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1. Introduction
W E say that u(x, y, z) is in H+ if u(x, y, z) is harmonic and non-negative for
z > 0. We say that u(x, y, z) is in H if u(x, y, z) can be expressed as the
difference of two functions, each of which is in H+. For functions in H we
have the following known result. (See (8) 9.)

LEMMA 1. The function u(x, y,z) is in H if and only if it has the repre-
sentation oo

where k is a constant and where /x is a measure defined for all Borel sets in
the z-plane such that «>

J J [iHV+i? ( )

— oo

Furthermore, u(x, y, z) is in H+ if and only if k and /x are non-negative.

If fj, satisfies (1.2) then, for each e > 0, it is not difficult to show that

z

as (x, y, z) ->- (0,0,0) along any path in z > 0.

DEFINITION. Suppose that fx is a measure defined for all Borel sets in
the plane. We say that D/x(0,0) = A if

2TT t

dii{r,d)-> A (1.4)
o o

as t -> 0 + . We say that D*ix{0,0) = A if

a 0
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as t -» 0-|- for all a < jS and if there exists a constant B such that

? f
a. 0

for all a < /? ^ a-f-27r and all small t; when /x is non-negative, (1.5) implies
(1.6). Obviously D*>(0,0) = A implies that Z>/x(0,0) = A.

In this paper we are concerned with the behaviour of the function
u(x, y, z) near (0,0,0) and the behaviour of the measure /x near (0,0). In
particular we prove the following theorems which are three-dimensional
analogues of results due to Fatou ((15) 52-53) and Loomis (9).

THEOREM 1. Suppose that u(x,y,z) in H is given by (1.1) and that

Then u{0,0,z)->A
as z-> 0+.

THEOREM 2. Suppose that u(x,y,z) in H+ is given by (1.1) and that

u{0,0,z)^A

a s z - » 0 + . Then Dfi(0,0) = A.

THEOREM 3. Suppose that u(x,y,z) in H is given by (1.1) and that

D*fi(O,O) = A.

Then u(x, y,z)^>- A

as (x, y, z) -> (0,0,0) along each ray in z > 0.

THEOREM 4. Suppose that u(x, y, z) in H+ is given by (1.1) and that

u(x,y,z)-*A

as (x, y, z) -> (0,0,0) along each ray in z > 0. Then D*fx(0,0) = A.

Theorems 1 and 3 are Abelian theorems and Theorems 2 and 4 are the
corresponding 'partial converses' or Tauberian theorems. The Tauberian
condition is that u(x, y, z) ^ 0.

2. Proofs for Theorem 1 and Theorem 2
Obviously we can assume that k = 0 in (1.1). Next set

e r
li{r,O) = f jdfM(r,e) (2.1)

0 0

and make the change of variables

i = z\ p = r\ y(p) = n(r,2rr). (2.2)
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We see from (1.1) that

S / S
 <2-3)

for each z > 0. Now the hypotheses of Theorem 1, (2.1) and (2.2) imply
t h a t y{p)~*AP (2.4)

as p -> 0+ and we can apply a well-known Abelian theorem for the Stieltjes
transform ((14) 185) to conclude that

00

/

dy{p)

as £ -> 0+ . This, together with (2.3), completes the proof for Theorem 1.
Consider Theorem 2. The fact that u(x,y,z) is in H+ means that /x is

non-negative and hence that y(p) is non-decreasing in p. Furthermore, the
hypotheses of Theorem 2 and (2.3) imply that (2.5) holds and we can apply
the Stieltjes integral form of a Tauberian theorem due to Hardy and Little-
wood ((6) 25 or (9) 242) to conclude that (2.4) holds. This, together with
(2.2) and (2.1), completes the proof for Theorem 2.

3. Proof for Theorem 3
First observe that we can assume A = 0. For if we define

E

and let ux(x,y,z) be the corresponding harmonic function given by (1.1),
then D Vi(°> 0) = 0 and

ux{x,y,z) = u(x,y,z)—A

for all (x, y, z) in z > 0. Furthermore, we can assume that k = 0 and, by
virtue of (1.3), that dfi = 0 outside of the circle | 2 + ^ 2 < e2.

If in (1.1) we introduce spherical coordinates (t, ip, <j>) for (x, y} z) and polar
coordinates (r, 6) for (£, 77), then we obtain

2rr 00
I f f

u(x,y,z) — u(t,ip,<l>) = — A{rlt,ipt9—<p)dii{r,d) (3.1)
t2 J J

0 0

where A(r, * , * ) = * . ° ° ^ „ 1 t . (3.2)
v r y 27r[r2—2rsin«/»cos0+l]» v ;

For each fixed <f> and ip we want to show that

u{t,f,4>)-»0 (3.3)
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as t -> 0 + . Obviously we may assume for convenience that (f> = 0. Then
if we replace r by rt the integral in (3.1) can be written as

2TT co 2TT OO

I f f ICC
— {Mf>^,6)—X(r,Jj,2TT)}du(rt,d)-\—- \X(r,ifj, 2n) du,(rt,6) = / i+7 2 .
t J J t J J

0 0 0 0

Now we see that
2TT OO.2TT oo .

0 0 V0 r

and, by means of the Fubini theorem or an extension of a result due to
Tautz (11), we can perform a double integration by parts to obtain

(3.4)

o o
where fi(r,d) is as defined in (2.1). The hypotheses of Theorem 3 imply
that for all r and 6

B < oo (3.5)

as £->0-{-, and we can apply the Lebesgue 'dominated convergence'
theorem to (3.4) to conclude that

71-»0 (3.6)

as t -+ 0 + . An integration by parts in I2 yields

_ (>K27r) 8X
2~ )~~W~ * ( '

0

With (3.5) we can apply the Lebesgue theorem to (3.7) to conclude that

72 -> 0 (3.8)

as t-> 0 + . Since (3.6) and (3.8) imply (3.3) the proof is complete.

4. Lemmas required for Theorem 4
We list here a few results which will be used in the proof of Theorem 4.

We begin with some definitions which allow us to state a form of the Wiener
Tauberian theorem. (See (5) 294-9.)

DEFINITIONS. All functions are real-valued and defined over 0 ^ t < oo.
We say that g(t) is in M if g(t) is continuous and if

f max \tg(t)\< co. (4.1)
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We say that y(t) is in V ify{t) has bounded variation over each finite interval
and if et

j mi (4.2)
t

is bounded for t > 0. We say that y(t) is in ND if there exists a function
8(t) such that y(t)-\-8(t) is non-decreasing in t and such that

D (4.3)

as t

LEMMA 2. Suppose that g(t) is in M, that

o
for all real y, that y(t) is in V and ND, and that y(0) = 0. / /

00 00

I J9(r/t)dy(r)-+C jg(r)dr

ast->O+,then ^ - ^ C (4.4)

as t-+ 0+.

Undoubtedly this form of the Wiener theorem is known. However, we
could find no reference and so we sketch a proof here.

Proof. After an elementary change of variable, we can conclude from a
well-known theorem ((5), Theorem 234) that for each h(t) in M

00 00

- f h(r/t) dy(r) -» C f h(r) dr (4.5)
o o

as t -> 0 + . With h(t) = e~l and s = ljt in (4.5) we obtain
00

e~rs dy(r) ~ - (4.6)
o

as 5 -> +oo. Since y(t) is in ND we can find S(t) such that y(t)+8(t) is non-
decreasing and such that (4.3) holds. Now from (4.6), (4.3), and an Abelian
theorem for the Laplace transform ((14) 182) we conclude that

f e-™ d{y(r)+8(r)} ~ 9±R (4.7)
J <5
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as s -> +00. The fact tha t y(t)-\-h(t) is non-decreasing, (4.7), and a well-
known Tauberian theorem ((14) 192) yield

(4.8 )
t

as t -> 0+ , and the desired conclusion follows from (4.8) and (4.3).
Remark. Lemma 2 also holds when g(t) is real-valued and y(t) is complex-

valued if the real and imaginary parts of y(t) are in V and ND and if y(0) = 0.

LEMMA 3. Suppose that co(t) has bounded variation and that co(t) = O(t2)
for small t. Then ,.*

as t —¥• 0-f- if and only if *

-> 2L (4.9)
\ !

as <->0+.
The hypotheses imply that the improper integral in (4.9) exists in the

Cauchy sense and the proof for the lemma closely follows one given by
Allen and Kerr ((1) 83).

DEFINITION. We say that a sequence of functions is pseudo equicon-
tinuous if the limit of each convergent subsequence is continuous.

LEMMA 4. Suppose that vk(9) is a sequence of pseudo equicontinuous func-
tions which have uniformly bounded variation over 0^.9^. 2n. If vk(0) = 0
andifforn = 0, ±1, ±2,...

! ein9 dvk(d)-> 0 (4.10)
o

as k-^-co, then vk(&) ~*" 0
as k-> oo for 0 < 6 ^ 2TT.

Proof. If the lemma is false we can use the Helly theorem to find a
convergent subsequence with a continuous limit v(Q) ^ 0. But (4.10) implies
that 2TT

J ein6 dv(9) = 0
o

for n = 0, ± 1 , ±2,..., and it follows that v{6) = 0.
Finally, before proceeding to the proof of Theorem 4, we must evaluate

the integral «, 2Tr

I(n, tjj,z)= tit \{t, ifi, 6) cos n6
o lo

where X(t, «/r, 6) is as defined in (3.2).
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LEMMA 5. Suppose that 0 < «/r < \TT, that n = 1, 2,..., and that z is
complex with —1 < re(z) < 1. Then for z ^ 0,

A ( o o s 0 ) , (4.11)

where P(f (cos 0) is the associated Legendre function of the first kind. (See
(7) 227.) When z = 0,

I(n,0,O) = (tanW)». (4.12)

/?& particular I(n, iff, iy) ^ 0 /or aW reaZ y.

Proof. Since both sides of (4.11) are analytic in — 1 < re(z) < 1 we can
assume that — 1 < re(z) < 0. Next consider the iterated integral

J{n,if/,z) = — [\[ — ff* n \eoan6dO. (4.13)
v >r> ' 2wJ |J («2—2*sin«/»cos0+l)M v ;

o vo '
The inner integral is a Mellin transform and can be evaluated by tables
((2) 310) or by contour integration. Then appealing to the general addition
theorem for Legendre functions ((7) 382) we obtain

J(n,ifj,z) =
si

An alternative proof for (4.14) can be obtained as follows. Invert the
order of integration in (4.13), expand the integrand in powers of t, and
then evaluate the inner integral by means of the addition theorem for
Legendre polynomials. Formula (4.14) can then be obtained from a formula
due to Dougall ((10) 328).

Now by writing cosnd = cos(n+l)0cos0 + sin(?i+l)0sin0 we can ex-
press I(n, iff, z) as the sum of two integrals and, after an integration by parts
in the second integral, we obtain

^ z ) . (4.15)

The identity

-^{(sin./r)TCP-w(cosI/f)} = (8iin/j)nP-n+1(cosijj) (4.16)
dip

is an immediate consequence of the Mehler Dirichlet formula and (4.11) fol-
lows directly from (4.14), (4.15), and (4.16). Let z -» 0 in (4.11) to obtain
(4.12).

Finally the conclusion that I(n, «/r, iy) ^ 0 for all real y follows from
(4.11), (4.12) and a well-known theorem due to Macdonald ((7) 403).
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5. Proof for Theorem 4
We can assume that k = 0 in (1.1) and, by virtue of (1.3), that d/x = 0

outside of some circle P+772 < e2. The proof is in two steps. First we use
an elementary argument to show that for all a < jS

j3 t

J j ( 5 . 1 )
a 0

as <-» 0+ , where 0 is an absolute constant. Then we apply the Wiener
Tauberian theorem to refine (5.1) and conclude that

P *
lim-L JJ^M^fc^ (5.2)

a 0

as t -> 0+ or that 2)^(0,0) = A.
In the proof of (5.1) we may clearly assume that A > 0, that a = —jS,

and that 0 < j3 < 1. Since (M is non-negative (3.1) yields
P «

u(t, $, 0) > i j J A(r/t, «A, 61) ^(r , 0), (5.3)
-/5(1-J3)<

where A(r, if), 6) is as defined in (3.2). If we fix 0 < «/» < far so that

l-sin</f = £2,

it is not difficult to show that

A(r,«/r,0)>(7rCjS2)-i (5.4)

for 1— 0 < r < 1 and — j8 < 0 < jS. From (5.3) and (5.4) we conclude that

- f f d/n(r,») < CpH2u{t,if>,0) < 24Cj8
2«2 (5.5)

—/B (i—/3)f

for 0 < ^ < 8. Theorem 2 implies that D^(03 0) = 4̂ and with (5.5) we
obtain $ t p a-p)nt

I J JdWr,0) = i 2 J J d/x(r'0)

f (1—y3)2^ < (2p)ACt2

n=0

for 0 < £ < 8 and this completes the proof for (5.1).
For the proof of (5.2) fix 0 < ifj < \-n. Then by the hypotheses of

Theorem 5 u{t^,<j>)^A

as t -» 0 + boundedly (Lemma 6) in <f> and we see for n = ± 1 , ±2 , . . . that

J tt(«, 0, <£)e™<£ dcf> -> 0 (5.6)
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as t -> 0 + . From (3.1) we have
2TT

J u(t, 0,0)eW # = i | gn(r/t) dyn(r), (5.7)
o o

2TT 2TT

grn(«) = j J X(t, <p, d)ein0 dd = t \ X{t, $, 0) cos nd dd,

0 0
where we set

2TT 2TT

o o
t

0 0

We must now show, for each n, that gn(t) and yn(t) satisfy the hypotheses
in Lemma 2. Since gn(t) is continuous in 0 ^ t < oo and gn{t) = O(t~2)
for large t, gn(t) satisfies (4.1) and is in M ((5) 299). Furthermore, by
Lemma 5, m

o
for all real y. Next consider yf (t), the real part of yn{t). By (5.1)

t 0 0

for all small t > 0 and hence for all t > 0. Thus y%(t) is in F. Since

2TT <IJ J
o o

as t -> 0 + and hence by Lemma 3

t t
o o

as £ -> 0 + . Since [j, is non-negative the sum
2TT <

0 0

is non-decreasing in t and thus y%{t) is in ND. The same arguments hold
for the imaginary part of yn(t).

From Lemma 2, (5.6) and (5.7), we conclude for n — ± 1 , ±2,..., that
2TT t

— d[x(r, 6) -> 0 (5.8)

o o
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as t -> 0 + . By Lemma 3 we see that

2rr t

0 0

as t -> 0+ or alternatively that
2TT

J ein6 dvt{6) -+ 0 (5.9)
o

e t
ICC Ad

as t-+ 0 + , where v<(0) = _ <fyi(r,0) — — .
o o

Now (5.9) holds for n = ±1, ±2,... by virtue of (5.8); since 2)^(0,0) = A
it also holds for n — 0. We see from (5.1) that the functions vt(6) are pseudo
equicontinuous and have uniformly bounded variation in 0 ^ 9 ^ 2TT and
we conclude from Lemma 4 that

i/,(0) ^ 0 . (5.10)

as t -> 0 + for 0 < 6 < 277. Since (5.10) implies (5.2) the proof is complete.

6. Extension of Theorem 4
We can state Theorem 4 in a slightly stronger form if we make use of

some results due to Tsuji, Deny, and Lelong.

DEFINITION. Let R be a closed Jordan region on the unit hemisphere
x2+y2-\-z2 = 1, z > 0, and let C be the boundary of B. The set of rays

T = {(tx, ty, tz) | (*, y,z)eB,t> 0}

will be called the cone determined by B, and the set of rays

I, = {(tx,ty,tz) \(x,y,z) e C, t > 0}

will be called the surface of T.

LEMMA 6. Suppose that u(x, y, z) is in H+ and that

u(x,y,z) = 0(1)

as (x, y, z) -» (0,0,0) along some ray in z > 0. Then for each cone F

u(x,y,z) = 0(1)

uniformly as (x, y, z) -> (0,0,0) in F.

Proof. For each 0 < tp0 < \n set

B = ^ ^
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where the upper bound is taken over all <f>v <j>2, 0 ̂  ifjv ift2 ^ 0o>
0 ^ t < oo. Obviously 1 < B < oo and from (3.1) we obtain

whenever 0 ̂  ifjv tf/2 < tfi0. Lemma 6 follows directly from (6.1).
We can now prove the following extension of Theorem 4. (Cf. (9),

Theorem 1.)

THEOREM 5. Suppose that u(x,y,z) in H+ is given by (1.1) and that

u(x,y,z)-*A

as (x, y, z) -+ (0,0,0) along each ray in a collection of rays which is dense in
the surface of some cone. Then Z)*/x(O,0) = A.

Proof. For each 0 < «/r0 < \TT, u(t, tfj, (f>) is uniformly bounded in <f>,
0 < if/ < if,0, and 0 < t < 1. Let

M{ifs,<f>) = M « ( « , ^ ) >limw(£,./»,<£) = m(ip,<f>) (6.2)
as t^- 0 + . By a theorem due to Tsuji ((12) 20), M(ip,<f>) and m(ifj,<f>) are
continuous, M(tfj, <f>) is subharmonic, and m(ifi, <f>) is superharmonic on the
unit hemisphere. By hypothesis there exists a Jordan curve C and a set E,
on the unit hemisphere, such that E is dense in C and such that

M(if,,<t>) = A = m(<p,<f>) (6.3)

for (l,tp,<f>) e E. Since M(ifj,^>) and m{iji,<f>) are continuous (6.3) holds for
(\,ip,<f>)E C and hence

M{XIJ,<J>) ^A ^m{ifj,(f>) (6.4)
for (1, ijj, <f>) e B, the region bounded by C. From (6.2) and (6.4) it follows
tiiat i \ A la r\

u{x,y,z)^-A (6.5)
as (x, y, z) -> (0,0,0) along each ray in F, the cone determined by B. Using
an argument due to Tsuji (13), or alternatively a theorem due to Deny
and Lelong ((3) 104), we see that (6.5) holds as (x, y, z) -+ (0,0,0) along each
ray in z > 0. The desired conclusion then follows from Theorem 4.
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