
A P0STSCRIPT TO A PAPER OF A. BAKER

W. J. ELLISONf, J. PESEK, D. S. STALL AND W. F. LUNNON

In a recent paper Baker [1] showed that if the field Q(J—d), d > 0, has class
number 2 and discriminant - A, where A ̂  3 (mod 8), then d < 10500. We will
show that the combination of Baker's method and an electronic computing machine can
be used to find all complex quadratic fields with the above mentioned properties.
The fields are the known ones, namely those given by

d = 5, 6, 10, 13, 15, 22, 37, 58.

As the famous " class number one " problem one can attack this special class
number two problem from the standpoint of modular functions. The analogue of
the Heegner-Stark method has been worked out by M. Kenku in his 1968 Oxford
Ph.D. thesis and independently by P. Weinberger in his 1969 Berkley Ph.D. thesis.

Generally speaking we will follow the notation and terminology of [1]. However
there are two small errors in [1]. The first is in the definition of Ar where 2ak should
be ak and the second is the assertion on page 101 that \d is a prime; \d can be twice
a prime. These errors do not affect the validity of the argument.

Professor D. H. Lehmer informs us that he has checked all the fields Q(y/—d),
d > 0, having class number 2 in the range 1 < d < 1012. The only such fields are
the known ones, in particular the only complex quadratic fields with class number 2
and even discriminant in this range are the ones named above. We will be making
use of Lehmer's result later.

The reduction step. Following the notation of [1] we have

I M o g a i - W w ^ l l ^ M f h O - i h ) " 2 (1)

\h2 loga2-407rVd/ll| ^ 132r/2 ( l - ^ ) " 2 (2)

where

rjt = exp ( - rcVd/84), rj2 = exp (-71^/132), h^ = h(2\d),

h2 = h(33d), a, = (5 + V2T)/2, a2 = 23+V33.

If yfd ^ 900, then rjl and rj2 are both less than \ and we have

\ht log <*!-16^/211 ^ 336//! (3)
\h2 \oga2-40iujd/n\ ^ 528//2. (4)

The two upper bounds in the inequalities (3) and (4) are both less than
exp(-;rVd/200) provided that Jd ^ 200 x 132x6-2691/68 n. This inequality is
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certainly satisfied if -Jd ^ 900. Furthermore if yjd ^ 900 we have

.logaj < 10"6

i.\oga2\ < 10"6.

Thus for y/d ^ 900 we certainly have

l-52Jd < h, ^ \-53s/d and 2-98Jd ^ h2 < 2-99Vd.

Putting bi = 105/*! and b2 = -22h2 we deduce from (3) and (4) that for Jd ^ 900
we have

\bx log«! +b2 log«2| < 127 exp (-TiVd/200). (5)

Let // = 210,/d and then maxfl^l, \b2\) ^ H and we can write (5) as

\bt l o g a ^ ^ Ioga2| ^ exp (4-84419-wfl/42000). (6)

We will take H so large that

Trtf/42000-4-84419 > ff/21000.

This inequality will be satisfied if H > 180,000 and as we are assuming for the
moment that y/d ^ 900 we certainly have H ^ 189,000. Thus we have

l^i l o g a ^ ^ Ioga2| < exp (-<5/J), (7)

where^"1 = 21,000. We can now conclude with Baker thatH < 10250andd < 1O500.
A check is now made to see if the inequality (7) has any solutions in integers

bub2 when H lies in the range 180,000 ^ H < 10250. A simple way to make this
check is to recall a lemma of A-M. Legendre, Theorie des Nombres, tome 1, page 147.

LEMMA. / / 6 is a real number and p/q is a rational approximation to 0 which
satisfies the inequality \9—p/q\ <\q2, then p/q must occur as a convergent in the
continued fraction expansion of 6.

We also recall the following inequalities

l/(an+1+2)qn
2 < \9-pJqn\ < \\an+xqn\

where an is the nth partial quotient in the continued fraction expansion of 9. Hence
if we have an inequality of the form

where /? and <5 are positive real numbers, then we must have

an+l> p.exp(dqn)/qn-2. (9)

We can now write the inequality (7) in the form

b2

log«2 7 exp(-(5|&2l)
logax \b2\ logoq \b2\ '

On taking account of Lehmer's computations we need only check values of y/d in
the range 106 < yjd ^ 10250 i.e. we can assume that

10254 > 22x2-99x 10250 ^ \b2\ > 22x2-9SJd > 106.
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The inequality exp(-5|Z>2|)/loga1 <i |&2 | is certainly satisfied for all |62| > 106.
Consequently if bu b2 is a solution of (7) with \b2\ > 106 then by Legendre's lemma
b1/b2 must occur as a convergent in the continued fraction expansion of log a2/log o^,
say pjqn. Moreover, the partial quotient an+1 must satisfy the inequality (9). In
particular since qn > 106 and exp(<5x)/x increases for x > 5'1 the partial quotient
an+l must satisfy the inequality

an+1 > | log a i | . exp(1000/21) .10- 6 -2> 1010.

We computed 6 to 750 decimal places, then we developed the continued fraction
expansion of 6 until the convergents qn exceeded 10254. The partial quotients are
given below. The largest partial quotient is 241. We conclude that there are no
solutions of the inequality (7) with \b2\ in the range 106 < \b2\ < 10254. Hence the
only complex quadratic fields with class number 2 and even discriminant are the
ones given above.

The computation was done on the University of Michigan's I.B.M. 360/67
calculating machine and took about 100 seconds. As a check on the machine com-
putation the entire calculation was repeated by Mr. F. Lunnon on the Atlas I com-
puter at the Science Research Council's Atlas Computer Laboratory, Chilton,
Berkshire, taking about 30 minutes computation time. The computational routines
used by Mr. Lunnon were completely different from the Michigan routines. As the
two computations agree we feel quite confident that the continued fraction expansion
is correct.

The Ann Arbor computation used the SRARITHMETIC multiprecision package
and the Chilton computation used the ABC multilength system. At Ann Arbor the
logarithms of al and <x2 were computed by the Newton approximation method applied
to the equation 0 = / ( * ) = exp (x) — a whilst at Chilton they were computed using
Thiele's continued fraction method. In both computations the results were checked
by computing exp (log (a)) and then comparing the result with a. The continued
fraction expansion of 0, in both computations, was found by iterating

At each iteration the convergent Pi\qx was tested to see if the accuracy of the original
0 had been exceeded. If this test had ever been positive the computation would have
been terminated.

Appendix

The continued fraction expansion of, 2 is
logat2, 2, 3, 1, 10 17, 2, 2, 2, 6 1, 3, 35, 2, 1

14, 8, 1, 4, 3 1, 1, 7, 3, 1 90, 1, 4, 7, 1
4, 1, 1, 47, 1 1, 1, 140, 5, 8 1, 1, 1, 3, 3
3, 1, 4, 6, 3 3, 1, 96, 241, 3 3, 1, 5, 2, 1
2, 1, 1, 2, 16 3, 4, 6, 1, 13 1, 4, 15, 2, 1
10, 2, 4, 1, 17 9, 2, 1, 1. 1 5, 1, 1, 4, 1
3, 6, 1, 16, 2 1, 8, 3, 1, 5 2, 8, 2, 6, 2
1, 7, 1, 39, 2 8, 1, 6, 1, 1 1, 1, 36, 1, 1
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5, 1, 3, 1, 1 5, 26, 44, 1 1, 1, 1, 2, 3
1, 1, 1, 1, 1 10, 2, 1, 1, 3 1, 4, 2, 4, 1
1, 5, 1, 1, 2 1, 1, 1, 1, 5 1, 1, 2, 2, 23
1, 1, 2, 16, 2 2, 1, 1, 1, 1 1, 1, 1, 2, 14
70, 1, 2, 8, 1 3, 2, 7, 1, 1 15, 5, 2, 1, 1
1, 3, 5, 22, 1 6, 3, 32, 17, 5 6, 3, 2, 5, 4
6, 1, 2, 7, 2 7, 2, 7, 23, 2 5, 1, 1, 3, 3
8, 1, 3, 1, 1 8, 1, 1, 1, 5 2, 1, 1, 4, 1
1, 3, 4, 1, 24 28, 1, 1, 2, 171 2, 4, 1, 3, 1
7, 1, 9, 1, 1 5, 11, 96, 1, 4 3, 1, 4, 53, 1
6, 1, 2, 1, 1 3, 1, 2, 1, 8 9, 1, 1, 1, 1
3, 184, 4, 2, 2 1, 4, 2, 5, 3 2, 1, 23, 5, 1
2, 2, 3. 1, 1 1, 1, 10, 43, 15 1, 56, 9, 4, 1
11, 1, 1, 4, 2 1, 2, 7, 1, 1 3, 1, 76,1, 9
1, 5, 1, 5, 1 5, 3, 1, 2, 2 1, 1, 139, 1, 2
3, 3, 51, 2, 18 4, 5, 1, 1, 9 7, 1, 4, 1, 2
2, 3, 1, 2, 1 7, 1, 5, 1, 2 3, 7, 7, 3, 21
3, 1, 2, 1, 1 1, 2, 1, 4, 1 8, 1, 1, 3, 1
1, 6, 1, 1, 2 1, 1, 2, 3, 1 6, 1, 16, 2, 2
4, 3, 4, 1, 3 1, 4, 7, 2, 10 11, 1, 1, 1, 4
2, 4, 1, 1, 3 3, 3, 31, 15, 1 1, 2, 2, 5, 7
2, 3, 4, 2, 1 6, 3, 43, 13, 5 5, 15, 1, 2, 1
8, 6, 2, 1, 1 1, 4, 1, 57, 5 2, 1, 14, 1, 2
1, 1, 3, 2, 1 6, 1, 1, 6, 3 6, 1, 2, 17, 9
1, 103,
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