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A new classification scheme was developed to classify mammographic masses as malignant and
benign by using interval change information. The masses on both the current and the prior mam-
mograms were automatically segmented using an active contour method. From each mass, 20 run
length statistics~RLS! texture features, 3 speculation features, and 12 morphological features were
extracted. Additionally, 20 difference RLS features were obtained by subtracting the prior RLS
features from the corresponding current RLS features. The feature space consisted of the current
RLS features, the difference RLS features, the current and prior speculation features, and the
current and prior mass sizes. Stepwise feature selection and linear discriminant analysis classifica-
tion were used to select and merge the most useful features. A leave-one-case-out resampling
scheme was used to train and test the classifier using 140 temporal image pairs~85 malignant, 55
benign! obtained from 57 biopsy-proven masses~33 malignant, 24 benign! in 56 patients. An
average of 10 features were selected from the 56 training subsets: 4 difference RLS features, 4 RLS
features, and 1 speculation feature from the current image, and 1 speculation feature from the prior,
were most often chosen. The classifier achieved an average trainingAz of 0.92 and a testAz of 0.88.
For comparison, a classifier was trained and tested using features extracted from the 120 current
single images. This classifier achieved an average trainingAz of 0.90 and a testAz of 0.82. The
information on the prior image significantly (p50.015) improved the accuracy for classification of
the masses. ©2001 American Association of Physicists in Medicine.@DOI: 10.1118/1.1412242#
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I. INTRODUCTION

Mammography is currently the most effective method
early breast cancer detection.1,2 Analysis of interval changes
is an important method used by radiologists in mamm
graphic interpretation to detect developing malignancy.3,4 A
variety of computer-aided diagnosis~CAD! techniques have
been developed to detect abnormalities and to disting
malignant and benign lesions on mammograms. We
studying the use of CAD techniques to assist radiologist
interval change analysis.

Commonly used lesion classification methods for CA
employ information from a single image. These metho
have been shown to perform well in lesion classificat
problems.5–12 However, when mammograms from multip
examinations are available, it can be expected that e
higher accuracy may be achieved if the computer can uti
the interval change information for classification. New co
puter vision methods will have to be designed to extr
features characterizing temporal changes and to improve
differentiation between benign and malignant masses.

A number of researchers have developed algorithms
register the mass on current and prior mammograms. Sa
et al.13 have proposed a warping technique for mammogr
registration based on manually identified control points
mapping function was calculated for matching each point
the current mammogram to a point on the prior mamm
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gram. Brzakovic et al.14 have investigated a three-ste
method for comparison of the most recent and the p
mammograms. They first registered two mammograms us
the method of principal axis, and partitioned the curre
mammogram using a hierarchical region-growing techniq
Translation, rotation, and scaling were then used for regis
tion of the partitioned regions. Vujovicet al.15 have proposed
a multiple-control-point technique for mammogram regist
tion. They first determined several control points indepe
dently on the current and prior mammograms based on
intersection points of prominent anatomical structures in
breast. A correspondence between these control points
established based on a search in a local neighborhood ar
the control point of interest.

The previous techniques depend on the identification
control points. Furthermore, these studies aimed at regis
tion without using the results for interval change analysis

Gopalet al.16,17and Hadjiiskiet al.18–20have developed a
multistage technique that defines a transformation to loc
map the position of the mass on a current mammogram
search region on the prior mammogram. A local search
the exact mass location is then performed on the prior m
mogram. Goodet al.21 have developed a technique that d
fines a transformation to map all points from the curre
mammogram onto a prior mammogram. The current ma
mogram is then subtracted from the prior mammogram.
23098„11…Õ2309Õ9Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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2310 Hadjiiski et al. : Analysis of temporal changes of mammographic features 2310
Few studies have been performed so far in the area
automated classification of breast masses based on the
val change information. Gopalet al.22 and Hadjiiski
et al.23,24 have carried out a preliminary study of the clas
fication scheme that combines prior and current informat
automatically extracted from masses on prior and curr
mammograms, respectively. The classifier using the c
bined prior and current information performed better than
classifier using current information alone. To our knowled
no other studies that describe automated classification of
lignant and benign breast lesions based on temporal cha
of mammographic features have been reported.

The goal of our research is to develop a CAD method
automated analysis of interval changes to be used as an a
radiologists for detection and classification of malignant a
benign lesions on mammograms. In this study, we condu
a preliminary investigation to demonstrate the feasibility
analyzing temporal differences in the texture and morp
logical features between a mass on the most recent mam
gram and a prior mammogram of the same view for
classification task. Additionally, we compared this meth
with two classification methods, one of which is based
information extracted from the current mammograms alo
the other one is based on information extracted from
prior mammograms alone.

II. MATERIALS AND METHODS

The new classification technique is based on the desig
features that characterize the temporal change in the lesio
interest between two mammographic examinations. T
mass to be analyzed can either be identified manually b
radiologist or automatically by a computerized detection p
gram. In this study, the mass on each mammogram was i
tified by an MQSA certified radiologist. The masses on b
the current and the prior mammograms were automatic
segmented using an active contour method that has been
cussed in detail elsewhere.25,26Examples of the segmentatio
are shown in Figs. 2 and 3 for a malignant and a ben
mass, respectively. Features that characterized mam
graphic masses including texture features, morpholog
features, and spiculation features were extracted from e
mass. Three of the morphological features are related to
mass size. Additionally, difference features were obtained
subtracting a feature of the prior mass from the correspo
ing feature of the current mass. The current, prior, and
ference features formed a multidimensional feature space
the classification task. Stepwise feature selection applie
linear discriminant analysis~LDA! was used to select th
most useful features. The selected features were then us
the input predictor variables for the LDA classifier~Fig. 1!.
The classifier was trained and tested by a leave-one-cas
resampling scheme. A case was considered to contain
regions of interest from a given patient. In each resamp
step, the temporal pairs from 55 cases were used for fea
selection and formulation of the linear discriminant functio
while the temporal pairs from the left-out case were used
testing the trained classifier. A total of 56 training and test
Medical Physics, Vol. 28, No. 11, November 2001
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steps were obtained from the 56 cases. The classifica
results from the 56 test cases were accumulated to eva
the classifier performance. Since the data set in this st
was still small, we chose the feature selection parame
such that the dimensionality of the input feature vector
the LDA classifier was small in order to reduce the possib
ity of over-training. The feature selection procedure is d
cussed in Sec. II C.

To evaluate the improvement in the classifier performa
designed by using the temporal change information, two
ditional classifiers were obtained. One of them was train
using the information extracted from the current single i
ages of the temporal pairs. We will refer to these images
current images. The other classifier was trained using
information extracted from the prior single images of t
temporal pairs and we will refer to these images as p
images. Comparison of the three classifiers will reveal
effectiveness of interval change analysis for the classifica
of malignant and benign masses.

A. Data set

A set of 140 temporal pairs of mammograms contain
biopsy-proven masses on the current mammograms was
to examine the performance of this approach. The data
consisted of 241 mammograms from 56 patients. The m
mograms were digitized with a LUMISCAN 85 laser scann
at a pixel resolution of 50mm350mm and 4096 gray levels
The digitizer was calibrated so that gray level values w
linearly proportional to the optical density~OD! within the
range of 0–4 OD units, with a slope of 0.001 OD/pix
value. The digitizer output was linearly converted so tha
large pixel value corresponded to a low optical density. T
image matrix size was reduced by averaging every 232 ad-
jacent pixels and downsampled by a factor of 2, resulting
images with a pixel size of 100mm3100mm for further
analysis.

There were 57 biopsy-proven masses~33 malignant and
24 benign!in the 56 cases. The 241 mammograms contai
different mammographic views~CC, MLO, and lateral
views! and multiple examinations of the masses includi
the examination when the biopsy decision was made.
matching masses of the same view from two different exa
nations, a total of 140 temporal pairs were formed, of wh

FIG. 1. Block diagram of the classification method.
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2311 Hadjiiski et al. : Analysis of temporal changes of mammographic features 2311
85 were malignant and 55 benign. A malignant temporal p
consisted of a biopsy-proven malignant mass or a mass
was initially not recommended for biopsy and later found
be malignant by biopsy in a future year. A similar definitio
was used for the benign temporal pairs. Within a pair,
current mammogram was defined as the mammogram
the later date, and the prior mammogram was defined as
one with the earlier date. Therefore, in cases with three c
secutive exams, more than one temporal pair could
formed and two of the mammograms could be called ‘‘c
rent.’’ Among the 140 temporal pairs, we had 120 uniq
current mammograms. Of the masses in the 120 cur
mammograms, 70 were malignant and 50 benign.

Since all cases in this data set had undergone biopsy
benign masses in this set could not be distinguished ea
from the malignant ones based on current mammogra
criteria. Changes occurred for the benign masses
prompted the radiologists to recommend biopsy. Example
such cases are shown in Figs. 2 and 3. The malignant ma
Fig. 2 did not increase in size but changed its density. T
benign mass~Fig. 3!, on the other hand, appeared to ha
spicules. For the malignant masses in this data set, the a
age mass size, estimated by the radiologist as the lon
dimension of the mass on the mammogram, was 8.2 mm
the prior mammograms and 12.7 mm on the current ma
mograms. The corresponding sizes were 10.6 and 12.2
respectively, for the benign masses. As discussed in Sec
25 of the masses on the prior mammograms were too su
for the radiologist to estimate their sizes. The average s
given previously were obtained after excluding all tempo
pairs that involved these masses.

The radiologist also rated the visibility of the masses

FIG. 2. A malignant mass:~a! the mass in a prior year mammogram~1997!,
~b! mass outline obtained by active contour segmentation,~c! the mass in a
current year mammogram~1998!,~d! mass outline obtained by active con
tour segmentation.
Medical Physics, Vol. 28, No. 11, November 2001
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the mammograms relative to those encountered in clin
practice on a 10-point scale, with 1 representing the m
obvious and 10 representing the most subtle masses.
visibility of the masses on the current mammogram is plot
against those on the prior mammogram in Fig. 4 for t
malignant and benign temporal pairs. Generally the ma
nant masses were less visible on the prior than on the cur
mammograms while the visibility of the benign masses w
found to be more similar on the current and prior mamm
grams. The mean difference in the visibility rating betwe
the prior and the current mammograms for the malign
masses is 2.8 compared to 1.2 for the benign masse~p
50.0007 with an unpaired t-test between the malignant
benign masses!. The correlation coefficient is 0.02 for ma
nant masses@Fig. 4~a!# and 0.37 for benign masses@Fig.
4~b!#. In addition, the radiologist also estimated the like
hood of malignancy of the current masses on a 10-point c
fidence scale~1—definitely benign and 10—definitely malig
nant!based on the 120 current mammograms alone with
comparison with the prior~Fig. 5!. The temporal pairs had
time interval of 6–36 months~Fig. 6!. More than 70% of the
pairs had a time interval of 12 months.

B. Feature extraction

A rectangular region of interest~ROI! was defined to in-
clude the radiologist-identified mass with an additional s
rounding breast tissue region of at least 40 pixels wide fr
any point of the mass border. A fully automated method w
then used for segmentation of the mass from the breast ti
background within the ROI. The masses on both the curr
and the prior mammograms were automatically segmen

FIG. 3. A benign mass:~a! the mass on a prior year mammogram~1995!,~b!
mass outline obtained by active contour segmentation,~c! the mass on a
current year mammogram~1996!,~d! mass outline obtained by active con
tour segmentation.
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2312 Hadjiiski et al. : Analysis of temporal changes of mammographic features 2312
within the ROI using a two-dimensional active conto
method that was initialized by K-mean clustering.25,26

The texture features used in this study were calcula
from run-length statistics~RLS! matrices.27 The RLS matri-
ces were computed from the images obtained by the rub
band straightening transform~RBST!.6 The RBST maps a
band of pixels surrounding the mass onto the Cartesian p
~a rectangular region!. In the transformed image, the m
border appears approximately as a horizontal edge,
spiculations appear approximately as vertical lines. A co
plete description of the RBST can be found in the literatur6

RLS texture features were extracted from the vertical a
horizontal gradient magnitude images, which were obtai
by filtering the RBST image with horizontally or verticall

FIG. 4. Visibility of the masses on the current mammogram plotted aga
those on the prior mammogram for~a! malignant and~b! benign temporal
pairs. The visibility was rated on a 10-point discrete scale~15most obvious,
105most subtle!. Because many of the data points overlap, we indicate
number of points with the same rating by a number next to the symbol~m or
b!. The diagonal line on the graph represents the cases when the curre
the prior mass sizes are identical. The dashed lines are the linear regre
lines for the data defined byy50.038x17.86 for ~a! and by y50.857x
11.742 for~b!. The correlation coefficient for malignant masses is 0.02
for benign masses is 0.37.
Medical Physics, Vol. 28, No. 11, November 2001
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oriented Sobel filters and computing the absolute grad
values of the filtered image.6 Five texture measures, namel
short run emphasis~SRE!, long run emphasis~LRE!, gray
level nonuniformity ~GLN!, run length nonuniformity
~RLN!, and run percentage~RP! were extracted from the
vertical and horizontal gradient images in two directionsu
50°, and u590°. Therefore, a total of 20 RLS feature
were calculated for each ROI. The definition of the RL
feature measures can be found in the Appendix and in
literature.27

Morphological features were extracted from the autom
cally segmented mass shape. Five of the morphological
tures were based on the normalized radial length~NRL!, de-
fined as the Euclidean distance from the object’s centroid
each of its edge pixels, i.e., the radial length, and normali
relative to the maximum radial length for the object.11 The
following five NRL features were extracted: mea
~NRLAVG!, standard deviation~NRLSD!, entropy ~NR-
LENT!, area ratio~NRLAREAR!, zero crossing count~NR-
LZCC!. In addition, the perimeter~PERIM!, area~AREA!,
circularity ~CIRC!, rectangularity~SQR!, contrast~CONT!,
perimeter-to-area ratio~CRR!, and Fourier descriptor~FF!
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FIG. 5. The distribution of the malignancy ranking of the masses in the
current mammograms. The rating was performed by an experienced M
radiologist~1: definitely benign, 10: definitely malignant!.

FIG. 6. Temporal interval between the current and the prior mammogr
for the 140 temporal pairs in our data set.
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2313 Hadjiiski et al. : Analysis of temporal changes of mammographic features 2313
features were extracted. The definitions of the morpholog
features can be found in the literature.26,28Three of the mor-
phological features~perimeter, area, and perimeter-to-ar
ratio! are related to the mass size and thus are feature
scriptors of the mass size.

A spiculation measure was defined for each pixel on
mass border by using the statistics of the image grad
direction relative to the normal direction to the mass bord
The statistics was determined in a 90° sector centered a
the normal at the border pixel and outside of the m
border.25,26 The spiculation measure for each border pix
was normalized to be between 0 andp/2, with a value ofp/4
indicating a random orientation of image gradients, a
larger values indicating a higher likelihood of spiculatio
Three features were extracted from the spiculation meas
The first feature~AVG! was the average of the spiculatio
measure for all pixels on the mass boundary. The sec
feature~PERC–ABV! was the percentage of border pixe
with a spiculation measure larger thanp/4, and the third
feature~AVE–ABV! was the average of the spiculation me
sure for those pixels with a spiculation measure larger t
p/4.

A total of 35 features~20 RLS, 12 morphological, and
spiculation!were therefore extracted from each ROI. Add
tionally, difference features were obtained by subtractin
prior feature from the corresponding current feature. The
fore, 35 difference features were derived from the 20 R
12 morphological, and 3 spiculation features.

C. Feature selection

In order to reduce the number of the features and to ob
the best feature subset to design an effective classifier,
ture selection with stepwise linear discriminant analysi29

was applied. At each step of the stepwise selection proce
one feature is entered or removed from the feature poo
analyzing its effect on the selection criterion. In this stu
the Wilks’ lambda~the ratio of within-group sum of square
to the total sum of squares30! was used as a selection crit
rion. The optimization procedure used a thresholdF in for
feature entry, a thresholdFout for feature removal, and a
tolerance thresholdT for measuring feature correlation wit
the other features. In a feature entry step, the features no
selected are entered into the selected feature pool one
time, the significance of the change in the Wilks’ lamb
caused by this feature is estimated based onF statistics. The
feature with the highest significance is entered into the f
ture pool if its significance is higher thanF in and its corre-
lation value with the rest of the features in the pool is bel
T. In a feature removal step, the features that have alre
been entered in the selected feature pool are removed o
a time and the significance of the change in the Wil
lambda is estimated. The feature with the least significanc
removed from the selected feature pool if the significanc
less thanFout. Since the appropriate values ofF in , Fout and
T are not knowna priori, we examined a range ofF in , Fout,
and T values using an automated simplex optimizati
method.31,32 The appropriate thresholds were chosen in s
Medical Physics, Vol. 28, No. 11, November 2001
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a way that a minimum number of features were selected
achieve a high accuracy of classification by LDA. More d
tails about the stepwise linear discriminant analysis and
application to CAD can be found elsewhere.5,6

The feature selection in this study was performed by
plying the stepwise feature selection to the entire feat
space~combination of texture, spiculation, and morpholog
cal features altogether!as well as subspaces obtained by d
ferent combinations of the three feature subspaces: tex
spiculation, and morphological features. The stepwise fea
selection uses a sequential forward inclusion and backw
elimination approach. The procedure does not exhaustiv
evaluate all possible combinations of individual features. I
therefore not optimal, especially when the feature spac
large and the training sample is small. By limiting the inp
to the feature subspaces, the dimensionality was redu
compared to the entire feature space. We found that be
feature subsets could be selected by the stepwise featur
lection in the subspaces than in the entire feature space

D. Evaluation methods

To evaluate the classifier performance, the training a
test discriminant scores were analyzed using receiver ope
ing characteristic~ROC! methodology.33 The discriminant
scores of the malignant and benign masses were use
decision variables in theLABROC1 program,34 which fits a
binormal ROC curve based on maximum likelihood estim
tion. The classification accuracy was evaluated as the
under the ROC curve,Az . The performances of the classifi
ers were also assessed by estimating the partial area i
(Az

(0.9)). The partial area index (Az
(0.9)) is defined as the are

that lies under the ROC curve but above a sensitivity thre
old of 0.9 (TPF050.9) normalized to the total area abov
TPF0, (12TPF0). The partial Az

(0.9) indicates the perfor-
mance of the classifier in the high sensitivity~low false nega-
tive! region which is most important for a cancer detecti
task.

III. RESULTS

The performances of the classifiers based on the temp
pairs, the current images, and the prior images are sum
rized in Table I. The classifiers that achieved the highest
Az values with a small average number of features were p
sented here. Table II is a summary of the features selecte
each classifier. For the 56 training subsets of temporal p
used in this study, an average of 10 features were selecte

TABLE I. Classification results for the classifier based on the tempo
change information, the classifier based on current single image informa
and the classifier based on prior single image information.

Classification
Avg. No. of

selected features TrainingAz TestAz

Test partial
Az

(0.9)

Temporal pairs 10 0.92 0.8860.03 0.3760.10
Current images 11 0.90 0.8260.04 0.3260.08
Prior images 4 0.78 0.7660.04 0.2460.08
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TABLE II. Selected features for classifiers based on temporal pairs, current images, and prior images. Th
‘‘H’’ or ‘‘V’’ at the beginning of the texture feature labels indicates that the features were extracted from
horizontal or vertical gradient magnitude images, respectively. The number~0 or 90! at the end of the texture
feature labels shows the direction at which the features were extracted.

Feature type Group Features

Temporal pairs Current
images
Curr

Prior
images

PrCurr Pr Diff

Texture SRE H–SRE–0 3

H–SRE–90 3 3

V–SRE–0 3 3 3 3

V–SRE–90 3

LRE V–LRE–0 3 3

H–LRE–0 3

RLN V–RLN–0 3 3

RP H–RP–0 3 3

Spiculation PERC–ABV 3 3

AVG 3

AVG–ABV 3

Morphological CRR 3

NRLZCC 3

PERIM 3

NRLAVG 3

SQR 3

CONT 3
ur

re
th
r-
l

in
al
r

fe

g
r
ur

in

ar
r
rre

he
e
-
ls
t

no

a-
ses
m-
ge
a-
ys

he
run
of

m-
cur-

pair
the classification task. The most frequently selected feat
included 4 difference RLS features~3 SRE and 1 LRE!, 4
RLS features~2 SRE, 1 RLN and 1 RP!, 1 spiculation featu
from the current image, and 1 spiculation feature from
prior image~Table II!. The LDA classifier achieved an ave
age trainingAz of 0.92 and a testAz of 0.88. The test partia
Az

(0.9) was 0.37.
For classification of malignant and benign masses us

the current single images~the current images of the tempor
pairs!, the LDA classifier selected an average of 11 featu
for the 56 training subsets. The most frequently selected
tures were 4 RLS features~2 SRE, 1 LRE and 1 RLN!, 1
spiculation feature, and 6 morphological features~Table II!.
The classifier achieved an average trainingAz of 0.90, a test
Az of 0.82, and a test partialAz

(0.9) of 0.32.
For the classification of masses based on the prior sin

images alone, an average of 4 features were selected fo
56 training subsets. The most frequently selected feat
were 3 RLS features~1 SRE, 1 LRE, and 1 RP! and 1 spicu-
lation feature. The LDA classifier achieved an average tra
ing Az of 0.78, testAz of 0.76, and test partialAz

(0.9) of 0.24.
The test ROC curves for the three classifiers are comp

in Fig. 7. The difference in the testAz between the classifie
based on the temporal pairs and that based on the cu
images alone is statistically significant (p50.015). The dif-
ference in the testAz between the classifier based on t
temporal pairs and that based on the prior images alon
also statistically significant (p50.001). The partial area in
dex for the classifier based on the temporal pairs is a
improved compared to the classifiers based on the curren
the prior images alone, although the differences did
achieve statistical significance.
l. 28, No. 11, November 2001
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IV. DISCUSSION

Texture and spiculation features were important for m
lignant and benign classification of mammographic mas
for all three types of classifiers: the classifier based on te
poral pair information, the classifier based on current ima
information, and the classifier based on prior image inform
tion. One or more of the spiculation features were alwa
selected in all training partitions for all three classifiers. T
most frequently selected texture features were the short
emphasis~SRE!features. They comprised more than 50%
the texture features selected for the three classifiers~Table
II!.

The temporal-information-based classifier showed i
proved performance compared to the classifiers based on

FIG. 7. The test ROC curves for the classifiers based on temporal
information, current image information, and prior image information.
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2315 Hadjiiski et al. : Analysis of temporal changes of mammographic features 2315
rent or prior image information alone. The input featu
space to the temporal-information-based classifiers inclu
the current, prior, and difference features. This allows
classifier to choose the individual features or the differe
features. Using the stepwise feature selection procedure
the linear discriminant classifier, it was found that the text
and the spiculation features contained useful temporal in
mation to perform malignant and benign mass classificat
Texture features appeared to provide the best information
the difference features obtained from subtracting the p
from the corresponding current features~SRE and LRE dif-
ference features!. On the other hand, the best use of
spiculation features appeared to be a direct combinatio
current and prior features in the input feature vector by
LDA since the individual features were chosen.

We found that better feature subsets could be selecte
the stepwise feature selection in the subspaces than in
entire feature space. For example, for the tempo
information-based classifier, a better feature subset wit
higher testAz at 0.88 was found when the input feature spa
included only the texture and spiculation subspaces. The
dition of the morphological feature subspace to the in
feature space reduced the highest testAz to 0.84. Similarly,
in the case of the classifier based on prior image informat
a better feature subset was obtained when the texture
spiculation feature subspaces were used in the input fea
space for stepwise feature selection. Again the addition
the morphological feature subspace to the input feature s
reduced the highest testAz to 0.72. The classifier based o
current image information was the only one, among
three, that obtained a better result, as shown in Table I, w
the morphological feature subspace was included in the in
feature space.

One reason for the poor performance of the morpholo
cal features may be due to the fact that the masses were
subtle in the prior images. In fact, the experienced MQ
mammographer was not confident in seeing 25 of
‘‘masses’’ on the prior images and could not provide a m
size estimation for them. Although the active contour mo
would stop the iteration based on the preset criteria
found an ‘‘outline’’ of the masses on the prior mammogram
generally these mass outlines were less reliable than thos
the current masses in providing morphological characte
tics of the masses. Texture features did not depend
strongly on the precise mass boundary as morphological
tures. Three out of the four features selected for classifica
of the malignant and benign masses on the prior images w
RLS texture features. A spiculation feature was also found
be a good discriminator.

We also performed ROC analysis of the malignancy c
fidence ratings provided by the experienced MQSA radio
gist for the current image data set~120 images!. The distri-
bution of the malignancy ratings is shown in Fig. 5, whi
resulted in anAz value of 0.8060.04. This indicates that th
masses in the current mammograms cannot be easily di
guished as malignant or benign even by an experienced
diologist, consistent with the fact that all lesions had inde
undergone biopsy. The classifier based on the current im
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information has anAz value of 0.8260.04, similar to the
accuracy of the radiologist for this data set.

In this study, the locations of the masses were identifi
manually on both the current and the prior mammograms
a radiologist. This simulated the situation when a radiolog
finds a mass either in a diagnostic or a screening setting
call upon the CAD algorithm to seek a second opinion on
likelihood of malignancy of the mass based on the inter
change information. We are developing an automated
gional registration technique that can automatically loc
the mass on the prior mammogram based on its location
the current mammogram. The location of the mass on
current mammogram can be identified by a radiologist or
an automated mass detection algorithm. In the latter case
process of mass detection, current and prior mass regi
tion, and classification can be fully automated. The analy
of interval change can be incorporated as one of the fu
tions provided by a CAD system for interpretation of mam
mograms.

In this study, we employed a simple measure of tempo
change by taking the difference between the feature from
current mass and the corresponding feature from the p
mass. We observed improvement in classification with t
simple temporal information. It will be important to evalua
other similarity measures that can characterize small dif
ence in image features of the object of interest. It can
expected that a more sensitive similarity measure will p
vide a better measurement of dissimilarity, or difference,
tween the current and prior masses and further improve
utilization of the temporal change information on mamm
grams.

V. CONCLUSION

We performed a preliminary study to evaluate the effe
tiveness of interval change analysis for classification of m
lignant and benign masses on mammograms. It was fo
that the difference RLS texture features and spiculation f
tures were useful for identification of malignancy in temp
ral pairs of mammograms. The information on the prior im
age was important for characterization of the masses; 5
of the 10 selected features contained prior information.
found that the mass size descriptors were not discrimina
features for these difficult cases because many of the be
masses also grew over time. In comparison with the cla
fication based on image information from the current imag
alone, the temporal change information significantlyp
50.015) improved the accuracy for classification of t
masses in terms of the total area under the ROC curve (Az).
The partial area under the ROC curve for the classifier ba
on the temporal pairs (Az

(0.9)50.37) is also improved com
pared to the classifier based only on the current ima
(Az

(0.9)50.32), although the difference did not achieve sta
tical significance. Further studies are under way to impro
this temporal change classification technique and to eval
its performance on a larger data set.
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APPENDIX: RUN LENGTH STATISTICS TEXTURE
FEATURES

A gray level run length is a set of consecutive colline
pixels all having the same gray level value. The length of
run is the number of pixels in the run. For a given image i
possible to compute a gray level run length matrix for runs
any given direction. In this study, two directions are us
u50°, andu590°. Letp( i , j ) be the number of times ther
is a run of lengthj that has a gray leveli. Let Ng be the
number of gray levels andNr be the number of runs. Th
short run emphasis is defined as

SRE5

( i 51
Ng ( j 51

Nr
p~ i , j !

j 2

( i 51
Ng ( j 51

Nr p~ i , j !
.

This feature divides the frequency of each run length
the length of the run squared. This tends to emphasize s
runs. The denominator is the total number of runs in
image and serves as a normalizing factor. The long run
phasis is defined as

LRE5
( i 51

Ng ( j 51
Nr j 2p~ i , j !

( i 51
Ng ( j 51

Nr p~ i , j !
.

This feature multiplies the frequency of each run length
the length of the run squared. This tends to emphasize
runs.

The gray level nonuniformity is defined as

GLN5
( i 51

Ng ~( j 51
Ng p~ i , j !!2

( i 51
Ng ( j 51

Nr p~ i , j !
.

This feature squares the number of run lengths for each
level. This measures the gray level nonuniformity of the i
age. If the runs are equally distributed over all gray leve
the feature takes on its lowest values. A larger run len
contributes more to the feature value.

Run length nonuniformity is defined as

RLN5
( j 51

Nr ~( i 51
Nr p~ i , j !!2

( i 51
Ng ( j 51

Nr p~ i , j !
.

This feature measures the nonuniformity of the run leng
If the runs are equally distributed over all lengths, the feat
will have a low value. A larger run contour contributes mo
to the feature value.
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Run percentage is defined as

RP5
( i 51

Ng ( j 51
Nr p~ i , j !

P
.

This feature is a ratio of the total number of runs to the to
number of possible runs~P! if all runs have a length of one

The above-given definitions are based on Galloway27 and
more details can be found in this reference.
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