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We study an admission control model in revenue management with non-stationary and correlated demands

over a finite discrete time horizon. The arrival probabilities are updated by current available information, i.e.,

past customer arrivals and some other exogenous information. We develop a regret-based framework, which

measures the difference in revenue between a clairvoyant optimal policy that has access to all realizations of

randomness a priori and a given feasible policy which does not have access to this future information. This

regret minimization framework better spells out the trade-offs of each accept/reject decision. We proceed

using the lens of approximation algorithms to devise a conceptually simple regret-parity policy. We show

the proposed policy achieves 2-approximation of the optimal policy in terms of total regret for a two-class

problem, and then extend our results to a multi-class problem with a fairness constraint. Our goal in this

paper is to make progress towards understanding the marriage between stochastic regret minimization and

approximation algorithms in the realm of revenue management and dynamic resource allocation.
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1. Introduction

We propose and analyze a simple admission control policy for a class of revenue management

problems under non-stationary customer arrivals. There is a given positive and non-replenishable

inventory M of some product to be sold to arriving customers of two different classes in a finite

time horizon T . Class-1 customers are willing to pay r1 per unit of product which is more than

what class-2 customers are willing to pay (i.e., r1 ≥ r2 ≥ 0). The demand for each class is modeled

as a non-homogeneous Poisson process whose (instantaneous) arrival rates are time-varying and

correlated and whose distributions can be updated by current available information, i.e., past
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customer arrivals and some other exogenous information. This is the main new feature of this paper,

which captures realistic phenomena such as demand seasonality and forecast updating mechanisms.

Unsatisfied demand units are lost with no penalty cost. The firm can decide whether to accept or

reject an arriving customer, so as to maximize the expected revenue over the planning horizon.

The model is motivated by a wide range of applications, such as vacation timeshare management,

online retailing, and workforce management. For example, Hilton Grand Vacations Club offers

timeshares at different prices and levels of membership. A platinum customer will have a higher

priority than a non-platinum (or regular) customer when it comes to selecting a particular home

resort (e.g., reserving a room in Elara on the Las Vegas strip). The arrival process of customers

clearly depends on the tourism seasons (e.g., more platinum customers will select Elara Las Vegas

during the Christmas season) as well as the total number of members of Hilton Grand Vacations

Club. Another example is in online retailing. Anthropologie clothing online offers discount coupons

to customers. The regular customers (without coupons), who are willing to pay the tagged prices,

are always accepted. On the other hand, the discounted customers (with coupons) could be rejected

since these coupon code offers are subject to discretion and availability. The demand process is

also non-stationary and evolving, according to the season and the product’s popularity.

It is worthwhile noting that our model encompasses many important non-stationary demand

processes studied in the literature, including Markov modulated demand processes (described in §6),

time series models [43], the martingale model of forecast evolution [23, 28] and models with advance

demand information [18]. However, finding the optimal admission control policies using brute-force

dynamic programming is computationally intractable, since the state space of the corresponding

dynamic programs is usually large (which is extensively discussed in §2.1). Hence, our main focus of

this paper is to prescribe an effective and provably-good heuristic policy for this class of problems.

1.1. Main Results and Contributions

The main results and contributions of this paper are summarized as follows.

First, we study the aforementioned class of admission control based revenue management prob-

lems using a regret minimization framework. The regret of a feasible policy is defined as the

difference in revenue between a clairvoyant optimal policy (that has access to all realizations of

randomness a priori at the beginning of the time horizon) and the feasible policy (which does

not have access to this future information). We propose a conceptually simple admission control

policy, called the regret-parity policy π̃, that perfectly balances the regret of an acceptance decision

against that of a rejection decision. We show that the regret ratio of π̃ (defined as the ratio of

the regret of π̃ to the regret of an optimal policy) is always bounded above by 2 in a two-class
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setting (Theorem 1). We then extend our model and results to a multi-class setting under a fairness

constraint (Theorem 2).

This regret-based performance measure is different from the conventional revenue-based perfor-

mance measure (defined as the ratio of the revenue of a feasible policy to that of an optimal policy).

In many applications such as online retailing with low price discrimination (e.g., Anthropologie

clothing online), the after-tax profit margin is very thin (around 5%) and even a small improve-

ment is significant. In such cases, the revenue difference between two feasible policies would be

small, and the regret ratio could arguably better gauge the effectiveness of a given feasible policy

by quantifying its operational mistakes, thereby improving the firm’s overall decision making and

profitability. We discuss their connections between these two performance measures in §3.3.

Second, our numerical results demonstrate the efficacy of the proposed regret-parity policy π̃

under a large set of demand and parameter instances. The empirical performance of π̃ is usually

much better than 2. More specifically, Tables 1–3 show that π̃ performs consistently well in term of

expected revenue and regret, compared to an optimal policy. Compared to the robust benchmark

algorithms proposed in Ball and Queyranne [1], we gain around 16% more expected revenue, which

is quite significant. It is worth noting that the proposed policy can be efficiently implemented in an

online manner, i.e., the decision at any time is computed based only on the current observed state

of the system and does not depend on future decisions. This is in contrast to solving an optimal

policy exactly using a brute-force dynamic programming approach, which suffers from the curse of

dimensionality.

Finally, we note that the regret-parity policy belongs to the family of cost-balancing policies

that are predominantly used in stochastic inventory control problems (cf. Levi et al. [37, 39, 36]).

The main idea underlying this approach is to isolate and quantify the marginal impact of each

operational decision (from the moment it is made until the end of the planning horizon). When

we consider the problem of interest from the view of revenue maximization, it is straightforward

to count the immediate revenue resulted from each acceptance/rejection decision, but it is difficult

(or perhaps impossible) to measure how each acceptance/rejection decision impacts the overall

(future) revenue. As a result, the conventional methods developed in their papers cannot be directly

applied in the revenue management setting. In contrast, under the regret minimization framework,

we are able to readily quantify the marginal impact of each acceptance/rejection decision in terms

of regret (relative to a full-information benchmark). This enables us to design an efficient and

effective cost-balancing algorithm, and compare the costs of two different policies. Our worst-case

analysis involves dealing with this regret-based (mistake-based) objective as well as a randomized

decision rule, which advances the current methodology in cost-balancing algorithms.
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We believe that the ideas and techniques developed in this paper could be applied to other classes

of revenue management or resource allocation problems. The notion of approximation ratios (or

worst-case performance guarantees) has also been gaining acceptance in the revenue management

literature (see, e.g., Chen and Farias [10], Dragos and Farias [15], Chan and Farias [8]). For instance,

Chen and Farias [10] gives a class of re-optimized fixed price (RFP) policies that yields at least

0.342 of the optimal policy for a classical single-product dynamic pricing problem but allowing the

scale of demand intensity to be modulated by an exogenous market size stochastic process.

1.2. Relevant Literature

Our work is closely related to the following streams of literature.

Revenue management. Most revenue management models assume that the demand process

is a time-homogeneous, mainly for its mathematical tractability (see, e.g., [19, 27, 6, 54, 14, 5, 51]).

Revenue management models with non-stationary demand environments are much less common in

the literature. Gallego and van Ryzin [20] studied dynamic pricing problems in a changing demand

environment where the temporal evolution of the demand model is known. They established asymp-

totic optimality for their policies by solving a deterministic counterpart problem. Netessine [44]

analyzed the pricing problem with a limited number of price changes in a dynamic environment

in which demand depends on the current price and time. Zhao and Zheng [57] considered a con-

tinuous time dynamic pricing problem with non-homogeneous Poisson processes, and showed that

the optimal price decreases with inventory. They also identified a sufficient condition under which

the optimal price decreases over time for a given inventory level. Cao et al. [7] considered a similar

problem with non-homogeneous Poisson customer arrival processes, and obtained the structural

properties of optimal policies by a Hamilton-Jacobi-Bellman (HJB) equation.

It shall be noted that our worst-case regret ratio has a similar philosophical underpinning to the

rapidly growing area of robust optimization. Since the future demand information is often uncertain

and evolving, the firm only has limited (present) information to make good decisions. Robust opti-

mization has been widely adopted under limited and sparse information to protect the firm from

the worst-case scenarios (see, e.g., Ben-Tal and Nemirovski [2] and Bertsimas and Sim [3]). In the

revenue management literature, Perakis and Roels [46] developed robust formulations for capacity

allocation in network revenue management. Birbil et al. [4] devised an efficient algorithm based

on robust optimization to compute the maximum booking limits in a single-leg airline revenue

management problem. Lan et al. [35] focused on the relative regret in overbooking and fare-class

allocation for a multi-fare, single-resource problem in revenue management. Rusmevichientong and
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Topaloglu [49] studied robust formulations of assortment optimization problems under the multi-

nomial logit choice model. Geng et al. [21] studied a two-customer sequential resource allocation

problem with a max-min fill-rate objective, and characterized the structure of optimal solutions

with a bounded discrete distribution. Closer to our work, Ball and Queyranne [1] carried out a

thorough competitive analysis of nested booking limits in an online adversarial setting. The main

point of departure from their work is that we consider a regret-based (mistake-based) objective,

and therefore the main results obtained are incomparable.

Stochastic knapsack and dynamic resource allocation. Another relevant line of research

to this work is the class of dynamic and stochastic knapsack problems. Papastavrou et al. [45]

and Kleywegt and Papastavrou [32, 33] considered variants of dynamic and stochastic knapsack

problems where items (with random size and rewards) arrive according to a time-homogeneous

Poisson process, and an accept/reject decision needs to be made upon each item’s arrival so as to

maximize the expected profit (rewards minus costs) accumulated. They showed that a threshold-

type policy is optimal and also derived a number of monotonicity and convexity properties. Lueker

[41] gave an O(logn)-competitive algorithm for the 0/1 online knapsack problem, where n is the

number of arriving items. Dean et al. [13] also considered a stochastic 0/1 knapsack problem with

deterministic arrivals and item values but random item sizes. They bounded its adaptivity gap

by developing a polynomial-time algorithm that computes a non-adaptive policy whose expected

value approximates that of an optimal adaptive policy within a factor of 4. These models are very

similar to ours; however, our work considers a non-stationary, correlated and evolving demand

process, which requires new analytical methods to be analyzed.

Our work is related to the domain of online reservation or selection problems. Elmachtoub and

Levi [17, 16] considered online versions of supply chain management and logistics models where

customers arrive sequentially, and one has to decide whether to accept or reject the customer upon

her arrival. They developed several algorithms with small constant competitive ratios, i.e., for any

sequence of arriving customers, the cost incurred by the online algorithm is within a fixed constant

factor of the cost incurred by the respective optimal solution that has full knowledge upfront on

the sequence of arriving customers. Van Hentenryck et al. [53] proposed constant approximation

algorithms for online reservation or online multi-knapsack problems with or without overbooking.

We also refer interested readers to Coffman Jr. et al. [12] for an excellent survey on online bin

packing problems. Our regret-parity framework shares some similarities with the competitive per-

formance measures used there, in that the common benchmark involves the full-information (or

offline) solution.
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Another relevant domain is dynamic resource allocation in controlled queueing and commu-

nication networks (see Kelly [30] for an overview). Most papers on dynamic resource allocation

problems also assume time-homogeneous Poisson arrival processes (see, e.g., [31], [22], [29]). Closer

to our work, Levi and Radovanović [38] used a simple knapsack-type linear program (LP) to decide

whether to accept or reject incoming customer requests. They showed that their proposed policy

is guaranteed to achieve at least half of the optimal long-run revenue. However, the counterpart

models with non-stationary arrivals are invariably much harder to study (e.g., [48] and [26]). Yoon

and Lewis [55] proposed a pointwise stationary approximation (PSA) to approximate the opti-

mal policies in a multi-class queueing system with non-homogeneous Poisson arrival processes and

periodically varying parameters. Green and Kolesar [24] and Massey and Whitt [42] considered

peak hour congestion in a multi-server queuing system under non-homogeneous Poisson arrival

processes. Kumar et al. [34] devised dynamic control policies for a single-server queue with Markov

modulated arrivals. A key difference between this line of research and our work is that the resource

units in our model are non-reusable, i.e., once sold, they cannot be used to satisfy other customers.

Other related work. Our work is also closely related to the development of approximation

algorithms that admit constant worst-case performance guarantees (see, e.g., Levi et al. [37, 39,

36], Levi and Shi [40], Shi et al. [50], Chao et al. [9]) predominantly in various stochastic inventory

control settings). As mentioned earlier, the conventional techniques and methods developed in

their papers cannot be directly applied to the revenue management setting; in order to establish a

worst-case performance guarantee of 2, one needs to combine them with the regret minimization

framework.

1.3. Organization

The rest of this paper is organized as follows. In §2, we first describe the discrete time model

formulation for a two-class revenue management problem under non-stationary customer demands.

We then present a dynamic programming formulation in §2.1 and a stochastic regret minimization

formulation in §2.2. In §3, we propose a different regret accounting scheme based on decisions.

Then we devise and analyze the regret-parity policy in §4. We extend our model and results to

the multi-class setting under a fairness constraint in §5, and conduct numerical experiments of our

proposed policy in §6. We then point out some plausible future research avenues in §7.

2. Two-Class Problem Formulation

We present the mathematical model for a two-class problem under non-stationary and correlated

customer demands. As a general convention, we often distinguish between a random variable and

its realization using capital letters and lower case letters, respectively.
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Consider a firm selling a fixed number of M perishable homogeneous items to two classes of

customers, indexed by i = 1,2, over a finite planning horizon T periods numbered t = 1, . . . , T .

Inventory is not replenishable. Unsatisfied demand is lost with no penalty cost, and any unsold

items at the end of period T have no residual value or disposal penalty. Each class-i customer pays

ri dollars (r1 ≥ r2 ≥ 0) for a single item. Class-1 customers are always served whenever inventory

units are available; however, the firm needs to decide whether to accept or reject an arriving

class-2 customer, depending on information available, such as current inventory level, the number

of periods remaining, and conditional future demand distributions. The objective is to develop

a provably-good admission control policy (for accepting class-2 customers) that maximizes the

expected total revenue over the planning horizon.

We describe the demand process of our model. In each time period t = 1, . . . , T , there is at

most one arriving customer who wishes to request a single item. The probabilities of having no

customer request, a class-1 customer request, and a class-2 customer request are denoted by p0t ,

p1t , and p2t = 1− p0t − p1t , respectively. As part of the model, we assume that at the beginning of

each period t= 1, . . . , T , the firm is endowed with an observed information set ft, which contains

all the realized demand information that is available at the beginning of time period t. More

specifically, the information set ft consists of the realized customer requests over the set of periods

[1, t], and possibly some external information such as the state of the economy and the weather.

The information set ft is a specific realization from the set of all possible realizations, denoted by

Ft. The future arrival probabilities over the set of periods (t, T ] are updated by the information

set ft, i.e., p0s = p0s(ft) , p1s = p1s(ft) and p2s = p2s(ft) for all s ∈ (t, T ]. With these updated arrival

probabilities, the firm knows the conditional joint distribution of future customer requests, denoted

by It = It(ft). Our model allows for non-stationarity and correlation among the demands in different

periods. We note again that by allowing for correlation we let It be dependent on the realization of

the customer requests over the set of periods [1, t] and possibly on some external information, i.e.,

It is a function of ft. However, the information set ft as well as the conditional joint distribution

It are assumed to be independent of the specific admission control policy being considered. In

other words, the admission control policy does not have any effect on the evolution of the future

demands.

Next, we describe the system dynamics. At the beginning of each period t= 1, . . . , T , the firm

observes the customer request (if any) and its class, and then makes a decision whether to accept

or reject the incoming customer request. We let αt ∈ {0,1} be a binary decision variable, where 0

denotes a rejection and 1 denotes an acceptance. We always accept class-1 customers (i.e., αt = 1)

as long as the inventory is non-empty, since r1 ≥ r2 ≥ 0. The firm needs to decide αt whenever a
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class-2 customer arrives in period t. Let Xt and Yt be the inventory levels in period t before and

after a decision in period t is made, respectively. We have that the initial inventory X1 =M , and

Xt+1 = Yt =Xt−αt for all t= 1, . . . , T . We only restrict our attentions to state-dependent policies

which are non-anticipatory, i.e., in each period t, the information that a feasible admission control

policy π can use consists of the information set ft, and past decisions and inventory levels up to

period t.

2.1. Dynamic Programming Formulation

Our two-class model can be formulated using dynamic programming below. We denote Vt(xt, ft)

as the optimal expected revenue over the set of periods [t, T ], with the starting inventory level xt

and the information set ft. Since optimal policies will always accept class-1 customers as long as

there is positive inventory, the Bellman’s equation is given by

Vt(xt, ft) = E
[(
p0t ·Vt+1(xt,Ft+1) + p1t · (r1 +Vt+1(xt− 1,Ft+1)) (1)

+p2t ·max{r2 +Vt+1(xt− 1,Ft+1), Vt+1(xt,Ft+1)}
) ∣∣∣ ft],

with boundary conditions VT+1(·) = 0 and Vt(0, ft) = 0, t= 1, . . . , T . It can be seen that the state

space grows exponentially fast when the arrival rates are correlated over time. As a result, com-

puting exact optimal policies using dynamic programming is intractable, due to the well-known

curse of dimensionality [47]. This motivates us to devise a conceptually simple and provably-good

approximation algorithm to solve this class of problems.

2.2. Sample Path Regret and its Explicit Expression

We define the random variable W (π;ft) as the total revenue of any feasible policy π given infor-

mation set ft. Then the full-information revenue W (π;fT ) represents the total revenue of π given

a fully realized sample path fT , which is a deterministic value. To properly define our regret, we

carefully distinguish between two different notions of optimality.

(a) Let the clairvoyant optimal policy along a given sample path fT be

π∗ = π∗(fT ) = arg max
π

W (π;fT ).

Note that π∗ knows the full-information fT a priori at the beginning of period 1. Given a

specific realization fT , one can write down π∗ instantly without any optimization procedures.
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(b) Let the optimal policy for our original stochastic control problem be

πo = arg max
π

E [W (π;f1)] ,

where the expectation is taken over all possible realizations fT . Note that πo only knows ft at

the beginning of period t= 1, . . . , T , respectively, and πo is in fact the optimal control of the

dynamic programming (1) that attains an expected optimal revenue V1(x1, f1).

With the above notion, the sample path regret of a given feasible policy π is defined as

R (π;fT ),W (π∗;fT )−W (π;fT ) , (2)

which is the difference in revenue between the clairvoyant optimal policy π∗ (which has access to

the entire realization fT a priori at the beginning of period 1) and the feasible policy π (which

only knows f1 at the beginning of period 1). The expected regret via (2) is defined as

E [R(π)] =E [R (π;FT )] , (3)

where the expectation is taken over all possible realizations fT ∈ FT .

Now we find a more explicit expression of the sample path regret defined in (2). Given any

feasible policy π and any sample path fT , we let C1
π = C1

π (fT ) and C2
π = C2

π (fT ) be the numbers

of class-1 and class-2 customers accepted by π, respectively.

Proposition 1. The sample path regret R (π;fT ) defined in (2) can be re-written as

R (π;fT ) = (r1− r2)(C2
π −C2

π∗)
+ + r2(C

2
π∗ −C2

π)+. (4)

We relegate the detailed proof of Proposition 1 to the Appendix. There is an intuitive explanation

of (4). If the number of class-2 customers accepted by π is greater than that accepted by π∗ (i.e.,

C2
π ≥ C2

π∗), then π “wrongly” accepts C2
π −C2

π∗ class-2 customers rather than class-1 customers,

and the regret is the cost difference r1− r2 for each such wrong admission. On the other hand, if

the number of class-2 customers accepted by π is less than that accepted by π∗ (i.e., C2
π∗ ≥ C2

π),

then π loses sales of C2
π∗ −C2

π class-2 customers and the regret is r2 for each such lost-sale.

3. Regret-Based Reformulation

There is a clear trade-off between accepting and rejecting an arriving class-2 customer. That is, if

we accept the class-2 customer, we gain a revenue rate of r2; however, we may potentially lose a
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sale of a class-1 customer when the inventory is used up. On the other hand, if we reject the class-2

customer, we may eventually lose a sale of r2 if the inventory remains positive at the end of the

planning horizon. Each acceptance or rejection comes with a regret (loss). Our approach attempts

to exploit the trade-off of each decision. We introduce additional notation. Let the random variable

Ai(t,T ] (i= 1,2) denote the number of class-i customers that will arrive over the set of periods (t, T ].

Similarly, let A1,2
(t,T ] denote the total number of customers that will arrive over the set of periods

(t, T ].

3.1. Regret of Acceptance

Given any feasible policy π, let RAπt (απt ) be the regret of acceptance decision απt made in period t

under π when the arriving customer in period t belongs to class-2, which is given by

RAπt (απt ) =RAt(α
π
t ;Xπ

t ) = (r1− r2) ·1
(
A1

(t,T ] ≥Xπ
t > 0 and απt = 1

)
= (r1− r2)

[(
A1

(t,T ]−Xπ
t +απt

)+− (A1
[t,T ]−Xπ

t

)+]
= (r1− r2)

[(
A1

(t,T ]−Y π
t

)+− (A1
[t,T ]−Xπ

t

)+]
. (5)

This is because that if a class-2 customer arrives in period t, by accepting her, the firm incurs a

regret of r1− r2 only when the event
{
A1

(t,T ] ≥Xπ
t > 0

}
occurs, since the firm could have sold this

item to a class-1 customer. Note that the last equality of (5) also remains valid for the other two

cases. If no customer arrives in period t, we incur zero regret. If a class-1 customer arrives in period

t, by accepting her as long as the inventory is positive, the firm incurs zero regret, i.e., RAπt (1) = 0

since A1
(t,T ] + 1 =A1

[t,T ] and Y π
t + 1 =Xπ

t .

3.2. Regret of Rejection

Given any feasible policy π, let RRπ
t (απt ) be the regret of rejection decision απt made in period t

under π when the arriving customer in period t belongs to class-2, which is given by

RRπ
t (απt ) =RRt(α

π
t ;Xπ

t ) = r2 ·1
(
A1,2

(t,T ] <X
π
t and Xπ

t > 0 and απt = 0
)

(6)

= r2

[(
Xπ
t −A

1,2
(t,T ]−α

π
t

)+

−
(
Xπ
t −A

1,2
[t,T ]

)+
]

= r2

[(
Y π
t −A

1,2
(t,T ]

)+

−
(
Xπ
t −A

1,2
[t,T ]

)+
]
.

This is because that if a class-2 customer arrives in period t, by rejecting her, the firm incurs

a regret of r2 only when the event
{
A1,2

(t,T ] <X
π
t and Xπ

t > 0
}

occurs, since the firm has positive

inventory at the end of period T and could have gained r2 from this class-2 customer. Note that
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the last equality of (6) also remains valid for the other two cases. If no customer arrives in period

t, we incur zero regret. If a class-1 customer arrives in period t, by rejecting her only when the

inventory is zero, the firm incurs zero regret, i.e., RRπ
t (0) = 0 since Y π

t =Xπ
t = 0.

3.3. Regret-Based Performance Measure

The next result asserts that the regrets (associated with each individual decision) defined in §3.1–

3.2 add up to the total regret defined in §2.2. We delegate its proof to the Appendix.

Proposition 2. The total regret of decisions can be re-written (along every sample path) as

R(π;fT ) =
T∑
t=1

[RAπt (απt ) +RRπ
t (απt )]

∣∣∣∣ fT .
Proposition 2 allows us to reformulate the dynamic programming (1) from a viewpoint of regret

minimization. The original dynamic programming (1) views this revenue management problem as

gradually gaining revenue from zero to the final total revenue as time progresses. The regret mini-

mization problem takes a dual view of the original revenue maximization problem. More specifically,

we start with the clairvoyant optimal revenue W (π∗;fT ) at the beginning, and in each period we

make an admission decision, incurring either the regret of acceptance or the regret of rejection.

After each decision is made, the revenue is penalized by the computed regret. From this dual view,

we start with the highest possible revenue and gradually decrease it as time progresses.

This regret minimization reformulation can also be cast as a dynamic program. Denote Gt(xt, ft)

as the minimum expected regret over the periods [t, T ], with the starting inventory xt and the

information set ft. To minimize the regret, the Bellman’s equation is given by

Gt(xt, ft) = E
[
p0t ·Gt+1(xt,Ft+1) + p1t ·Gt+1(xt− 1,Ft+1)

∣∣∣ ft] (7)

+p2t ·min
{
E
[
RAt(1;xt) +Gt+1(xt− 1,Ft+1)

∣∣∣ ft] ,E[RRt(0;xt) +Gt+1(xt,Ft+1)
∣∣∣ ft]} ,

with boundary conditions GT+1(·) = 0 and Gt(0, ft) = 0, t = 1, . . . , T . By Proposition 2 and (2),

the optimal decisions of (1) and (7) are identical. Moreover, the expected total regret and the

expected total revenue sum up to the expected clairvoyant optimal revenue. It is important to note

that the regret minimization formulation gives the same optimal stochastic control as the revenue

maximization formulation. However, the performance measure is different under this regret-based

reformulation. We define the regret ratio of π to be

R(π),
E [R(π)]

E [R(πo)]
, (8)
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where the expected regret E [R(πo)] defined in (3) is in fact the optimal expected regret G1(x1, f1)

solved using the dynamic program defined in (7). It is clear that 1≤R(π)≤∞.

Policy        OPT0 Clairvoyant Profit 

Regret of OPT

Regret of Policy

Profit of Policy

Profit of OPT

Figure 1 Regret-Based Reformulation and Performance Measure

We shall draw the connection between the regret ratio defined in (8) under this equivalent regret

minimization reformulation and the conventional revenue ratio defined by the ratio of the total

revenue of π to that of the optimal policy πo under the original revenue maximization formulation.

As illustrated in Figure 1, for each instance of the problem, a lower regret ratio of π always leads

to a higher revenue ratio of π, and vice versa. However, these two performance measures are

incomparable. In many retail industries with low price discrimination, the regret ratio can better

capture how good a feasible policy π is (see Example 1 below). The regret ratio “zooms in” on the

operational mistakes that a firm makes, thereby improving the (already thin) profit margin.

Example 1. Let us consider a practical example in which the price discrimination is rather low,

i.e., r1 and r2 are quite close, say r1 = 100 and r2 = 95. This example is abundant in practical

settings, e.g., coupon discounts, omnichannel retailing (in-store vs. online), etc. Let us consider a

simple (and clearly sub-optimal) feasible policy that accepts all customers as long as the inventory

does not run out, which we call it “all-accept” policy. It is clear that the revenue difference between

an optimal policy and the all-accept policy is always bounded by 5% (regardless of the input

stochastic processes), if the firm chooses to use the traditional revenue-based performance measure.

However, this all-accept policy is undoubtedly a very poor heuristic policy, since it ignores all the

inventory and demand information.

In contrast, in such cases, the regret ratios of sub-optimal policies similar to all-accept policies

are usually very high, which better captures the “real” performance of such policies. For instance,

one can fix M = 3 and construct a sample path with class-2,2,2,1,1,1 arrival sequence, the all-

accept policy would accept 2,2,2 while the optimal policy would accept 1,1,1. In this case, the

revenue error is only 5% while the regret error is infinity (since none of the decisions from the

all-accept policy are correct)! �
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The above example shows that the regret measure quantifies the regret or the cost of a poor

decision in a much lucid way, which allows the firm to better trade-off between acceptance and

rejection. We remark that this notion of regret ratio defined in (8) has also been proposed and used

in other fields such as the theory of online and statistical learning (see, e.g., Guha and Munagala

[25] that gives a conceptually similar regret ratio).

4. Approximation Algorithm: Regret-Parity Policy

In this section, we propose and analyze an efficient and effective admission-control policy called the

regret-parity policy, denoted by π̃, which aims to exactly balance between the regret of acceptance

and the regret of rejection. The proposed policy π̃ is a randomized policy, which makes a randomized

admission decision in each period based on computed probabilities.

4.1. Policy Description

To fully describe and analyze π̃ which invovles randomzied decision rules, we introduce the expanded

information set f+
t that not only includes the original information set ft but also all the randomized

decisions of π̃ up to period t− 1. Thus, given π̃ and f+
t , the inventory level xt at the beginning of

period t is known but the decision in period t remains unknown. In addition, we define f++
T as f+

T

plus the decision made in period T , which constitutes a full sample path.

Now we describe π̃ as follows. In each period t= 1, . . . , T , if a class-1 customer arrives, we accept

her as long as the inventory xt > 0. On the other hand, if a class-2 customer arrives and xt > 0, π̃

accepts her with probability θt and reject her with probability 1− θt. That is, we set

απ̃t =

{
1, with probability θt,

0, with probability 1− θt,

where probability θt is computed by solving

θt ·E
[
RAπ̃t (1) | f+

t

]
= (1− θt) ·E

[
RRπ̃

t (0) | f+
t

]
, (9)

where RAπ̃t (·) and RRπ̃
t (·) are defined in (5) and (6), respectively. It is clear that the proposed

regret-parity policy π̃ strikes an exact balance between the two types of regrets via (9).

We also discuss here how to efficiently evaluate the expectation E
[
RAπ̃t (1) | f+

t

]
(and similarly

E
[
RRπ̃

t (0) | f+
t

]
) in practical implementations. First observe via (5) that because A1

[t,T ] takes integer

values from 0 to T − t + 1, evaluating E
[
RAπ̃t (1) | f+

t

]
has the same complexity of computing

P(A1
[t,T ] = i) for i = 0, . . . , T − t+ 1. When the demands are i.i.d., the computation is easy since
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A1
[t,T ] follows a binomial distribution. When the demands are generally correlated, e.g., the Markov

modulated demand processes tested in §6.1, computing the exact values of P(A1
[t,T ] = i) for i =

0, . . . , T−t+1 is not straightforward. For practical purposes, we use Monte Carlo simulation method

to obtain a very close estimation. In our numerical experiments, the coefficient of variation of using

5000 sample paths to estimate the expectation is generally less than 1%. We note that [36, 56]

face the same computational challenges when evaluating similar expectations in other (inventory)

settings. The main computational advantage of π̃ lies in that π̃ can be efficiently implemented in an

online manner, i.e., the decision at any time is computed based only on the current observed state

of the system and does not depend on future decisions. This is a desired property if one wishes to

avoid the prohibitive (recursive) computational burden of solving large dynamic programs.

4.2. Performance Analysis

To establish a worst-case performance guarantee of 2, we wish to show that, on expectation, the

total regret of the optimal policy πo “pays” for at least half of that of the regret-parity policy π̃.

In the subsequent analysis, we use superscript πo to refer to the optimal policy that solves the

dynamic programming (1), and superscript π̃ to refer to our regret-parity policy.

We first define a stopping time τ which records the first period time when the inventory of π̃

runs out. More specifically, we define

τ = inf
{
t∈ {1, . . . , T + 1} :X π̃

t = 0
}
. (10)

Note that τ is well-defined since it is measurable w.r.t. the expanded information set f+
t .

We then partition the set of periods {1, . . . , T} into three disjoint random subsets

Ta =
{
t∈ {1, . . . , T} : t < τ and Y πo

t ≤X π̃
t − 1

}
, (11)

Tb =
{
t∈ {1, . . . , T} : t < τ and Y πo

t ≥X π̃
t

}
, (12)

Tc = {t∈ {1, . . . , T} : τ ≤ t≤ T} . (13)

Note that the above subsets are disjoint and exhaustive, and the indicators 1(t ∈ Ta), 1(t ∈ Tb)

and 1(t∈Tc) become known with the expanded information set f+
t .

Then, we prove two important lemmas below. We want to show that the total regret of acceptance

incurred by πo is higher than that incurred by π̃ in the set Ta in Lemma 1, and the total regret of

rejection incurred by πo is higher than that incurred by π̃ in the set Tb in Lemma 2.
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Lemma 1. The total regret of acceptance by πo is no smaller than that by π̃ in the set Ta, i.e.,

along every sample path,
T∑
t=1

RAπ
o

t (απ
o

t )≥
∑
t∈Ta

RAπ̃t (απ̃t ).

Proof. We fix an arbitrary sample path f++
T . Suppose there are l customer arrivals, and let

1≤ t1 ≤ . . .≤ tl ≤ T denote all these l customer arriving epochs. We then denote ts to be the last

customer arriving epoch that belongs to the set Ta.

For each k= 1, . . . s− 1, since there is no customer arrival over (tk, tk+1), it is clear that a1(tk,T ] =

a1[tk+1,T ] and yπ
o

tk
= xπ

o

tk+1
. This implies that

(
a1(tk,T ]− yπ

o

tk

)+

=
(
a1[tk+1,T ]−xπ

o

tk+1

)+

. (14)

Now using (5), we sum up the regret of acceptance over these arriving epochs along f++
T ,

s∑
k=1

RAπ
o

tk
(απ

o

tk
) =

s∑
k=1

(r1− r2)
[(
a1(tk,T ]− yπ

o

tk

)+

−
(
a1[tk,T ]−xπ

o

tk

)+
]

(15)

= (r1− r2)
[(
a1(ts,T ]− yπ

o

ts

)+

−
(
a1[t1,T ]−xπ

o

t1

)+
]

= (r1− r2)
[(
a1(ts,T ]− yπ

o

ts

)+

−
(
a1[1,T ]−M

)+]
,

where the second equality follows from expanding the telescoping sum and (14); the third equality

holds because there is no customer arrival before t1, and thus a1[t1,T ] = a1[1,T ] and xπ
o

t1
=M.

Using the identical argument above, we also have the same expression for π̃,

s∑
k=1

RAπ̃tk(απ̃tk) = (r1− r2)
[(
a1(ts,T ]− yπ̃ts

)+− (a1[1,T ]−M
)+]

. (16)

Because ts ∈Ta implies that yπ
o

ts
≤ xπ̃ts − 1≤ yπ̃ts , then we have

T∑
t=1

RAπ
o

t (απ
o

t )≥
s∑

k=1

RAπ
o

tk
(απ

o

tk
)≥

s∑
k=1

RAπ̃tk(απ̃tk)≥
∑
t∈Ta

RAπ̃t (απ̃t ),

where the second inequality follows from comparing (15) and (16) with yπ
o

ts
≤ yπ̃ts . Q.E.D.

Lemma 2. The total regret of rejection by πo is no smaller than that by π̃ in the set Tb, i.e.,

along every sample path,
T∑
t=1

RRπo

t (απ
o

t )≥
∑
t∈Tb

RRπ̃
t (απ̃t ).
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Proof. We fix an arbitrary sample path f++
T . Suppose there are l customer arrivals, and let

1≤ t1 ≤ . . .≤ tl ≤ T denote all these l customer arriving epochs. We then denote ts to be the last

customer arriving epoch that belongs to the set Tb.

For each k= 1, . . . s− 1, since there is no customer arrival over (tk, tk+1), it is clear that a1,2(tk,T ] =

a1,2[tk+1,T ] and yπ
o

tk
= xπ

o

tk+1
. This implies that

(
yπ

o

tk
− a1,2(tk,T ]

)+

=
(
xπ

o

tk+1
− a1,2[tk+1,T ]

)+

. (17)

Now using (6), we sum up the regret of rejection over these arriving epochs along f++
T ,

s∑
k=1

RRπo

tk
(απ

o

tk
) =

s∑
k=1

r2

[(
yπ

o

tk
− a1,2(tk,T ]

)+

−
(
xπ

o

tk
− a1,2[tk,T ]

)+
]

(18)

= r2

[(
yπ

o

ts
− a1,2(ts,T ]

)+

−
(
xπ

o

t1
− a1,2[t1,T ]

)+
]

= r2

[(
yπ

o

ts
− a1,2(ts,T ]

)+

−
(
M − a1,2[1,T ]

)+
]
,

where the second equality follows from expanding the telescoping sum and (17); the third equality

holds because there is no customer arrival before t1, and thus a1,2[t1,T ] = a1,2[1,T ], and xπ
o

t1
=M.

Using the identical argument above, we also have the same expression for π̃,

s∑
k=1

RRπ̃
tk

(απ̃tk) = r2

[(
yπ̃ts − a

1,2
(ts,T ]

)+

−
(
M − a1,2[1,T ]

)+
]
. (19)

Because ts ∈Tb implies that yπ
o

ts
≥ xπ̃ts ≥ y

π̃
ts

, then we have

T∑
t=1

RRπo

t (απ
o

tk
)≥

s∑
k=1

RRπo

tk
(απ

o

tk
)≥

s∑
k=1

RRπ̃
tk

(απ̃tk)≥
∑
t∈Tb

RRπ̃
t (απ̃t ),

where the second inequality follows from comparing (18) and (19) with yπ
o

ts
≥ yπ̃ts . Q.E.D.

Lemmas 1 and 2 establish a connection between πo and π̃. To complete the worst-case analysis,

we need a new variable Z π̃t defined as

Z π̃t ,E
[
RAπ̃t (απ̃t ) | F+

t

]
=E

[
RRπ̃

t (απ̃t ) | F+
t

]
. (20)

Note that Z π̃t is a random variable that is realized with the information set f+
t at the beginning of

period t. Observe that by the construction of π̃, the random variable Z π̃t is well-defined since the

expected regret of acceptance and the expected regret of rejection are always balanced.
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Lemma 3 below shows that the expected total regret of π̃ can be expressed using the Z π̃t variables

defined in (20).

Lemma 3. The expected total regret incurred by π̃ is

E [R(π̃)] = 2 ·
T∑
t=1

E
[
Z π̃t
]
.

Proof. By Proposition 2 and standard arguments of conditional expectations, we have

E [R(π̃)] = E

[
T∑
t=1

[
RAπ̃t (απ̃t ) +RRπ̃

t (απ̃t )
]]

=
T∑
t=1

E
[
E
[
RAπ̃t (απ̃t ) +RRπ̃

t (απ̃t ) | F+
t

]]
=

T∑
t=1

E
[
E
[
RAπ̃t (απ̃t ) | F+

t

]
+E

[
RRπ̃

t (απ̃t ) | F+
t

]]
=

T∑
t=1

E
[
2Z π̃t

]
= 2 ·

T∑
t=1

E
[
Z π̃t
]
,

where the fourth equality follows directly from the definition in (20). Q.E.D.

Lemma 4 below shows that the expected total regret of πo can be upper bounded using the Z π̃t

variables defined in (20).

Lemma 4. The expected total regret incurred by πo is lower bounded by

E [R(πo)]≥
T∑
t=1

E
[
Z π̃t
]
.

Proof. Combining Lemmas 1 and 2 and the fact the Z π̃t = 0 when t∈ Tc, we have

E [R(πo)] = E

[
T∑
t=1

[
RAπ

o

t (απ
o

t ) +RRπo

t (απ
o

t )
]]

≥ E

∑
t∈Ta

RAπ̃t (απ̃t ) +
∑
t∈Tb

RRπ̃
t (απ̃t ) +

∑
t∈Tc

0


=

T∑
t=1

E
[
RAπ̃t (απ̃t ) ·1(t∈Ta) +RRπ̃

t (απ̃t ) ·1(t∈Tb) + 0 ·1(t∈Tc)
]

=
T∑
t=1

E
[
E
[
RAπ̃t (απ̃t ) ·1(t∈Ta) +RRπ̃

t (απ̃t ) ·1(t∈Tb) + 0 ·1(t∈Tc)
]
| F+

t

]
=

T∑
t=1

E
[
(1(t∈Ta) +1(t∈Tb) +1(t∈Tc))Z

π̃
t

]
=

T∑
t=1

E
[
Z π̃t
]
,

where the fourth equality holds since 1(t ∈Ta), 1(t ∈Tb) and 1(t ∈Tc) are measurable with the

expanded information set F+
t . Q.E.D.
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Combining Lemmas 3 and 4, we have established that the π̃ policy has a constant worst-case

performance guarantee of 2, which is stated formally below.

Theorem 1. For each instance of the two-class revenue management problem under non-

stationary customer demands, the expected total regret incurred by the regret-parity policy π̃ is at

most two times the expected total regret incurred by the optimal policy πo, i.e.,

E [R(π̃)]≤ 2 ·E [R(πo)] .

Theorem 1 asserts that π̃ achieves a 2-approximation of the optimal policy in terms of stochastic

relative regret, which establishes an interesting link between the relative regret and approximation

algorithms in the revenue management setting.

5. Multi-Class Extension with Fairness

We consider an extension of our model to the multi-class setting which incorporates a fairness

constraint. The model is almost identical to that defined in §2 but with I classes of customers.

Without loss of generality, we let r1 ≥ r2 ≥ . . . ≥ rI ≥ 0, and we say class-i has a higher priority

than class-j whenever i < j. Similar to the 2-class model, the total arrival rate and the probability

of being class-i customer are both evolving over time. In this model, class-1 customers are always

accepted if there are inventory units available, but we need to make a decision whether to accept

a customer if she is not a class-1 customer. We define our notion of fairness.

Definition 1. We say a feasible policy π is said to be fair if the following condition holds. If for

each period t= 1, . . . , T with an arriving customer (of class 1≤ j ≤ T ), then for all 1≤ i < j < k≤ I,

i.e., class-i (class-k) has a higher (lower) revenue or priority than class-j, the policy π is allowed

to accept this class-j customer in period t only if when there is no class-i customer rejected by π

before period t, and π is allowed to reject this class-j customer in period t only if when there is no

class-k customer accepted by π before period t.

This notion of fairness asserts that when π accepts a customer, π needs to accept all the customers

with higher priorities; when π rejects a customer, π needs to reject all the customers with lower

priorities. In many practical settings, not enforcing strict fairness may adversely affect customer

loyalty to the firm. In the example of vacation timeshare management mentioned in §1, Hilton

Grand Vacations Club offers timeshares at four different levels, namely, platinum, gold, silver,

bronze [11]. During a particular selling season, the management will not sell a home resort (e.g., a

room in Elara on the Las Vegas strip) to a gold customer if it has previously rejected a platinum

customer. Likewise, the management will not reject a gold customer if it has previously accepted

a silver customer. The management has the incentives to enforce such fairness, because of the

extensive interactions between timeshare users in online forums [52].
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5.1. Extended Definitions of Regret

We extend the definitions of RAPt (αPt ) and RRP
t (αPt ) defined in §4. For any feasible policy π, there

can be two scenarios when a random customer arrives in period t.

(a) Active decision making: π needs to decide whether to accept or reject this customer;

(b) Passive decision making: π does not need to make an active decision, if this arriving customer

is “automatically” accepted or rejected due to either fairness or stock-out.

In the former scenario (a), the active decision made by π incurs a regret of acceptance or rejection,

whereas in the latter scenario (b), there is no regret incurred in period t since π does not make

any decisions. For any feasible policy π, to define our regrets RAπt (απt ) and RRπ
t (απt ), we use

W (π∗;fT , α
π
0 , . . . , α

π
t )

to denote the modified clairvoyant optimal revenue given a fixed sample path fT and fixed decisions

απ0 , . . . , α
π
t in the first t periods. Intuitively, the modified clairvoyant optimal policy π∗ takes the

first t-period (potentially sub-optimal) decisions as given, and generates the highest revenue over

the remaining periods [t, T ] along the sample path fT . With this modified definition, we define the

two regrets below. Fix a sample path fT and examine any period t= 1, . . . , T .

(a) If π accepts the incoming customer in period t, then the regret of acceptance is defined by

RAπt (απt = 1) | fT = W (π∗;fT , α
π
0 , . . . , α

π
t−1)−W (π∗;fT , α

π
0 , . . . , α

π
t−1,1). (21)

The underlying idea is simple. The regret of acceptance in period t is exactly the difference between

two revenues, one resulted from taking the “optimal” actions in hindsight from period t onwards,

and the other one resulted from taking an acceptance decision in period t and then taking the

“optimal” actions in hindsight from period t+ 1 onwards.

(b) If π rejects the incoming customer in period t, then the regret of acceptance is defined by

RRπ
t (απt = 0) | fT = W (π∗;fT , α

π
0 , . . . , α

π
t−1)−W (π∗;fT , α

π
0 , . . . , α

π
t−1,0). (22)

The idea is similar by merely taking a dual view of (a).

5.2. Extended Regret-Parity Policy

With these extended definitions (21–22), we re-define the regret-parity policy π̃ below. Since π̃ is

randomized, we use the expanded information set f+
t that not only includes the original information

set ft but also all the randomized decisions of π̃ up to period t− 1.
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Suppose a customer arrives in period t and π̃ needs to make an active decision. Then π̃ will

accept her with probability θt and reject with probability 1− θt, i.e., απ̃t = 1 with probability θt

and απ̃t = 0 with probability 1− θt, where θt is computed by solving

θt ·E[RAπ̃t (1) | f+
t ] = (1− θt) ·E[RRπ̃

t (0) | f+
t ].

5.3. Performance Analysis

At any customer arrival time t (post-decision), we keep track of three critical numbers associated

with any feasible policy π, namely, γπt being the lowest revenue class that π has accepted, βπt being

the highest revenue class that π has rejected (not due to stock-out), and the ending inventory level

Y π
t . As a convention, we initialize γπ0 = 0 and βπ0 = I + 1.

Lemma 5. At any customer arrival time t where Y π̃
t > 0, we have

(a) If Y πo

t <Y π̃
t , then γπ̃t ≤ βπ̃t ≤ γπ

o

t ≤ βπ
o

t .

(b) If Y πo

t >Y π̃
t , then γπ

o

t ≤ βπ
o

t ≤ γπ̃t ≤ βπ̃t .
(c) If Y πo

t = Y π̃
t , then γπ̃t = γπ

o

t ≤ βπ̃t = βπ
o

t .

At a high-level, with the fairness constraint, we can clearly keep track of the accept/reject status

of each class of two different policies by merely comparing their aggregate ending inventory levels.

In the absence of fairness, these relationships in Lemma 5 will not hold, thereby making the cost

comparison between two different policies very challenging. With aid of Lemma 5, we can prove

the following result, similar to Lemmas 1 and 2 in the two-class case.

Lemma 6. Along every sample path f++
T , we have

T∑
t=1

RAπ
o

t (απ
o

t )≥
∑
t∈Ta

RAπ̃t (απ̃t ),
T∑
t=1

RRπo

t (απ
o

t )≥
∑
t∈Tb

RRπ̃
t (απ̃t ).

With identical arguments, Lemmas 3 and 4 hold for the multi-class setting with fairness as well.

Combining these results, we have the following theorem.

Theorem 2. For each instance of the multi-class admission-control policy based revenue man-

agement problem under fairness, the expected total regret incurred by the regret-parity policy π̃ is

at most two times the expected total regret incurred by the optimal policy πo, i.e.,

E [R(π̃)]≤ 2 ·E [R(πo)] .

6. Numerical Experiments

To test the empirical performances of our proposed policy π̃, we conduct an extensive numerical

study and report our numerical results.
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6.1. Design of Experiments

We set the discrete time horizon T = 50 periods. We normalize the revenue rate of class-1 customers

r1 = 100 and vary the revenue rate of class-2 customers r2 ∈ {20,30,40, . . . ,80}. We consider two

types of demand processes described as follows.

(a) I.I.D. demands: In the i.i.d. demand setting, in each period t= 1, . . . , T , we test a range of

arrival probabilities p1, p2 ∈ {0.2,0.25,0.3,0.35,0.4}. The probability of having no arrivals is then

1− p1− p2. In addition, we set the initial inventory M = T (p1 +κ · p2), where the initial inventory

M is controlled by κ∈ {−0.2,0,0.2}.

(b) Correlated demands: We also consider a correlated demand setting where the instanta-

neous rates are time-varying and correlated, which are modulated by an exogenous Markov chain.

In this Markov modulated demand setting, we keep the choices of parameters T , r1, r2, p1 p2, and

M the same as in the i.i.d. demand setting. In addition, we introduce three states of economy,

namely, good (denoted by state 1), fair (denoted by state 2), poor (denoted by state 3), and the

arrival rate is affected by the state of economy. We set the initial state to be state 2. The state

transition is modulated by an exogenous Markov chain. More specifically, the arrival probability

depends on p1, p2 and the state of economy. Let pi(j) denote the arrival probability for class-i

customer when the state of economy is j, where i= 1,2 and j = 1,2,3. We set

p1(1) = 1.5p1, p2(1) = 0.5p2,

p1(2) = p1, p2(2) = p2,

p1(3) = 0.5p1, p2(3) = 1.5p2.

.

The above construction captures the fact that customers will buy higher-class (lower-class) products

with a higher probability when the state of economy is better (poorer). We consider two transition

probability matrices for the exogenous Markov chain whose states are the three states of economy:

P1 =


0.6 0.3 0.1

0.3 0.4 0.3

0.1 0.3 0.6

 , P2 =


0.1 0.3 0.6

0.4 0.2 0.4

0.6 0.3 0.1

 .
The above two transition probability matrices P1 and P2 represent positively-correlated and

negatively-correlated demands, respectively.

6.2. Performance Measure and Benchmark Policies

The two standard performance measures, the regret and revenue errors of π̃, are defined by

εregret =

[
E [R(π̃)]

E [R(πo)]
− 1

]
× 100%, (23)
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εrevenue =

[
1− E [W (π̃)]

E [W (πo)]

]
× 100%. (24)

Besides the above standard performance measures, we also compare our policy with the policies

proposed in Ball and Queyranne [1]. In their paper, the authors presented two robust optimization

algorithms that can be applied in our setting. Both policies having the form of setting a threshold

level for the maximum amount of class-2 customer to be admitted.

Benchmark Algorithm 1: The first algorithm is a static policy that have a fixed threshold

level as in their Equation (4). The threshold θ is set as either M−
⌊

M

2− r2r1

⌋
or M−

⌈
M

2− r2r1

⌉
depending

on which number gives the best competitive ratio in their robust optimization problem.

Benchmark Algorithm 2: The second algorithm is a dynamic policy that keeps updating the

threshold level throughout the planning horizon. In each period t, let h′ denote the total number

of class-1 customers accepted. Denote γ = h′

M
and α= γr1+(1−γr2)

r2
. Then the threshold level in each

period t is defined as θt =
1− γr1αr2

1+ 1
α−

r2
r1

.

For every instance of the problem, we denote the better expected revenue of the two robust

benchmark algorithms by W (πrobust). Then the relative gain in expected revenue by using our

policy π̃ is defined as

ηgain =

[
E [W (π̃)]

E [W (πrobust)]
− 1

]
× 100%. (25)

We note that their robust algorithms are established in the online adversarial setting (that does

not require any future demand information as an input). Our algorithm, on the other hand, does

require evolving conditional future demand information, as time progresses. Hence the numerical

comparison between our policy and theirs is not entirely fair. Nevertheless, in the absence of better

alternatives, we adapt their algorithms to our setting and compare the numerical performances.

As seen from Tables 1–3, our proposed regret-parity policy π̃ performs consistently well in term of

expected revenue and regret, compared to the optimal policy. Compared to the robust benchmark

algorithms proposed in Ball and Queyranne [1], we gain around 16% more expected revenue, which

is quite significant. Also, it is interesting to observe that this ratio ηgain is higher when the starting

inventory is smaller ( i.e., κ is smaller), and when r2 is smaller. This is because when there is less

starting inventory, the optimal policy shall reject almost all the class-2 customers, but the robust

benchmark algorithm always accepts some class-2 customer as long as the threshold level has not

been reached. And when r2 is small, this loss becomes more significant.

7. Conclusion

In this paper, we have studied a class of revenue management problems with non-homogeneous

Poisson customer arrival processes. We have proposed a new regret minimization framework and
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Table 1 Performance of π̃ under i.i.d. demands

κ -0.2 0 0.2
r2 min mean max min mean max min mean max

εregret

20
39.0% 42.2% 45.6% 31.8% 35.1% 40.2% 24.4% 28.8% 34.9%

εrevenue 0.03% 0.11% 0.26% 0.11% 0.25% 0.45% 0.17% 0.36% 0.62%
ηgain 17.5% 30.7% 54.5% 13.5% 22.0% 34.2% 8.5% 11.6% 14.1%
εregret

30
28.5% 34.9% 38.9% 23.8% 29.2% 34.3% 19.1% 24.2% 29.5%

εrevenue 0.03% 0.12% 0.29% 0.12% 0.27% 0.50% 0.18% 0.37% 0.66%
ηgain 17.4% 30.1% 48.4% 13.4% 21.9% 32.2% 8.6% 12.1% 14.6%
εregret

40
23.9% 30.5% 34.7% 20.0% 25.7% 30.4% 17.0% 21.5% 26.0%

εrevenue 0.04% 0.13% 0.30% 0.12% 0.28% 0.51% 0.18% 0.37% 0.66%
ηgain 15.7% 27.1% 44.1% 12.4% 20.4% 31.0% 8.0% 11.6% 14.4%
εregret

50
19.2% 27.4% 30.5% 16.2% 23.4% 26.5% 13.9% 19.9% 22.6%

εrevenue 0.03% 0.13% 0.31% 0.12% 0.27% 0.50% 0.18% 0.36% 0.63%
ηgain 13.5% 23.5% 38.7% 10.7% 17.9% 26.9% 7.0% 10.4% 13.1%
εregret

60
20.2% 25.9% 28.8% 18.0% 22.5% 25.3% 16.4% 19.7% 21.8%

εrevenue 0.03% 0.12% 0.29% 0.11% 0.26% 0.47% 0.16% 0.34% 0.58%
ηgain 11.0% 18.9% 28.6% 8.6% 14.4% 20.9% 5.6% 8.7% 11.3%
εregret

70
21.1% 25.5% 27.4% 19.3% 22.5% 23.9% 17.9% 20.4% 21.7%

εrevenue 0.03% 0.11% 0.27% 0.09% 0.24% 0.43% 0.14% 0.31% 0.53%
ηgain 8.3% 14.2% 21.5% 6.4% 11.0% 16.4% 4.1% 6.6% 8.6%
εregret

80
23.8% 25.6% 27.6% 21.7% 23.4% 25.0% 20.8% 22.0% 23.6%

εrevenue 0.03% 0.10% 0.23% 0.09% 0.21% 0.36% 0.14% 0.27% 0.45%
ηgain 5.4% 9.5% 14.9% 4.1% 7.2% 10.6% 2.5% 4.4% 6.0%

Table 2 Performance of π̃ under (positively-correlated) Markov modulated demands

κ -0.2 0 0.2
r2 min mean max min mean max min mean max

εregret

20
24.3% 49.2% 83.4% 24.7% 36.3% 83.2% 23.5% 31.5% 46.5%

εrevenue 0.04% 0.13% 0.27% 0.12% 0.27% 0.46% 0.19% 0.38% 0.63%
ηgain 17.0% 30.3% 53.8% 13.0% 21.6% 33.6% 8.4% 11.6% 14.2%
εregret

30
20.6% 36.9% 69.7% 20.1% 30.4% 50.4% 18.4% 24.8% 33.5%

εrevenue 0.04% 0.14% 0.31% 0.13% 0.28% 0.50% 0.20% 0.38% 0.67%
ηgain 16.8% 29.7% 48.1% 12.9% 21.5% 31.8% 8.4% 12.0% 14.6%
εregret

40
23.4% 30.0% 38.9% 19.2% 25.2% 33.5% 16.0% 20.7% 24.9%

εrevenue 0.05% 0.14% 0.31% 0.13% 0.28% 0.51% 0.19% 0.37% 0.65%
ηgain 15.2% 26.8% 43.8% 11.9% 20.0% 30.6% 7.8% 11.5% 14.4%
εregret

50
17.3% 26.3% 34.8% 17.4% 23.0% 27.3% 13.5% 19.5% 22.4%

εrevenue 0.04% 0.14% 0.31% 0.10% 0.25% 0.46% 0.18% 0.35% 0.62%
ηgain 13.1% 23.2% 38.3% 10.3% 17.5% 26.5% 6.8% 10.3% 13.1%
εregret

60
20.3% 24.3% 28.2% 17.2% 21.3% 25.4% 16.5% 19.2% 21.5%

εrevenue 0.03% 0.13% 0.30% 0.10% 0.25% 0.46% 0.15% 0.33% 0.56%
ηgain 10.6% 18.7% 28.4% 8.3% 14.1% 20.6% 5.4% 8.6% 11.2%
εregret

70
20.6% 24.1% 27.6% 19.5% 21.3% 22.9% 16.8% 19.3% 21.2%

εrevenue 0.03% 0.12% 0.26% 0.09% 0.23% 0.41% 0.13% 0.30% 0.51%
ηgain 8.0% 14.0% 21.4% 6.2% 10.8% 16.2% 3.9% 6.6% 8.5%
εregret

80
21.9% 24.1% 29.4% 19.7% 22.0% 24.9% 19.0% 20.9% 22.3%

εrevenue 0.03% 0.10% 0.23% 0.09% 0.20% 0.35% 0.13% 0.26% 0.44%
ηgain 5.2% 9.4% 14.8% 3.9% 7.1% 10.5% 2.4% 4.3% 5.9%

proceeded using the lens of approximation algorithms to devise a conceptually simple and provably-

good regret-parity policy. We have made some important progress towards better understanding the

intricate link between stochastic regret minimization and approximation algorithms in the realm
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Table 3 Performance of π̃ under (negatively-correlated) Markov modulated demands

κ -0.2 0 0.2
r2 min mean max min mean max min mean max

εregret

20
28.5% 46.3% 71.0% 24.3% 39.1% 54.0% 25.2% 31.5% 39.6%

εrevenue 0.03% 0.12% 0.27% 0.13% 0.27% 0.47% 0.20% 0.39% 0.64%
ηgain 17.7% 30.9% 54.7% 13.7% 22.1% 34.4% 8.5% 11.6% 14.1%
εregret

30
27.1% 42.8% 66.8% 21.9% 32.9% 42.6% 17.9% 27.7% 34.7%

εrevenue 0.04% 0.13% 0.30% 0.14% 0.29% 0.49% 0.21% 0.40% 0.65%
ηgain 17.5% 30.2% 48.6% 13.5% 22.1% 32.4% 8.6% 12.1% 14.6%
εregret

40
23.3% 34.8% 61.4% 16.7% 27.6% 38.8% 16.7% 22.8% 28.5%

εrevenue 0.04% 0.13% 0.31% 0.14% 0.29% 0.52% 0.20% 0.38% 0.65%
ηgain 15.9% 27.2% 44.1% 12.6% 20.5% 31.1% 8.1% 11.6% 14.4%
εregret

50
19.1% 28.9% 34.2% 16.9% 24.8% 30.4% 15.8% 20.7% 27.6%

εrevenue 0.03% 0.13% 0.30% 0.13% 0.27% 0.48% 0.20% 0.36% 0.62%
ηgain 13.6% 23.6% 38.8% 10.8% 18.0% 27.1% 7.1% 10.4% 13.2%
εregret

60
19.7% 26.3% 32.3% 20.1% 23.5% 27.7% 16.9% 20.0% 22.1%

εrevenue 0.03% 0.12% 0.29% 0.12% 0.26% 0.47% 0.17% 0.33% 0.58%
ηgain 11.1% 19.0% 28.7% 8.8% 14.5% 21.0% 5.7% 8.7% 11.3%
εregret

70
22.3% 26.2% 29.5% 17.4% 22.1% 24.5% 18.6% 20.4% 22.6%

εrevenue 0.03% 0.11% 0.26% 0.09% 0.23% 0.42% 0.14% 0.30% 0.52%
ηgain 8.4% 14.3% 21.5% 6.5% 11.1% 16.5% 4.2% 6.7% 8.6%
εregret

80
23.4% 25.3% 32.8% 21.7% 23.0% 25.0% 20.1% 21.5% 25.3%

εrevenue 0.02% 0.09% 0.21% 0.09% 0.20% 0.36% 0.13% 0.26% 0.44%
ηgain 5.5% 9.6% 15.0% 4.2% 7.3% 10.7% 2.6% 4.4% 6.0%

of revenue management and dynamic resource allocation. We believe combining the ideas from

approximation algorithms with this new regret minimization framework can yield many fruitful

results and discussions in many other core resource allocation or revenue management problems.

To close this paper, we would like to point out two immediate and plausible future research

directions as follows. (a) One may wish to waive the fairness requirement in the multi-class setting.

(b) One can also consider a pricing version of the same problem, in which the firm can dynamically

update their prices. However, developing worst-case performance guarantees for the aforementioned

directions remains challenging and would require new ideas and methods to be developed.
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[18] Gallego, G., Ö. Özer. 2001. Integrating replenishment decisions with advance demand information. Management Science

47(10) 1344–1360.

[19] Gallego, G., G. van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic demand over finite horizons.

Management Science 40(8) 999–1020.

[20] Gallego, G., G. van Ryzin. 1997. A multiproduct dynamic pricing problem and its applications to network yield manage-

ment. Operations Research 45(1) 24–41.

[21] Geng, X., W. T. Huh, M. Nagarajan. 2014. Sequential resource allocation with constraints: Two-customer case. Operations

Research Letters 42(1) 70 – 75.

[22] George, J. M., J. M. Harrison. 2001. Dynamic control of a queue with adjustable service rate. Operations Research 49(5)

pp. 720–731.

Page 25 of 30

John Wiley & Sons

Naval Research Logistics

This article is protected by copyright. All rights reserved.

http://www.hgvclubprogram.com/club-features/reservations/
http://www.hgvclubprogram.com/club-features/reservations/


A
cc

ep
te

d 
A

rt
ic

le
26

[23] Graves, S., H. Meal, S. Dasu, Y. Qin. 1986. Two-stage production planning in a dynamic environment. S. Axsater, C.

Schneeweiss, E. Silver, eds. Multi-Stage Production Planning and Control. Lecture Notes in Economics and Mathematical

Systems. Springer-Verlag, Berlin, Germany 9–43.

[24] Green, L. V., P. J. Kolesar. 1995. On the accuracy of the simple peak hour approximation for Markovian queues. Man-

agement Science 41(8) pp. 1353–1370.

[25] Guha, S., K. Munagala. 2014. Stochastic regret minimization via thompson sampling. Proceedings of The 27th Conference

on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014 . 317–338.

[26] Gupta, V., M. Harchol-Balter, A. S. Wolf, U. Yechiali. 2006. Fundamental characteristics of queues with fluctuating load.

SIGMETRICS Performance Evaluation Review 34(1) 203–215.

[27] Harrison, J. M., N. B. Keskin, A. Zeevi. 2012. Bayesian dynamic pricing policies: Learning and earning under a binary

prior distribution. Management Science 58(3) 570–586.

[28] Heath, D. C., P. L. Jackson. 1994. Modeling the evolution of demand forecasts with application to safety stock analysis in

production/distribution system. IIE Transactions 26(3) 17–30.

[29] Iyengar, G., K. Sigman. 2004. Exponential penalty function control of loss networks. Annals of Applied Probability 14(4)

1698–1740.

[30] Kelly, F. P. 1991. Effective bandwidths at multi-class queues. Queueing Systems 9(1-2) 5–16.

[31] Key, P. 1990. Optimal control and trunk reservation in loss networks. Probability in the Engineering and Informational

Sciences 4 203–242.

[32] Kleywegt, A. J., J. D. Papastavrou. 1998. The dynamic and stochastic knapsack problem. Operations Research 46(1)

17–35.

[33] Kleywegt, A. J., J. D. Papastavrou. 2001. The dynamic and stochastic knapsack problem with random sized items.

Operations Research 49(1) 26–41.

[34] Kumar, R., M. E. Lewis, H. Topaloglu. 2013. Dynamic service rate control for a single-server queue with Markov-modulated

arrivals. Naval Research Logistics 60(8) 661–677.

[35] Lan, Y., M. O. Ball, I. Z. Karaesmen. 2011. Regret in overbooking and fare-class allocation for single leg. Manufacturing

& Service Operations Management 13(2) 194–208.

[36] Levi, R., G. Janakiraman, M. Nagarajan. 2008. A 2-approximation algorithm for stochastic inventory control models with

lost-sales. Mathematics of Operations Research 33(2) 351–374.

[37] Levi, R., M. Pál, R. O. Roundy, D. B. Shmoys. 2007. Approximation algorithms for stochastic inventory control models.

Mathematics of Operations Research 32(2) 284–302.
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Appendix: Omitted Technical Proofs

Proof of Proposition 1. We can write

W (π∗;fT ) = r1C
1
π∗ + r2C

2
π∗ , W (π;fT ) = r1C

1
π + r2C

2
π.

Since the firm accepts class-1 customers as long as the inventory is positive, we have C1
π∗ =

min
(
A1

[1,T ],M
)
. Moreover, if the number of class-2 customers accepted by π is greater than that

accepted by π∗, then the number of class-1 customers accepted by π will decrease by (C2
π −

C2
π∗). Otherwise, C1

π will be equal to C1
π∗ . Thus, combining the two cases above, we have C1

π =

min{C1
π∗ ,C

1
π∗ − (C2

π −C2
π∗)} . Hence, by (2) and some simple algebra, we have

R (π;fT ) = W (π∗;fT )−W (π;fT )

= r1C
1
π∗ + r2C

2
π∗ − r1C1

π − r2C2
π

= r1(C
1
π∗ −C1

π) + r2(C
2
π∗ −C2

π)

= r1
(
C1
π∗ −min{C1

π∗ ,C
1
π∗ − (C2

π −C2
π∗)}

)
+ r2(C

2
π∗ −C2

π)

= r1
(
C1
π∗ + max{−C1

π∗ ,−C1
π∗ + (C2

π −C2
π∗)}

)
+ r2(C

2
π∗ −C2

π)

= r1(C
2
π −C2

π∗)
+ + r2(C

2
π∗ −C2

π).

This completes the proof. Q.E.D.

Proof of Proposition 2. We fix an arbitrary sample path fT . Suppose there are l customers

arrived at the system, and let 1≤ t1 ≤ . . .≤ tl ≤ T denote all these l customer arriving epochs. We

then denote ts to be the last customer arriving epoch in which the firm is not out of stock. Using

(5) and (6), we sum up the two regrets (by decisions) along the sample path fT , and obtain

T∑
t=1

[RAπt (απt ) +RRπ
t (απt )]

∣∣∣∣ fT (26)

=
s∑

k=1

(r1− r2)
[(
a1(tk,T ]− yπtk

)+− (a1[tk,T ]−xπtk
)+]

+
s∑

k=1

r2

[(
yπtk − a

1,2
(tk,T ]

)+

−
(
xπtk − a

1,2
[tk,T ]

)+
]

= (r1− r2)
[(
a1(ts,T ]− yπts

)+− (a1[t1,T ]−xπt1
)+]

+ r2

[(
yπts − a

1,2
(ts,T ]

)+

−
(
xπt1 − a

1,2
[t1,T ]

)+
]

= (r1− r2)
[(
a1(ts,T ]− yπts

)+− (a1[1,T ]−M
)+]

+ r2

[(
yπts − a

1,2
(ts,T ]

)+

− (M − l)+
]
,

where the first equality holds because when the inventory runs out, i.e., k > s, both regrets

RAπtk(απtk = 0) =RRπ
tk

(απtk = 0) = 0, and the second equality holds since for each k= 1, . . . , s− 1,

xπtk+1
= yπtk , a1[tk+1,T ] = a1(tk,T ], and a1,2[tk+1,T ] = a1,2(tk,T ].
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There are two cases as follows.

Case 1. There is some inventory left in the end of the horizon, i.e., yπT > 0. This implies that

ts = tl and yπts = yπT > 0. Moreover, the total number of class-1 customers is less than the initial

inventory, i.e., a1[1,T ] <M . Hence, (26) becomes

T∑
t=1

[RAπt (απt ) +RRπ
t (απt )]

∣∣∣∣ fT = r2
(
yπT − (M − l)+

)
.

Moreover, because C2
π ≤C2

π∗ , (4) becomes R(π) = r2(C
2
π∗ −C2

π). Therefore, it suffices to show that

yπT − (M − l)+ =C2
π∗ −C2

π. (27)

We know that C1
π =C1

π∗ =A1
[1,T ] in this case, and hence yπT =M −C1

π −C2
π =M −C1

π∗ −C2
π. Then

(27) becomes M − (M − l)+ =C1
π∗ +C2

π∗ , which is valid since C1
π∗ +C2

π∗ = min(M,l).

Case 2. All the inventory units are used up at the end of the horizon. This implies that yπts = 0,

and M ≤ l. Hence, (26) becomes

T∑
t=1

[RAπt (απt ) +RRπ
t (απt )]

∣∣∣∣ fT = (r1− r2)
(
a1(ts,T ]− (a1[1,T ]−M)+

)
.

Moreover, because C2
π ≥C2

π∗ , (4) becomes R(π) = (r1−r2)(C2
π−C2

π∗). Therefore, it suffices to argue

a1(ts,T ]− (a1[1,T ]−M)+ =C2
π −C2

π∗ . (28)

We know that a1[1,ts] + C2
π = C1

π + C2
π = M in this case, and hence C2

π = M − a1[1,ts]. Then (28)

becomes a1(ts,T ]− (a1[1,T ]−M)+ =M − a1[1,ts]−C
2
π∗ , which is valid due to the fact that if a1[1,T ] ≥M ,

then C2
π∗ = 0, and otherwise, C2

π∗ =M − a1[1,T ].

Combining the above cases, the two regret accounting schemes are indeed equivalent. Q.E.D.

Proof of Lemma 5. We fix a sample path f++
T . It is clear that γπ̃t ≤ βπ̃t and γπ

o

t ≤ βπ
o

t by Defi-

nition 1 of our fairness constraint. In Case (a), we can always find a customer accepted by πo but

rejected by π̃. Denote the class of this particular customer by κ and we can see that γπ̃t ≤ βπ̃t ≤
κ≤ γπot ≤ βπ

o

t . Similarly we can prove Case (b). In Case (c) where Y πo

t = Y π̃
t , if all the decisions

for two policies are the same, the claim holds trivially. Otherwise the only possible case under the

fairness constraint is that both policies accept and reject the same class customer in a different

order, which implies that γπ̃t = γπ
o

t = βπ̃t = βπ
o

t . Q.E.D.

Proof of Lemma 6. Identical to (11–13) in the two-class case, we partition the set of periods

{1, . . . , T} into three disjoint subsets Ta, Tb and Tc. Since π̃ generates no regret in Tc, we focus
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on Ta and Tb only. Now we fix a sample path f++
T , and examine any period t= 1, . . . , T . If t∈Ta,

as long as πo holds positive inventory, by Lemma 5, πo must accept all the customers that are

accepted by π̃. Hence, by the same argument in Lemma 1, the cumulative regret of acceptance

incurred by πo must be higher than or equal to π̃. Similarly, if t∈Tb, we can see by Lemma 5 that

πo must reject all the customers that are rejected by π̃. Hence, by the same argument in Lemma

2, the cumulative regret of rejection incurred by πo must be higher than or equal to π̃. Q.E.D.
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