of intervention on the outcome [10]. An IV is a variable that is 

correlated with the intervention, but not associated with unobserved confounders of the outcome 

[36]. Similarly, CTA can be used to identify causal mediation effects. A mediator is an 

intermediate variable which lies on the casual pathway between treatment and outcome [37]. A 

CTA model would be generated to predict the outcome, forcing the inclusion of the mediator 

after the treatment (to ensure correct temporal alignment), as well as including other covariates 
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to control for confounding. In such a model, the extent of mediation effects can be elucidated by 

assessing the ESS and P-values for each node along the pathway from treatment to outcome via 

the mediator. As indicated by these examples, the application of machine-learning techniques to 

improve causal inference in observational studies is open to much further exploration. And 

particular emphasis should be placed on determining the most appropriate algorithm for a given 

problem -- or a generalization to all algorithms, extension to outcomes with censored data [38], 

and the development of specific sensitivity analyses for these applications [39] to ensure that the 

resulting models remain robust to changes in assumptions and inputs. 

 In summary, when ODA is combined with matching techniques within a treatment effects 

framework, the results are consistent with conventional approaches. However, given that ODA 

provides additional dimensions and robustness to the analysis are available than what can 

currently be achieved using conventional approaches, it offers an appealing alternative. More 

broadly, health researchers should consider the many potential uses of machine learning 

algorithms to improve causal inference in observational studies. 
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Table 1: Baseline (12 months) characteristics of program participants and non-participants (from [10,21]). Continuous variables are 
reported as mean (standard deviation) and dichotomous variables are reported as N (percent). 
 

  
Participants 

(N=374)   
Non-Participants 

(N=1628) 
 Standardized 

difference 
 

 P-value 

Demographic characteristics        
Age 54.9 (6.71)  43.4  (11.99)  1.704  <0.001 
Female 211 (56.4%)  807 (49.6%)  0.138  0.017 
        
Utilization and Cost        
Primary care visits 11.3 (7.30)  4.6 (4.35)  0.914  <0.001 
Other outpatient visits 18.0 (16.65)  7.2 (10.61)  0.647  <0.001 
Laboratory tests 6.1 (5.27)  2.4 (3.31)  0.705  <0.001 
Radiology tests 3.2 (4.46)  1.3 (2.48)  0.424  <0.001 
Prescriptions filled 40.6 (29.96)  11.9 (17.14)  0.956  <0.001 
Hospitalizations 0.2 (0.52)  0.1 (0.29)  0.326  <0.001 
Emergency department visits 0.4 (1.03)  0.2 (0.50)  0.226  <0.001 
Home-health visits 0.1 (0.88)  0.0 (0.38)  0.083  0.012 
Total costs 8236 (9830)   3047 (5817)  0.528  <0.001 
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Table 2: Comparison of baseline characteristics of program participants and their 1:1 propensity score matched controls (from 
[10,21]). Continuous variables are reported as mean (standard deviation) and dichotomous variables are reported as N (percent) 
 

  
Participants 

(N=276)   
Matched Controls 

 (N=276) 
 Standardized 

difference P-value 
Demographic characteristics       
Age 54.6 (6.5)  54.0 (6.9)  0.082 0.316 
Female 152 (55.1%)  150 (54.3%)  0.015 0.864 
       
Utilization and Cost       
Primary care visits 9.5 (6.5)  9.7 (6.2)  0.022 0.803 
Other outpatient visits 15.2 (16.2)  15.6 (14.1)  0.029 0.751 
Laboratory tests 4.8 (5.8)  5.2 (4.5)  0.086 0.380 
Radiology tests 2.8 (4.4)  2.8 (4.1)  0.009 0.920 
Prescriptions filled 32.6 (27.8)  34.1 (25.3)  0.058 0.516 
Hospitalizations 0.2 (0.4)  0.2 (0.4)  0.026 0.768 
Emergency department visits 0.3 (0.8)  0.3 (0.9)  0.027 0.729 
Home-health visits 0.1 (0.9)  0.1 (1.0)  0.011 0.894 
Total costs 6318 (7827)   6748 (7648)  0.056 0.513 
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Table 3: Baseline (12 months) characteristics of program participants and non-participants (from [10,21]). Values represent cut-points 
on the covariate, and values in parentheses represent sensitivity (for participants) and specificity (for non-participants). 
 

  
Participants 

(N=374)   
Non-Participants 

(N=1628) 

 Effect 
Strength 

Sensitivity 

 

 P-value 

Demographic characteristics        
Age > 49.5 (79.95)  ≤ 49.5 (63.70)  43.64%  <0.001 
Female = 1 (56.42)  = 0 (50.43)  6.85%  0.020 
        
Utilization and Cost        
Primary care visits > 7.5 (67.38)  ≤ 7.5 (82.68)  50.06%  <0.001 
Other outpatient visits > 6.5 (75.13)  ≤ 6.5 (68.86)  43.99%  <0.001 
Laboratory tests > 2.5 (78.07)  ≤ 2.5 (67.38)  45.46%  <0.001 
Radiology tests > 1.5 (64.44)  ≤ 1.5 (69.96)  34.40%  <0.001 
Prescriptions filled > 16.5 (80.75)  ≤ 16.5 (77.09)  57.84%  <0.001 
Hospitalizations > 0.5 (19.25)  ≤ 0.5 (94.16)  13.42%  <0.001 
Emergency department visits > 0.5 (22.99)  ≤ 0.5 (88.45)  11.45%  <0.001 
Home-health visits > 2.5 (1.60)  ≤ 2.5 (99.82)  1.42%  0.002 
Total costs > 2773 (85.03)   ≤ 2773 (71.74)  56.77%  <0.001 
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Table 4: Comparison of baseline characteristics of program participants and their 1:1 propensity score matched controls (from 
[10,21]). Values represent cut-points on the covariate, and values in parentheses represent sensitivity (for participants) and specificity 
(for non-participants). 
 

  
Participants 

(N=276)   
Matched Controls 

 (N=276) 

 Effect 
Strength 

Sensitivity P-value 
Demographic characteristics       
Age ≤ 52.5 (37.68)  > 52.5 (70.29)  7.97% 0.215 
Female = 0 (45.65)  = 1 (55.07)  0.72% 0.932 
       
Utilization and Cost       
Primary care visits > 2.5 (96.38)  ≤ 2.5 (9.06)  5.43% 0.590 
Other outpatient visits > 5.5 (74.64)  ≤ 5.5 (35.51)  10.14% 0.072 
Laboratory tests >  3.5 (59.06)  ≤ 3.5 (49.64)  8.70% 0.115 
Radiology tests > 0.5 (80.80)  ≤ 0.5 (24.28)  5.07% 0.519 
Prescriptions filled > 16.5 (76.09)  ≤ 16.5 (35.87)  11.96% 0.027 
Hospitalizations > 0.5 (14.86)  ≤0.5 (87.32)  2.17% 0.546 
Emergency department visits > 0.5 (21.38)  ≤ 0.5 (84.06)  5.43% 0.123 
Home-health visits > 2.5 (1.45)  ≤ 2.5 (98.91)  0.36% 0.847 
Total costs > 4629 (49.64)  ≤ 4629 (61.23)  10.87% 0.079 
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Table 5: Program year costs for participants and non-participants (unadjusted), and for matched pairs as estimated by ordinary least 
squares (OLS) regression. Values are reported as mean (standard error).  

  Participants Non-Participants Difference P-value 95% CI 

Naïve estimate (unadjusted)1 7,325 (513) 3,287 (246) 4,038 (569) < 0.0001 2,922, 5,154 
Matched pairs OLS regression2 5,709 (449) 7,210 (1,060) -1501 (1,151) 0.193 -3,762, 760 

1 374 participants, 1628 non-participants 
2 274 matched pairs 

 

Table 6: Program year costs for participants and non-participants (unadjusted), and for matched pairs as estimated by optimal 
discriminant analysis (ODA). Values are reported as cut-points on program year costs, and values in parentheses represent sensitivity 
(for participants) and specificity (for non-participants). Permuted P-values are derived using 25,000 Monte-Carlo experiments. 

  Participants Non-Participants 

Effect 
 Strength 

Sensitivity P-value 
Naïve estimate (unadjusted)1 < 2,773 (85.03%) ≥ 2,773 (71.74%) 56.77% < 0.0001 
Matched pairs ODA2 < 4,629 (49.64%) ≥ 4,629 (61.23%) 10.87% 0.076 

1 374 participants, 1628 non-participants  

2 274 matched pairs 
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