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A new classification scheme was developed to classify mammographic masses as malignant and
benign by using interval change information. The masses on both the current and the prior mam-
mograms were automatically segmented using an active contour method. From each mass, 20 run
length statistic§RLS) texture features, 3 speculation features, and 12 morphological features were
extracted. Additionally, 20 difference RLS features were obtained by subtracting the prior RLS
features from the corresponding current RLS features. The feature space consisted of the current
RLS features, the difference RLS features, the current and prior speculation features, and the
current and prior mass sizes. Stepwise feature selection and linear discriminant analysis classifica-
tion were used to select and merge the most useful features. A leave-one-case-out resampling
scheme was used to train and test the classifier using 140 temporal imagé&painalignant, 55
benign) obtained from 57 biopsy-proven mass@s malignant, 24 benignin 56 patients. An
average of 10 features were selected from the 56 training subsets: 4 difference RLS features, 4 RLS
features, and 1 speculation feature from the current image, and 1 speculation feature from the prior,
were most often chosen. The classifier achieved an average traipofd.92 and a tesh, of 0.88.

For comparison, a classifier was trained and tested using features extracted from the 120 current
single images. This classifier achieved an average traiaingf 0.90 and a tesf, of 0.82. The
information on the prior image significantlyp & 0.015) improved the accuracy for classification of

the masses. @001 American Association of Physicists in Medicid®Ol: 10.1118/1.1412242]
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l. INTRODUCTION gram. Brzakovic et al}* have investigated a three-step
method for comparison of the most recent and the prior

MaanEogratphy 'S cgrr:ant%ﬁt;e TO?t efff_ecttlve Im(;thod formammograms. They first registered two mammograms using
early breast cancer detect nalysis ot interval Changes .o method of principal axis, and partitioned the current
is an important method used by radiologists in mammo-

graphic interpretation to detect developing malignait mammogram using a hierarchical region-growing technique.

variety of computer-aided diagnosiSAD) techniques have Translation, rotation, and scaling were then used for registra-

been developed to detect abnormalities and to distinguisHor:lj;”:g_ggrntgg?egr:te?e'i?]i'i VL:JéOf\; Tin?;mrr;?ergxﬁgsss?ra-
malignant and benign lesions on mammograms. We ar@ b b q g 9

studying the use of CAD techniques to assist radiologists ifion- They first determined geveral control points indepen-
interval change analysis. dently on the current and prior mammograms based on the

Commonly used lesion classification methods for CADintersection points of prominent anatomical structures in the

employ information from a single image. These methoddreast. A correspondence between these control points was
have been shown to perform well in lesion classification€Stablished based on a search in a local neighborhood around

problems®*2 However, when mammograms from multiple the control point of interest. S
examinations are available, it can be expected that even The previous techniques depend on the identification of
higher accuracy may be achieved if the computer can utiliz€ontrol points. Furthermore, these studies aimed at registra-
the interval change information for classification. New com-tion without using the results for interval change analysis.
puter vision methods will have to be designed to extract Gopalet al*®’and Hadjiiskiet al.**~*°have developed a
features characterizing temporal changes and to improve tHaultistage technique that defines a transformation to locally
differentiation between benign and malignant masses. map the position of the mass on a current mammogram to a

A number of researchers have developed algorithms tgearch region on the prior mammogram. A local search for
register the mass on current and prior mammograms. Sallaihe exact mass location is then performed on the prior mam-
et al’® have proposed a warping technique for mammogranmogram. Goockt al?* have developed a technique that de-
registration based on manually identified control points. Afines a transformation to map all points from the current
mapping function was calculated for matching each point ormammogram onto a prior mammogram. The current mam-
the current mammogram to a point on the prior mammo-mogram is then subtracted from the prior mammogram.
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Few studies have been performed so far in the area of
automated classification of breast masses based on the intg
val change information. Gopalet al?> and Hadijiiski
et alZ?*have carried out a preliminary study of the classi-
fication scheme that combines prior and current information
automatically extracted from masses on prior and current
mammograms, respectively. The classifier using the com-
bined prior and current information performed better than the LDA
classifier using current information alone. To our knowledge,
no other studies that describe automated classification of ma
lignant and benign breast lesions based on temporal change
of mammographic features have been reported.

The goal of our research is to develop a CAD method for
automated analysis of interval changes to be used as an aid to
radiologists for detection and classification of malignant and

benign lesions on mammograms. In this study, we conductegteps were obtained from the 56 cases. The classification
a preliminary investigation to demonstrate the feasibility ofresults from the 56 test cases were accumulated to evaluate
analyzing temporal differences in the texture and morphothe classifier performance. Since the data set in this study
logical features between a mass on the most recent mamm@ras still small, we chose the feature selection parameters
gram and a prior mammogram of the same view for thesych that the dimensionality of the input feature vector for
classification task. Additionally, we compared this methodthe LDA classifier was small in order to reduce the possibil-
with two classification methods, one of which is based onity of over-training. The feature selection procedure is dis-
information extracted from the current mammograms alonegyssed in Sec. Il C.
the other one is based on information extracted from the To evaluate the improvement in the classifier performance
prior mammograms alone. designed by using the temporal change information, two ad-
ditional classifiers were obtained. One of them was trained
Il. MATERIALS AND METHODS using the information ex_tracted frpm the current s:ingle im-
ages of the temporal pairs. We will refer to these images as
The new classification technique is based on the design @urrent images. The other classifier was trained using the
features that characterize the temporal change in the lesion dfformation extracted from the prior single images of the
interest between two mammographic examinations. Theemporal pairs and we will refer to these images as prior
mass to be analyzed can either be identified manually by anages. Comparison of the three classifiers will reveal the
radiologist or automatically by a computerized detection proeffectiveness of interval change analysis for the classification
gram. In this study, the mass on each mammogram was idef malignant and benign masses.
tified by an MQSA certified radiologist. The masses on both
. A, Data set
the current and the prior mammograms were automatically
segmented using an active contour method that has been dis- A set of 140 temporal pairs of mammograms containing
cussed in detail elsewhefe?® Examples of the segmentation biopsy-proven masses on the current mammograms was used
are shown in Figs. 2 and 3 for a malignant and a benigrio examine the performance of this approach. The data set
mass, respectively. Features that characterized mammoensisted of 241 mammograms from 56 patients. The mam-
graphic masses including texture features, morphologicainograms were digitized with a LUMISCAN 85 laser scanner
features, and spiculation features were extracted from eadt a pixel resolution of 5amx50m and 4096 gray levels.
mass. Three of the morphological features are related to th€he digitizer was calibrated so that gray level values were
mass size. Additionally, difference features were obtained byinearly proportional to the optical densitypD) within the
subtracting a feature of the prior mass from the correspond-ange of 0—4 OD units, with a slope of 0.001 OD/pixel
ing feature of the current mass. The current, prior, and difvalue. The digitizer output was linearly converted so that a
ference features formed a multidimensional feature space fdarge pixel value corresponded to a low optical density. The
the classification task. Stepwise feature selection applied tonage matrix size was reduced by averaging evexy22ad-
linear discriminant analysi$LDA) was used to select the jacent pixels and downsampled by a factor of 2, resulting in
most useful features. The selected features were then usediagges with a pixel size of 100mx100um for further
the input predictor variables for the LDA classifigfig. 1).  analysis.
The classifier was trained and tested by a leave-one-case-out There were 57 biopsy-proven masg88 malignant and
resampling scheme. A case was considered to contain al4 benign)in the 56 cases. The 241 mammograms contained
regions of interest from a given patient. In each resamplinglifferent mammographic viewgCC, MLO, and lateral
step, the temporal pairs from 55 cases were used for featurdews) and multiple examinations of the masses including
selection and formulation of the linear discriminant function,the examination when the biopsy decision was made. By
while the temporal pairs from the left-out case were used fomatching masses of the same view from two different exami-
testing the trained classifier. A total of 56 training and testingnations, a total of 140 temporal pairs were formed, of which

Current Prior Difference

Input
Features Features Features P

v
Discriminant Score Output

Fic. 1. Block diagram of the classification method.
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Fic. 2. A malignant masga) the mass in a prior year mammogra997), ) )
(b) mass outline obtained by active contour segmentatorthe mass ina  FiG- 3. Abenign mass(a) the mass on a prior year mammograt95), (b)

current year mammograifi1998), (d) mass outline obtained by active con- Mass outline obtained by active contour segmentationthe mass on a
tour segmentation. current year mammograifi996), (d) mass outline obtained by active con-

tour segmentation.

85 were malignant and 55 benign. A malignant temporal paighe mammograms relative to those encountered in clinical

consisted of a biopsy-proven malignant mass or a mass thgfactice on a 10-point scale, with 1 representing the most
was initially not recommended for biopsy and later found t0,pious and 10 representing the most subtle masses. The
be malignant by biopsy in a future year. A similar definition ,;gjpjjity of the masses on the current mammogram is plotted
was used for the benign temporal pairs. Within a pair, th_eagainst those on the prior mammogram in Fig. 4 for the
current mammogram was defined as the mammogram W'tpnalignant and benign temporal pairs. Generally the malig-
the later date, and the prior mammogram was defined as the, ¢ masses were less visible on the prior than on the current
one with the earlier date. Therefore, in cases with three CONammograms while the visibility of the benign masses was
secutive exams, more than one temporal pair could bgyng to he more similar on the current and prior mammo-
formed and two of the mammograms could be called “Cur-q 3mg The mean difference in the visibility rating between
rent.” Among the 140 temporal pairs, we had 120 uniquée prior and the current mammograms for the malignant
current mammograms. Of the masses in the 120 curren}ssses is 2.8 compared to 1.2 for the benign magses
mammograms, 70 were malignant and 50 benign. =0.0007 with an unpaired t-test between the malignant and
Since all cases in this data set had undergone biopsy, tgnign masses). The correlation coefficient is 0.02 for malig-
benign masses in this set could not be distinguished easily_ masse$Fig. 4(a)]and 0.37 for benign massé5ig.
from the malignant ones based on current mammographig )1 |, addition, the radiologist also estimated the likeli-

criteria. Changes occurred for the benign masses thj,qq of malignancy of the current masses on a 10-point con-
prompted the radiologists to recommend biopsy. Examples Qfyence scalél—definitely benign and 10—definitely malig-
such cases are shown in Figs. 2 and 3. The malignant mass i) hased on the 120 current mammograms alone without
Fig. 2 did not increase in size but changed its density. Th%omparison with the priofFig. 5). The temporal pairs had a

benign massFig. 3), on the other hand, appeared to havejme interval of 636 monthéFig. 6). More than 70% of the
spicules. For the malignant masses in this data set, the avelairs had a time interval of 12 months.

age mass size, estimated by the radiologist as the longest

dimension of the mass on the mammogram, was 8.2 mm OB Feature extraction

the prior mammograms and 12.7 mm on the current mam-"

mograms. The corresponding sizes were 10.6 and 12.2 mm, A rectangular region of intere$ROI) was defined to in-

respectively, for the benign masses. As discussed in Sec. I'¢ude the radiologist-identified mass with an additional sur-

25 of the masses on the prior mammograms were too subti®unding breast tissue region of at least 40 pixels wide from

for the radiologist to estimate their sizes. The average sizeany point of the mass border. A fully automated method was

given previously were obtained after excluding all temporalthen used for segmentation of the mass from the breast tissue

pairs that involved these masses. background within the ROI. The masses on both the current
The radiologist also rated the visibility of the masses onand the prior mammograms were automatically segmented
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61 23 456 7 8 910 Fic. 5. The distribution of the malignancy ranking of the masses in the 120
Mass Visibility in Current Mammogram current mammograms. The rating was performed by an experienced MQSA
(@) radiologist(1: definitely benign, 10: definitely malignant
é 1 L L L L L 1 L L L —
S 10 1 bt b2 7
g g b1 b1 4 i oriented Sobel filters and computing the absolute gradient
£ 7 values of the filtered imag&Five texture measures, namely,
@ 81 b1 b2 Yo Y - . ;
= s short run emphasi$SRE), long run emphasid.RE), gray
7 1 b1 b5 b - ; ; : ;
5 / level nonuniformity (GLN), run length nonuniformity
E 6 1 b1 8 b1 - (RLN), and run percentagéRP) were extracted from the
c 5 b1 b1 i3 b1 bl - vertical and horizontal gradient images in two directiofis,
> 4 4 K =0°, and #=90°. Therefore, a total of 20 RLS features
= were calculated for each ROI. The definition of the RLS
a 3 / b2 B . . .
® % feature measures can be found in the Appendix and in the
S 27 b I literature?”
a 11 Benign Morphological features were extracted from the automati-
§ 0 — T cally segmented mass shape. Five of the morphological fea-
01 2 3 456 7 8 9 10 tures were based on the normalized radial leyfRL), de-
Mass Visibility in Current Mammogram fined as the Euclidean distance from the object’s centroid to
®) each of its edge pixels, i.e., the radial length, and normalized

Fic. 4. Visibility of the masses on the current mammogram plotted against€lative to the maximum radial length for the objétiThe
those on the prior mammogram fé) malignant andb) benign temporal ~ following five NRL features were extracted: mean
pairs. The visibility was rated on a 10-point discrete s¢ake most obvious, (NRLAVG) standard deviation(NRLSD) entropy (NR-

10=most subtle). Because many of the data points overlap, we indicate th . .
number of points with the same rating by a number next to the syfnibok EENT)’ area ratiodNRLAREAR), zero Ccrossing couniNR-

b). The diagonal line on the graph represents the cases when the current abd CC). In addition, the perimete(PERIM), area(AREA),
the prior mass sizes are identical. The dashed lines are the linear regressigircularity (CIRC), rectangularitf SQR), contrasCONT),

lines for the data defined by=0.038x+7.86 for (a) and by y=0.857x perimeter-to-area rati®CRR), and Fourier descriptleF)
+1.742 for(b). The correlation coefficient for malignant masses is 0.02 and

for benign masses is 0.37.

0 70
within the ROI using a two-dimensional active contour & 60 _ “B"::%T"t
method that was initialized by K-mean clusterfig® T .
The texture features used in this study were calculated S
from run-length statisticéRLS) matrices’’ The RLS matri- £ 407
ces were computed from the images obtained by the rubber e 30
band straightening transforfRBST)® The RBST maps a S
band of pixels surrounding the mass onto the Cartesian plane 5 207
(a rectangular region). In the transformed image, the mass 'E 10 1
border appears approximately as a horizontal edge, and 2 .

spiculations appear approximately as vertical lines. A com-
plete description of the RBST can be found in the literafure.
RLS texture features were extracted from the vertical and

hori_zonFaI gradient ma}gnitUde ?mage% which were O_btaine(l'*le. 6. Temporal interval between the current and the prior mammograms
by filtering the RBST image with horizontally or vertically for the 140 temporal pairs in our data set.

0 6 12 18 24 30 36 42 48
Temporal difference (month)
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features were extracted. The definitions of the morphologicalste I. Classification results for the classifier based on the temporal

features can be found in the Iiterat&FéSThree of the mor- change information, the classifier based on current single image information,
. . : . and the classifier based on prior single image information.

phological featuregperimeter, area, and perimeter-to-area

ratio) are related to the mass size and thus are feature de- Avg. No. of Test partial
scriptors of the mass size. Classification  selected features Training,  TestA, AL9

A spiculation measure was d_ef|_ned for ea_ch pixel on Fheremporal pairs 10 0.92 088003 03740.10
rrllass.border _by using the stat|§t|cs_ of the image gradientyrrent images 11 0.90 0.82-0.04 0.3240.08
direction relative to the normal direction to the mass borderprrior images 4 0.78 0.76:0.04 0.2430.08

The statistics was determined in a 90° sector centered abott
the normal at the border pixel and outside of the mass
border>2® The spiculation measure for each border pixel
was normalized to be between 0 am2, with a value ofr/4
indicating a random orientation of image gradients, an
larger values indicating a higher likelihood of spiculation.
Three features were extracted from the spiculation measur&” S
The first feature(AVG) was the average of the spiculation The feature sglecnon in this stqu was performed by ap-
measure for all pixels on the mass boundary. The seconaIylng the sltep\./wse feature sele_ct|on_ to the entire featu_re
feature (PERC_ABV) was the percentage of border pixels Space(combination of texture, spiculation, and morphologl-
with a spiculation measure larger thati4, and the third cal features altogetheas well as subspaces obtained by dif-

feature(AVE _ABV) was the average of the spiculation rnea_fer'ent cpmblnatlons of the'three feature subspacgs: texture,
sure for those pixels with a spiculation measure larger thar§plculat|on, and morphological features. The stepwise feature
4 selection uses a sequential forward inclusion and backward

A total of 35 featureg20 RLS, 12 morphological, and 3 elimination approach. The procedure does not exhaustively
spiculation)were therefore extra’cted from each Rél Addi- evaluate all possible combinations of individual features. It is

tionally, difference features were obtained by subtracting herefore not optimal, especially when the feature space is

prior feature from the corresponding current feature. There:'9¢ and the training sample is small. By limiting the input

fore, 35 difference features were derived from the 20 RLSF0 the fe;ttjr(?[hsubstpac?s, tthe d|menS|\5>vnaIf|ty v(\j/ats;] rtettj)ui:ted
12 morphological, and 3 spiculation features. compared to the entire feature space. Yve foun at better
feature subsets could be selected by the stepwise feature se-

lection in the subspaces than in the entire feature space.

a way that a minimum number of features were selected to
Oachieve a high accuracy of classification by LDA. More de-

tails about the stepwise linear discriminant analysis and its
plication to CAD can be found elsewhére.

C. Feature selection

In order to reduce the number of the features and to obtaif?- Evaluation methods

the best feature subset to design an effective classifier, fea- Tg evaluate the classifier performance, the training and
ture selection with stepwise linear discriminant anafsis test discriminant scores were analyzed using receiver operat-
was applied. At each step of the stepwise selection procedufgg characteristidROC) methodology® The discriminant
one feature is entered or removed from the feature pool b¥cores of the malignant and benign masses were used as
analyzing its effect on the selection criterion. In this study,decision variables in theaBroc1 program®* which fits a
the Wilks' lambda(the ratio of within-group sum of squares pinormal ROC curve based on maximum likelihood estima-
to the total sum of ;quar‘& was used as a selection crite- tion, The classification accuracy was evaluated as the area
rion. The optimization procedure used a threshBlgl for  ynder the ROC curved,. The performances of the classifi-
feature entry, a threshol&,, for feature removal, and a ers were also assessed by estimating the partial area index
the other features. In a feature entry step, the features not yg{a lies under the ROC curve but above a sensitivity thresh-
selected are entered into the selected feature pool one atggy of 0.9 (TPK=0.9) normalized to the total area above
time, the significance of the change in the Wilks’ IambdanFO (1-TPR). The partial A®? indicates the perfor-

i . Z

caused by this feature is estimated based aiatistics. The  pance of the classifier in the high sensitivitgw false nega-
feature with the highest significance is entered into the feaﬁve) region which is most important for a cancer detection
ture pool if its significance is higher thad, and its corre- 55k

lation value with the rest of the features in the pool is below
T. In a feature removal step, the features that have alread
been entered in the selected feature pool are removed onelﬁt RESULTS

a time and the significance of the change in the Wilks’ The performances of the classifiers based on the temporal
lambda is estimated. The feature with the least significance igairs, the current images, and the prior images are summa-
removed from the selected feature pool if the significance isized in Table I. The classifiers that achieved the highest test
less tharF ;. Since the appropriate valuesef,, F,;and A, values with a small average number of features were pre-
T are not knowre priori, we examined a range &f%,, Fou, sented here. Table Il is a summary of the features selected for
and T values using an automated simplex optimizationeach classifier. For the 56 training subsets of temporal pairs
method®:*? The appropriate thresholds were chosen in suchused in this study, an average of 10 features were selected for
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TaBLE Il. Selected features for classifiers based on temporal pairs, current images, and prior images. The letter
“H” or “V” at the beginning of the texture feature labels indicates that the features were extracted from the
horizontal or vertical gradient magnitude images, respectively. The nuf@tmr 90 at the end of the texture
feature labels shows the direction at which the features were extracted.

Temporal pairs Current Prior
images images
Feature type Group Features Curr Pr Diff Curr Pr
Texture SRE H SRE 0 X
H_SRE 90 X X
V_SRE 0O X X X X
V_SRE 90 X
LRE V_LRE_O X X
H_LRE_ O x
RLN V_RLN_O X X
RP H_RP_O X X
Spiculation PERC ABV X X
AVG X
AVG_ABV X
Morphological CRR X
NRLZCC X
PERIM X
NRLAVG X
SQR X
CONT X

the classification task. The most frequently selected featurdy. DISCUSSION
included 4 difference RLS featur€d8 SRE and 1 LRE), 4
RLS feature2 SRE, 1 RLN and 1 RP), 1 spiculation feature
from the current image, and 1 spiculation feature from th
prior image(Table II). The LDA classifier achieved an aver-
age trainingA, of 0.92 and a tesh, of 0.88. The test partial
AL was 0.37.

Texture and spiculation features were important for ma-
lignant and benign classification of mammographic masses
Sor all three types of classifiers: the classifier based on tem-
poral pair information, the classifier based on current image
information, and the classifier based on prior image informa-

For classificati ¢ mali t and beni ._tion. One or more of the spiculation features were always
or classification of malignant and benign masses USINgq|acteq in all training partitions for all three classifiers. The

thg cur;ﬁntl_sglglel Imgge{ﬁwe lcurregt images of th? ieln;potral most frequently selected texture features were the short run
pairs), the classifier selected an average o ea ure@mphasis{SRE)features. They comprised more than 50% of

for the 56 training subsets. The most frequently selected feqh -
e texture features selected for the three classifieable
tures were 4 RLS feature® SRE, 1 LRE and 1 RLN), 1 In) t

spiculation feature, and 6 morphological featu(€able II).
The classifier achieved an average trainfygof 0.90, a test
A, of 0.82, and a test parti#{>* of 0.32.

For the classification of masses based on the prior single
images alone, an average of 4 features were selected for the
56 training subsets. The most frequently selected features
were 3 RLS feature€l SRE, 1 LRE, and 1 RRand 1 spicu-
lation feature. The LDA classifier achieved an average train-
ing A, of 0.78, testA, of 0.76, and test partiagh{® of 0.24.

The test ROC curves for the three classifiers are compared
in Fig. 7. The difference in the test, between the classifier
based on the temporal pairs and that based on the current
images alone is statistically significari=€0.015). The dif-
ference in the tesh, between the classifier based on the
temporal pairs and that based on the prior images alone is
also statistically significantp=0.001). The partial area in- 00 02 04 0
dex for the classifier based on the temporal pairs is also L. .
improved compared to the classifiers based on the current or False Positive Fraction

the .prior images a.Ion'e., although the differences did Nokg, 7. The test ROC curves for the classifiers based on temporal pair
achieve statistical S|gn|f|cance. information, current image information, and prior image information.

The temporal-information-based classifier showed im-
proved performance compared to the classifiers based on cur-
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rent or prior image information alone. The input featureinformation has am, value of 0.82:0.04, similar to the
space to the temporal-information-based classifiers includedccuracy of the radiologist for this data set.
the current, prior, and difference features. This allows the In this study, the locations of the masses were identified
classifier to choose the individual features or the differencenanually on both the current and the prior mammograms by
features. Using the stepwise feature selection procedure ardradiologist. This simulated the situation when a radiologist
the linear discriminant classifier, it was found that the texturefinds a mass either in a diagnostic or a screening setting and
and the spiculation features contained useful temporal inforeall upon the CAD algorithm to seek a second opinion on the
mation to perform malignant and benign mass classificationlikelihood of malignancy of the mass based on the interval
Texture features appeared to provide the best information bghange information. We are developing an automated re-
the difference features obtained from subtracting the priogional registration technique that can automatically locate
from the corresponding current featu@RE and LRE dif- the mass on the prior mammogram based on its location on
ference features). On the other hand, the best use of thbe current mammogram. The location of the mass on the
spiculation features appeared to be a direct combination agfurrent mammogram can be identified by a radiologist or by
current and prior features in the input feature vector by thean automated mass detection algorithm. In the latter case, the
LDA since the individual features were chosen. process of mass detection, current and prior mass registra-

We found that better feature subsets could be selected Bjon, and classification can be fully automated. The analysis
the stepwise feature selection in the subspaces than in tigd interval change can be incorporated as one of the func-
entire feature space. For example, for the temporaltions provided by a CAD system for interpretation of mam-
information-based classifier, a better feature subset with aograms.
higher testA, at 0.88 was found when the input feature space In this study, we employed a simple measure of temporal
included only the texture and spiculation subspaces. The ag¢hange by taking the difference between the feature from the
dition of the morphological feature subspace to the inputcurrent mass and the corresponding feature from the prior
feature space reduced the highest #8sto 0.84. Similarly, mass. We observed improvement in classification with this
in the case of the classifier based on prior image informationsimple temporal information. It will be important to evaluate
a better feature subset was obtained when the texture aradher similarity measures that can characterize small differ-
spiculation feature subspaces were used in the input featugnce in image features of the object of interest. It can be
space for stepwise feature selection. Again the addition ogxpected that a more sensitive similarity measure will pro-
the morphological feature subspace to the input feature spastde a better measurement of dissimilarity, or difference, be-
reduced the highest test, to 0.72. The classifier based on tween the current and prior masses and further improve the
current image information was the only one, among theutilization of the temporal change information on mammo-
three, that obtained a better result, as shown in Table |, whegrams.
the morphological feature subspace was included in the input
feature space.

One reason for the poor performance of the morphologi-
cal features may be due to the fact that the masses were moye CONCLUSION
subtle in the prior images. In fact, the experienced MQSA
mammographer was not confident in seeing 25 of the We performed a preliminary study to evaluate the effec-
“masses” on the prior images and could not provide a masgiveness of interval change analysis for classification of ma-
size estimation for them. Although the active contour modelignant and benign masses on mammograms. It was found
would stop the iteration based on the preset criteria anthat the difference RLS texture features and spiculation fea-
found an “outline” of the masses on the prior mammograms,tures were useful for identification of malignancy in tempo-
generally these mass outlines were less reliable than those ¢al pairs of mammograms. The information on the prior im-
the current masses in providing morphological characterisage was important for characterization of the masses; 5 out
tics of the masses. Texture features did not depend agf the 10 selected features contained prior information. We
strongly on the precise mass boundary as morphological fedound that the mass size descriptors were not discriminatory
tures. Three out of the four features selected for classificatiofeatures for these difficult cases because many of the benign
of the malignant and benign masses on the prior images wergasses also grew over time. In comparison with the classi-
RLS texture features. A spiculation feature was also found tdication based on image information from the current images
be a good discriminator. alone, the temporal change information significantly (

We also performed ROC analysis of the malignancy con—=0.015) improved the accuracy for classification of the
fidence ratings provided by the experienced MQSA radiolo-masses in terms of the total area under the ROC cukyk (
gist for the current image data s@20 images). The distri- The partial area under the ROC curve for the classifier based
bution of the malignancy ratings is shown in Fig. 5, whichon the temporal pairsA{>?=0.37) is also improved com-
resulted in am, value of 0.8020.04. This indicates that the pared to the classifier based only on the current images
masses in the current mammograms cannot be easily disti|QA§°'9)=0.32), although the difference did not achieve statis-
guished as malignant or benign even by an experienced raical significance. Further studies are under way to improve
diologist, consistent with the fact that all lesions had indeedhis temporal change classification technique and to evaluate
undergone biopsy. The classifier based on the current images performance on a larger data set.
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