1	
2	Received Date: 10-Jul-2015
3	Accepted Date: 02-Nov-2015
4	Article type : Review Article
5	
6	
7	Indoor inhalation intake fractions of fine particulate matter: Review of
8	influencing factors
9	
10	Natasha Hodas ^{a,b} , Miranda Loh ^c , Hyeong-Moo Shin ^d , Dingsheng Li ^e , Deborah Bennett ^d , Thomas
11	E. McKone ^{d,g} , Olivier Jolliet ^e , Charles J. Weschler ^{h,i} , Matti Jantunen ^j , Paul Lioy ^h , Peter
12	Fantke ^k ,*
13	
14	^a Division of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
15	^b Department of Environmental Science and Management, Portland State University, Portland,
16	OR, USA
17	^c Institute of Occupational Medicine, Edinburgh, United Kingdom
18	^d Department of Public Health Sciences, University of California, Davis, CA, USA
19	^e Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
20	^f School of Public Health, University of California, Berkeley, CA 94720, USA
21	g Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
22	^h Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ,
23	USA
24	ⁱ International Centre for Indoor Environment and Energy, Technical University of Denmark,
25	Kgs. Lyngby, Denmark
26	^j Department of Environmental Health, National Institute for Health and Welfare, Helsinki,
27	Finland
28	^k Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby,
29	Denmark
	This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u> . Please cite this article as <u>doi: 10.1111/INA.12268</u>

- 31 *Corresponding author:
- 32 Peter Fantke
- 33 Quantitative Sustainability Assessment Division, Department of Management Engineering
- 34 Technical University of Denmark, Produktionstorvet 424
- 35 2800 Kgs. Lyngby
- 36 Denmark
- 37 Tel.: +45 45254452
- 38 Fax: +45 45933435
- 39 E-mail: pefan@dtu.dk

Author Manu

Abstract

Exposure to fine particulate matter ($PM_{2.5}$) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with $PM_{2.5}$ exposures because people spend the majority of their time indoors and $PM_{2.5}$ exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor $PM_{2.5}$ intake fraction ($iF_{in,total}$), which is defined as the integrated cumulative intake of $PM_{2.5}$ per unit of emission, is driven by a combination of building-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of $PM_{2.5}$ are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing $iF_{in,total}$ were compiled. In addition to providing data for the calculation of $iF_{in,total}$ in various indoor environments and for a range geographic regions, this paper discusses remaining limitations to the incorporation of $PM_{2.5}$ -derived health impacts into life cycle assessments and makes recommendations regarding future research.

Practical Implications

This paper reviews and summarizes the factors that influence indoor inhalation intake fraction of fine particulate matter, with a focus on primary particle emissions indoors. It provides valuable data for the calculation of indoor inhalation intake fraction for a range of indoor environments and contributes to the effort to incorporate PM_{2.5}-derived health impacts into life cycle assessment.

Key words: fine particulate matter (PM_{2.5}), human exposure, indoor air, intake fraction, life cycle impact assessment (LCIA), ventilation

Introduction

Human exposure to fine particulate matter ($PM_{2.5}$) is a major contributor to disease burden on a global scale (WHO, 2002, 2013). The indoor environment is a particularly important venue for exposure to $PM_{2.5}$ because people spend the majority of

70 their time indoors (Klepeis et al., 2001; Phillips and Moya, 2014 and references therein). 71 Further, due to the lesser degree of dilution, chemical transformation, and dispersion, as 72 well as the higher density of occupants indoors, exposures per unit mass of PM_{2.5} emitted 73 indoors are two to three orders of magnitude larger than exposures to emissions to the 74 outdoor environment (Smith, 1988; Lai et al., 2000; Klepeis and Nazaroff, 2006; Ilacqua 75 et al., 2007; Nazaroff, 2008). In order to fully assess the impacts associated with all 76 emission sources of PM_{2.5} and to evaluate the life cycle environmental performance of 77 products and systems (e.g., energy and transport systems, food products and production 78 systems, and consumer products), there is a need for the incorporation of PM_{2.5} 79 exposures and the associated health effects into Life Cycle Impact Assessments (LCIA), 80 with a specific need for the consideration of the impacts related to indoor exposures to PM_{2.5} emitted or formed indoors. 81 82 Due to current limitations in data availability and modeling tools that 83 systematically combine indoor and outdoor intakes from indoor and outdoor sources, as 84 well as challenges in consistently linking indoor and outdoor intakes to exposure-85 response, indoor sources and related intake of PM_{2.5} are currently not considered in 86 product-related assessments (Humbert et al., 2015). To integrate indoor sources into such 87 assessment frameworks, there is a need for (1) the identification of factors contributing 88 substantially to variability in PM_{2.5} exposure and an examination of the value of 89 accounting for this variability when assessing PM_{2.5} health impacts, (2) the aggregation 90 and evaluation of modeling tools and data available for assessing human exposure to 91 PM_{2.5}, and (3) a thorough assessment of the availability of exposure-response functions 92 (ERFs) and the appropriateness of ERF shape (e.g., linear, non-linear, presence of a 93 threshold) for a variety of health outcomes (Fantke et al., 2015). With the aim of 94 addressing these barriers and the lack of a standardized methodology to estimate 95 exposures and health effects, the United Nations Environment Programme (UNEP)-96 Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative 97 formed a task force to provide guidance for the assessment of PM_{2.5} exposures and 98 associated health effects (Jolliet et al., 2014; Fantke et al., 2015). Under the framework of 99 this task force and with input from an international team of experts, this paper constitutes 100 a first step toward incorporating indoor PM_{2.5} exposures into LCIA by characterizing the

101	factors that drive variability in the inhalation intake fraction of $PM_{2.5}$ derived from indoor
102	sources.

Inhalation intake fraction (iF), which is defined as the ratio of mass of a pollutant

104	inhaled by an exposed human population to the total mass associated with a given source
105	(Bennett et al., 2002), provides a well-suited metric by which to consider $PM_{2.5}$ impacts
106	in the context of LCIA. As an exposure metric, iF integrates components that are key to
107	such assessments: (1) it describes source-receptor relationships in a manner that allows
108	for direct comparisons across emission sources and (2) it can readily be related to
109	potential toxicity in terms of specific health outcomes when exposure-response
110	relationships are known (Bennett et al., 2002; Ilacqua et al., 2007; Nazaroff, 2008; Fantke
111	et al., 2015). Table 1 illustrates the contributions of PM _{2.5} derived from indoor sources
112	(S_{in}) and outdoor sources (S_{out}) to indoor intake, outdoor intake, total intake, and the
113	intake fraction of PM _{2.5} . As is described in detail below, this paper reviews the major
114	factors influencing the inhalation intake fraction of PM _{2.5} derived from indoor sources
115	(Table 1, Equation 1). Examples of common indoor sources of $PM_{2.5}$ include cooking,
116	household and office appliances, smoking, cleaning, candles, and heating appliances or
117	stoves. Additional efforts are currently underway within the UNEP-SETAC LCIA
118	framework to characterize the other aspects of $PM_{2.5}$ intake and intake fraction shown in
119	Table 1.
120	Indoor inhalation intake fraction ($iF_{in,total}$) describes the total inhalation intake of
121	PM _{2.5} (in kg) per unit mass emitted indoors (in kg). Two components contribute to
122	$iF_{\rm in,total}$ (Table 1, Equation 1): (1) the fraction of PM _{2.5} emitted or formed indoors that is
123	taken in via inhalation indoors ($iF_{in\rightarrow in}$) and (2) the fraction of PM _{2.5} emitted or formed
124	indoors that is transported outdoors and taken in via inhalation outdoors ($iF_{\text{in}\to\text{out}}$).
125	However, because PM _{2.5} of indoor origin experiences a greater degree of dispersion and
126	dilution following transport outdoors and outdoor population density is lower than
127	indoors, $iF_{\text{in}\to\text{out}}$ is typically three orders of magnitude smaller than $iF_{\text{in}\to\text{in}}$ (Smith,
128	1988; Lai et al., 2000; Klepeis and Nazaroff, 2006; Ilacqua et al., 2007; Nazaroff, 2008;
129	Humbert et al., 2011). Thus, in calculations of $iF_{\text{in,total}}$, $iF_{\text{in}\rightarrow\text{out}}$ can be considered
130	negligible compared to $iF_{\text{in}\rightarrow\text{in}}$. As a result, this paper focuses on characterizing the major
131	factors contributing to variability in $iF_{\text{in}\to\text{in}}$, as this term dominates $iF_{\text{in,total}}$. While not

the main focus, we also note the importance of interactions between pollutants of outdoor and indoor origin and the influence of outdoor $PM_{2.5}$ sources on cumulative indoor intake (Table 1, Equation 2) and briefly discuss the current state of knowledge regarding these aspects.

Nazaroff (2008) divided the factors influencing variability in $iF_{\rm in \to in}$ for primary particles into three categories: (1) factors related to building characteristics (e.g., ventilation, airflow, and mixing rates), (2) factors related to occupant characteristics and behaviors (e.g., inhalation rates and occupancy/activity patterns), and (3) pollutant dynamics (e.g., first order removal processes and sorptive interactions). That study noted the need for a "richly constituted tool kit to effectively comprehend the system of the human health risk associated with products and processes in indoor environments." Humbert et al. (2011) provided an initial set of parameters characterizing two archetypal indoor environments (residences within the United States [U.S.] and mechanically ventilated offices). Herein, we expand on that effort by developing an inventory of parameters (i.e., a "tool kit") to (1) address each of the factors influencing $iF_{\rm in \to in}$ discussed by Nazaroff (2008) and (2) allow for the characterization of multiple archetypal indoor environments (e.g., residences, offices, schools, etc.), covering a broad range of geographic scales.

Methods

For each category of factors influencing $iF_{\mathrm{in}\to\mathrm{in}}$ (building, occupant, and pollutant factors), sub-groups with expertise in that specific field were created within an indoor-air task force. Literature searches conducted by each sub-group were obtained from Web of Science, Google Scholar, and/or SCOPUS with search terms representing sources of variability related to the above-described categories (e.g., "air exchange rate measurements," "building ventilation," "commercial building ventilation rates," "inhalation rates," "indoor particle deposition," "indoor particle emission rates," etc.). When available, review papers were preferentially selected to be included in this review due to its multidimensional focus. Collected references were then reviewed and compiled to provide an inventory of data-sources (e.g., peer-reviewed scientific articles and reports) and data regarding each factor influencing $iF_{\mathrm{in}\to\mathrm{in}}$. We included key papers (i.e.,

those with the most sound experimental/modeling practices, those that provide the greatest breadth of data, and those that allow for consideration of a range of exposure scenarios) in the present review and provide data from those papers in the supporting information (SI). In general, the data compiled include summary statistics (i.e., mean, standard deviation, geometric mean, geometric standard deviation, percentiles, minimum, and maximum values) from individual studies conducted under a variety of experimental conditions and for a range of geographic locations. Where possible, data are categorized by country/geographic region and specific conditions in order to allow for the selection of data most relevant to an exposure-scenario of interest. Each factor contributing to variability in $iF_{in\rightarrow in}$ is discussed in an individual section below.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

163

164

165

166

167

168

169

170

171

172

Building Factors

Building-specific factors influencing $iF_{in\rightarrow in}$ include building volume and ventilation (Table 1, Equations 1 and 2). Building ventilation is a key parameter in estimating $iF_{in\rightarrow in}$, as it drives the transport, dispersion, and dilution of PM_{2.5} emitted indoors. Indoor ventilation is driven by three processes: (1) leakage through cracks in the building shell and walls (infiltration/exfiltration), (2) airflow through open windows and doors (natural ventilation), and (3) mechanical ventilation (i.e., flow driven by fans; Chan et al., 2005; US EPA, 2011). Infiltration/exfiltration and natural ventilation are driven by pressure gradients that exist across the building envelope due to indoor-outdoor temperature differences and wind (US EPA, 2011). Mechanical ventilation systems range between exhaust- or supply-only systems (e.g., bathroom and kitchen exhaust fans/hoods), balanced supply and exhaust systems, localized unitary/single-zone systems, and central/integrated systems (Sippola and Nazaroff, 2002; Brelih and Seppänen, 2011; Litiu, 2012). Building ventilation is typically quantified as whole-building/whole-zone air exchange rates (AERs) [h⁻¹] or, as is common for non-residential/commercial buildings, volumetric flow rate normalized by building occupancy, volume, or floor area [L s⁻¹ person⁻¹, L s⁻¹ m⁻³, L s⁻¹ m⁻²] (Persily, 2015). In the following paragraphs, we review the body of literature focused on characterizing these building properties and processes in a range of building archetypes.

Residential Buildings

195	Residential ventilation rates have been most heavily studied in Europe (Hänninen
196	et al., 2011; Dimitroulopoulou, 2012 and references therein; Asikainen et al., 2013; Orru
197	et al., 2014) and North America (Figure 1a) (Clark et al., 2010; Persily et al., 2010; US
198	EPA, 2011 and references therein; Chen et al., 2012; MacNeil et al., 2012, 2014; El Orch
199	et al., 2014; Bari et al., 2014; Breen et al., 2014; Persily, 2015). While more limited in
200	their number and scope, some studies have also been carried out in New Zealand (McNeil
201	et al., 2012), Asia (Baek et al. 1997; Williams and Eunice, 2013; Huang et al., 2014; Park
202	et al., 2014; Li and Li, 2015; Shi et al., 2015), Africa, and South America (Williams and
203	Eunice, 2013 and references therein) (Figure 1a). In addition to those studying the
204	housing stock in broad geographic regions, some studies have focused on homes with
205	specific characteristics (e.g., new homes, energy-efficient homes, low-income/public
206	housing; Zota et al., 2005; US EPA, 2011). A limited number of studies have
207	characterized ventilation in homes in developing countries (Williams and Eunice, 2013,
208	L'Orange et al., 2015, and references therein) (Figure 1a). The use of solid fuels for
209	cooking and heating, particularly in developing countries, is a leading indoor air quality
210	issue on a global scale, with approximately 4.3 million premature deaths annually
211	attributed to related pollutant exposures (www.WHO.int/indoorair/en). As a result, such
212	measurements for homes in developing countries are very important to the effort to
213	incorporate the impacts of indoor PM _{2.5} exposures into LCIA.
214	The above-described body of work illustrates that there is spatial variability in
215	residential ventilation with climate, building construction characteristics, home age,
216	heating, ventilation, and air conditioning (HVAC) system configurations, ventilation
217	standards and regulations, and residence type (i.e., detached, single family homes,
218	apartments) (Figure 2a). Temporal heterogeneity in ventilation rates results from
219	variability in meteorological conditions and human behaviors such as window opening
220	and mechanical ventilation system usage. The compilation of data characterizing homes
221	over a broad range of geographic scales, housing types, seasons, and meteorological
222	conditions is needed because the prevalence of different ventilation systems varies
223	strongly across these factors. For example, AERs in 100% of both apartments and
224	detached homes in Bulgaria are driven by infiltration and natural ventilation. On the other

225	hand, 48% of detached homes in Finland have mechanical ventilation systems. This
226	proportion increases to 72% when considering apartments (Litiu, 2012). To aid in the
227	selection of representative ventilation parameters when calculating $iF_{\mathrm{in}\to\mathrm{in}}$, the
228	ventilation rates and air exchange rate data provided here are categorized by country,
229	home type, season, and ventilation system where the available data allow for this (Figure
230	1a and SI). Studies characterizing window-opening behavior and/or mechanical
231	ventilation system usage and runtime (e.g., Iwashita and Akasaka, 1997; Chao, 2001;
232	Wallace et al., 2002; Johnson and Long, 2005; US EPA, 2011; Fabi et al., 2012; Marr et
233	al., 2012; Breen et al., 2014; El Orch et al., 2014; Gorenzenski et al., 2014; Levie et al.,
234	2014; Persily, 2015; Stephens, 2015) provide needed information for accounting for
235	temporal and spatial variability in ventilation conditions.
236	Figure 2a summarizes available residential air exchange rate data, with detailed
237	data provided in the SI. For all residential AER measurements combined, we observed a
238	median value of $0.50 h^{1}$ (95% confidence interval [CI] = $0.08, 8.2 h^{1}$) (Figure 2a), which
239	is slightly higher than the recommended median value of 0.45 h ⁻¹ for homes in the U.S.
240	provided in the Environmental Protection Agency Exposure Factors Handbook (US EPA
241	EFH) (US EPA, 2011). This difference can likely be attributed, at least in part, to our
242	inclusion of a small number measurements from high AER homes in developing
243	countries, as well as differences in home characteristics and ventilation systems across
244	nations. While treated as a single distribution above for the purpose of comparison
245	against the recommended value in the US EPA EFH, residential AERs are likely best
246	characterized by a bimodal distribution. This is evidenced by differences in the median
247	AER values for homes in developed and developing countries: median (95% CI) = 0.48
248	$(0.08\ 2.26)\ h^{-1}$ and 14.1 (2.0, 61.0) h^{-1} , respectively.
249	Many of the studies described above in which air exchange and ventilation are
250	measured also provide data regarding the volume/floor area of the homes studied (Figure
251	1f). It is important to note that homes included are not necessarily statistically
252	representative of the housing stock and this influences estimates of both home volume
253	and ventilation. Population-level data describing home characteristics can also typically
254	be gathered from census and housing survey databases (e.g., the American Census,
255	American Housing Survey, Eurostat, and Census India). Recommended values for

various housing and building characteristics are also available in reports summarizing exposure factors in several countries (US EPA, 2011; Phillips and Moya, 2014 and references therein). Available measurements of residential volumes illustrate their high variability, both within and across nations, with values ranging from 15 – 1446 m³ (median [95% CI] = 247 [41, 971] m³) (see SI). The median residential volume for the studies considered in this work is lower than the recommended value provided in the US EPA EFH (492 m³) (US EPA, 2011), likely illustrating differences in residential volumes across regions of the world.

263264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

256

257

258

259

260

261

262

Non-Residential Buildings

Ventilation measurements have been conducted in a range of non-residential buildings, including retail stores (US EPA, 2011; Zaatari et al., 2014 and references therein; Dutton et al., 2015), schools, kindergartens, and daycare centers (Coley and Beisteiner, 2002; Wargocki et al., 2002; Emmerich and Crum, 2006; Mi et al., 2006; Li et al., 2007; Guo et al., 2008; Santamouris et al., 2008; Brehlih and Seppänen, 2011; Sundell et al., 2011; Aelenei et al., 2013; Canha et al., 2013) offices (Persily and Gorfain, 2004; Dimitroupoulou and Bartzis, 2013), fitness facilities (Zaatari et al., 2014), jails (Seppänen et al., 1999; Li et al., 2007), and healthcare facilities, hospitals, and nursing homes (Wargocki et al., 2002, Li et al., 2007 and references therein). Summary statistics of more than 700 measurements from 17 studies, for example, have been compiled for retail facilities, bars/restaurants, healthcare facilities, fitness facilities, offices, and schools (Zaatari et al., 2014). As is true for residential ventilation rates, measurements in non-residential buildings are more heavily focused in North America and Europe, with a smaller number of studies also conducted in Asia (Figure 1a). Non-residential AERs are summarized in Figure 2a, with more detailed information (e.g., categorized by building type) provided in the SI. We observed a median AER for non-residential buildings of 1.5 h^{-1} (95% CI = 0.29, 9.1 h^{-1}). The above-described studies again demonstrate geographic variability in ventilation-system characteristics and the prevalence of mechanically and naturally

ventilated buildings, as well as temporal variability in ventilation with meteorological

conditions, window opening, and HVAC-system operation. For example, 100% of

schools and kindergartens are naturally ventilated in Italy, while only 5% and 28% of kindergartens and schools are naturally ventilated in Finland (Litiu, 2012). Sippola and Nazaroff (2002) note that single-zone HVAC systems are common in smaller commercial buildings with floor areas on the order of 150 m², while central systems dominate in larger buildings (>1000 m²) such as malls, university buildings, theaters, and retail centers.

A small number of studies discuss window-opening and HVAC-system-use behavior in commercial/non-residential buildings (e.g., Fabi et al., 2012; Roetzel et al., 2010; Ramos and Stephens, 2014; D'Oca and Hong, 2014; Li et al., 2015; Stephens, 2015). Two recent studies (Bennett et al., 2012; Chan et al., 2014) conducted detailed measurements of AERs and ventilation rates in thirty seven commercial buildings and nineteen retail stores, respectively, and provided summary statistics for various building types (e.g., grocery stores, hardware stores, restaurants, healthcare facilities, and public assembly spaces) and for varying ventilation conditions (e.g., with doors open/closed, with and without mechanical ventilation systems in use).

As was true for the residential ventilation studies, many of the above-described studies provide information regarding the characteristics of the buildings studied, including building volume and/or floor area; however, again, these values are typically not statistically representative of the full range of non-residential building stock. The Building Assessment Survey and Evaluation (BASE) Study provides measurements of building and occupied-space size for 100 randomly selected large office buildings in the U.S. (Persily and Gorfain, 2004). US EPA (2011) is also a valuable resource for summary statistics of volume data for buildings with a wide range of uses and sizes (e.g., warehouses, shopping malls, schools, and healthcare facilities). As a result of the range of building uses, commercial building volumes display a large degree of variability, ranging from 408 to 849,505 m³ (median [95% CI] = 3,398 [461, 192,554] m³) (see SI).

Inter- and Intra-Zonal Airflows and Mixing

Inter-zonal and intra-zonal airflow and local-scale mixing (i.e., convective and advective mixing on intra-zonal scales) can be of importance in both residential and non-residential indoor environments, specifically when considering differences in exposures

318	and $iF_{\mathrm{in}\to\mathrm{in}}$ for building occupants with varying proximities to sources of interest
319	(Drescher et al., 1995; Nazaroff, 2008). Measurements of inter-zonal and intra-zonal
320	flows are limited. In addition, these flows vary within and across buildings and depend on
321	multiple factors including door opening, ventilation conditions, home layout, and
322	temperature gradients (Klepeis, 2004; McGrath et al., 2014). Thus, selecting a
323	representative value or sampling from a distribution of measured values when calculating
324	$iF_{\mathrm{in} \to \mathrm{in}}$ is not straightforward. As a result, such flows typically must be modeled for an
325	exposure scenario of interest.
326	Commonly used models for the estimation of inter-zonal flows include COMIS
327	(Feustel, 1998) and CONTAM (Walton and Dols, 2010). AER and inter-zonal flows
328	predicted with CONTAM and/or COMIS have been evaluated against measurements
329	conducted in more than ten countries and for a variety of building types (Emmerich, 2001
330	and references therein; Haas et al., 2002; Emmerich et al., 2004). Details regarding the
331	required inputs and use of these models are available in their respective users' manuals
332	(Feustel, 1998; Walton and Dols, 2010).
333	Computational fluid dynamics (CFD) has been used to explicitly model airflow and
334	turbulence on smaller, within-room scales (e.g. Gadgil et al., 2003; Zhang and Chen,
335	2007; Zhao et al., 2007, 2008). Pragmatically, multi-zone and zonal modeling methods
336	can be combined by nesting an intra-zonal model within an inter-zonal model (Stewart
337	and Ren, 2003, 2006; Wang and Chen, 2007), so that a specific room of interest (e.g. the
338	room with a $PM_{2.5}$ source) can be divided into several small zones, while other rooms
339	within the same home/building are treated as larger, well-mixed zones.
340	Alternatively, Bennett and Furtaw (2004) provide an estimate of a room-to-room
341	air exchange rate distribution (mean = $3 h^{-1}$, coefficient of variation = 0.30) based on
342	measurements conducted under varying ventilation conditions within a single house. Du
343	et al., (2012) characterized overall and season-specific inter-zonal airflows between
344	living areas and bedrooms in 126 homes in Detroit, MI as the percentage of room-
345	specific air exchange attributable to air entering from another zone. Along the same lines,
346	Hellweg et al. (2009) suggest ranges of values for within-zone mixing factors (0.1 to 1.0)
347	and inter-zonal air exchange rates (3 to 30 m ³ /min). These are examples of midway
348	approaches between the typical single, well-mixed compartment assumption and more

complex approaches based on CFD. Understanding the influence of smaller-scale flows on $iF_{\text{in}\to\text{in}}$ is an important area of future research, with a rate coefficient representing the airflow between zones (including the near-person zone and the rest of an indoor environment) being a resulting metric of interest for use in LCIA.

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

349

350

351

352

Human Exposure Factors

Inhalation Rate

Inhalation intake fraction is directly related to the inhalation rate (IR) of the subjects or population of interest (Table 1, Equation 1). Inhalation rates vary within and across individuals with multiple factors including age, sex, body weight, and fitness and activity levels (Figure 2b) (US EPA, 2011). Studies quantifying IR are largely based on relationships between oxygen uptake and consumption, metabolism, and energy expenditure (US EPA, 2011). Using various methods to quantify energy expenditure and oxygen consumption, multiple studies have measured IR for broad, representative populations (e.g., US EPA, 2011 and references therein; Richardson and Stantec, 2013; Jang et al., 2014a), while others have focused on specific populations of interest (US) EPA, 2011 and references therein). Recommended values of IR for the general population categorized by age, gender, and activity level are available for the U.S. (US EPA, 2011), Canada (Richardson and Stantec, 2013), and Korea (Figure 1b) (Jang et al., 2014a). As is discussed below, materials are available to allow for the estimation of IR for populations for which such measurements have not been conducted. Specific populations of interest for which IR studies have been conducted include children, adults and children with asthma, and pregnant and lactating adult and adolescent women (US EPA, 2011). Such studies allow for the consideration of $iF_{in\rightarrow in}$ for susceptible populations or during specific periods of susceptibility. Inhalation rates are commonly reported as long-term (m³ day⁻¹), or short-term (m³ min⁻¹) rates. The latter allow for distinguishing differences in *IR* arising from different levels of activity. When assessing chronic exposures, long-term IRs can be utilized to characterize $iF_{\text{in}\to\text{in}}$; however, short-term IRs are needed when considering acute exposures or exposures associated with a particular activity (i.e., where the emission is represented by a pulse rather than a continuous term). Short-term IRs are generally

categorized by age, sex, and intensity of activity (e.g., resting/napping, sedentary, and light, moderate, and high intensity; Adams, 1993; US EPA, 2011). Some studies are as specific as to provide activity-level-specific, short-term *IRs* for activities conducted in the indoor environment (US EPA, 2011).

In order to use short-term IRs in estimates of $iF_{in\to in}$, information regarding the fraction of time spent at various activity levels is needed. As is discussed in more detail below, time-activity patterns have been documented for populations from a wide range of geographic regions (e.g., Klepies et al., 2001; Statistics Canada, 2011; Jang et al., 2014b; ExpoFacts [http://expofacts.jrc.ec.europa.eu/]; Australian Centre for Human Health Risk Assessment, 2012) (Figure 1b). US EPA (2011) also provides age-specific estimates of time spent at various levels of activity intensity. The populations for which short-term IRs have been quantified are limited (US EPA, 2011; Jang et al., 2014b). Time-activity datasets can be combined with available short-term IR to predict IR distributions for populations for which such measurements are not available; however, it must be acknowledged that there is greater uncertainty in these values. Sensitivity analyses may be valuable for evaluating the influence of this uncertainty in $iF_{\text{in}\to\text{in}}$. Several exposure factor reports detail population demographics and physiological conditions, which can then be used to generate population-specific long- and short-term IR distributions from available measurements (Phillips and Moya, 2014 and references therein). Figure 2b summarizes the results of key IR studies, with detailed data provided in the SI. Overall, average IRs for children, adults, and all age groups for the data gathered here are slightly higher than that provided in the US EPA EFH (0.97, 1.20, and 1.09 m³ h⁻¹ versus 0.81, 1.04, and 0.92 m³ h⁻¹). Median values (and 95% CI) of the data provided herein for *IRs* for children, adults, and all age groups are 0.55 (0.17, 3.40), 0.70 (0.26, 4.47), and 0.66 $(0.22, 4.23) \text{ m}^3 \text{ h}^{-1}$, respectively.

Time-Activity Patterns

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

In addition to serving as a predictor of activity intensity and IR, time-activity data provide valuable information regarding the time spent indoors and in various indoor locations. For a given subject, the cumulative intake of $PM_{2.5}$ is a function of the time spent by that subject in various microenvironments (e.g., indoor locations) and the $PM_{2.5}$ concentration profiles he or she is exposed to in each of those microenvironments. Thus,

+11	the characterization of activity patterns is crucial to estimating $lF_{\text{in}\rightarrow\text{in}}$. Studies
412	characterizing time-activity patterns generally utilize diaries in which a representative
413	sample of individuals from the general population record their activities over a 24 or 48
414	hour period. The Center for Time Use Study at the University of Oxford provides a
415	database of time-activity diary studies for approximately 100 countries in Africa, Asia,
416	Australia, Europe, North America, and South America (Fisher and Tucker, 2013). Data
417	from multiple nations are harmonized to allow for comparison across countries. In
418	addition to references and links for the studies, where available, this database provides
419	important information such as temporal scale of the study, sampling and data-collection
420	methodology, sample size, and response rates. Some studies provide broader information
421	that is useful for long-term exposure studies (e.g., total time spent indoors and time spent
122	in the residence; Figures 1c and 2c), while others provide more detailed data, including
123	time spent in various types of indoor environments (e.g., home, school, retail stores, etc.),
124	time spent in different rooms within a residence, and time spent engaged in activities of
125	relevance to specific $PM_{2.5}$ emissions sources (e.g., cleaning, cooking; Schweizer et al.,
126	2007; Zhao et al., 2009; US EPA, 2011; Jang et al., 2014b; Matz et al., 2014). Such
127	studies have demonstrated that time-activity patterns vary with age, gender, location of
128	residence (e.g., urban versus rural), and various demographic and socioeconomic factors.
129	Time-activity data are generally categorized by these factors and, thus, activity patterns
430	can be estimated for a population of interest when demographic information is known.
431	For the U.S., the Consolidated Human Activity Database (CHAD;
132	http://www.epa.gov/heasd/chad.html) brings together data from various studies, resulting
133	in several thousand daily diaries that can be used in exposure simulation studies. The
134	advantage of CHAD over other time-use databases is that it is developed specifically for
135	exposure studies and certain parameters, such as time spent in indoor microenvironments,
136	can be more easily distinguished. The Stochastic Human Exposure and Dose Simulation
137	(SHEDS) Model (Burke et al., 2001), for example, simulates a population representative
138	of the study populations, as well as their activity patterns, by sampling from input
139	demographic data and CHAD.

440441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

Occupancy

Also key to determining $iF_{\text{in}\rightarrow\text{in}}$ is knowledge regarding the total number of people occupying a space influenced by indoor PM_{2.5} emissions (Nazaroff, 2008). Higher occupancy means a larger number of people in proximity to indoor sources and, thus, a higher population $iF_{\text{in}\to\text{in}}$. Several studies provide information regarding household size and composition, which can be utilized to estimate residential occupancy in calculations of $iF_{\text{in}\to\text{in}}$ (Figure 1f). The U.S. Census Bureau (USCB), for example, provides information regarding the number and percentage of homes with household sizes ranging from one person to seven or more people, as well as demographic data describing households of varying sizes (USCB, 2010; Vespa et al., 2013). Similar information is available for the European Union (EU) and individual EU nations from Eurostat (2014). Bongaarts et al. (2001) presented household size and composition for the developing countries based on surveys conducted in forty-three nations in the 1990s, but notes that household-size dynamics can change with increased urbanization and industrialization, trending toward smaller household sizes (i.e., trending toward the nuclear family). That study provided data regarding household size and the demographic characteristics of home occupants for four regions: Asia, Latin America, Near East/North Africa, and Sub-Saharan Africa (see SI). Drivers of within- and between-nation/region variability are discussed and include level of development (e.g., gross national product) and residence in urban versus rural areas. The United Nations Demographic Yearbook is a valuable reference for identifying and locating household occupancy and characteristic data collected through national censuses (United Nations, 2013). For non-residential buildings, US EPA (2011) provides distributions of employee numbers for commercial buildings with a wide range of uses (SI).

464 465

466

467

468

469

470

Pollutant-Specific Factors

Concentrations of PM_{2.5} and related intake in a given indoor environment or zone within an indoor environment depend on source emissions rates (S_{in}) , as well as the removal mechanisms acting on the particles (k_{in}) (Table 1, Equation 2). Such removal mechanisms include the ventilation and transport processes discussed above, particle

deposition, filtration in HVAC-system filters and air cleaners, and, in some cases, chemical transformations/phase changes (Nazaroff, 2004). AERs and ventilation rates can be estimated using the data discussed above. In the following paragraphs, we discuss the data and tools available to take into account other factors influencing indoor PM_{2.5} concentrations and $iF_{\text{in}\rightarrow\text{in}}$, with a primary focus on PM_{2.5} emitted directly from indoor sources.

477

478 479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

471

472

473

474

475

476

Indoor PM_{2.5} Emissions

Multiple studies have characterized total PM_{2.5} emissions from common indoor sources and activities such as cooking, cleaning, smoking, use of various home and office appliances, candles, incense, and insect repellent coils (Figure 1e) (e.g., Jetter et al., 2002; Liu et al., 2003; Lung and Hu, 2003; Guo et al., 2004; He et al., 2004; Lee and Wang, 2004; Afshari et al., 2005; Olson and Burke, 2006; He et al., 2007; Evans et al., 2008; See and Balasubramanian, 2011; Torkmahalleh et al., 2012). Substantial variability in PM_{2.5} emission rates has been observed within and across sources (Figures 2e - g). For example, cooking activities can lead to emission rates as high as 467 mg min⁻¹ (Olson and Burke, 2006), while emissions from printers were reported to be 2.8×10^{-4} mg min⁻¹ (He et al., 2007). He et al. (2004) observed a median emission rate of 2.7 mg min⁻¹ for frying food, while Olson and Burke (2006) reported a value of 6 mg min⁻¹. Emission rates for cooking activities vary with the cooking method (e.g., frying, grilling, baking), with the type of food or oils used in the cooking process (He et al., 2004; Olson and Burke, 2006; Torkmahalleh et al., 2012), and with stove type and the source of fuel (e.g., biomass, coal, gas, electric) (SI) (Jetter and Kariher, 2009; Jetter et al., 2012). The importance of a given source in terms of its contribution to $iF_{\text{in}\to\text{in}}$ varies with a variety of factors including the indoor environment under consideration, occupant activities, and time of day or season. For example, in office environments, appliances (e.g., printers, copy machines) may contribute substantially to indoor PM_{2.5} concentrations, while cooking, a major source in residential environments, is unlikely to be of importance. On the other hand, cleaning products are likely to be significant sources of PM_{2.5} in both office and residential environments.

501	The influence of specific PM _{2.5} sources on $iF_{\text{in}\rightarrow\text{in}}$ also varies geographically.
502	Solid fuel combustion, for example, is a particularly important source of indoor $PM_{2.5}$
503	emissions in the developing world. As noted above, the effects of indoor exposures to
504	solid fuel combustion emissions are a major global environmental health concern
505	(www.who.int/indoorair/en). As a result, controlled laboratory studies and field
506	measurements have been undertaken to characterize PM _{2.5} emissions from various cook
507	stoves and fuel sources (Habib et al., 2008; Edwards et al., 2014 and references therein).
508	It is important to note, however, that there is evidence that emissions rates measured in a
509	laboratory setting differ from those in the field (Edwards et al., 2014) and future efforts
510	are more focused on characterizing emissions in actual household settings. In addition to
511	emissions, data regarding the percentage of households using solid fuels and geographic
512	differences in fuel and stove use are available for estimating $iF_{\mathrm{in}\to\mathrm{in}}$ associated with solid
513	fuel use (Rehfuess et al., 2006; Bonjour et al., 2013;
514	www.who.int/indoorair/health_impacts/he_database/en; see SI).
515	As is discussed in more detail below, particle loss rates vary with particle size
516	and, thus, information regarding the size distributions of particles emitted from specific
517	sources is useful for calculating $iF_{\text{in}\to\text{in}}$. Recent work has provided particle size
518	distributions and/or size-resolved emissions rates for a range of common indoor activities
519	or sources including cooking (Li and Hopke, 1993; Abt et al., 2000; Long et al., 2000;
520	Wallace et al., 2004; Hussein et al., 2006; Ogueli et al. 2006; Wallace, 2006), cleaning
521	(Kleeman et al., 1999; Abt et al., 2000; Long et al., 2000; Ogueli et al. 2006; Gehin et al.,
522	2008), candles, incense, and aroma lamps (Li and Hopke, 1993; Kleeman et al., 1999;
523	Hussein et al., 2006; Wallace, 2006; Gehin et al., 2008), smoking (Li and Hopke, 1993;
524	Nazaroff, 2004; Hussein et al., 2006;), cook-stove use in developing countries and
525	residential wood combustion (Kleeman et al., 1999; Hays et al., 2003; Armendriz-Arnez
526	et al., 2010; Shen et al., 2011), fuel-combustion lamps and appliances (Wallace, 2006;
527	Apple et al., 2010), personal care products/appliances (e.g., hairspray, blow dryer)
528	(Hussein et al., 2006), and printers (Gehin et al., 2008; Wang et al., 2012; Stephens et al.,
529	2013).

Particle Losses: Deposition

532	Particle deposition describes all particle losses driven by Brownian diffusion,
533	gravitational settling, interception, and impaction. Brownian diffusion dominates particle
534	losses for particles with diameters smaller than about 0.1 μm (ultrafine particles [UFP]),
535	while for larger particles, interception, impaction, and gravitational settling are the
536	dominant loss processes (Finlayson-Pitts and Pitts, 2000). As a result, deposition loss rate
537	coefficients (k_{dep} [h ⁻¹]) vary with particle size (Ozkaynak et al., 1997; Long et al., 2001;
538	Riley et al., 2002; Nazaroff, 2004; Hering et al., 2007). Multiple studies have measured
539	particle-size resolved values of $k_{\rm dep}$ or indoor particle decay rates (i.e., the sum of all
540	loss mechanisms) (e.g., Thatcher and Layton, 1995; Ozkaynak et al., 1997; Abt et al.,
541	2000; Long et al., 2001; Howard-Reed et al., 2003; Thatcher et al., 2003; Ferro et al.,
542	2004; He et al., 2005; Sarnat et al., 2006; Meng et al., 2007; Stephens and Siegel, 2013).
543	These studies have been conducted under a range of sampling and building ventilation
544	conditions. In addition to their particle size dependence, k_{dep} values vary with airflow
545	conditions and indoor environment surface-to-volume ratios driven by the presence of
546	furnishings and carpets (Lai, 2002; Thatcher et al., 2002; Howard-Reed et al., 2003;
547	Nazaroff, 2004). For example, Thatcher et al. (2002) demonstrated that $k_{\rm dep}$ could vary
548	by as much as a factor of 2.6 across different surface-to-volume (i.e., room-furnishing)
549	scenarios and by as much as a factor of 2.4 with different values of airflow speed. Zhang
550	et al. (2014) brings attention to the fact that variability in $k_{\rm dep}$ to surfaces with varying
551	orientations (e.g., horizontal versus vertical surfaces) can influence indoor PM _{2.5}
552	concentrations and $iF_{\mathrm{in} \to \mathrm{in}}$. That study provides vertical- and horizontal-surface
553	deposition rates for particles in two broad PM _{2.5} size classes.
554	Measurements conducted under various conditions have been combined and fit
555	with a polynomial regression that describes k_{dep} as a function of particle size (Riley et
556	al., 2002; Nazaroff, 2004). This fit does not take into account variability with ventilation
557	conditions, room turbulence, surface-to-volume ratios, or room surface orientations;
558	however, Hodas et al. (2014) found that indoor concentrations of ambient PM _{2.5} modeled
559	using $k_{\rm dep}$ values selected with this regression curve were well-correlated with measured
560	indoor PM _{2.5} . El Orch et al. (2014) combined measurement data from multiple studies to

predict particle-size-resolved $k_{\rm dep}$ values, fit a curve describing $k_{\rm dep}$ as a function of particle diameter, and developed a method to account for increased indoor airflow speeds when windows are open. In those circumstances, values of $k_{\rm dep}$ selected from curves describing depositional loss rates as a function of particle size (e.g., using Monte Carlo methods to sample from a particle size distribution) can be multiplied by 1.7 for windows open a large amount and by 1.23 when windows are open a small amount. In addition, a small number of studies have quantified deposition or decay rates for total $PM_{2.5}$ (Figures 1d, 2d) (Ozkaynak et al., 1997; He et al., 2005; Olson and Burke, 2006; Wallace et al., 2013). Such information can be useful in circumstances in which particle size distribution data are not available.

571572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

561

562

563

564

565

566

567

568

569

570

Particle Losses: Filtration

For homes with HVAC systems, particle losses will also be related to HVAC system recirculation rates and filter removal efficiencies. Several studies have measured size-resolved particle filtration efficiencies for various filters commonly found in residential and commercial HVAC systems (Hanley et al., 1994; Stephens et al., 2011; Stephens and Siegel, 2012b, 2013; Azimi et al., 2014). Stephens et al. (2011) also studied recirculation rates in residential and light-commercial HVAC systems. El Orch et al. (2014) extended this type of analysis to provide size-resolved filtration efficiencies for five classifications of filters, as well as estimates of the prevalence of these filter categories in homes. Waring and Siegel (2008) and Stephens and Siegel (2013) considered the influence of not only filtration, but also losses to heat exchangers and ducts within HVAC systems. Similarly, Sippola and Nazaroff (2002) reviewed studies of particle deposition in HVAC system ducts. Such losses are likely to be of particular importance in schools and commercial buildings. Filtration and fractional loss curves generated from such measurements have been used in many studies to estimate particle removal efficiencies as a function of particle size (Riley et al., 2002; Hodas et al., 2012, 2014).

HVAC-system air recirculation rates are also key parameters in characterizing filtration rates. Recommended values for HVAC recirculation rates in residences (El Orch et al., 2014; Stephens et al., 2011; Stephens, 2015) and in non-

residential buildings (Sundell et al., 1994; Weschler et al., 1996; Zuraimi et al., 2007 and references therein; Fadeyi et al., 2009) are available from a limited number of studies. Note also that the fraction of air that is recirculated in HVAC systems displays large spatial variability. Zuraimi et al. (2007), for example, state that 90% of air in conditioned office buildings in the U.S. and Singapore is recirculated. In some countries (e.g., Denmark and Germany), however, all mechanical ventilation systems must be single-pass (i.e., no air is recirculated). Similarly, HVAC system runtimes directly govern whether or not a system is in operation and filtering particles at a given point in time, but like recirculation rates, measurements are limited (Thornburg et al., 2004; Stephens et al., 2011).

The prevalence of central air and heating systems is commonly documented in housing and energy surveys. US EPA (2011), for example, provides information regarding the prevalence of central heating and cooling systems in residential and commercial buildings. It is important to note, however, that the prevalence of central and recirculating HVAC systems is highly variable both within and across nations and geographic regions. The importance of collecting data regarding the heating and cooling systems (or lack thereof) present in households on a global scale has recently been highlighted (United Nations, 2008).

Particle Resuspension

The resuspension of particles that have deposited on surfaces in indoor environments can also influence indoor $PM_{2.5}$ concentrations and $iF_{in\rightarrow in}$ (Ferro et al., 2004; Lioy, 2006, and references therein). While typically considered to be an important determinant of exposures to particles larger than $PM_{2.5}$, Ferro et al. (2004) found that resuspension can result in the equivalent of a $PM_{2.5}$ source strength ranging from 0.03 to 0.5 mg min⁻¹. The prevalence and magnitude of resuspension are dependent on the activities of building occupants, specifically cleaning (e.g., dusting, vacuuming) and active movement (e.g., walking, dancing, playing) (Ferro et al., 2004; Lioy, 2006). Thus, the influence of resuspension on $iF_{in\rightarrow in}$ is expected to vary temporally and spatially.

Phase changes and chemical transformation can lead to both increases and
decreases in indoor $PM_{2.5}$ concentrations. The partitioning of semivolatile organic
compounds (SVOCs) between the gas and particle phases, for example, is dependent on
indoor air temperature and the availability of particle-phase organic matter for sorption
(Pankow, 1994). Thus, the extent to which a given indoor source of SVOCs contributes
to $iF_{\text{in}\rightarrow\text{in}}$ will depend on the fraction of emissions from that source found in the particle
phase, which, in turn, is dependent on the conditions of the indoor environment (i.e.,
temperature, organic PM _{2.5} concentrations). Examples of indoor sources of SVOCs that
display this behavior include environmental tobacco smoke, flame retardants, plasticizers,
and pesticides (Liang and Pankow, 1996; Gurunathan et al., 1998; Bennett and Furtaw,
2004; Lioy, 2006; Weschler and Nazaroff, 2008 and references therein). Estimating shifts
in partitioning requires knowledge regarding volatility and partitioning coefficients of
chemical species commonly found indoors, as well as the development of simplified
models to predict SVOC partitioning in indoor air. This is an active area of research
(Weschler and Nazaroff, 2008, 2010; Weschler, 2011; Hodas and Turpin, 2014; Liu et
al., 2014); however, further work is needed to characterize semi-volatile species of indoor
origin before this process can be consistently incorporated into estimates of $iF_{\text{in}\rightarrow\text{in}}$.
The formation of secondary organic aerosols (SOA) from reactions between
oxidants and gas-phase compounds emitted indoors can also substantially influence $PM_{\rm 2.5}$
concentrations and $iF_{\mathrm{in}\to\mathrm{in}}$ (Weschler and Shields, 1999; Long et al., 2000; Wainman et
al., 2000; Weschler, 2006, 2011; Waring and Siegel, 2010, 2013; Waring et al., 2011;
Waring, 2014). Most work in this area has focused on reactions between terpenoids
emitted from air fresheners, cleaning products, and scented personal care products and
ozone (Nazaroff and Weschler, 2004; Singer et al., 2006; Weschler, 2006; Waring et al.,
2011; Weschler, 2011; Waring and Siegel, 2010, 2013). Such studies have demonstrated
that indoor SOA formation varies with multiple factors including the chemicals present in
indoor air, relative humidity, time of day, season, indoor ventilation conditions and
HVAC system use, indoor surface area and surface materials, and geographic location
(Waring and Siegel, 2010; Weschler, 2011; Waring and Siegel, 2013; Youseffi and
Waring 2014) Indoor sources of ozone include photocopiers, laser printers, and

electrostatic air cleaners; however, the majority of ozone present indoors is the result of transport from the outdoor environment (Weschler, 2000). SOA generated through reactions between VOCs of indoor origin and ozone of outdoor origin illustrates one mechanism through which interactions between indoor- and outdoor-generated pollutants can influence the intake of PM_{2.5} attributable, at least in part, to indoor sources. This complication of separating outdoor- and indoor-source contributions to the intake of PM_{2.5} in indoor environments is discussed further in the next section.

Influence of outdoor-generated pollutants on cumulative indoor intake of PM_{2.5}

The cumulative intake of PM_{2.5} that occurs indoors is influenced by both indoor and outdoor PM_{2.5} sources (Table 1, Equation 2) and depends on (1) primary emissions of PM_{2.5} from indoor sources, (2) the formation of secondary PM_{2.5} from precursors of indoor origin, (3) the transport of outdoor-generated PM_{2.5} into the indoor environment, and (4) interactions between pollutants of indoor and outdoor origin. This latter factor includes SOA formation through reactions of indoor-emitted volatile organic compounds (VOCs) and outdoor-generated oxidants, as well as the partitioning of outdoor-generated gas-phase SVOCs to particulate matter of indoor origin and/or the partitioning of gas-phase SVOCs emitted by indoor sources to outdoor-generated particles that have infiltrated indoors. Prior sections focused on factors (1) and (2). Below, we briefly explore the current state of knowledge regarding interactions between pollutants of outdoor and indoor origin and the influence of outdoor PM_{2.5} sources on cumulative indoor intake.

Outdoor-generated $PM_{2.5}$ (ambient $PM_{2.5}$) that penetrates into and persists in the indoor environment is a major source of indoor $PM_{2.5}$. Multiple studies have quantified the fraction of ambient $PM_{2.5}$ found in indoor air ($f_{out\rightarrow in}$) (Chen and Zhao, 2011 and references therein; Diapouli et al., 2013 and references therein). These studies have demonstrated that there is substantial between- and within-home variability in $f_{out\rightarrow in}$ (Ozkaynak et al., 1997; Ott et al., 2000; Meng et al., 2005; Weisel et al., 2005; Polidori et al., 2006; Allen et al., 2012; MacNeil et al., 2012; Hänninen et al., 2013; Kearny et al., 2014), illustrating the difficulty in utilizing measured values of $f_{out\rightarrow in}$ to estimate contributions of ambient $PM_{2.5}$ to cumulative indoor intake. In addition, most studies are

684 limited in their geographic and temporal scope and cannot be generalized to a broader 685 population of homes. Two exceptions are the studies conducted by Hänninen et al. (2011) 686 and El Orch et al. (2014). Estimates of $f_{\text{out}\rightarrow\text{in}}$ for homes in ten European countries 687 sampled as part of six studies were aggregated and summary statistics of $f_{\text{out}\to\text{in}}$ were 688 provided for various climatic regions of Europe (Northern, Central, and Southern Europe) 689 and by season (Hänninen et al. 2011). El Orch et al. (2014) conducted a detailed 690 modeling study in which particle-size-resolved distributions of $f_{\text{out}\to\text{in}}$ for single-family 691 homes in the U.S. were calculated. For a given exposure scenario, $f_{\text{out}\rightarrow\text{in}}$ can also be calculated using a mass 692 balance model in which indoor ambient PM_{2.5} concentrations are described as function of 693 694 AER, the efficiency with which particles penetrate across the building envelope, particle 695 deposition, filtration in HVAC-system filters and air cleaners, and, for semivolatile 696 species, phase changes in indoor air (e.g., Hering et al., 2007; Hodas et al., 2012, 2014). 697 Similarly, these physical and chemical processes also govern the outdoor transport of indoor-generated PM_{2.5} and, thus, $iF_{\text{in}\to\text{out}}$ and $iF_{\text{in},\text{total}}$ (see Table 1). While the 698 contributions of $iF_{\text{in}\to\text{out}}$ to $iF_{\text{in},\text{total}}$ are typically negligible compared to that of $iF_{\text{in}\to\text{in}}$, 699 there is evidence that solid fuel combustion in household cook stoves can contribute 700 701 substantially to ambient PM_{2.5} concentrations in some regions (e.g., India, China) (Chafe 702 et al., 2014). 703 The data given above provide inputs to predict AER, deposition, and filtration. 704 Chen and Zhao (2011) provide a detailed review of penetration efficiency measurements 705 and modeling strategies. While the focus of previous work has mostly been on the 706 penetration of ambient PM_{2.5} into the indoor environments, results of these studies can 707 also be used to estimate penetration of indoor-generated particles between separated 708 indoor zones/rooms. Tools are also available to account for evaporative losses of 709 ammonium nitrate (Lunden et al., 2003; Hering et al., 2007), and the development of 710 modeling tools to predict the gas-particle partitioning of SVOCs (of both indoor and 711 outdoor origin) in indoor air is an active area of ongoing research (Weschler and 712 Nazaroff, 2008, 2010; Weschler, 2011; Hodas and Turpin, 2014; Liu et al., 2014). 713 Because the availability of organic matter for sorption influences the gas-particle partitioning of SVOCs, there is the potential for the indoor formation of particles that are 714

715 only present due to interactions between SVOCs of indoor and outdoor origin. For 716 example, gas-phase SVOCs emitted indoors can sorb to indoor particulate matter of 717 outdoor origin that has penetrated into the home (Lioy, 2006; Weschler and Nazaroff, 718 2008). Similarly, incoming organics from outdoors can shift from the gas phase toward 719 the particle phase as they sorb to particulate organic matter emitted by indoor sources 720 (Naumova et al., 2003; Polidori et al., 2006; Weschler and Nazaroff, 2008; Shi and Zhao, 721 2012; Hodas and Turpin, 2014). The result is the formation of PM_{2.5} that is in part, but 722 not fully, attributable to indoor sources. Such interactions between pollutants of indoor 723 and outdoor origin highlight the difficulty in fully separating the contributions of indoor 724 and outdoor PM_{2.5} sources to the intake of PM_{2.5}. 725 The formation of SOA from reactions between indoor-generated VOCs and 726 oxidants (e.g., ozone) of outdoor origin is another example of the ways in which outdoor-727 generated pollutants can influence the intake of PM_{2.5} associated with indoor sources. 728 Contributions of secondary particulate matter derived from well-characterized inorganic 729 systems to outdoor iF have previously been accounted for using chemical transport 730 models (e.g., Levy et al., 2003; Greco et al., 2007). The data and modeling tools available 731 to include indoor secondary particulate matter (specifically, SOA) formation in estimates 732 of indoor PM_{2.5} exposures continue to improve. Waring (2014) presented a mechanistic 733 model to calculate time-averaged indoor SOA concentrations formed as a result of the 734 oxidation of reactive organic gases by ozone and the hydroxyl radical. Distributions of 735 model inputs for 66 reactive organic gases relevant to the indoor environment (Weisel et 736 al., 2005; Turpin et al., 2007) are provided in that work. In addition, a linear regression 737 model describing SOA concentrations as a function of AER, indoor concentrations of 738 outdoor-generated ozone and organic aerosols, indoor organic aerosol emission rates, 739 particle and ozone deposition rates, temperature, and emission rates of reactive organic 740 gases described the majority of variability in SOA concentrations calculated using the more complex mechanistic SOA model described above ($R^2 = 0.88$; Waring, 2014). Ji 741 742 and Zhao (2015) demonstrated that the extent to which indoor SOA formation impacts 743 indoor concentrations of PM_{2.5} varies geographically, with SOA comprising 6 to 30% of 744 indoor PM_{2.5} mass for the U.S. homes included in the Waring (2014) study, but less than 3% of PM_{2.5} mass for homes in Beijing. Accounting for SOA formation indoors is an 745

active and quickly advancing area of research and is crucial for ensuring that the full impact of specific products, activities, and processes can be taken into account in LCIA.

Discussion

Applications in Life Cycle Impact Assessment

The data provided in this review constitute a first step in addressing key questions and current challenges previously identified for the incorporation of health effects associated with indoor PM_{2.5} emissions into LCIA (Hellweg et al., 2009; Fantke et al., 2015; Humbert et al., 2015). Specifically, this review allows for the characterization of a range of exposure-scenario archetypes, both in terms of indoor setting (e.g., residence, office) and in geographic location, aids in the identification of the major factors influencing $iF_{in\rightarrow in}$ and potential spatial and temporal variability in the importance of these key factors, and allows for the assessment of the level of detail and scope needed when developing exposure-scenario archetypes for use in LCIA.

In an ongoing effort, the UNEP-SETAC task force on PM_{2.5} health effects will utilize the data provided in this review to build a quantitative assessment framework for consistently combining and evaluating indoor and outdoor intake fractions from PM_{2.5} sources for application in LCIA. Complementary work is currently focusing on (1) conducting a quantitative assessment of potential variability in $iF_{\text{in}\rightarrow\text{in}}$ (e.g., across exposure scenarios and geographic regions), as well as the sensitivity of calculations of $iF_{\text{in}\rightarrow\text{in}}$ to heterogeneity in the input parameters reviewed here, (2) the evaluation of state-of-the-art modeling tools available to predict indoor and outdoor intake fractions in the context of suitability for use in LCIA, and (3) the consistent incorporation of various shapes of ERFs (Fantke et al., 2015). Together, these efforts will aid in the development of a standardized methodology by which to estimate exposures and will contribute to the effort to include PM_{2.5}-related health effects in LCIA.

Key to assessing PM_{2.5}-related health effects over the life cycle of products is the ability to evaluate the range of potential human exposure associated with a given particle emissions source. Previous work has illustrated the potential magnitude of spatial and temporal variability in $iF_{\text{in}\rightarrow\text{in}}$. Humbert et al. (2011), for example, estimates that typical values of $iF_{\text{in}\rightarrow\text{in}}$ range between approximately 10^{-3} and 10^{-2} kg intake at the population

scale per kg emitted indoors. Klepeis and Nazaroff (2006) found that $iF_{in\to in}$ for environmental tobacco smoke varied between 6.6×10⁻⁴ and 2.6×10⁻³ kg intake per kg emitted within a single simulated home depending on multiple factors including home ventilation conditions and occupant activity patterns. Thus, while a single recommended value meant to characterize a needed modelling parameter is valuable for providing an estimate of the magnitude of $iF_{\text{in}\rightarrow\text{in}}$ (e.g., a single AER value meant to represent typical housing the U.S.), distributions or ranges describing these input parameters are crucial. Such distributions allow for the evaluation of the central tendencies of $iF_{in\to in}$, as well as the extremes, thereby acknowledging the variability in population exposure patterns, housing aspects, and indoor air chemistry. By aggregating the results of multiple studies, the present review provides a broader picture of the range of potential values for a given parameter influencing indoor concentrations of PM_{2.5} and allows for the consideration of a range of archetypal indoor environments. It is important to note that these values vary temporally and spatially with multiple factors, as discussed in the individual sections above, and parameters are not available to describe all exposure scenarios and geographic regions. Thus, understanding the full range of input parameters also allows for the consideration of uncertainty in $iF_{in\rightarrow in}$ for PM_{2.5}.

Depending on the design of the selected modelling framework, not all of the factors potentially contributing to variability in $iF_{\rm in \to in}$ will necessarily be considered in LCIA. For example, Hellweg et al. (2009) suggested that the representation of the indoor environment as a single, well-mixed compartment provides the most effective way to incorporate indoor PM_{2.5} exposures into LCIA. On the other hand, in regards to assessing exposure to individual VOCs from cleaning products, Earnest and Corsi (2013) propose the use of a two-zone model in which the near-person/near-source region and the rest of the indoor environment are treated as discrete zones. LCIA often follows approaches based on archetypes to account for differences in exposure scenarios or geographic regions. Thus, the parameters that will be of the greatest importance are those that account for geographic variability in more general housing and building characteristics (e.g., volume, whole-building air exchange and ventilation), indoor-environment occupancy, and the prevalence of specific indoor sources (e.g., cooking and heating appliances). Parameters that provide a higher level of detail (e.g., activity-specific

breathing rates, local-scale flows), however, will be valuable to higher tier assessments of indoor air quality and epidemiologic studies that aim to characterize indoor PM_{2.5} exposures for specific conditions in a well-characterized environment.

811

812

813

814

815

816

817

818

819

820821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

808

809

810

Remaining Limitations and Recommendations for Future Research

One contributor to limitations in the availability and scope of data like those reviewed here is the fact that the studies carried out to collect the data are expensive and work intensive. As a result, they tend to be carried out in infrequent, intensive campaigns. As noted above, for example, many AER studies are not representative of the full range of housing stock, even for the nations or cities in which they were carried out. Values are more limited or non-existent in some developing countries and are biased towards U.S. and European studies. We suggest that there is a need for studies on AER in developing countries, particularly in rural regions where biomass is used for cooking in homes.

Another issue constraining the representativeness of the data is the potential for changes with time. While some values are not expected to vary temporally (i.e., IR, although the activity levels driving them may change), others change on timescales faster than the studies characterizing them are carried out. Bongaarts et al. (2001), for example, noted the tendency for household size to converge towards the nuclear family in rapidly industrializing and urbanizing regions. Similarly, there is the potential for changes in human activity patterns with increased access to media, suggesting a need for updated human activity pattern data. Housing construction practices change with advancing technology and materials development, as well as with recent pushes toward energy efficiency. Urban growth (e.g., Seto and Fragikas, 2005; Xiao et al., 2006; Schneider and Woodcock, 2008) may make the lack of data characterizing AERs in apartments and multi-family residences a major issue in both developing and developed countries. New techniques utilizing 3D imaging sensors to evaluate building/room size and leakage characteristics show promise in increasing data availability for leaky buildings (e.g., in developing countries), airtight, energy efficient buildings, and multifamily residences (Gong and Caldas, 2008) and should be a consideration in future work in this area. Finally, while the principles driving pollutant dynamics will not change with time, emission rates, particle size distributions, and particle composition may change with

technology. Cynthia et al. (2007), for example, reported a 35% decrease in $PM_{2.5}$ exposures with the introduction of a higher-efficiency cook stove in an intervention study in rural Mexico. As a result of these ever-changing factors, a continued effort to undertake such studies and to expand their temporal and spatial scope is key to ensuring that the impacts associated with specific products and emission sources can be fully assessed in the context of LCIA.

• We also recommend that future efforts focus on a number of key research areas. First, there is a need for a more widespread and detailed characterization of inter- and intra-zonal airflows and the factors that influence them for a range of residence types, commercial buildings, and occupational settings to derive useful information for higher tier assessments of indoor air quality. Such characterizations would be useful in addressing proximity-to-source issues. Of particular importance may be the development of a set of archetypal building layouts that describe a range of building types, so that these highly variable flows can be modelled for a given exposure scenario with tools such as COMIS and CONTAM. For applications in LCIA, a simple two-zone model might be more suitable as more complex approaches might lack data and consistency across indoor and outdoor emission situations. As noted above, there are large geographic differences in the heating and cooling systems present in households and other indoor environments on a global scale. Documenting these differences and the related impacts on indoor particle dynamics is an important area of future work. Finally, there is a need for more research aimed at obtaining a thorough understanding of interactions between indoor- and outdoor-generated pollutants and the formation of SOA in indoor air. Key to this is the development of accurate simplified models that can easily be applied in LCIA. The regression model developed by Waring (2014) to predict indoor SOA formation based on a small number of key parameters provides an example of the type of modeling tools that will advance predictions of $iF_{\text{in}\rightarrow\text{in}}$ for PM_{2.5} in this context.

864865

866

867

868

869

839

840

841

842

843

844

845

846847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

CONCLUSIONS

The present paper reviews and compiles the results of studies exploring the main factors influencing indoor PM_{2.5} concentrations and associated $iF_{\text{in}\rightarrow\text{in}}$, with an emphasis on primary indoor PM_{2.5} emissions. Specifically, we focus on factors related to building

870	characteristics, occupant characteristics and behaviors, and pollutant properties and
871	dynamics. The key studies and data sources discussed herein comprise a tool kit of
872	exposure-modelling parameters that can be used to estimate the central tendencies and
873	potential ranges of $iF_{\text{in}\to\text{in}}$. A follow-up effort will utilize the data provided in the present
874	review to build a framework to consistently integrate indoor and outdoor exposures to
875	PM _{2.5} emitted by indoor and outdoor sources. Combined, the present review and the
876	follow-up work contribute to the effort to consistently include PM _{2.5} -derived health
877	effects in LCIA. Continued efforts to characterize the factors influencing indoor PM _{2.5}
878	concentrations will ensure that impacts associated with specific products and emission
879	sources can be fully assessed in LCIA and other comparative human exposure and impact
880	assessment frameworks.
881	
882	Acknowledgements
883	This work was supported by the UNEP/SETAC Life Cycle Initiative. Natasha Hodas was
884	funded by National Science Foundation award no. 1433246.
885	REFERENCES
886	
887	Abt, E., Suh, H.H., Catalano, P., and Koutrakis, P. (2000) Relative contribution of
888	outdoor and indoor particles sources to indoor concentrations, Environ. Sci.
889	Technol. 34, 3579-3587.
890	Adams, W.C. (1993) Measurement of breathing rate and volume in routinely performed
891	daily activities. Contract No. A033-205Air Resources Board, Sacramento, CA.
892	Aelenei, D., Azevedo, S., Viegas, J., Mendes, A., Papoila, A. L., Cano, M., Martins, P.,
893	and Neuparth, N. (2013) Environment and health in children day care centers in
894	Portugal. Results from phase II on the ventilation characteristics of 16 schools,
895	11 th Annual REHVA World Congress and 8 th International Conference on
896	IAQVEC.
897	Afshari, A., Matson, U., and Ekberg, L.E. (2005) Characterization of indoor sources of
898	fine and ultrafine particles: A study conducted in a full-scale chamber, Indoor Air
899	15, 141-150.

900	Allen, R.W., Adar, S.D., Avol, E., Cohen, M., Curl, C.L., Larson, T., Liu, LJ. S.,
901	Sheppard, L., and Kaufman, J.D. (2012) Modeling the residential infiltration of
902	outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution
903	(MESA Air), Environ. Health Perspect., 120, 824-830.
904	Apple, J., Vincete, R., Yarberry, A., Lohse, N., Mills, E., Jacobson, A., and Poppendieck,
905	D. (2010) Characterization of particulate matter size distributions and indoor
906	concentrations from kerosene and diesel lamps, <i>Indoor Air</i> , 20, 399-411.
907	Armendáriz-Arnez, C., Edwards, R.D., Johnson, M., Rosas, I.A., Espinosa, F., and
908	Masera, O. R. (2010) Indoor particle size distributions in homes with open fires
909	and improved Patsari cook stoves, Atmos. Environ., 44, 2881-2886.
910	Asikainen, A., Hanninen, O., Brelih, N., Bischof, W., Hartmann, T., Carrer, P., and
911	Wargocki, P. (2013) The proportion of residences in European countries with
912	ventilation rates below the regulation base limit value, Int. J. Vent., 12, 129-134.
913	Australian Centre for Human Health Risk Assessment (2012) Office of Health Protection
914	of the Australian Government Department of Health Australian Exposure Factor
915	Guide, http://www.health.gov.au/internet/main/publishing.nsf/ Content/health-
916	pubhlth-publicat-environ.htm.
917	Azimi, P., Zhao, D., and Stephens, B. (2014) Estimates of HVAC filtration efficiency for
918	fine and ultrafine particles of outdoor origin, Atmos. Environ., 98, 337-346.
919	Baek ,S., Kim, Y., and Perry, R. (1997) Indoor air quality in homes, offices and
920	restaurants in Korean urban areas – indoor-outdoor relationships. Atmos.
921	Environ., 3, 529-44
922	Bari, M.A., MacNeill, M., Kindzierski, W.B., Wallace, L., Héroux, MÈ., and Wheeler,
923	A.J. (2014) Predictors of coarse particulate matter and associated endotoxin
924	concentrations in residential environments, Atmos. Environ., 92, 221-230.
925	Bennett, D.H, McKone, T.H., Evans, J.S., Nazaroff, W.W., Margni, M.D., Jolliet, O., and
926	Smith, K.R. (2002) Defining iF, Environ. Sci. Technol., 36, 206-211.
927	Bennett, D.H. and Furtaw, Jr., E.J. (2004) Fugacity-based indoor residential pesticide fate
928	model, Environ. Sci. Technol., 38, 2142-2152.

- Bennett, D.H., Fisk, W., Apte, M. G., Wu, X., Trout, A., Faulkner, D., and Sullivan, D.
- 930 (2012) Ventilation, temperature, and HVAC characteristics in small and medium
- commercial buildings in California, *Indoor Air*, 22, 309-320.
- Bongaarts, J. (2001). Household size and composition in the developing world in the
- 933 1990s, *Population Studies*, 55, 263-279.
- Bonjour, S., Adair-Rohani, H., Wolf, J., Bruce, N. G., Metha, S., Pruss-Ustun, A., Lahiff,
- 935 M., Rehfuess, E. A., Mishra, V., and Smith, K. R. (2013) Solid fuel use for
- household cooking: Country and regional estimates for 1980-2010, *Environ*.
- 937 *Health Perspect.*, 121, 784-790.
- 938 Brelih, N. and Seppanen, O. (2011) Ventilation rates and IAQ in European standards and
- national regulations, In *The proceedings of the 32nd AIVC conference and 1st*
- 740 *TightVent conference in Brussels*, 12-13.
- Breen, M. S., Burke, J. M., Batterman, S. A., Vette, A. F., Godwin, C., Croghan, C. W.,
- 942 Schultz, B. D., and Long, T. C. (2014) Modeling spatial and temporal variability
- of residential air exchange rates for the Near-Road Exposures and Effects of
- 944 Urban Air Pollutants Study (NEXUS), Int. J. Res. Public Health, 11, 11481-
- 945 11504.
- 946 Burke, J.M., Zufall, M.J., and Ozkaynak, H. (2001) A population exposure model for
- particulate matter: Case study results for PM_{2.5} in Philadelphia, PA, *J. Expo. Sci.*
- 948 *Environ. Epidemiol.* 11, 470-489.
- Canha, N., Almelda, S. M., Freitas, M. C., Taubel, M, and Hanninen, O. (2013) Winter
- ventilation rates at primary schools: comparison between Portugal and Finland, J.
- 951 *Toxicol. Environ. Health*, 76, 400-408.
- Chafe, Z., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K.,
- Dentener, F., and Smith, K.R. (2014) Household cooking with solid fueld
- contributes to ambient PM2.5 air pollutoin and the burden of disease, *Environ*.
- 955 *Health Perspec.*, 122, 1314-1320.
- 956 Chan, W.R., Nazaroff, W.W., Price, P.N., Sohn, M.D., and Gadgil, A.J. (2005)
- Analyzing a database of residential air leakage in the U.S., *Atmos. Environ.*, 39,
- 958 3445-3455.

	959	Chan.	W.R.,	Cohn.	. S	, Sidheswaran,	M	Sullivan.	D.P.	and Fisk.	W. J.	(2014)	.)
--	-----	-------	-------	-------	-----	----------------	---	-----------	------	-----------	-------	--------	----

- Contaminant levels, source strengths, and ventilation rates in California retail
- 961 stores, *Indoor Air*. doi: 10.1111/ina.12152.
- Chao, C. (2001) Comparison between indoor and outdoor contaminant levels in
- residential buildings from passive sampler study, *Build. Environ.*, 36, 999-1007.
- Chen, C., and Zhao, B. (2011) Review of relationship between indoor and outdoor
- particles: I/O ratio, infiltration factor and penetration factor, *Atmos. Environ.*, 45,
- 966 275-288.
- Chen, C., Zhao, B., and Weschler, C.J. (2012) Assessing the influence of indoor exposure
- to "outdoor ozone" on the relationship between ozone and short-term mortality in
- 969 U.S. communities, Environ. Health Perspect., 120, 235-240.
- 970 Clark, N.A., Allen, R.W., Hystad, P., Wallace, L., Dell, S.D., Foty, R., Dabek-
- 2010 Zlotorzynska, E., Evans, G., and Wheeler, A.J. (2010). Exploring variation and
- predictors of residential fine particulate matter infiltration. *Int. J. Res. Publ.*
- 973 *Health*, 7, 3211-3224.
- Coley, D. A. and Beisteiner, A. (2002) Carbon dioxide levels and ventilation rates in
- 975 schools, Int. J. Vent., 1, 45-52.
- 976 Cynthia, A.A., Edwards, R.D., Johnson, M., Zuk, M., Rojas, L., Jimenez, R. D., Riojas-
- Property Rodriguez, H., and Masera, O. (2008). Reduction in personal exposures to
- 978 particulate matter and carbon monoxide as a result of the installation of a Patsari
- 979 improved cook stove in Michoacan Mexico, *Indoor Air*, 18, 93-105.
- Diapouli, E. Chaloulakou, A., and Koutrakis, P. (2013) Estimating the concentration of
- 981 indoor particles of outdoor origin: A review, J. Air Waste Manage., 63, 1113-
- 982 1129.
- 983 Dimitroulopoulou, C. (2012) Ventilation in European dwellings: A review, *Build*.
- 984 *Environ.*, 47, 109-125.
- Dimitroulopoulou, C. and Bartzis, J. (2013) Ventilation rates in European office
- buildings: A review, *Indoor and Built Environment*, 23, 5-25.
- 987 D'Oca, S. and Hong, T. (2014) A data-mining approach to discover patterns of window
- opening and closing behavior in offices, *Build. Environ.*, 82, 726-739.

989	Drescher A.C., Lobascio C., Gadgil A.J., and Nazaroff W.W. (1995) Mixing of a point-
990	source indoor pollutant by forced convection, <i>Indoor Air</i> , 5, 204–14.
991	Du, L., Batterman, S., Godwin, C., Chin, JY., Parker, E., Breen, M., Brakefield, W.,

residences, and the need for multi-zone models for exposure and health analyses, *Int. J. Environ. Res. Public Health*, 9, 4639-4661.

Robins, T., and Lewis, T. (2012) Air change rates and interzonal flows in

992

998

Air, 25, 93-104.

- Dutton, S. M., Mendell, M. J., Chan, W. R., Barrios, M., Sidheswaran, M. A., Sullivan,
 D. P., Eliseeva, E. A., and Fisk, W. J. (2015) Evalualtion of the indoor air qualtiy
 minimum ventilation rate procedure for use in California retail buildings, *Indoor*
- Earnest, C. M. and Corsi, R. L. (2013) Inhalation exposure to cleaning products:

 Application of a two-zone model, *J. Occup. Environ. Hyg.*, 10, 328-335.
- Edwards, R., Karnani, S., Fisher, E. M., Johnson, M., Naeher, L., Smith, K. R., and Morawska, L. (2014) WHO IAQ Guidelines: household fueld combustion Review 2: Emissions, available online
- http://www.who.int/indoorair/guidelines/hhfc/Review_2.pdf.
- El Orch, Z., Stephens, B., and Waring, M.S. (2014) Predictions and determinants of sizeresolved particle infiltration factors in single-family homes in the U.S., *Build*. *Environ.*, 74, 106-118.
- Emmerich, S. J. (2001) Validation of multizone IAQ modeling of residential-scale buildings: a review, *ASHRAE Trans.*, 107, 619-628.
- Emmerich, S.J., Howard-Reed, C., and Nabinger, S.J. (2004) Validation of multizone
 IAQ model predictions for tracer gas in a townhouse, *Building Services*Engineering Research and Technology, 25, 305-316.
- Emmerich, S. J. and Crum, J. (2006) Simulated performance of natural and hybrid ventilation systems in an office building, *HVAC & R Res.*, 12, 975-1004.
- Eurostat, 2014. Average household size (source: European Union Statistics on Income and Living Conditions). European Commission, accessed: 07-June-2014.
- Evans, G.J., Peers, A., Sabaliauskas, K. (2008) Particle dose estimation from frying in residential settings, *Indoor Air* 18, 499-510.

1019	rabi, v., Andersen, k. v., Corgnan, S., and Olesen, B. w. (2012) Occupants window
1020	opening behavior: A literature review of factors influencing occupant behaviors
1021	and models, Build. Environ., 58, 188-198.
1022	Fadeyi, M. O., Weschler, C. J., and Tham, K. W. (2009) The impact of recirculation,
1023	ventilation and filters on secondary organic aerosols generated by indoor
1024	chemistry, Atmos. Environ., 43, 3538-3547.
1025	Fantke, P., Jolliet, O., Apte, J.S., Cohen, A.J., Evans, J.S., Hänninen, O.O., Hurley, F.,
1026	Jantunen, M.J., Jerrett, M., Levy, J.I., Loh, M.M., Marshall, J.D., Miller, B.G.,
1027	Preiss, P., Spadaro, J.V., Tainio, M., Tuomisto, J.T., Weschler, C.J., and McKone,
1028	T.E. (2015) Health effects of fine particulate matter in life cycle impact
1029	assessment: Conclusions from the Basel guidance workshop, Int. J. Life Cycle
1030	Assess., 20. 276-288.
1031	Ferro, A.R., Kopperud, R.J., Hildemann, L.M. (2004) Source strengths for indoor human
1032	activities that resuspend particulate matter, Environ. Sci. Technol. 38, 1759-1764.
1033	Feustel, H.E. (1999) COMIS - An international multizone air-flow and contaminant
1034	transport model, Energ. Buildings, 30, 3-18.
1035	Finlayson-Pitts, B.J. and Pitts Jr., J.N. (2000) Chemistry of the Upper and Lower
1036	Atmosphere, San Diego, Academic Press.
1037	Fisher, Kimberly, with Jenifer Tucker. Contributions from Evrim Altintas, Matthew
1038	Bennett, Antony Jahandar, Jiweon Jun, and other members of the Time Use Team
1039	(2013) Technical Details of Time Use Studies. Last updated 15 July 2013. Centre
1040	for Time Use Research, University of Oxford, United Kingdom.
1041	http://www.timeuse.org/information/studies/
1042	Gadgil, A.J., Lobscheid, C., Abadie, M.O., and Finlayson, E.U. (2003) Indoor pollutant
1043	mixing time in an isothermal closed room: an investigation using CFD, Atmos.
1044	Environ., 37, 5577-5586.
1045	Gehin, E., Ramalho, O., and Kirchner, S. (2008) Size distribution and emission rate
1046	measurement of fine and ultrafine particle from indoor human activities, Atmos.
1047	Environ., 42, 8341-8352.
1048	Gong, J. and Caldas, H. (2008) Data processing for real-time construction site spatial

modeling, Automation in Construction, 17, 526-535.

1050	Gorzenski, R., Symanksi, M., Gorka, A., and Mroz, T. (2014) Airtightness of buildings in
1051	Poland, Int. J. Ventilation, 12, 391-400.

- Greco, S.L., Wilson, A.M., Spendgler, J.D., and Levy, J.I. (2007) Spatial patterns of
- mobile source particulate matter emissions-to-exposure relationships across the
- 1054 United States, *Atmos. Environ.*, 41m 1011-1025.
- Gurunathan S., Robson, M., Freeman, N., Buckley, B., Roy, A., Meyer, R., Bukowski, J.,
- and Lioy P.J. (1998) Accumulation of chlorpyrifos on residential surfaces and toys
- accessible to children, *Environ. Health. Pers.*, 106, 9–16.
- Guo, Z., Jetter, J.J., and McBrian, J.A. (2004) Rates of polycyclic aromatic hydrocarbon
- emissions from incense. Bull. Environ. Contam Toxicol., 72, 186-193.
- Guo, H., Morawska, L., He, C., and Gilbert, D. (2008) Impact of ventilation scenario on
- air exchange rates and on indoor particle number concentrations in an air-
- 1062 conditioned classroom, *Atmos. Environ.*, 42, 757-768.
- Haas, A., Weber, A., Dorer, V., Keilholz, W., and Pelletret, R. (2002) COMIS v3.1
- simulation environment for multizone air flow and pollutant transport modeling,
- 1065 Energ. Buildings, 34, 873-882.
- Habib, G., Venkataraman, C., Bond, T. C., and Schauer, J. J. (2008) Chemical,
- microphysical, and optical properties of promary particles from the combustion of
- 1068 biomass fuels, *Environ. Sci. Technol.*, 42, 8829-8834.
- Hanley, J.T., Ensor, D.S., Smith, D.D., and Sparks, L.E. (1994) Fractional aerosol
- filtration efficiency of in-duct ventilation air cleaners, *Indoor Air*, 3, 169-178.
- Hänninen, O., Hoek, G., Mallone, S., Chellini, E., Katsouyanni, K., Gariazzo, C., Cattani,
- G., Marconi, A., Molnar, P., Bellander, T., and Jantunen, M. (2011) Seasonal
- patterns of outdoor PM infiltration into indoor environments: review and meta-
- analysis of available studies from different climatological zones in Europe, Air
- 1075 *Quality, Atmosphere and Health,* 4, 221-233.
- Hänninen, O., Sorjamaa, R., Lipponen, P., Cyrys, J., Lanki, T., and Pekkanen, J. (2013)
- 1077 Aerosol-based modeling of infiltration of ambient PM2.5 and evaluation against
- population-based measurements in homes in Helsinki, Finland, J. Aerosol Sci., 66,
- 1079 111-122.

1080	Hays, M.D., Smith, N.D., Kinsey, J., Dong, Y., and Kariher, P. (2003) Polycyclic
1081	aromatic hydrocarbon size distributions in aerosols from appliances of residential

- wood combustion as determined by direct thermal desorption—GC/MS, *J. Aerosol*
- 1083 *Sci.*, 34, 1061-1084.
- He, C. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses, *Atmos. Environ.*, 38, 3405-3415.
- He, C., Morawska, L., and Gilbert, D. (2005) Particle deposition rates in residential houses. *Atmos. Environ.*, 39, 3891-3899.
- He, C., Morawska, L., and Taplin, L. (2007) Particle emission characteristics of office printers, *Environ. Sci. Technol.* 41, 6039-6045.
- Hellweg, S., Demou. E., Bruzzi, R., Meijer, A., Rosenbaum, R.K., Huijbregts, M.A.J., and McKone, T.E. (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment, *Environ. Sci. Technol.*, 43, 1670-1679.
- Hering, S.V., Lunden, M.M., Thatcher, T.L., Kirchstetter, T.W., and Brown, N.J. (2007)
 Using Regional Data and Building Leakage to Assess Indoor Concentrations of
 Particles of Outdoor Origin, *Aerosol Sci. Technol.*, 41, 639-654.
- Hodas, N., Meng, Q., Lunden, M.M., Rich, D.Q., Ozkaynak, H., Baxter, L.K., Zhang, Q.,
 and Turpin, B.J. (2012) Variability in the fraction of ambient fine particulate
 matter found indoors and observed heterogeneity in health effect estimates. *J. Expo. Sci. Environ. Epidemiol.*, 22, 448-454.
- Hodas, N., Meng, Q., Lunden, M.M., and Turpin, B.J. (2014) Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model, *Atmos. Environ.*, 83, 229-236.
- Hodas, N., and Turpin, B.J. (2014) Shifts in the gas-particle partitioning of ambient organics with transport into the indoor environment, *Aerosol Sci. Tech.*, 48, 271-1105 281.
- Howard-Reed, C., Wallace, L.A., Emmerich, S.J. (2003) Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse, *Atmos. Environ.* 37, 5295-5306.

- Huang, K., Feng, G., Li, H., and Yu, S. (2104) Opening window issue of residential
- buildings in winter in north China: A case study in Shenyang, *Energ. Buildings*,
- 1111 84, 567-574.
- Humbert, S., Marshall, J.D., Shaked, S. Spadarp, J.V., Nishioka, Y., Preiss, P., McKone,
- T.E., Horvath, A., and Jolliet, O. (2011) IF for particulate matter:
- Reccomendations for life cycle impact assessment, *Environ. Sci. Technol.*,
- 1115 45,4808-4816.
- Humbert, S. Fantke, P., and Jolliet, O. (2015) Particulate matter formation, in: *Life Cycle*
- 1117 Impact Assessment, (Hauschild M. and Huijbregts, M.A.J., eds.), Dordrecht,
- 1118 Springer Press, 97-113.
- Hussein, T., Glystos, T., Ondracek, J., Dohanyosova, P., Zdimal, V., Hameri, K.,
- Lazaridis, M., Smolik, J., and Kulmala, M. (2006) Particle size characterization
- and emission rate during indoor activities in a house, *Atmos. Environ.*, 40, 4285-
- 1122 4307.
- 1123 Ilacqua, V., Hänninen, O., Kuenzli, N., and Jantunen, M.F. (2007) IF distributions for
- indoor VOC sources in five European cities, *Indoor Air*, 17, 372-383.
- 1125 Iwashita, G. and Akasaka, H. (1997) The effects of human behavior on natural ventilation
- 1126 rate and indoor air environment in summer a field study in southern Japan,
- 1127 Energ. Buildings, 25, 195-205.
- 1128 Jang, J.-Y., Kim, S.-Y., Kim, S.-J., Lee, K.-E., Cheong, H.-K., Kim, E.-H., Choi, K.-H.,
- Kim, Y.-H. (2014a). General factors of the Korean exposure factors handbook. J.
- 1130 *Prev. Med. Public Health*, 47, 7-17.
- 1131 Jang, J.-Y., Jo, S.-N., Kim, S.-Y., Lee, K.-E., Choi, K.-H., and Kim, Y.H. (2014b)
- Activity factors of the Korean exposure factors handbook, *J. Prev. Med. Public*
- 1133 *Health*, 47, 27-35.
- Jetter, J.J., Guo, Z., McBrian, J.A., Flynn, M.R. (2002) Characterization of emissions
- from burning incense, *Sci. Total Environ.*, 295, 51-67.
- 1136 Jetter, J. J and Kariher, P. (2009) Solid-fuel household cook stoves: Characterization of
- performance and emissions, *Biomass and Bioenergy*, 33, 294-305.
- Jetter, J., Zhao, Y., Smith, K. R., Khan, B. Yelverton, T., DeCarlo, P., and Hays, M. D.
- 1139 (2012) Pollutant emissions and energy efficiency under controlled conditions for

1140	household biomass cookstoves and implications for metrics useful in setting
1141	international test standards, Environ. Sci. Technol., 46, 10827-10834.
1142	Ji, W. and Zhao, B. (2015) Contribution of outdoor-originating particles, indoor-emitted
1143	particles and indoor secondary organic aerosols (SOA) to residential indoor
1144	PM2.5 concentration: A model-based estimation, Build. Environ., 90, 196-205.
1145	Johnson T. and Long T. (2005) Determining the frequency of open windows in
1146	residences: a pilot study in Durham, North Carolina during varying temperature
1147	conditions, J. Expo. Anal. Environ. Epidemiol., 15, 329-349.
1148	Jolliet, O., Frischknecht, R., Bare, J., Boulay, AM., Bulle, C., Fantke, P., Gheewala, S.,
1149	Hauschild, M., Itsubo, N., Margni, M., McKone, T., Mila y Canals, L., Postuma,
1150	L., Prado, V., Ridoutt, B., Sonneman, G., Rosenbaum, R., Seager, T., Struis, J.,
1151	van Zelm, R., Vigon, B., Weisbrod, A. (2014) Global guidance on environmental
1152	life cycle impact assessment indicators: Findings of the scoping phase, Int. J. Life
1153	Cycle Assess., 19, 962-967.
1154	Kearny, J., Wallace, L., MacNeill, M., Héroux, ME., and Kindzierski, W. (2014)
1155	Residential infiltration of fine and ultrafine particles in Edmonton, Atmos.
1156	Environ., 94, 793-805.
1157	Kleeman, M.J., Schauer, J.J., and Cass, G.R. (1999) Size and composition distribution of
1158	fine particulate matter emitted from wood burning, meat charbroiling, and
1159	cigarettes, Environ. Sci. Technol., 33, 3516-3523.
1160	Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar,
1161	J.V., Stephen, C.H., and Engelman, W.H. (2001) The National Human Activity
1162	Pattern Survey (NHAPS): a resource for assessing exposure to environmental
1163	pollutants. J. Exposure Sci. Environ. Epidemiol., 11, 231-252.
1164	Klepeis, N.E. (2004) Using computer simulation to explore multi-compartment effects
1165	and mitigation strategies for residential exposure to secondhand tobacco smoke,
1166	Dissertation (Ph.D.), Environmental Health Sciences. University of California,
1167	Berkeley, Berkeley.
1168	Klepeis, N.E. and Nazaroff, W.W. (2006) Modeling residential exposure to secondhand
1169	tobacco smoke, Atmos. Environ., 40, 4393-4407.

- Lai, A.C.K., Thatcher, T.L., and Nazaroff, W.W. (2000) Inhalation transfer factors for air
- pollution health risk assessment, *J. Air Waste Manage.*, 50, 1688-1699.
- Lai, A.C.K. (2002) Particle deposition indoors: A review. *Indoor Air* 12, 211-214.
- Lee, S.-C. and Wang, B. (2004) Characteristics of emissions of air pollutants from
- burning of incense in a large environmental chamber. *Atmos. Environ.* 38, 941-
- 1175 951.
- Levie, D., Kluizenaar de, Y., Hoes-van Offelen, E. C. M., Hofstetter, H., Janssen, S. A.,
- Spiekman, M. E., and Koene, F. G. H. (2014) Determinants of ventilation
- behavior in naturally ventilated dwellings: Identification and quantification of
- relationships, Build. Environ., 82, 388-399.
- Levy, J.I., Wilson, A.M., Evans, J.S., and Spengler, J.D. (2003) Estimation of primary
- and secondary particulate matter intake fractions for power plants in Georgia,
- 1182 Environ. Sci. Technol., 37, 5528-5536.
- Li, W., and Hopke, P. K. (1993) Initial Size Distributions and Hygroscopicity of Indoor
- 1184 Combustion Aerosol Particles. *Aerosol Sci. Tech.*, 19, 305-316.
- 1185 Li, Y., Lueng, G. M., Tang, J. W., Yang, X., Chao, C. Y. H., Lin, J. Z., Lu, J. W.,
- Nielsen, P. V., Niu, J., Qian, H., Sleigh, A. C., Su, H. J. J., Sundell, J., Wong, T.
- W., and Yeun, P. L. (2007) Role of ventilation in airborne transmission of
- infectious agents in the built environment a multidisciplinary systematic review,
- 1189 *Indoor Air*, 17, 2-18.
- Li, Y. and Li, X. (2015) Natural ventilation potential of high-rise residential buildings in
- northern China using coupling thermal and airflow simulations, *Build. Simul.*, 8,
- 1192 51-64.
- Li, N., Li, J., Fan, R., and Jia, H. (2015) Probability of occupant operation of windows
- during transition seasons in office buildings, *Renewable Energy*, 73, 84-91.
- Liang, C. and Pankow, J.F. (1996) Gas/particle partitioning of organic compounds to
- environmental tobacco smoke: Partitioning coefficient measurements by
- desorption and comparison to urban particulate material, *Environ. Sci. Technol.*,
- 1198 30, 2800-2805.

- Lioy, P. (2006) Employing dynamical and chemical processes for contaminant mixtures
- outdoors to the indoor environment: The implications for total human exposure
- analysis and prevention, *J. Exposure Sci. Environ. Epidemiol.*, 16, 207-224.
- 1202 Litiu, A. (2012) Ventilation system types in some EU countries, *REHVA Journal*, January
- 1203 2012, 18-23.
- Liu, C., Zhang, Y., and Weschler, C.J. (2014) The impact of mass transfer limitations on
- size distributions of particle associated SVOCs in outdoor and indoor
- environments, Sci. Total Environ., 497, 401-411.
- Liu, W., Zhang, J., Hashim, J.H., Jalaludin, J., Hashim, Z., and Goldstein, B.D. (2003)
- Mosquito coil emissions and health implications, *Environ. Health Persp.*, 111,
- 1209 1454-1460.
- Long, C.M., Suh, H.H., and Koutrakis, P. (2000) Characterization of Indoor Particle
- Sources Using Continuous Mass and Size Monitors. J. Air Waste Manage., 50,
- 1212 1236-1250.
- Long, C.M., Suh, H.H., Catalano, P.J., and Koutrakis, P. (2001) Using time- and size-
- resolved particulate data to quantify indoor penetration and deposition behavior,
- 1215 Environ. Sci. Technol., 35, 2089-2099.
- 1216 L'Orange, C., Leith, D., Volckens, J., and DeFoort, M. (2015) A quantitative model of
- 1217 cookstove variability and field performance: Implications for sample size,
- 1218 *Biomass and Energy*, 72, 233-241.
- Lunden, M.M., Revzan, K.L., Fischer, M.L., Thatcher, T.L., Littlejohn, D., Hering, S.V.,
- and Brown, N.J. (2003) The transformation of outdoor ammonium nitrate aerosols
- in the indoor environment, *Atmos. Environ.*, 37, 5633-5644.
- Lung, S.-C.C. and Hu, S.-C. (2003) Generation rates and emission factors of particulate
- matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks,
- 1224 *Chemosphere*, 50, 673-679.
- MacNeill, M., Wallace, L., Kearney, J., Allen, R.W., Van Ryswyk, K., Judek, S., Xu, X.,
- and Wheeler, A. (2012) Factors influencing variability in the infiltration of PM2.5
- mass and its components, *Atmos. Environ.*, 61, 518-532.
- MacNeill, M., Kearney, J., Wallace, L., Gibson, M., Heroux, M. E., Kuchta, J., Guernsey,
- J.R., and Wheeler, A. J. (2014) Quantifying the contribution of ambient and

1230	indoor-generated fine particles to Indoor Air in residential environments, Indoor
1231	Air, 24, 362-375.
1232	Marr D., Mason M., Mosley R., and Liu, X. (2012) The influence of opening windows
1233	and doors on the natural ventilation rate of a residential building, HVAC & R.
1234	Res., 18, 195-203.
1235	Matz, C., Stieb, D., Davis, K., Egyed, M., Rose, A., Chou, B., and Brion, O. (2014)
1236	Effects of age, season, gender and urban-rural status on time-activity: Canadian
1237	human activity pattern survey 2 (CHAPS 2), Int. J. Environ. Res. Publ. Health,
1238	11, 2108-2124.
1239	McGrath, J.A., Byrne, M.A., Ashmore, M.R., Terry, A.C., and Dimitroulopoulou, C.
1240	(2014) A simulation study of the changes in PM2.5 concentrations due to
1241	interzonal airflow variations caused by internal door opening patterns, Atmos.
1242	Environ., 87, 183-188.
1243	McNeil, S., Quaglia, L., Bassett, M., Overton, G., and Plagmann, M. (2012) A survey of
1244	airtightness and ventilation rates in post 1994 NZ homes, In AIVC 33rd
1245	conference: optimising ventilative cooling and airtightness for [nearly] zero-
1246	energy buildings, IAQ and comfort.
1247	Meng, Q. Y., Turpin, B. J., Polidori, A., Lee, J. H., Weisel, C. P., Morandi, M., Winer,
1248	A., and Zhang, J. (2005) PM _{2.5} of ambient origin: estimates and exposure errors
1249	relevant to PM epidemiology. Environ. Sci. Technol., 39, 5105 - 5112.
1250	Meng, Q.Y., Turpin, B.J., Lee, J.H., Polidori, A., Weisel, C.P., Morandi, M.; Colome, S.
1251	Zhang, J., Stock, T., and Winer, A. (2007) How does infiltration behavior modify
1252	the composition of ambient PM2.5 in indoor spaces? An analysis of RIOPA data
1253	Environ. Sci. Technol., 41, 7315 - 7321.
1254	Mi, YH., Norback. D., Tao, J., Mi, YL., and Ferm, M. (2006) Current asthma and
1255	respiratory symptoms among pupils in Shanghai, China: influence of building
1256	ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms, Indoor Air,
1257	16, 454-464.

Naumova, Y.Y., Offenberg, J.H., Eisenreich, S.J., Meng, Q.Y., Polidori, A., Turpin B.J.,

Alimokhtari, S., Kwon, J., Maberti, S., Shendell, D., Jones, J., and Farrar, C.

Weisel, C.P., Morandi, M.T., Colome, S.D., Stock, T.H., Winer, A.M.,

1258

1259

1261	(2003) Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled
1262	indoor/outdoor atmospheres, Atmos. Environ., 37, 703 - 719.
1263	Nazaroff, W.W. (2004) Indoor particle dynamics, Indoor Air 14, 175-183.
1264	Nazaroff, W.W. and Weschler, C.J. (2004) Cleaning products and air fresheners:
1265	exposure to primary and secondary air pollutants, Atmos. Environ., 38, 2841-
1266	2865.
1267	Nazaroff, W.W. (2008) Inhalation intake fraction of pollutants from episodic indoor
1268	emissions. Build. Environ. 43, 269-277.
1269	Ogulei, D., Hopke, P.K., and Wallace, L.A. (2006) Analysis of indoor particle size
1270	distributions in an occupied townhouse using positive matrix factorization, Indoor
1271	Air, 16, 204-215.
1272	Olson, D.A. and Burke, J.M. (2006) Distributions of PM _{2.5} source strengths for cooking
1273	from the Research Triangle Park particulate matter panel study, Environ. Sci.
1274	Technol. 40, 163-169.
1275	Orru, H., Mikola, A., Upan, M., Koiv, TA. (2014) Variation of indoor/outdoor
1276	particulates in Tallinn, Estonia - The role of ventilation, heating systems and
1277	lifestyle, Journal of Environment Pollution and Human Health, 2, 52-57.
1278	Ott, W., Wallace, L., and Mage, D. (2000) Predicting particulate (PM10) personal
1279	exposure distributions using a random component superposition statistical model.
1280	J. Air Waste Manage., 50, 1390-1406.
1281	Ozkaynak, H., Xue, J., Weker, R., Butler, D., Koutrakis, P., and Spengler, J. (1997) The
1282	Particle Team (PTEAM) study: Analysis of the data, (project summary), U.S.
1283	Environmental Protection Agency, Washington, DC.
1284	Pankow, J.F. (1994) An absoprtion model of gas/particle partitioning of organic
1285	compounds in the atmosphere, Atmos. Environ., 28, 185-188.
1286	Park, J. S., Jee, NY., and Jeong, JW. (2014) Effects of types of ventilation system on
1287	indoor particle concentrations in residential buildings, Indoor Air, 24, 629-638.
1288	Persily, A. and Gorfain, J. (2004) Analysis of ventilation data from the U.S.
1289	Environmental Protection Agency Building Assessment Survey and Evaluation
1290	(BASE) Study, US Department of Commerce, Technology Administration,

1291	National Institute of Standards and Technology, Building and Fire Research
1292	Laboratory.
1293	Persily, A., Musser, A., and Emmerich, S. J. (2010) Modeled infiltration rate distributions
1294	for U.S. housing, <i>Indoor Air</i> , 20, 473-485.
1295	Persily, A. (2015) Field measurements of ventilation rates, <i>Indoor Air</i> ,
1296	DOI: 10.1111/ina.12193
1297	Phillips, L.J and Moya, J. (2014) Exposure factors resources: contrasting EPA's Exosure
1298	Factors Handbook with international sources, J. Exposure Sci. Environ.
1299	Epidemiol., 24, 233-243.
1300	Polidori, A., Turpin, B., Meng, Q.Y., Lee, J. H., Weisel, C., Morandi, M., Colome, S.,
1301	Stock, T., Winer, A., Zhang, J., Kwon, J., Alimokhtari, S., Shendell, D., Jones, J.,
1302	Farrar, C., and Maberti, S. (2006) Fine organic particulate matter dominates
1303	indoor-generated PM2.5 in RIOPA homes, J. Expo. Sci. Environ. Epidemiol., 16,
1304	321-331.
1305	Ramos, T. and Stephens, B., (2014) Tools to improve built environment data collection
1306	for microbial ecology investigations, Build. Environ., 81, 243-257.
1307	Rehfuess, E., Mehta, S., and Pruss-Ustun, A. (2006) Assessing household solid fuel use:
1308	Multiple implications for the millennium development goals, Environ. Health
1309	Persp., 114, 373-378.
1310	Richardson and Stantec Consulting Ltd. (2013) 2013 Canadian Exposure Factors
1311	Handbook, Toxicology Centre, University of Saskatchewan, Saskatoon, SK
1312	CANADA, www.usask.ca/toxicology.
1313	Riley, W.J., McKone, T.E., Lai, A.C.K., and Nazaroff, W.W. (2002) Indoor particulate
1314	matter of outdoor origin: importance of size-dependent removal mechanisms,
1315	Environ. Sci. Technol., 36, 200 - 207.
1316	Roetzel, A., Tsangrassoulis, A., Dietrich, U., and Busching, S. (2010) A review of
1317	occupant control on natural ventilation, Renewable and Sustainable Energy
1318	Reviews, 14, 1001-1013.
1319	Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra,
1320	M., Gaitani, N., Kolokotsa, D., and Assimakopoulos, V. (2008) Experimental

1321	investigation of the air flow and indoor carbon dioxide concentration in classrooms
1322	with intermittent natural ventilation, Energ. Buildings, 40, 1833-1843.
1323	Sarnat, S.E., Coull, B.A., Ruiz, P.A., Koutrakis, P., and Suh, H.H. (2006) The influences
1324	of ambient particle composition and size on particle infiltration in Los Angeles,
1325	CA, Residences, J. Air Waste Manage., 56, 186 - 196.
1326	Schneider, A. and Woodcock, C.E. (2008) Compact, dispersed, fragmented, extensive? A
1327	comparison of urban growth in twenty-five global cities using remotely sensed
1328	data, pattern metrics and census information, Urban Studies, 45, 659-692.
1329	Schweizer, C., Edwards, R. D., Bayer-Oglesby, L., Gauderman, W. J., Ilacqua, V.,
1330	Jantunen, M. J., Lai, H.K., Nieuwenhuijsen, M., and Kunzli, N. (2007) Indoor
1331	time-microenvironment-activity patterns in seven regions of Europe, J. Expo. Sci.
1332	Environ. Epidemiol., 17, 170-181.
1333	See, S.W. and Balasubramanian, R. (2011) Characterization of fine particle emissions
1334	from incense burning, Build. Environ., 46, 1074-1080.
1335	Seppanen, O. A., Fisk, W. J., and Mendell, M. J. (1999) Association of ventilation rates
1336	and CO2-concentrations with health and other responses in commercial and
1337	institutional buildings, Indoor Air, 9, 226-252.
1338	Seto, K.C. and Fragkias, M. (2005) Quantifying spatiotemporal patterns of urban land-
1339	use change in four cities of China with time series landscape metrics, Landscape
1340	Ecology, 20, 871-888.
1341	Shen, G., Wang, W., Yang, Y., Ding, J., Xue, M., Min, Y., Zhu, C., Shen, H,m Li, W.,
1342	Wang, B., Wang, R., Wang, X., Tao, S., and Russell, A.G. (2011) Emissions of
1343	PAHs from indoor crop residue burning in a typical rural stove: emission factors,
1344	size distributions, and gas-particle partitioning, Environ. Sci. Technol., 45, 1206-
1345	1212.
1346	Shi, S. and Zhao, B. (2012) Comparison of the predicted concentration of outdoor
1347	originated indoor polycyclic aromatic hydrocarbons between a kinetic partition
1348	model and a linear instantaneous model for gas-particle partition, Atmos.
1349	Environ., 59, 93-101.
1350	Shi, S., Chen, C., and Zhao, B. (2015) Air infiltration rate distributions of residences in
1351	Beijing, Build. Environ., 92, 528-537.

1352	Sippola, M. R. and Nazaroff, W. W. (2002) Particle deposition from turbulent flow:
1353	Review of published research and its applicability to ventilation ducts in
1354	commercial buildings, Lawrence Berkeley National Laboratory Report.
1355	Singer, B.C., Coleman, B.K., Destaillats, H., Hodgson, A.T., Lunden, M.M., Weschler,
1356	C.J., and Nazaroff, W.W. (2006) Indoor secondary pollutants from cleaning
1357	product and air freshener use in the presence of ozone, Atmos. Environ., 40, 6696
1358	6710.
1359	Smith, K.R. (1988) Air pollution: Assessing total exposure in developing countries,
1360	Environment, 30, 16-35.
1361	Statistics Canada (2011) General social survey – 2010 Overview of the time use of
1362	Canadians, http://www.statcan.gc.ca/pub/89-647-x/89-647-x2011001-eng.htm
1363	Stephens, B., Siegel, J.A., and Novoselac, A. (2011) Operational characteristics of
1364	residential and light-commercial air-conditioning systems in a hot and humid
1365	climate zone, Build. Environ., 46, 1972-1983.
1366	Stephens, B. and Siegel, J. A. (2012) Comparison of test methods for determining the
1367	particle removal efficiency of filters in residential and light-commercial central
1368	HVAC systems, Aerosol Sci. Technol., 46, 504-513
1369	Stephens, B. and Siegel, J. A. (2013) Ultrafine particle removal by residential heating,
1370	ventilating, and air-conditioning filters, <i>Indoor Air</i> , 23, 488–497.
1371	Stephens, B., Azimi, P., El Orch, Z., and Ramos, T. (2013) Ultrafine particle emissions
1372	from desktop 3D printers, Atmos. Environ., 79, 334-339.
1373	Stephens, B. (2015) Building design and operational choices that impact indoor
1374	exposures to outdoor particulate matter inside residences, Science and Technology
1375	for the Built Environment, 21, 3-13.
1376	Stewart, J. and Ren, Z. (2003) Prediction of indoor gaseous pollutant dispersion by
1377	nesting sub-zones within a multizone model, Build. Environ., 38, 635-643.
1378	Stewart, J. and Ren, Z. (2006) COwZ—A subzonal indoor airflow, temperature and
1379	contaminant dispersion model, Build. Environ., 41, 1631-1648.
1380	Sundell, J., Lindvall, T., Stenberg, B. (1994) Associations between type of ventilation
1381	and air flow rates in office buildings and the risk of SBS-symptoms among
1382	occupants, Env. Int., 2, 239-251.

1383	Sundell, J.	, Levin,	Н.,	Nazaroff,	W.	W.,	Cain,	W.	S.,	Fisk,	W. J.,	Grimsrud	, D.	T.,
------	-------------	----------	-----	-----------	----	-----	-------	----	-----	-------	--------	----------	------	-----

- Gyntelberg, F., Li, Y., Persily, A. K., Pickering, A. C., Samet, J. A., Spengler, J.
- D., Taylor, S. T., and Weschler, C. J. (2011) Ventilation rates and health:
- multidisciplinary review of the scientific literature, *Indoor Air*, 21, 191-204.
- Thatcher, T.L. and Layton, D.W. (1995) Deposition, resuspension, and penetration of
- particles within a residence, *Atmos. Environ.* 29, 1487-1497.
- Thatcher, T.L., Lai, A.C.K., Moreno-Jackson, R., Sextro R.G., and Nazaroff, W.W.
- 1390 (2002) Effects of room furnishings and air speeds on particle deposition rates
- indoors, Atmos. Environ., 36, 1811-1819.
- Thatcher, T.L., Lunden, M.M., Revzan, K.L., Sextro, R.G., and Brown, N.J. (2003) A
- concentration rebound method for measuring particle penetration and deposition
- in the indoor environment, *Aerosol Sci. Tech.*, 37, 847-864.
- Thornburg, J.W., Rodes, C.E, Lawless, P.A., Stevens, C.D., and Williams, R.D. (2004) A
- pilot study of the infleucen of residential HAC duty cycle on indoor air quality,
- 1397 Atmos. Environ., 38, 1567-1577.
- Torkmahalleh, M.A., Goldasteh, I., Zhao, Y., Udochu, N.M., Rossner, A., Hopke, P.K.,
- and Ferro, A.R. (2012) PM_{2.5} and ultrafine particles emitted during heating of
- 1400 commercial cooking oils, *Indoor Air*, 22, 483-491.
- Turpin, B.J., Weisel, C.P., Morandi, M., Colome, S., Eisenreich, S., and Buckley, B.
- 1402 (2007) Relationships of indoor, outdoor and personal air (RIOPA): part II.
- Analysis of concentrations of particulate matter species. Research Report (Health
- 1404 Effects Institute), 130, 79-92.
- 1405 U.S. Environmental Protection Agency (US EPA) (2011) Exposure Factors Handbook:
- 2011 Edition. National Center for Environmental Assessment, Washington, DC;
- 1407 EPA/600/R-09/052F. Available from the National Technical Information Service,
- Springfield, VA, and online at http://www.epa.gov/ncea/efh.
- 1409 United Nations (2008) Principles and recommendations for population and housing
- censuses, Revision 2,
- http://unstats.un.org/unsd/demographic/sources/census/census3.htm, accessed: 07-
- 1412 June-2014.

1413	United Nations (2013) Tabulations on households characteristics - data from 2000 and
1414	2010 rounds of censuses, Demographic Yearbook,
1415	http://unstats.un.org/unsd/demographic/products/dyb/dyb_Household/dyb_househ
1416	old.htm, accessed: 07-June-2014.
1417	U.S. Census Bureau (USCB) (2010) Profile of General Population and Housing
1418	Characteristics: 2010 Demographic Profile Data. U.S. Census Bureau, accessed:
1419	07-June-2014.
1420	Vespa, J., Lewis, J.M., Kreider, R.M. (2013) America's families and living arrangements
1421	2012 population characteristics. U.S. Census Bureau, Washington, D.C.
1422	Wainman, T., Zhang, J., Weschler, C.J., and Lioy, P.J. (2000) Ozone and limonene in
1423	Indoor Air: A source of submicron particle exposure, Environ. Health Perspect.,
1424	108, 1139-1145.
1425	Wallace L.A., Emmerich S.J., and Howard-Reed C. (2002) Continuous measurements of
1426	air change rates in an occupied house for 1 year: the effect of temperature, wind,
1427	fans, and windows, J. Expo. Anal. Environ. Epidemiol., 12, 296-306.
1428	Wallace, L.A., Emmerich, S.J., and Howard-Reed, C. (2004) Source strengths of ultrafine
1429	particles due to cooking with a gas stove, Environ. Sci. Technol. 38, 2304-2311.
1430	Wallace, L. (2006) Indoor sources of ultrafine and accumulation mode particles: size
1431	distributions, size-resolved concentrations, and source strengths, Aerosol Sci.
1432	Technol., 40, 348-360.
1433	Wallace, L., Kindzierski, W., Kearney, J., MacNeill, M., Héroux, MÈ., and Wheeler,
1434	A.J. (2013) Fine and ultrafine particle decay rates in multiple homes, Environ.
1435	Sci. Technol. 47, 12929-12937.
1436	Walton, G.N. and Dols, W.S. (2013) CONTAM 2.4 user guide and program
1437	documentation. National Institute of Standards and Technology, Gaithersburg,
1438	MD.
1439	Wang, L. and Chen, Q. (2007) Theoretical and numerical studies of coupling multizone
1440	and CFD models for building air distribution simulations, Indoor Air, 17, 348-
1441	361.

1442	Wang, H., He, C., Morawska, L., McGarry, P., and Johnson, G., (2012) Ozone-initiated
1443	particle formation, particle aging, and precursors in a laser printer, Environ. Sci.
1444	Technol. 46, 704-712.
1445	Wargocki, P, Sundel, J., Bischof, W., Brundrett, G., Fanger, P. O., Gyntelberg, F.,
1446	Hanssen, S. O., Harrison, P., Pickering, A., Seppanen, O., and Wouters, P. (2002)
1447	Ventiltion and health in non-industrial indoor environments: report from a
1448	European Multidisciplinary Scienfitc Consensus Meeting (EUROVEN), Indoor
1449	Air, 12, 113-128.
1450	Waring, M.S. and Siegel, J.A. (2008) Particle loading rates for HVAC filters, heat
1451	exchangers, and ducts, Indoor Air, 18, 209-224.
1452	Waring, M.S. and Siegel, J.A. (2010) The influence of HVAC systems on indoor
1453	secondary organic aerosol formation, ASHRAE Trans., 116, 556-571.
1454	Waring, M.S., Wells, J.R., and Siegel, J.A. (2011) Secondary organic aerosol formation
1455	from ozone reactions with single terpenoids and terpenoid mixtures, Atmos.
1456	Environ., 45, 4235-4242.
1457	Waring, M.S. and Siegel, J.A. (2013) Indoor secondary organic aerosol formation
1458	initiated from reactions between ozone and surface-sorbed D-limonene, Environ.
1459	Sci. Technol., 47, 6341-6348.
1460	Waring, M.S. (2014) Secondary organic aerosols in residences: predicting its fraction of
1461	fine particle mass and determinants of formation strength, Indoor Air, 24, 376-
1462	389.
1463	Weisel, C.P., Zhang, J., Turpin, B.J., Morandi, M.T., Colome, S., Stock, T.H., Spektor,
1464	D.M., Korn, L., Winer, A., Alimokhtari, S., Kwon, J., Mohan, K., Harrington, R.,
1465	Giovanetti, R., Cui, W., Afshar, M., Maberti, S., and Shendell, D. (2005)
1466	Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design,
1467	methods and quality assurance/control results, J. Expo. Anal. Environ. Epidemiol.
1468	15, 123-137.

Weschler, C. J., Shields, H. C. and Shah, B. M. (1996) Understanding and reducing

California, J. Air. Waste Manag. Assoc., 46, 291-299.

indoor concentration of submicron particles at a commercial building in southern

This article is protected by copyright. All rights reserved

1469

1470

1472	Wechler, C.J. (2000) Ozone in indoor environments: Concentration and chemistry,
1473	Indoor Air, 10, 269-288.
1474	Weschler, C.J. (2006) Ozone's impact on public health: Contributions from indoor
1475	exposures to ozone and products of ozone-initiated chemistry, Environ. Health
1476	Perspect., 114, 1489-1496.
1477	Weschler, C.J. and Shields, H.C. (1999) Indoor ozone/terpene reactions as a source of
1478	indoor particles, Atmos. Environ., 33, 2301-2312.
1479	Weschler, C. J. (2011) Chemistry in indoor environments: 20 years of research, <i>Indoor</i>
1480	Air, 21, 205-218.
1481	Weschler, C. J. and Nazaroff, W. W. (2008) Semivolatile organic compounds in indoor
1482	environments, Atmos. Environ., 42, 9018-9040.
1483	Weschler, C. J. and Nazaroff, W. W. (2010) SVOC partitioning between the gas phase
1484	and settled dust indoors, Atmos. Environ., 44, 3609-3620.
1485	Williams, P. R. D. and Unice, K. (2013) Field study of air exchange rates in northern
1486	Highlands of Peru, Environmental Forensics, 14, 215-229.
1487	World Health Organization (WHO) (2002) The health effects of Indoor Air pollution
1488	exposure in developing countries, WHO, Geneva, Switzerland.
1489	World Health Organization (WHO) (2013) Review of evidence on health aspects of air
1490	pollution – REVIHAAP project: Technical report, WHO, Geneva, Switzerland.
1491	Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., and Huang, Z. (2006)
1492	Evaluating urban expansion and land use change in Shijiazhuang, China, by using
1493	GIS and remote sensing, Landscape Urban Plan., 75, 69-80.
1494	Youssefi, S. and Waring, M. S. (2014) Transient secondary organic aerosol formation
1495	from limonene ozonolysis in indoor environments: impacts of air exchange rates
1496	and initial concentration ratios, Environ Sci Technol, 48, 7899-7908.

Zaatari, M., Nirlo, E., Jareemit, D., Crain, N., Srebric, J., and Siegel, J. (2014)

Ventilation and indoor air quality in retail stores: A critical review (RP-1596).

predicting particle transport in enclosed spaces, Atmos. Environ., 41, 5236-5248.

Zhang, Z. and Chen, Q. (2007) Comparison of the Eulerian and Lagrangian methods for

HVAC & R. Res., 20, 276-294.

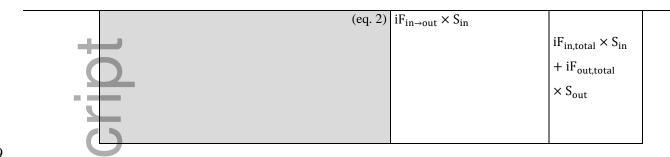
1497

1498

1499

1500

_
0
1


1502	Znang, X., Arnot, J.A., and Wania, F. (2014) Model for screening-level assessment of
1503	near-field human exposure to neutral organic chemicals released indoors,
1504	Environ. Sci. Technol., 48, 12312-12319.
1505	Zhao, B. and Guan, P. (2007) Modeling particle dispersion in personalized ventilated
1506	room, Build. Environ., 42, 1099-1109.
1507	Zhao, B., Yang, C., Yang, X., and Liu, S. (2008) Particle dispersion and deposition in
1508	ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian
1509	models, Build. Environ., 43, 388-397.
1510	Zhao, Y., Wang, S., Chen, G., Wang, F., Aunan, K., and Hao, J. (2009)
1511	Microenvironmental time-activity patterns in Chongqing, China, Frontiers of
1512	Environmental Science and Engineering in China, 3, 200-209.
1513	Zota, A., Adamkiewicz, G., Levy, J. I., and Spengler, J. D. (2005) Ventilation in public
1514	housing: implications for indoor nitrogen dioxide concentrations, Indoor Air, 15,
1515	393-401.
1516	Zuraimi, M. S., Weschler, C. J., Tham, K. W., and Fadeyi, M. O. (2007) The impact of
1517	building recirculation rates on secondary organic aerosols generated by indoor
1518	chemistry, <i>Atmos. Environ.</i> , 41, 5213-5223.

Emission	Indoor intake	Outdoor intake	Total	Intake fraction
[kg _{emitted} /h]	[kg _{intake} /h]	[kg _{intake} /h]	intake	[kg _{intake} /h per
			[kg _{intake} /h]	kg _{emitted} /h]
Indoor	Indoor intake due to	Outdoor intake due to	Total	Total intake due to
(PM _{2.5} or	indoor emissions	indoor emissions	intake due	indoor emissions per
precursor)			to indoor	unit of indoor
emissions	S		emissions	emissions
S _{in}	$\frac{\frac{i F_{in \to in}}{\left(\frac{i R_{in} \times n_{in}}{V_{in} \times k_{in}}\right)} \times S_{in}$	$ \overbrace{\left(iF_{\text{out,total}} \times f_{\text{in}\to\text{out}}\right)}^{iF_{\text{in}\to\text{out}}} \times S_{\text{in}} $	$iF_{in,total}$ $\times S_{in}$	$\begin{split} iF_{in,total} &= \\ \frac{iF_{in \to in}}{\left(\frac{IR_{in} \times n_{in}}{V_{in} \times k_{in}}\right)} + \\ \overline{\left(iF_{out,total} \times f_{in \to out}\right)} \\ (eq. 1) \end{split}$
\ \ \ \ \	JOHN TO THE TOTAL THE TOTAL TO THE TOTAL TOT			

Outdoor	Indoor intake due to	Outdoor intake due to	Total	Total intake due to
(PM _{2.5} or outdoor emissions		outdoor emissions	intake due	outdoor emission per
precursor)			to outdoor	unit of outdoor
emissions		iF _{out→out}	emission	emissions
		$\left(\frac{IR_{out} \times n_{out}}{V_{out} \times k_{out}}\right) \times S_{out}$		
Sout	iF _{out→in}	(V _{out} ×k _{out})		;F —
	$(iF_{in,total} \times f_{out \rightarrow in}) \times$			$iF_{out,total} = iF_{out \rightarrow out}$
	Sout		iF _{out,total}	$ \frac{\overline{\left(\frac{IR_{out} \times n_{out}}{V_{out} \times k_{out}}\right)}}{+} + $
			$\times S_{out}$	
				$\underbrace{(iF_{\text{in.total}} \times f_{\text{out} \to \text{in}})}^{iF_{\text{out} \to \text{in}}}$
				(^{IF} in,total [×] lout→in)
	Cumulative indoor	Cumulative outdoor	Cumulative	
	intake due to indoor	intake due to indoor	intake due	
	and outdoor	and outdoor emissions	to indoor	
	emissions		and	
			outdoor	
i		$iF_{out \rightarrow out} \times S_{out} +$	emissions	
	iF _{in→in}	$iF_{in\rightarrow out} \times S_{in}$		
	$\left(\frac{IR_{in} \times n_{in}}{V_{in} \times k_{in}}\right) \times S_{in} +$			
	iF _{out→in}		iF _{in,total}	
7	$(iF_{in,total} \times f_{out\rightarrow in}) \times$		\times S _{in}	
	Sout		+ iF _{out,total}	
	(eq. 2)		$\times S_{out}$	

This article is protected by copyright. All rights reserved

Emission	Indoor intake	Outdoor intake	Total intake	Intake fraction
[kg _{emitted} /h]	[kg _{intake} /h]	[kg _{intake} /h]	[kg _{intake} /h]	[kg _{intake} /h per kg _{emitted} /h]
Indoor	Indoor intake due to indoor emissions	Outdoor intake due to	Total intake	Total intake due to indoor emissions per unit
(PM _{2.5} or	_	indoor emissions	due to indoor	of indoor emissions
precursor)			emissions	
emissions	iF _{in→in}			iFo. to an
S _{in}	$\left(\frac{\left(\mathbf{IR}_{in} \times \mathbf{n}_{in}\right)}{\mathbf{v}_{in} \times \mathbf{k}_{in}}\right) \times \mathbf{S}_{in}$	$ \overbrace{\left(iF_{\text{out,total}} \times f_{\text{in}\to\text{out}}\right)}^{iF_{\text{in}\to\text{out}}} \times S_{\text{in}} $		$iF_{in,total} = \underbrace{\overbrace{\left(\frac{IR_{in} \times n_{in}}{V_{in} \times k_{in}}\right)}^{iF_{in \to out}} + \underbrace{\left(iF_{out,total} \times f_{in \to out}\right)}^{iF_{in \to out}}$
	2		$iF_{in,total} \times S_{in}$	(eq. 1)
Outdoor	Indoor intake due to outdoor emissions	Outdoor intake due to	Total intake	Total intake due to outdoor emission per unit
(PM _{2.5} or	K	outdoor emissions	due to outdoor	of outdoor emissions
precursor)	9		emission	
emissions		iF _{out→out}		iE —
	iF _{out→in}	$ \left(\frac{\overline{(IR_{out} \times n_{out})}}{V_{out} \times k_{out}} \right) \times S_{out} $		iF _{out→out} = iF _{out→in}
Sout	$(iF_{in,total} \times f_{out \to in}) \times S_{out}$	(vout^kout /		$ \underbrace{\left(\frac{iR_{out} \times n_{out}}{V_{out} \times k_{out}}\right)}_{iF_{out} \rightarrow k_{out}} + \underbrace{\left(iF_{in,total} \times f_{out \rightarrow in}\right)}_{iF_{out \rightarrow in}} $
_			iF _{out,total}	(V _{out} ×k _{out}) (II in,total ∧ Tout→in)
			$\times S_{\text{out}}$	
	Cumulative indoor intake due to indoor and outdoor	Cumulative outdoor intake	Cumulative	
7	emissions	due to indoor and outdoor	intake due to	
_	7	emissions	indoor and	
-			outdoor	
	iF _{in→in} iF _{out→in}		emissions	
	$ \underbrace{\left(\frac{iF_{in} \times n_{in}}{V_{in} \times k_{in}}\right)}_{iF_{out} \times k_{in}} \times S_{in} + \underbrace{\left(iF_{in,total} \times f_{out \to in}\right)}_{iF_{out \to in}} \times S_{out} $	$iF_{out \rightarrow out} \times S_{out} +$		

Emission	Indoor intake	Outdoor intake	Total intake	Intake fraction
[kg _{emitted} /h]	[kg _{intake} /h]	[kg _{intake} /h]	[kg _{intake} /h]	[kg _{intake} /h per kg _{emitted} /h]
Indoor	Indoor intake due to indoor emissions	Outdoor intake due to	Total intake due to	Total intake due to indoor emissions per unit of
(PM _{2.5} or		indoor emissions	indoor emissions	indoor emissions
precursor)	σ			
emissions $S_{\rm in}$	$ \frac{\mathbf{i}^{\mathbf{F_{in}} \to in}}{\mathbf{v_{in}} \times \mathbf{k_{in}}} \times \mathbf{S_{in}} $	$ \frac{iF_{in\to out}}{\left(iF_{out,total} \times f_{in\to out}\right)} \times S_{in} $	$iF_{in,total} \times S_{in}$	$iF_{in,total} = \overbrace{\left(\frac{IR_{in} \times n_{in}}{V_{in} \times k_{in}}\right)}^{\mathbf{i}F_{in} \to out} + \overbrace{\left(iF_{out,total} \times f_{in \to out}\right)}^{iF_{in \to out}}$ (eq. 1)
Outdoor	Indoor intake due to outdoor emissions	Outdoor intake due to	Total intake due to	Total intake due to outdoor emission per unit of
(PM _{2.5} or	2	outdoor emissions	outdoor emission	outdoor emissions
precursor)				
emissions		iF _{out→out}		iFout→out iFout in
S _{out}	$\overbrace{\left(iF_{in,total} \times f_{out \to in}\right)}^{iF_{out \to in}} \times S_{out}$	$ \overline{\left(\frac{IR_{out} \times n_{out}}{V_{out} \times k_{out}}\right)} \times S_{out} $	$iF_{out,total} \times S_{out}$	$iF_{out,total} = \underbrace{\left(\frac{iF_{out} \times n_{out}}{V_{out} \times k_{out}}\right)}_{iF_{out,total} \times f_{out}} + \underbrace{\left(iF_{in,total} \times f_{out \to in}\right)}_{iF_{out,total}}$

1520

1521

1522

1523

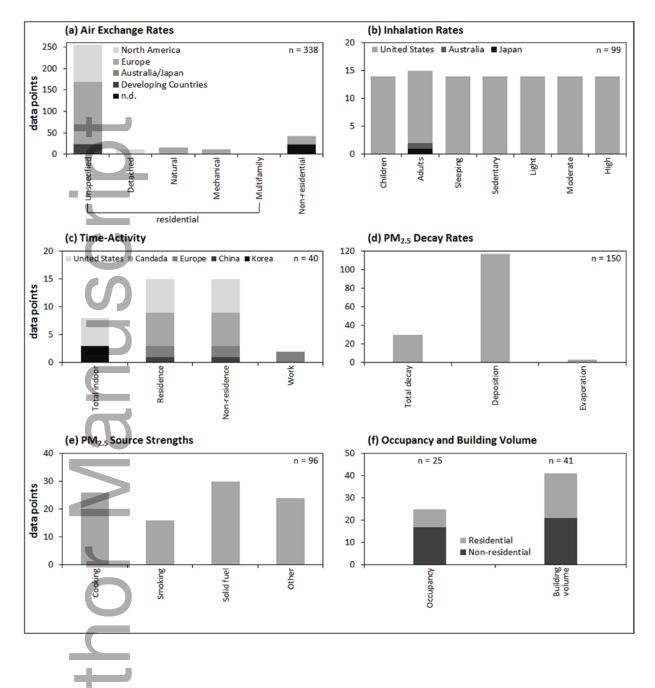
1524

1525

1526

1527

1528


1529

1530

1531

1532

Table 1. Matrix illustrating the contributions of $PM_{2.5}$ derived from indoor and outdoor sources to indoor intake, outdoor intake, total intake, and intake fraction of $PM_{2.5}$. Aspects discussed in this paper are highlighted in grey and specific areas of focus are in red. Abbreviations: $S_{\rm in}$ or $S_{\rm out}$, indoor or outdoor $PM_{2.5}$ source emission rate; $iF_{\rm in\rightarrow in}$, fraction of $PM_{2.5}$ emitted/formed indoors that is transported outdoors and taken in via inhalation indoors; $iF_{\rm out\rightarrow out}$, fraction of $PM_{2.5}$ emitted/formed outdoors that is transported outdoors in taken in via inhalation outdoors; $iF_{\rm out\rightarrow in}$, fraction of $PM_{2.5}$ emitted/formed outdoors that is transported indoors and taken in via inhalation indoors; $iF_{\rm out\rightarrow in}$, fraction of $iPM_{2.5}$ emitted/formed outdoors that is transported indoors and taken in via inhalation indoors; $iF_{\rm out}$, individual inhalation rate indoors or outdoors $iPM_{2.5}$ in $iPM_{2.5$

Figure 1. Frequency plot illustrating the number of data points (i.e., measured or modeled value or summary statistic from a distribution of measurements describing the parameter of interest) gathered from the literature for the primary factors influencing indoor inhalation intake fraction of PM_{2.5}: (a) air exchange rates, (b) inhalation rates, (c) time-activity factors, (d) particle decay rates, (e) indoor PM_{2.5} source strengths, and (f) occupancy and building volume. (a) Air exchange rates are shown for detached/single-family homes ("Detached"), multifamily homes ("Multifamily"), homes without mechanical ventilation (i.e., infiltration and natural ventilation)

Author M

1542

1543

1544

1545

1546

1547

1548

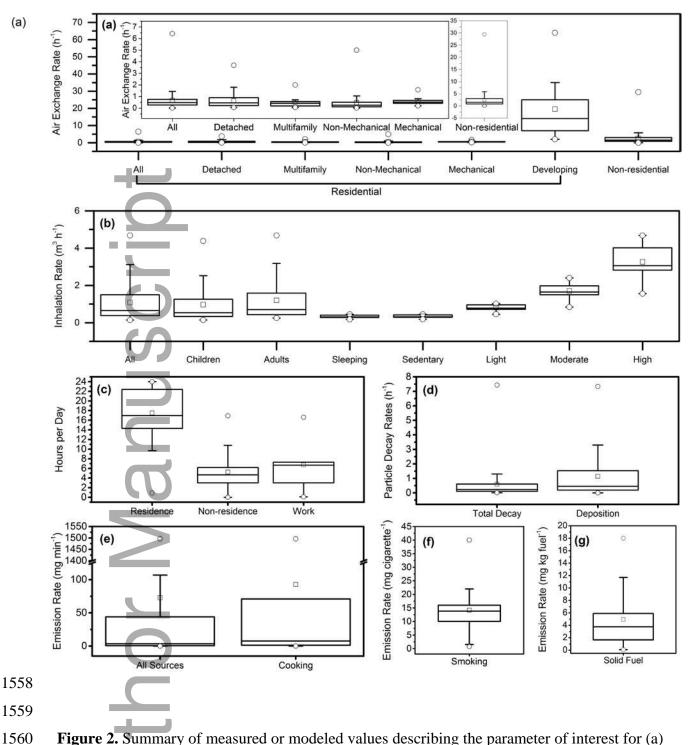
1549

1550

1551

1552

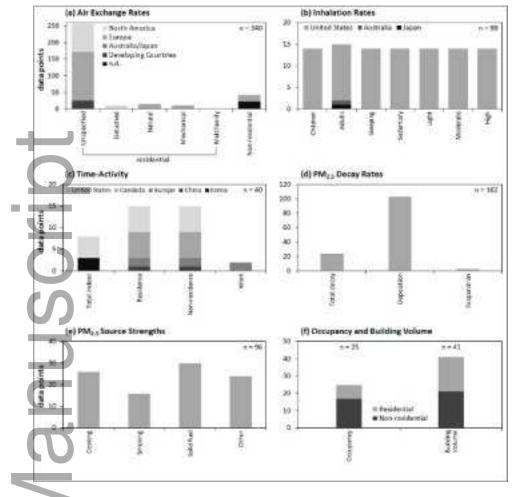
1553

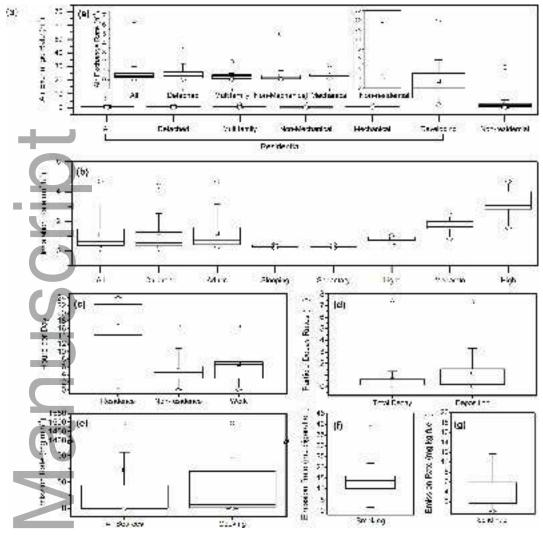

1554

1555

1556

1557


("Non-Mechanical"), mechanically ventilated homes ("Mechanical"), homes in developing countries ("Developing"), residential buildings for which the above-described characteristics have not been specified ("Unspecified"), and non-residential buildings ("Non-residential"). (b) Inhalation rates are for adults, children, and by activity level (sleeping, sedentary, light, moderate, and high). (c) Time-activity factors include total hours spent indoors ("Total Indoors"), in the residence ("Residence"), in other indoor locations ("Non-residence"), and at work ("Work") per day. (d) Particle decay rates are for all particle loss mechanisms combined ("Total Decay") and for losses driven only by deposition. (e) Indoor PM_{2.5} emission source strengths include cooking, smoking, solid fuel combustion, and other indoor sources. (f) Occupancy and building volume data are categorized by residential and non-residential indoor environments. Where possible, data are categorized by country/geographic region (Not determined ("n.d.") means that geographic region is unspecified). Studies included here have primarily been conducted in North America and Europe (a,b,c). In addition, there are disparities in the types of indoor environments studied in previous work, with the majority of studies focusing on residential environments and a smaller number of studies considering industrial and commercial buildings.


Figure 2. Summary of measured or modeled values describing the parameter of interest for (a) building air exchange rates, (b) inhalation rates, (c) time activity factors, (d) particle decay rates, and (e) – (g) indoor PM_{2.5} source strengths reported in the literature. For all plots, the boxes indicate the 25th percentile, median, and 75th percentile. Minimum and maximum values are indicated with circles and mean values are indicated with squares. (a) Air exchange rates shown are for all homes combined (excluding homes in developing nations) ("All") and separately for detached/single-family homes ("Detached"), multifamily homes ("Multifamily"), homes without

Author Mar

mechanical ventilation (i.e., infiltration and natural ventilation) ("Non-Mechanical"), mechanically ventilated homes ("Mechanical"), homes in developing countries ("Developing"), and non-residential buildings ("Non-residential"). (b) Inhalation rates are for all measurements combined ("All"), and separately for adults (> 21 years), children (\le 21 years), and activity level (sleeping, sedentary, light, moderate, and high). (c) Time-activity factors include hours per day spent in the residence ("Residence"), in other indoor locations ("Non-residence"), and at work ("Work"). (d) Particle decay rates are given for all particle loss mechanisms combined ("Total Decay") and for losses driven only by deposition. (e) Source emissions are given for common indoor PM_{2.5} sources including cooking, cleaning, smoking, and various appliances combined, excluding the combustion of solid fuels ("All Sources"). (e), (f), and (g) Source emissions are also illustrated for cooking, smoking, and solid fuel combustion separately. The total number of observations for each parameter is shown in Figure 1 and all underlying data are provided in the SI.

ina_12268_f1.tif

 $ina_12268_f2.tif$